
Contributions to
Improving Feedback
and Trust in
Automated Testing
and Continuous
Integration and
Delivery

Linköping Studies in Science and Technology
Dissertation No. 2247

Azeem Ahmad

Azeem
 Ahm

ad

 2022

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Dissertation No. 2247, 2022
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

Contributions to Im
proving Feedback and Trust in Autom

ated
Testing and Continuous Integration and Delivery

Linköping Studies in Science and Technology
Dissertations, No. 2247

Contributions to Improving Feedback and Trust in Automated
Testing and Continuous Integration and Delivery

Azeem Ahmad

Linköping University
Department of Computer and Information Science

Software and Systems
SE-581 83 Linköping, Sweden

Linköping 2022

Edition 1:1

© Azeem Ahmad, 2022
ISBN 978-91-7929-422-9 (print)
ISBN 978-91-7929-423-6 (PDF)
ISSN 0345-7524
DOI https://doi.org/10.3384/9789179294236

Published articles have been reprinted with permission from the respective
copyright holder.
Typeset using LATEX

Printed by LiU-Tryck, Linköping 2022

ii

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

What is a man’s worth, here today, and gone tomorrow.

iii

ABSTRACT

An integrated release version (also known as a release candidate in software engineering) is
produced by merging, building, and testing code on a regular basis as part of the Contin-
uous Integration and Continuous Delivery (CI/CD) practices. Several benefits, including
improved software quality and shorter release cycles, have been claimed for CI/CD. On the
other hand, recent research has uncovered a plethora of problems and bad practices related
to CI/CD adoption, necessitating some optimization. Some of the problems addressed in
this work include the ability to respond to practitioners’ questions and obtain quick and
trustworthy feedback in CI/CD. To be more specific, our effort concentrated on: 1) iden-
tifying the information needs of software practitioners engaged in CI/CD; 2) adopting test
optimization approaches to obtain faster feedback that are realistic for use in CI/CD en-
vironments without introducing excessive technical requirements; 3) identifying perceived
causes and automated root cause analysis of test flakiness, thereby providing developers
with guidance on how to resolve test flakiness; and 4) identifying challenges in addressing
information needs, providing faster and more trustworthy feedback.

The findings of the research reported in this thesis are based on data from three single-case
studies and three multiple-case studies. The research uses quantitative and qualitative data
collected via interviews, site visits, and workshops. To perform our analyses, we used data
from firms producing embedded software as well as open-source repositories. The following
are major research and practical contributions.

• Information Needs: The initial contribution to research is a list of information
needs in CI/CD. This list contains 27 frequently asked questions on continuous inte-
gration and continuous delivery by software practitioners. The identified information
needs have been classified as related to testing, code & commit, confidence, bug, and
artifacts. We investigated how companies deal with information needs, what tools
they use to deal with them, and who is interested in them. We concluded that
there is a discrepancy between the identified needs and the techniques employed to
meet them. Since some information needs cannot be met by current tools, manual
inspections are required, which adds time to the process. Information about code
& commit, confidence level, and testing is the most frequently sought for and most
important information.

• Evaluation of Diversity Based Techniques/Tool: The contribution is to con-
duct a detailed examination of diversity-based techniques using industry test cases to
determine if there is a difference between diversity functions in selecting integration-
level automated test. Additionally, how diversity-based testing compares to other
optimization techniques used in industry in terms of fault detection rates, feature
coverage, and execution time. This enables us to observe how coverage changes when
we run fewer test cases. We concluded that some of the techniques can eliminate
up to 85% of test cases (provided by the case company) while still covering all dis-
tinct features/requirements. The techniques are developed and made available as an
open-source tool for further research and application.

• Test Flakiness Detection, Prediction & Automated Root Cause Analysis:
We identified 19 factors that professionals perceive affect test flakiness. These per-
ceived factors are divided into four categories: test code, system under test, CI/test
infrastructure, and organizational. We concluded that some of the perceived factors
of test flakiness in closed-source development are directly related to non-determinism,
whereas other perceived factors concern different aspects e.g., lack of good proper-
ties of a test case (i.e., small, simple and robust), deviations from the established

v

processes, etc. To see if the developers’ perceptions were in line with what they
had labelled as flaky or not, we examined the test artifacts that were readily avail-
able. We verified that two of the identified perceived factors (i.e., test case size
and simplicity) are indeed indicative of test flakiness. Furthermore, we proposed a
light weight technique named trace-back coverage to detect flaky tests. Trace-back
coverage was combined with other factors such as test smells indicating test flaki-
ness, flakiness frequency and test case size to investigate the effect on revealing test
flakiness. When all factors are taken into consideration, the precision of flaky test
detection is increased from 57% (using single factor) to 86% (combination of different
factors).

vi

POPULÄRVETENSKAPLIG SAMMANFATTNING

Många programvaruutvecklande organisationer har under de senaste åren börjat arbeta i
stor skala med kontinuerlig integration och leverans (på engelska förkortat CI/CD). Det
innebär att programkoden regelbundet och ofta integreras, byggs och testas – till stor del
automatiskt med hjälp av en svit med stödverktyg. Resultatet av CI/CD-processen är en
ny version av programvaran som teoretiskt sett skulle kunna levereras till kund varje dag,
men det tillkommer praktiska och organisatoriska moment som inte alltid kan genomföras
så ofta. Införande av CI/CD ger många fördelar, inklusive högre kundnöjdhet, frekventa
programvaruutgåvor, förbättrad produktkvalitet och utvecklareffektivitet samt tidig iden-
tifiering av fel. CI/CD erbjuder å andra sidan många nya utmaningar för utvecklare och
forskare.

Komplexiteten hos CI/CD till följd av dess omfattning är en av utmaningarna. CI/CD
stöder ett stort antal intressenter som projektledare, utvecklare, testare, produktägare med
flera och omfattar miljontals programvaruartefakter (källkod, felrapporter, byggfiler, testfall
osv.). Intressenterna behöver i sin vardag leta efter information som genereras av CI/CD-
processen. Att leta efter svaren på frågor som "Hur stort förtroende har vi för en specifik
testsvit?" eller "Är vi redo att släppa en specifik version av programvaran?" har visat sig
vara svårt eftersom man för att generera svaren behöver integrera information från en
kombination av artefakter. Den höga frekvensen med vilken programkod revideras, byggs,
testas och distribueras resulterar i en ökning av det totala antalet artefakter, vilket också
gör det svårare att svara på sådana frågor. Till detta kommer utmaningen att dessa frågor
kan tolkas på olika sätt, vilket gör det ännu svårare att svara på dem korrekt. Intressenter
som spenderar mycket tid och möda för att leta efter sådan information kan bli distraherade
från produktivt arbete.

För att hantera denna utmaning har vi genomfört en större intervjustudie som resulterat i en
lista över informationsbehov från intressenter på olika företag bestående av 27 vanliga frågor
som för att besvaras behöver information från CI/CD-processen. Informationsbehoven har
delats in i fyra klasser och vi har samlat data om deras betydelse, förväntad frekvens och
kostnad för att ta itu med dem. Vi har också information om vilka verktyg företagen
använder och vi har beskrivit ett system för att visualisera händelser i CI/CD-processerna
som teoretiskt kan svara mot alla informationsbehov. En forskningsprototyp som använder
det så kallade Eiffel-protokollet finns tillgänglig som öppen källkod.

En annan utmaning som introduceras av CI/CD är den hastighet med vilken återkopp-
ling tillhandahålls under regressionstestning eftersom antalet körda tester ökar avsevärt på
grund av frekventa förändringar i systemet under test och en ständig tillväxt av antalet
testfall allteftersom fler funktioner implementeras.

För att möta denna utmaning genomförde vi en detaljerad undersökning av metoden att
välja ut ett mindre antal testfall för snabbare återkoppling under dagtid. Principen för ur-
valet kallas diversitetsbaserad testning och innebär att vi automatiskt väljer testfall som är
så olika som möjligt med antagandet att de också representerar testning av olika egenskaper
hos systemet som testas. I en fallstudie kunde vi observera att det gick att utesluta 85% av
testfallen samtidigt som alla viktiga egenskaper hos systemet blev testade med åtminstone
ett testfall var. Återkopplingscykeln i fallstudien kunde därmed reduceras från 3 timmar
till 30 minuter. Företaget i fallstudien kompletterar detta med att köra samtliga testfall
under natten då snabb återkoppling inte behövs. Teknikerna har implementerats och gjorts
tillgängliga som ett verktyg med öppen källkod för vidare forskning och tillämpning.

vii

Den tredje utmaningen är relaterad till förtroendet för resultatet från CI/CD-processen.
Snabbare återkoppling från CI/CD-testcykler är ett framsteg, men kvalitén på den feed-
back som tillhandahålls och utvecklarnas förtroende för den är lika viktiga. Utvecklarens
produktivitet blir lidande när testresultaten är icke-deterministiska, dvs. att man inte kan
lita på om det som testningen indikerar som fel är verkliga brister. Sådan instabila (engels-
ka: flaky) tester växlar mellan att signalera att testningen lyckades och att den misslyckades
trots att utvecklaren inte gjort några ändringar i programkoden som testas.

Många storskaliga programvaruprojekt uppvisar en problematisk mängd instabila tester.
För att möta denna utmaning identifierade vi genom arbetsmöten och enkäter 19 faktorer
som professionella utvecklare och testare uppfattar påverkar instabilitet hos tester. Dessa
upplevda faktorer är indelade i fyra kategorier: testfallskod, det testade systemet, infra-
struktur och företagens organisation. Vi drog slutsatsen att några av de upplevda orsakerna
till instabilitet i testningen hos företag är direkt relaterade till egenskaper hos det testade
systemet medan andra involverar olika aspekter, såsom brist på lämpliga testfallsegenska-
per, avvikelser från etablerade processer och ad hoc-beslut. Vi undersökte också ett antal
testfall som utvecklarna angivit som instabila och kunde verifiera att upplevda faktorer,
bland annat att stora testfall och testfall med hög komplexitet, har större benägenhet att
uppvisa ett instabilt beteende.

Baserat på detta har vi utvecklat och utvärderat ett verktyg för att identifiera instabila
tester i projekt med öppen källkod. Verktyget använder maskininlärning för att väga sam-
man en rad olika möjliga orsaker till instabilitet och vi kunde observera att noggrannheten
i verktygets prediktion ökade ju fler faktorer som togs med. Data om de olika faktorerna
är relativt enkla att ta fram på automatisk väg ur CI/CD-processen.

viii

Acknowledgments

Even though this dissertation has been reviewed more than once, it has a magical ability
to hide special characters in places where they don’t belong. For instance, this dissertation
might all of a sudden show you Table? or [?]. The dissertation is the only one to blame.
I read somewhere that there is a woman behind every successful man. If you want to call
this dissertation a success, I would like to thank not just one but three women: Saleem
Naz (mother), Maleeha Azeem (wife), and Khola Ahmad (daughter). Without them, this
dissertation would not have been finished. I believe I may amend the proverb because
Ibrahim Ahmad, my 5-year-old son, has also served as an inspiration to me through his
inquisitive questions, which have piqued my own curiosity. My mother, who would never
be able to read it because she never went to school and could not read, urged me to pursue
a PhD. Because of their age, my daughter and son are also unable to read. But my wife
will undoubtedly read it and conclude that this dissertation would have finished one year
early, if she had allowed me to work on weekends or public holidays.

Kristian Sandahl and Ola Leifler have not only been a torchbearer for me, but for everyone
who has worked with them. Their capacity to initiate critical, serious, instructive, and
engaging conversations is unmatched. It was a privilege to work with them and to learn
from them. In addition to providing me technical knowledge, they have also shown me how
to cultivate veggies if necessary. I appreciate both of you. Aseel Berglund’s commitment to
gamification has motivated me. You taught me a lot, thank you. I appreciate you as well.

Now comes the difficult part, and read it at your own risk because there are so many names
in the following text that deserve to be thanked but may bore the audience. Francisco
Gomes de Oliveira Neto (this is one person) who has been a huge assistance to me and
the nicest person I have ever met. He has not only inspired me with his own work, but
he has also encouraged me with Dos and Don’ts in the PhD. In particular, I’d want to
express my gratitude for the support I received from people/things such as Eduard Enoiu,
Anne Moe, Lene Rosell, Martin Sjölund, Ola Söder at Axis Communication, the Massage
Chair in corridor, and PELAB at various points throughout my PhD. Together with my
gratitude, I also feel guilty for Nahid Shahmehri, who worked so hard to convinced me to
play badminton. I’m certain I’ve offered her a number of excuses she hasn’t heard before.
It is important to acknowledge one individual who shaped my educational path when I
decided to abandon education in favor of cheap labor. Shaukat Ali Shaukat, a teacher at
Govt. Saleem Model High School, came to my residence to persuade my family of the value
of education and to demonstrate his unwavering confidence in me. Special thanks to those
friends who began referring to me as Dr. during my master’s studies even though I lacked
a PhD and put pressure on me to pursue a PhD.

This work was supported by Linköping University and Software Center: project 18 (Data
Visualization in CI/CD) and project 30 (Aspects of Automated Testing).

Azeem Ahmad, Linköping, August 2022

ix

Contents

Abstract iii

Acknowledgments ix

Contents xi

1 Introduction 1
1.1 Research Context . 3
1.2 Research Questions & Dissertation Overview 3

2 Personal Contributions 9
2.1 Papers included in this work . 9
2.2 Papers not included in this work . 11
2.3 Open-Source Tools . 12

3 Method 13
3.1 Research Process and Methodology . 13
3.2 Research Methods Concerning Paper I . 16
3.3 Research Methods Concerning Paper II . 17
3.4 Research Methods Concerning Paper III 17
3.5 Research Methods Concerning Paper IV 17
3.6 Research Methods Concerning Paper V . 18
3.7 Research Methodology Concerning Paper VI 18

4 Results Summary and Contributions 19
4.1 Answers to Research Question 1 . 19
4.2 Answers to Research Question 2 . 23
4.3 Answers to Research Question 3 . 27
4.4 Answers to Research Question 4 . 38
4.5 Key Contributions . 41

5 Discussion, Implications & Future Work 43
5.1 Information Needs & Data Visualization - RQ 1 and RQ 4 43
5.2 Diversity Based Testing: Adoption & Challenges - RQ 2 and RQ 4 45
5.3 Flaky Tests - RQ 3 and RQ 4 . 45
5.4 Discussion Around Selected Methods - RQ 1 - RQ 4 46
5.5 Research & Practical Implications . 47
5.6 Future Work . 48

6 Conclusion 49
6.1 Information Needs - Answers to RQ1 and RQ 4 49

xi

6.2 Test Optimization Techniques - Answers to RQ2 and RQ 4 50
6.3 Flaky Tests - Answers to RQ 3 and RQ 4 50

7 Information Needs, Challenges, and Recommendations in CI/CD -
(Paper I) 55
7.1 Introduction . 56
7.2 Related Work . 58
7.3 Research Methods . 59
7.4 Information needs - RQ1 . 61
7.5 Strategies, Tools and Stakeholders With Respect To Information Needs -

RQ2 . 64
7.6 Quantifying Information Needs - RQ3 . 65
7.7 Challenges in Providing Visualization Tools - RQ4 69
7.8 Mapping of Identified Challenges with Identified Information Needs 74
7.9 Recommendations . 76
7.10 Discussion . 76
7.11 Implications . 78
7.12 Validity Threats . 78
7.13 Conclusion . 78

8 Improving CI/CD with Similarity-based Test Case Selection - (Paper
II) 83
8.1 Introduction . 83
8.2 Background and Related Work . 85
8.3 Case study . 86
8.4 Results . 88
8.5 Discussion . 92
8.6 Concluding Remarks . 94

9 Challenges and Effects of Improving CI/CD with Similarity-based Test
Case Selection - (Paper III) 99
9.1 Introduction . 100
9.2 Related Work . 102
9.3 Research Methodology . 104
9.4 Study A - Comparing Test Prioritisation Techniques 107
9.5 Study B - Challenges and Effects of DBT 113
9.6 Discussion . 121
9.7 Threats to Validity . 124
9.8 Conclusion . 126

10 Empirical Analysis of Practitioners’ Perceptions of Test Flakiness Fac-
tors - (Paper IV) 129
10.1 Introduction . 130
10.2 Related Work . 131
10.3 Research Methodology . 133
10.4 Results . 136
10.5 Evaluation . 152
10.6 Discussion and Implications . 153
10.7 Validity Threats . 156
10.8 Conclusion . 157

11 A Multi-factor Approach for Flaky Test Detection and Automated
Root Cause Analysis - (Paper V) 161
11.1 Introduction . 162
11.2 Related Work . 163

xii

11.3 Multi-factor Flaky Detection . 164
11.4 MDFlaker - Architecture and Implementation 167
11.5 Evaluation and Results . 169
11.6 Discussion and Implications . 176
11.7 Validity Threats . 178
11.8 Conclusion . 178

12 An Evaluation of Machine Learning Methods for Predicting Flaky
Tests - (Paper VI) 181
12.1 Introduction . 182
12.2 Data Set Description and Prepossessing 183
12.3 Results . 184
12.4 Lesson Learned . 189
12.5 Discussion and Implication . 190
12.6 Related Work . 191
12.7 Validity Threats . 191
12.8 Conclusion . 191

Bibliography 193

xiii

1 Introduction

Software engineering techniques and concepts have evolved dramatically over the years,
resulting in better quality software. As part of the Continuous Integration and Continuous
Delivery (CI/CD) approach, code is regularly merged, built and tested in order to produce
an integrated version (i.e., release version) that can be shared among the team members.
The CI/CD processes are built into a pipeline, which has been referred to by several terms
such as ‘(continuous) integration pipeline’ [1], [2], ‘deployment pipeline’ [1], ‘continuous
delivery pipeline’ [3], [4], and ‘continuous integration and delivery pipeline’ [5]. For this
dissertation, we adopt Humble and Farley’s [1] definition of continuous integration and
delivery: “the practice of all developers often committing their changes, and that each
change is considered a release candidate to be validated by the build and test process.” The
detailed context of this research (i.e., scope of research) is provided in Section 1.1.

The adoption of CI/CD provides many benefits such as increased customer satisfaction
[6], frequent software releases [6]–[8], improved product quality and developer’s productiv-
ity [6]–[9], and early bug detection [8]. On the other hand, CI/CD introduces numerous
challenges. One of the challenges is the complexity of CI/CD as a result of its scale. For
instance, CI/CD supports many stakholders (i.e., project managers, developers, testers,
product owners, etc.), teams (e.g., feature, maintenance, deployment, etc.), and thousands
of software artifacts (source code, bug reports, backlog items, etc.) [10]. Stakeholders seek
out the information generated/embedded by/in the software artifacts in CI/CD pipeline
[11]–[14]. Looking for answers to questions such as “How much confidence do we have in
a specific test suite?” or “Are we ready to release a specific version of the software?” have
proven difficult because the answers integrate information from a combination of different
kinds of artifacts. The high frequency with which changes are committed, built, tested, and
deployed results in an increase in the total number of artifacts, making it more difficult to
answer such questions. The fact that these questions can be interpreted differently makes it
more challenging to answer them correctly. Developers that spend a considerable amount of
time and effort to identify such information can be distracted from doing productive work.

1

1. Introduction

Identifying these information needs can help us better understand the tools, practices, and
processes that are important when addressing those information needs [11], [12]. A better
understanding of the information needs of software practitioners has several benefits, such
as staying competitive, increasing awareness of the issues that can hinder a timely release,
and building a visualization tool that can help practitioners to address their information
needs.

Another challenge introduced by CI/CD is the speed with which feedback is provided during
regression testing, as the scale of testing increases significantly due to frequent changes
in the system under test and practice to continually execute large test suites [15]–[17].
In addition to prior research, the challenge of receiving faster feedback was highlighted
during multiple workshops with software practitioners as part of our research. Developer
productivity decreases when test suites grow and execution time becomes prohibitive due
to slower feedback from testing cycles [15], [17], [18] and an overwhelming amount of test
artifacts to analyze [19], [20]. For instance, developers at Google wait between 45 minutes
to 9 hours to receive feedback from test failures [15]. Shahin et al. [21] concluded that CI
practices begin to fail when developers are unable to obtain feedback from tests in a timely
manner. Another study [22] reports that even when high-performance computers are used,
Microsoft’s regression tests for a single software product take several days. Similarly, for
its 13K projects, Google’s Test Automation Platform requires 150 million test runs [15].
Consequently, regression testing becomes a critical bottleneck in the pipeline increasing
feedback cycles related to the quality of the developed product. Immediate feedback from
testing cycles has been perceived to reinforced developers’ sense of accomplishment and
heightened their motivation [23].

Faster feedback from CI/CD testing cycles is significant, however the quality of the feed-
back provided and the developers’ trust in it are just as significant [24]. The developer’s
productivity suffers when the test results, in addition to a longer execution time, are non-
deterministic (i.e., cannot be trusted), known as test flakiness [25]–[28]. Developers submit
code changes with the expectation that test feedback (i.e., test failures) will be associated
with the code modifications. Unfortunately, rather than being the result of changes to
the code, some test failures occur due to flaky tests. In the literature, the most common
definition of a flaky test is: a test that exhibits both passing and failing outcomes when no
changes are introduced into the code base [27]. Flaky tests are defined as “tests whose out-
come is not deterministic”. Many large-scale software projects suffer from a high amount
of test flakiness. For example, Google has reported that 80% of failing tests were due to
flakes and only about 20% were actual regressions [29]. Another study confirmed 1 in 7 of
the tests at Google sometimes fail due to test flakiness [30].

Overall, given the complexity of CI/CD, slower feedback to developers from testing cycles,
combined with test flakiness (i.e., a lack of trust in test failures), can outweigh the perceived
benefits of CI/CD, or at the very least be considered a significant waste during product
development. In such situations, it is necessary to:

• Understanding/identifying the information needs of software practitioners in CI/CD.

• Adopt simple test optimization approaches that are realistic for use in contemporary
CI/CD environments without adding too many technical requirements.

• Understanding/identifying perceived causes and automated root cause analysis of
test flakiness, thereby providing developers with indications on how to resolve test
flakiness, leading to an increase in developer trust in feedback.

• Understanding/identifying challenges in addressing information needs, providing
faster feedback and trusting the feedback.

2

1.1. Research Context

Optimized
 CI/CD

Well Described Complexity

Timely Feedback Trustworthy Feedback

Figure 1.1: Factors to consider when achieving optimized CI/CD

1.1 Research Context
This work focuses on three factors to accomplish successful CI/CD optimization, as shown
in Figure 1.1: well-described complexity, timely feedback, and trustworthy feedback. Given
the project/industry circumstances (i.e., the nature of businesses), multiple interpretations
of how these factors complement each other may exist. These three factors, however, were
explored individually in separate investigations in this work.

All of the investigations in this work were carried out together with companies that produce
embedded system software. All of the companies under investigation have achieved either
a high level1 of automation or a moderate level2 of automation in CI/CD. To describe
the complexity within CI/CD, we investigated different teams, including those in charge of
source code, design, testing, and deployment. However, when it came to feedback speed,
and trust in feedback, we interviewed teams that used automated regression testing due to
the their willingness to cooperate and share their regression test suites. The regression test
will be done by running all of the tests that were executed on the previous version on a
new version and comparing the results. We used the definition of regression test, defined
by IEEE: “A regression test will be performed for each new version of the system to detect
unexpected impact resulting from program modifications” [31].

1.2 Research Questions & Dissertation Overview
As shown in Table 1.1, this work is organized around four main research questions
(RQ1–RQ4), each of which has been further subdivided into multiple sub-research ques-
tions that have been answered in the papers. As illustrated in Figure 1.2, this work in-
cludes research outcomes as well as practical outcomes. Practical outcomes are in the form
of open-source plugins or tools, whereas research outcomes are published in peer-reviewed
venues. The following sections provide an overview of the research questions and studies
that were conducted as part of this work.

Research Papers Addressing RQ1
The initial phase in this research endeavored to identify the information needs of software
practitioners engaged in CI/CD and the mechanisms by which they address these needs.

1The CI pipeline support automation from commits to deployment with none or very
little human intervention

2The CI pipeline support automation from commit to testing and human intervention
is required for deployment

3

1. Introduction

Table 1.1: Mapping of Research Goals/Questions to Published Papers
Reserach Questions/Research Goals Papers

RQ1: What are practitioners’ information needs in continuous integra-
tion and deployment and how do software professionals handle them?

RQ1.1: What are practitioners’ information needs in continuous integration
and deployment?

Paper I

RQ1.2: To what extent are software tools utilized in industry to address the
identified information needs?

Paper I

RQ1.3: Do practitioners assign priorities to identified information needs based
on importance, frequency and effort?

Paper I

RQ2: To what extent, can different tools/techniques be utilized to
achieve faster feedback and increase trust in the given feedback dur-
ing regression testing in CI/CD?

RQ2.1: How can DBT lever test feedback on CI pipelines? Paper II
RQ2.2: What are the trade-offs in selecting and executing fewer test cases

during software builds?
Paper II

RQ2.3: Is there a difference between diversity functions in selecting
integration-level automated test cases?

Paper II

RQ2.4: How does diversity compare with other prioritisation approaches on
CI feedback cycles concerning fault detection rates, coverage of features, and op-
timized execution time?

Paper
III

RQ3: To what extent, can different tools/techniques be utilized to reduce
test flakiness and increase trust in the given feedback during regression
testing in CI/CD?

RQ3.1: What factors do practitioners perceive as affecting the test flakiness? Paper
IV

RQ3.2: What are the root causes of test flakiness in closed source industry
and how do professionals address test flakiness?

Paper
IV

RQ3.3: Can perceived factors (i.e., test case size and simplicity) explain
whether a test case is flaky or not?

Paper
IV

RQ3.4: To what extent do different factors reveal test flakiness? Are there
more effective combinations of factors, or are some factors better in isolation?

Paper V

RQ3.5: What type of information can MDFlaker reveal to developers to help
understand the root causes of test flakiness?

Paper V

RQ3.6: What are the predictive accuracy of Naive Bayes, Support Vector
Machine and Random Forest concerning flaky tests?

Paper
VI

RQ3.7: To what extent the predicting power of machine learning classifiers
vary when applied on software written in different programming language?

Paper
VI

RQ4: What are the challenges/recommendations in adopting the tool-
s/techniques mentioned in RQ2 and RQ3 and in answering information
needs, identified in RQ1?

RQ4.1: What challenges and effects impact adoption of DBT in CI pipelines? Paper
III

RQ4.2: What can we learn about the predictive power of test smells using
machine learning classifiers mentioned in RQ 3.6?

Paper
VI

RQ4.3: What challenges are faced by the practitioners that develop and main-
tain visualization tools for the software team?

Paper I

RQ4.4: What are the recommendations from practitioners that develop and
maintain visualization tools for software teams concerning challenges, identified in
RQ4.3?

Paper I

The RQ1 (i.e., Table 1.1) motivated the further investigations leading to Paper II-VI (see
Figure 1.2). CI/CD includes a number of tasks (i.e., manual or automated) that must
be performed on a daily basis by different stakeholders. Each day, these stakeholders
are confronted with several questions relating to code, tests, builds, releases, and other
aspects of product quality [11]–[14]. Software practitioners have different information needs
depending on their particular roles and responsibilities [11]. Despite the fact that it is
important to catalog and understand the questions and challenges faced by practitioners
when attempting to answer those questions [13], little is known about (1) what information

4

1.2. Research Questions & Dissertation Overview

needs practitioners have [11], [12] and (2) what information needs are unfulfilled in the
field of software engineering [32]. These needs can help us better understand what tools,
practices, and processes are important when we try to meet those needs [11], [12], [33].
We investigated the information needs associated with different stakeholders (i.e., RQ 1.1
as shown in Table 1.1). In paper I, we investigated to what extent software tools and
techniques are utilized in industry to address the identified information needs (i.e., RQ
1.2). We documented the importance, frequency, required effort with respect to identified
needs (i.e., RQ 1.3). In addition to identifying information needs, practitioners encounter a
number of challenges while developing visualization tools (i.e., RQ 4.3). In this paper, we
included recommendations from practitioners skilled in designing, maintaining, and offering
visualization services to the software team (i.e., RQ 4.4).

Research Papers Addressing RQ2
During the investigation of Paper I, we realized that the demand for effective automated
regression testing strategies grew in line with the increased use of iterative development
processes and systematic reuse in software projects. Companies want to test their software
frequently and efficiently while keeping a low cost [34]. Automated regression testing is,
without a doubt, an expensive venture (i.e., 80% of testing cost is regression testing) [35].
Re-running these regression tests each time a change is made, no matter how small, will
increase testing costs share the testing budget. It is worth noting here the challenges of
energy consumption in terms of computer power and resources consumed during regression
testing. For the companies under investigation, addressing these issues (i.e., feedback speed
and testing costs) was of the utmost importance. As a result of our analysis in Paper I
and the concerns expressed by software professionals during workshops about the lack of
simple test optimization techniques in CI/CD, we decided to focus our research on test
case optimization in automated regression testing. The term simple refers to affordable
techniques that require little technical constraints and easily accessible data. Thus, the
findings of RQ1 motivated the need for RQ2, as shown in Figure 1.2.

Numerous test optimization techniques have been proposed to minimize, select, or priori-
tize sets of test cases in order to gain faster feedback throughout testing cycles [36]. The
industry, we collaborated with, brought in few constraints such as lack of sharing of soft-
ware production code with outside researchers (due to business confidentiality) and limited
information about internal working of system under test, limiting us to use black-box test
optimization techniques. Aside from these constraints, the size of a test suite is increas-
ing at a faster rate, indicating the need for test optimization techniques to receive faster
feedback [17]. Recent results indicate that diversity-based testing (DBT) is a promising
candidate for black-box test optimization in such situations [37] due to its failure detection
and feature/requirement coverage. Diversity-based testing refers to a number of method-
ologies that use distance values to discover similar elements amongst test artifacts, such
as specifications [20], [38], [39], test input or output [40], failure, and execution history
[41], [42], among other things. We chose to focus on diversity-based testing (DBT) ap-
proaches since they are largely black-box with limited dependence on external artifacts
(i.e., similar to our circumstances where we had lack of detailed information about system)
and have demonstrated higher test efficacy when compared to other techniques. Particu-
larly, diversity-based testing techniques outperform other black-box testing methods, such
as combinatorial interaction testing and mutation-based testing [37].

By using DBT, we intended to reduce test cases, increase feature/requirements coverage
and reveal faults during regression testing (i.e., RQ 2.1 in Table 1.1). Furthermore, we
investigated what are the trade-offs in selecting fewer test cases during software builds
(i.e., RQ 2.2)? This dissertation also documented if there is a difference between similarity
functions in selecting integration-level automated test cases (i.e., RQ 2.3) as well as how

5

1. Introduction

diversity compares with other prioritization approaches on CI feedback cycles concerning
fault detection rates, coverage of features, and optimized execution time (i.e., RQ 2.4).

To address RQ2, two investigations (Paper II and III) were conducted. As indicated in
Figure 1.2, this research effort resulted in two scientific outcomes (Papers II and III) and
one practical outcome (the DBT tool)3.

Research Papers Addressing RQ3
Developers submit code changes with the expectation that test failures will be associated
with the code modifications. Unfortunately, rather than being the result of changes to the
code, some test failures occur due to flaky tests. This concerns the software developers, in
investigated companies (i.e., Paper I), when they talked about how much they have problem
showing trust in the feedback from the testing cycles due to test flakiness.

We used a variety of approaches to address RQ3. For example, The first paper (i.e., Paper
IV) was conducted to investigate practitioners’ perceptions of test flakiness in a closed-
source development environment (i.e., RQ 3.1). Perception is critical in the adoption of
new techniques/processes by practitioners, as practitioners may choose local opinion over
empirical data [43]. The scientific community has paid close attention to the necessity to
understand practitioners’ perceptions of software engineering. Researchers have investi-
gated practitioners’ perceptions of continuous integration [44], software design (e.g., code
smells or exception handling) [45]–[48], software testing [49]–[51] and software quality [52]–
[55]. Since flaky tests are a serious concern of software professionals, we decided to inves-
tigate practitioners’ perceptions about what factors are perceived to affect test flakiness.
Capturing these perceptions and comparing them to previous work will lead to a clearer
understanding of test flakiness, which will prevent individuals from misunderstanding one
other in the future. In addition to practitioners’ perceptions, Paper IV investigated the root
causes of test flakiness (i.e., RQ 3.2). The Paper IV reported whether or not the developers’
perceptions match with what they have marked as flaky or not (i.e., RQ 3.3). The idea
was to investigate what practitioners perceive and whether these perceptions are reflected
in the test artifacts.

The most common method for fixing test flakiness is to re-run test cases. However, re-
running test cases consumes resources (Google spends 2-16% of their testing budget on re-
running tests [30]) and is still unreliable [56]. Furthermore, estimating the number of re-runs
necessary to detect a difference between test results and the expected results is challenging
[56]. Developers may be able to detect test flaws by rerunning the test numerous times and
observing variations. However, practitioners’ primary interest is to understand what causes
test flakiness, requiring close attention to a frequently asked question by developers: “why
is this test case flaky?”.

The goal is to develop novel tools and techniques to detect, predict, and automate root cause
analysis of test flakiness, particularly to indicate the reasons for test cases being flaky. The
factors identified in Paper IV, as well as some new factors, were investigated to see whether
these factors played any role in exposing test flakiness (i.e., RQ 3.4). These factors were
utilized to create an automated technique/tool (named as MDFlaker4) for detecting flaky
tests as well as an automated root cause analysis of test flakiness (i.e., RQ 3.5). The goal for
RQ 3.5 is to identify: what type of information MDFlaker can reveal to developers to help
understand the root causes of test flakiness?. The MDFlaker consists of four factors: trace-
back coverage, test smells, flaky frequency, and test case size. Each of the aforementioned
factors provides significant information on its own, but when combined, they provide an

3https://gitlab.liu.se/azeah70/diversitybasedtesting
4https://gitlab.liu.se/azeah70/multifactorftdetector

6

1.2. Research Questions & Dissertation Overview

aggregated score on test flakiness. We utilized these scores and the associated information
to both prevent future test flakiness and to identify and remedy existing test flakiness. After
acquiring information about the aforementioned factors in failed test cases, MDFlaker uses
a machine-learning algorithm to classify whether failed test executions are flaky or not.

Another significant contribution (Paper VI) to the research of test flakiness is the prediction
of test flakiness using machine learning (ML) approaches on test code. We used supervised
ML classifiers to determine whether a test case is flaky or not based on the contents of a
Python test case. We sought evidence that machine learning classifiers can predict flaky
tests and that the results may be applied to test cases written in other languages. In
addition, our unique contribution is to determine if test smells are accurate indicators of
test flakiness. Through detailed investigation of false positives and false negatives, we were
able to compile a list of test smells that are strong and weak predictors of test flakiness.

In summary, the RQ3 resulted in three research outputs (Papers IV, V, and VI) and one
practical output (the MDFlaker tool), as illustrated in Figure 1.2.

Research Papers Addressing RQ4
Developing tools or techniques to address research problems comes with a multitude of
challenges specific to such tools or techniques. Paper I, III and VI explore the factors that
influence the adoption of tools and techniques proposed in RQ2 (i.e., DBT techniques) and
RQ3 (i.e., machine learning classifiers for predicting test flakiness), as well as the challenges
associated with addressing information needs via visualization tools in RQ1.

Number of studies [17], [57]–[59] highlight the effectiveness of test prioritization in continu-
ous integration pipelines, but the literature is inadequate of insights into the challenges and
guidelines associated with the adoption of diversity-based testing techniques in continuous
integration pipelines (i.e., RQ 4.1). In fact, research findings are rarely discussed in terms
of their practical impact [60], [61]. When it comes to regression testing techniques, different
factors affect adoption, such as context suitability (e.g., system, domain, test process), the
desired effects (e.g., improved test coverage or transparency in decisions) [62].

Similarly, in Paper VI, the limitations of using machine learning classifiers to predict test
flakiness were discussed (i.e., RQ 4.2). Paper I looked into the various challenges that prac-
titioners faced when designing visualization tools or selecting from a wide range of external
(e.g., commercial or open-source) visualization tools (i.e., RQ 4.3). A good visualization
tool improves decision making, ad hoc data analysis, user collaboration and communica-
tion, and return on investment [63]. Paper I listed recommendations from practitioners who
are experts in developing, maintaining, and providing visualization services to the software
team in Paper (i.e., RQ 4.4).

7

1. Introduction
R

esearch Q
uestions

R
esearch O

utcom
es

R
Q

1 - W
hat are the practitioner's

inform
ation needs in continuous

integration and delivery and how
practitioner's m

anage them
?

Inform
ation needs in Testing

Inform
ation needs in C

ode &
 C

om
m

it

Inform
ation needs in C

onfidence Level

Inform
ation needs in B

ug

Inform
ation needs in A

rtifact

C
hallenges &

 R
ecom

m
endations

R
Q

2 - To w
hat extent, can different tools/techniques be

utilized to achieve faster feedback and increase trust in
the given feedback during regression testing in C

I/C
D

?

R
Q

3 - To investigate and com
pare tools and techniques

to reduce test flakiness and achieve autom
ated root

cause analysis of test flakiness to gain developer’s trust
in the feedback?

P
aper I

U
se of D

B
T technique to achieve test

optim
ization

P
aper II

Flaky test perception and root cause
analysis

P
aper IV

C
om

parison of D
B

T technique &
C

hallenges in adoption

P
aper III

M
ultifactor technique to reduce test

flakiness and autom
ated root cause

analysis of test flakiness

P
aper V

U
sing M

L to predict test flakiness

P
aper V

I

P
ractical O

utcom
es

P
lugin to generate diverse test cases,

execute them
 and report the

outcom
es

D
B

T Tool
Tool to detect test flakiness based on

different factors

M
D

Flaker Tool

R
Q

4 - To identify the challenges in adopting tools/techniques to
optim

ize test cases, reduce test flakiness, and in answ
ering the

identified inform
ation needs?

IncludedNot Included

Inform
ation needs in C

I/C
D

:
P

relim
inarily Investigation

P
aper V

II
Flaky test detection using divergence

and execution tracing algorithm

P
aper V

III
P

erceived effects of coaching on
student soft skills: P

edagogical
investigation

P
aper IX

Figure
1.2:

T
he

links
betw

een
research

questions,research
outcom

es
and

practicaloutcom
es

8

2 Personal Contributions

This dissertation contains articles that are the result of multiple authors’ research and work.
This section discusses how each article was influenced by the author’s personal experiences.

2.1 Papers included in this work

Paper I - Data Visualization in Continuous Integration and
Delivery: Information Needs, Challenges, and
Recommendations
Publication details: Ahmad, A., Leifler, O., Sandahl, K.: Data visualisation in contin-
uous integration and delivery: information needs, challenges, and recommendations. IET
Soft. 16(3), 331– 349 (2022). https://doi.org/10.1049/sfw2.12030

The research design, data collection, determining analysis techniques, and result validations
were all carried out by myself. Ola Leifler, Kristian Sandahl, and I worked together on the
quantitative and qualitative data analysis. The resulting paper was written by myself and
later reviewed by Ola Leifler and Kristian Sandahl.

Paper II - Improving Continuous Integration with
Similarity-based Test Case Selection
Publication details: F. G. de Oliveira Neto, A. Ahmad, O. Leifler, K. Sandahl and
E. Enoiu, "Improving Continuous Integration with Similarity-Based Test Case Selection",
2018 IEEE/ACM 13th International Workshop on Automation of Software Test (AST),
Gothenburg, Sweden, 2018, pp. 39-45.

9

2. Personal Contributions

The research design, data collection, and data analysis for this article was a joint effort
by myself and Francisco Gomes de Oliveira Neto. I implemented the programming scripts
to parse the industry data with the guidance of Francisco Gomes to be used for analysis.
Francisco Gomes wrote a paper. I, together with Kristian Sandahl, Eduard Enoiu and Ola
Leifler, reviewed the paper.

Paper III - An Industrial Study on the Challenges and
Effects of Diversity-based Testing in Continuous Integration
Publication details: A. Ahmad, F. G. de Oliveira Neto, E. Enoiu, K. Sandahl and O.
Leifler, "An Industrial Study on the Challenges and Effects of Diversity-based Testing in
Continuous Integration", submitted for publication

The research design, data collection, and data analysis for this article were a joint effort
by all the authors. Francisco Gomes, Kristian Sandahl, and Eduard Enoiu collected the
qualitative data, whereas I wrote the programming scripts to collect the quantitative data
from test artifacts provided by the industry. I together with Eduard Enoiu transcribed
the audio recording. The primary qualitative data analysis was conducted by myself and
Eduard Enoiu. Later, Francisco Gomes, Ola Leifler, and Kristian Sandahl reviewed the
analysis of qualitative data. I implemented the programming scripts to parse the industry
data with the guidance of Francisco Gomes to be used for quantitative analysis. Francisco
Gomes, Eduard Enoiu, and myself have written a paper together. Kristian Sandahl and
Ola Leifler reviewed the paper.

Paper IV - Empirical Analysis of Practitioners’ Perceptions
of Test Flakiness Factors
Publication details: Ahmad, A, Leifler, O, Sandahl, K. Empirical analysis of practi-
tioners’ perceptions of test flakiness factors. Software Testing Verification Reliability. 2021;
Vol. 31, no 8. https://doi.org/10.1002/stvr.1791

For this article, I was responsible for the idea design, data collection, and analysis of all of
the information presented. I gathered all of the qualitative and quantitative information
and carried out the entire analysis. I implemented the script to parse industry data in
order to conduct quantitative analysis on it. Afterwards, Ola Leifler and Kristian Sandahl
reviewed the findings of the qualitative and quantitative data analysis. I wrote a full-length
paper. Kristian Sandahl and Ola Leifler were responsible for reviewing the paper.

Paper V - A Multi-factor Approach for Flaky Test Detection
and Automated Root Cause Analysis
Publication details: A. Ahmad, F. G. de Oliveira Neto, Z. Shi, K. Sandahl and O.
Leifler, "A Multi-factor Approach for Flaky Test Detection and Automated Root Cause
Analysis," 28th Asia-Pacific Software Engineering Conference (APSEC), Taipei, Taiwan,
2021 pp. 338-348. doi: 10.1109/APSEC53868.2021.00041

For this article, I was responsible for the idea and design. The primary data collection and
tool implementation was performed by the MS thesis student (Zhixiang Shi). The detailed
analysis of all of the information presented were conducted by myself, MS thesis student and
Francisco Gomes. Afterwards, Ola Leifler acted as mentor and Kristian Sandahl reviewed
the findings of the qualitative and quantitative data analysis. I wrote a full-length paper.
Kristian Sandahl and Ola Leifler were responsible for reviewing the paper.

10

2.2. Papers not included in this work

Paper VI - An Evaluation of Machine Learning Methods for
Predicting Flaky Tests
Publication details: A. Ahmad, O. Leifler and K. Sandahl, “An evaluation of ma-
chine learning methods for predicting flaky tests”, in Proceedings of the 8th international
workshop on quantitative approaches to software quality co-located with 27th asia-pacific
software engineering conference (APSEC 2020), singapore (virtual), December 1, 2020, vol
2767, p. 37–46.

I was responsible for the idea design, data collection, and analysis of all of the information
presented. I gathered all of the quantitative information and carried out the entire analysis.
I implemented the script to parse open-source data in order to conduct quantitative analysis
on it. Afterwards, Ola Leifler and Kristian Sandahl reviewed the findings of the data
analysis. I wrote a full-length paper. Kristian Sandahl and Ola Leifler were responsible for
reviewing the paper.

2.2 Papers not included in this work

Paper VII - Software professionals’ information needs in
continuous integration and delivery
Publication details: Azeem Ahmad, Ola Leifler, and Kristian Sandahl. Software pro-
fessionals’ information needs in continuous integration and delivery. In Proceedings of the
36th Annual ACM Symposium on Applied Computing (SAC ’21). Association for Com-
puting Machinery, New York, USA, 1513–1520. https://doi.org/10.1145/3412841.3442026

The research design, data collection, determining analysis techniques, and result validations
were all carried out by myself. Ola Leifler, Kristian Sandahl, and I worked together on the
quantitative and qualitative data analysis. The resulting paper was written by myself and
later reviewed by Ola Leifler and Kristian Sandahl.

Paper VIII - Identifying Randomness related Flaky Tests
through Divergence and Execution Tracing
Publication details: Azeem Ahmad, Ola Leifler, Erik Norrestam and Kristian Sandahl.
2022. Pending for presentation at 5th International Workshop on the Next Level of Test
Automation

For this article, I was responsible for the idea and design. The primary data collection
and tool implementation was performed by the MS thesis student (Erik Norrestam). The
detailed analysis of all of the information presented were conducted by MS thesis in super-
vision of Ola Leifler and myself. The publication paper was produced, by me, by modifying
the version of the MS thesis.

Paper IX - The Perceived Effects of Introducing Coaching
on the Development of Student’s Soft Skills Managing
Software Quality
Publication details: A. Ahmad, K. Sandahl, en A. Barglund, “The Perceived Effects
of Introducing Coaching on the Development of Student’s Soft Skills Managing Software
Quality”, in Joint Proceedings of SEED 2021 & QuASoQ 2021 co-located with 28th Asia

11

2. Personal Contributions

Pacific Software Engineering Conference 2021, Taipei [Virtual], December 6, 2021, vol 3062,
p. 22–29.

For this article, I was responsible for the idea. Kristian Sandahl, Aseel Barglund, and I
worked together to create the design. All of the authors contributed to data collection and
analysis. I wrote the resulting paper, which was later reviewed by Aseel Barglund and
Kristian Sandahl.

2.3 Open-Source Tools
We developed two ready-to-use software tools for Paper II and Paper V for the companies.
The first tool, named DBT plugin 1 implements the DBT technique on a Python test suite
for both standalone applications and automated builds utilizing Jenkins, Travis CI, and
similar tools. The tool is distributed under the Apache 2.0 License. The other tool, named
MDFlaker 2 was provided under the Apache 2.0 license and determines if test cases are
flaky or not using four factors (as described in Paper V). These factors are used to train a
KNN model, which is subsequently used to detect flaky tests.

1https://gitlab.liu.se/azeah70/diversitybasedtesting
2https://gitlab.liu.se/azeah70/multifactorftdetector

12

3 Method

This chapter provides an overview of the research process and methodology used in the
papers included in this work.

3.1 Research Process and Methodology
For researchers, determining an appropriate research methodology is an important [64]
and difficult [65] step in the research process. It is highly recommended to work with the
research methodology systematically as suggested by Bailey and Handu [66]: “a systematic
process based on the scientific method that facilitates the identification of relationships and
determination of differences in order to answer a question”. People often link research
studies in a way that leads to (1) figuring out what the problem is, (2) coming up with
a solution, and (3) testing the solution. We used the same systematic approach, moving
from problem identification to solution proposal and finally validation of the solution. We
mapped the research studies to the systematic process as shown in Table 3.1.

In addition to the research process, choosing the right research design or method is just as
important. Different purpose requires different research methods [67]. In accordance with
Robson’s classification [68], Runeson et al. [67] identified four different types of research
purposes:

• Exploratory – determining what is happening, gaining new insights, and developing
ideas and hypotheses for future research.

• Descriptive – portraying a situation or phenomenon.
• Explanatory – attempting to explain a situation or a problem, preferably but not

always through the use of a causal relationship
• Improving – attempting to improve a particular aspect of the phenomenon being

studied

13

3. Method

We presented single- or multiple-case studies [69] in this dissertation, in which we inves-
tigated one or more phenomena in different cases. Because the objects of study are con-
temporary phenomena that are difficult to study in isolation, the case study methodology
is well suited for many types of software engineering research [67]. Case studies allow for
a more in-depth understanding of the phenomena under investigation as compared to con-
trolled experiments [67]. Each case in a multiple case study should be selected carefully so
that it either predicts a) similar results or b) contrasting results [69]. We picked (a) so that
results from different cases would complement each other.

There are three different types of methods (i.e., quantitative, qualitative and mixed re-
search) that can be used in the research [70]. Both qualitative and quantitative methods
are used in this research in order to address our research questions. Combining qualitative
and quantitative data tends to result in a more complete understanding of the study’s phe-
nomena [67]. Quantitative data consists of numbers and classes, whereas qualitative data
consists of words, descriptions, pictures, diagrams, and so on [67]. Statistics are used to an-
alyze quantitative data, whereas categorization and sorting are used to analyze qualitative
data [67].

Problem Identification
All of the investigated studies (Papers I-VI) looked at different problems. As shown in
Table 3.1, we used a variety of methods to investigate the problems, including a survey, site
visits, workshops, interviews, and artifact evaluation. We explain each method below.

Survey: A survey is a type of empirical study in which data are gathered by asking people
questions. It is used to obtain a numerical or quantitative description of a particular group
of people [70]. We used a combination of closed-ended and open-ended questions to conduct
the survey. We began the survey with closed-ended questions to familiarize participants with
the issues. Closed-ended questions are a faster and less expensive method of surveying [70].
The survey included open-ended questions too which enabled practitioners to incorporate
additional information and perspectives on a subject.

Site Visit: There is no comprehensive definition of a site visit available [71]. An evaluative
site visit occurs when individuals with specific expertise and preparation travel to a site for
a limited period of time to gather information about an evaluation object, either through
personal experience or through the reported experiences of others, in order to prepare
account of events addressing the site visit’s purpose [71]. We visited a site to obtain such
information during the work with Paper IV as shown in Table 3.1. However many workshops
for data collection or validation, as explained in below section, were conducted at different
sites.

Workshops: Workshops are a vital area of investigation in the fields of computer science
[72]. We conducted workshops, in investigated studies, based on the principles proposed by
Thoring et al. [72]. These principles are described below:

• Focus Definitions – develop a clear and concise research question and evaluation
objectives. What is the workshop intended to accomplish? Is your primary objective
to evaluate something or to create something?

• Role Allocation – assign roles to the various stakeholders or participants. Deter-
mine which roles should be informants for which types of data. Reduce the risk of
researcher bias by separating mentoring from data collection

• Triangulation – combine various research techniques and compare data from multiple
appropriate data sources.

14

3.1. Research Process and Methodology

Table 3.1: Papers and related research methods and focus
Paper Focus

Problem
Explo-
ration

Proposing
a Solution

Solution
Valida-
tion

Type of
Data

Papers Research Methods Su
rv

ey
Si

te
V

is
it

W
or

ks
ho

ps
In

te
rv

ie
w

(S
/U

/S
S)

A
rt

ifa
ct

s
E

va
lu

at
io

n
In

te
rp

re
ta

ti
on

To
ol

s
Te

c h
ni

qu
es

C
om

pa
ri

so
n

W
it

h
Li

te
ra

tu
re

/O
SS

O
S

C
om

pa
ri

so
n

W
it

h
In

du
st

ry
To

ol
s

In
te

rv
ie

w
(S

/U
/S

S)

W
or

ks
ho

p

Research Purpose Q
ua

nt
it

at
iv

e
Q

ua
lit

at
iv

e

Paper I Multiple - - - S ✓ ✓ - - - - - ✓ Exploratory ✓ ✓
Paper II Multiple - - - S ✓ - ✓ ✓ - - - ✓ Exploratory ✓ ✓
Paper III Single - ✓ - U ✓ ✓ ✓ ✓ - ✓ - ✓ Exploratory ✓ ✓
Paper IV Multiple ✓ ✓ ✓ S ✓ ✓ - - ✓ - - ✓ Improving ✓ ✓
Paper V Single - - - - ✓ - ✓ ✓ ✓ - - ✓ Improving ✓ -
Paper VI Single - - - S - ✓ - - ✓ - - ✓ Exploratory ✓ ✓

S: Supervised, U: Unsupervised, SS: Semi-supervised, OS: Open-source software

• Transparency – describe and publish your evaluation aims, methodology, selection
criteria, participant data, workshop course, and workshop findings so that other
researchers can replicate them.

• Reflection – make 3–5 key observations on the usefulness of your evaluation ap-
proach (not the outcomes). This will aid in the future improvement of the workshop
assessment criteria and provide useful insights for other academics.

Artifacts Evaluation: In the software process, there are many things that make up
artifacts [73]. Each one can be described by a measurement [73]. For example, a piece
of software code could be evaluated by its size, functionality, complexity, modularity, and
other factors [73]. As part of the data collection, we acquired a number of software artifacts.
Several metrics (e.g., size, clarity, etc.) were utilized to evaluate the artifacts to be analyzed.

Proposing a Solution
All of the investigated Papers (Papers I-VI) proposed solutions in a different ways as shown
in Table 3.1. According to Cambridge dictionary, the interpretation refers to “an explana-
tion or opinion of what something means”. Papers I, III, IV and VI provided the solution
in terms of interpretation by practitioners of the studied phenomenon. The technique de-
scribes a specific approach of doing something. The tool helps practitioner in applying the
techniques.

15

3. Method

Solution Validation
Validation was done in a variety of ways for each of the solutions presented in the research.
For the purpose of providing objective evaluation, in two studies (e.g., Paper I and IV),
the companies that participated in the validation studies were distinct from the companies
who participated in the primary investigations. The usage of triangulation was employed
in order to improve the precision of the validation. Triangulation involves approaching the
studied object from many perspectives, resulting in a more comprehensive view [67]. There
are four main types of triangulation that can be used, depending on the situation [74] as
explained below:

• Data (source) triangulation – utilizing more than one data source or collecting the
same data at various intervals

• Observer triangulation – using more than one observer in the study
• Methodological triangulation – combining various data collection approaches, such

as qualitative and quantitative methods
• Theory triangulation – utilizing different theories or points of view

All of the above-mentioned triangulation techniques were applied in the investigations in-
cluded in this dissertation. Data triangulation and methodological triangulation were em-
ployed in several studies such as a comparison with literature, comparison with open source
software, comparison with industry tools, quantitative data, semi-structured interviews,
and workshops,as shown in Table 3.1. Many more than one author served as an observer
during data collection and validation, and theories from many perspectives (e.g., experi-
ments conducted with open-source software or work of other researchers) were evaluated in
different studies.

3.2 Research Methods Concerning Paper I
We conducted a multiple case study. Companies were labeled from A-F. We studied different
business sectors to avoid biases. Both quantitative and qualitative data collection was
performed during the work with Paper I as presented in Table 3.1. Data collection, analysis,
and validation were carried out in two stages, as seen in Figure 7.1 of Paper I. During phase
1, we conducted individual interviews with 13 software practitioners from cases A-E to
collect data. We recorded the conversations and took notes during the meetings with prior
permission from the participants. We conducted 60 minutes long individual semi-structured
interviews1 to collect data from all participants.

We read all of the transcripts from the interviews and coded them according to open coding
[75]. Each paragraph of the transcript of each case company was studied to determine
what was said and each paragraph was labeled with one or more codes. After analysis, the
initial codes were re-checked by other researchers (i.e., co-authors). Later, we conducted a
physical workshop with 21 different participants from five industries to validate the results.
For the data validation exercise, we selected different participants from the ones who had
participated in the earlier data collection phase to avoid biases in the results.

The goal of phase 2 was to identify the challenges, therefore we conducted individual in-
terviews with 5 software practitioners from cases A, B, and F. In addition, we requested
participants to present the visualization tools that their teams have been using/developing.
These participants were in charge of giving visualization support to developers and testers.
To conduct, record, analyze, report, and validate the data/findings, a similar process (i.e.,
phase 1 above) was followed.

1https://tinyurl.com/y2uztk5w

16

3.3. Research Methods Concerning Paper II

3.3 Research Methods Concerning Paper II
We conducted a multiple case study to investigate the advantages of adopting diversity-
based test case selection to utilize continuous integration by giving fast and meaningful
feedback on integration test activities. This case study was carried out using information
gathered from two companies. Since this was an exploratory case study as shown in Table
3.1, our goal was not to analyze the quality of their CI pipelines and activities; rather,
we used our findings to explain each case and highlight specific aspects of their automated
testing processes that may be improved. We visited organization to conduct semi-structured
interviews with testers and learn about the connections between the CI pipeline and their
testing efforts. Furthermore, practitioners exported test data from their CIs, such as test
case specs, execution logs, and build information (time stamps, executed test cases, and so
on), which we used for data collection.

3.4 Research Methods Concerning Paper III
We conducted a single case study in order to identify and analyze the challenges and
consequences of implementing DBT in the workplace. In order to clarify communication
between researchers and practitioners, we held a kick-off meeting (i.e., an unstructured
interview) with practitioners at our industry partner, during which we elicited their context
as part of the data collecting process to clarify communication. (Table 3.1).

In a nutshell, we evaluated regression testing within CI pipelines in a surveillance company
in Sweden using data mining a test repository and conducting a focus group interview,
among other methods. Our case study has been divided into two self-contained units of
analysis, each of which will be used to address the research questions. Paper III is covered by
the first unit of analysis (research A), which involves statistical analysis of DBT applied on
archive data provided by the company. The other unit of analysis (research B) is based on
the results of a focus group study conducted with practitioners. A large effort was dedicated
for transcribing the audio recording as part of the data collection. Data collected from
practitioners is grouped into topics using thematic analysis [76], which reveals limitations
and possible benefits of incorporating DBT into their continuous improvement pipelines.

3.5 Research Methods Concerning Paper IV
We conducted a multiple case study, investigating 5 different cases. We collected data in
all five cases through online and in-person workshops, site visits, and semi-structured in-
terviews, as detailed in Table 3.1. Prior to the investigation, we used a Google form to
determine case companies’ interest in test flakiness. The survey is comprised of multiple
choice questions and was developed following an analysis of prior literature on test flak-
iness.18 respondents from five different companies responded to the poll.We studied the
findings of the online survey and developed open-ended questions for the online workshops.
We encouraged discussion among workshop participants but did not expect them to reach
an agreement.

Later, one of the authors made a visit to company A to interview two testers. The 180-
minute interview was taped and transcribed onto an Excel file for analysis. The rationale
for visiting the organization was to examine their testing procedure and documentation in
person, as they claimed to have no flaky tests. The objective was to elicit tacit knowledge
from the company’s daily operations. During a visit, we received a complete test suite
consisting of 1609 test cases from case A as well as 30 tests marked as flaky and 120 marked
as non-flaky from case B. To investigate what practitioners perceive and whether these
perceptions are reflected in the test artifacts, we ran an automated script on test artifacts.

17

3. Method

We used open coding [75] to code the transcripts from the workshop and interviews. Each
paragraph of the transcripts was labeled with one or more codes. Later, we analyzed
all paragraphs from various companies to identify codes that were identical (axial codes).
These codes were further classified according to the influencing factor and its effect, which
indicated whether the factor was believed to increase or decrease test flakiness.

Following that, we held a physical workshop with ten participants from five different com-
panies to validate the results. To prevent biases in the results, we chose individuals for the
data validation exercise who were not involved in the earlier data collection phase. This
workshop lasted 120 minutes and provided participants with a list of influencing factors
along with their descriptions. The participants were asked to rank the elements’ impor-
tance using the Likert scale (i.e., from 1 to 5, ’Strongly Agree’ to ’Strongly Disagree’).
Each factor was discussed with participants to ensure that they understood its significance.
Along with assessing the importance of factors, participants were asked to rank their effect
on test flakiness using a similar Likert scale.

3.6 Research Methods Concerning Paper V
We conduced a single case study using open-source data to assess which factors are more
effective to predict flaky test executions. We selected three Github projects to run our case
study based on different factors. We chose those three projects because they are reasonably
large and belong to a variety of business domains. We selected a total of 212 versions that
had at least one failing tests from the three projects, leading to a set of 2166 test failures.
To compare our classification, we needed to know which test runs from the selected versions
displayed flaky behavior. To do this, we checked out and executed each build 30 times in
isolation (tests were ran in random orders in order to cover some of the flaky categories
defined in literature). When a test’s outcome changed during those 30 runs, we classified
the test execution as flaky. These trials yielded failures from the test set, with 1372 flaky
tests and 794 non-flaky tests.

We evaluated our approach and tool (MDFlaker) in a case study with open-source projects.
Our goal was to assess which factors were more effective to identify flaky test executions,
whether those factors help in identifying root causes for test flakiness and, lastly, how does
MDFlaker compare with other existing tools that classify test flakiness

3.7 Research Methodology Concerning Paper VI
Using open-source data, we conducted a single case study. We created a script to extract
the contents of twelve open-source projects’ test cases. Following the extraction of the test
case text, we investigated which of the test cases in our database had been mentioned as
flaky by Lam et.al [77]. Following this mapping, we created a database that included the
project name, test case name, test case content, and a label.

We used three machine learning classifiers named as Naive Bayes (NBC), Support Vector
Machines (SVM), and Random Forest (RF). NBC is commonly used in classification and is
well-known for producing outstanding results [78]. The appealing characteristic of SVM is
that it eliminates the requirement for feature selections, making spam categorization simple
and quick [79]. RF is an ensemble classification method (a technique that combines numer-
ous base models to build an ideal predictive model) that can be used to solve challenges
with data classification.

To evaluate the predictive accuracy of classifiers, accuracy as the only performance indices
is not sufficient [80]. We used precision, recall, F1-score, ROC curve, false positives and
false negatives [80].

18

4 Results Summary and
Contributions

This chapter provides a summary of the findings from several investigations (i.e., Papers
I-VI). We present answers to the research questions (i.e., RQ1-RQ4).

4.1 Answers to Research Question 1
This section summarizes the results of the RQ1. To facilitate reading, we have included the
RQs below. Responses to RQs might serve as a starting point for organizations optimizing
their CI/CD pipelines. The answers to RQ1 can assist organizations in identifying their
specific CI/CD needs. After identifying needs, practitioners within the organization can
prioritize the work in fulfilling them. The responses to RQ1 pertain to the "well described
complexity" section of Figure 1.1.

RQ1: What are practitioners’ information needs in continuous integration
and deployment and how practitioners manages them?

RQ1.1: What are practitioners’ information needs in continuous integration and
deployment?

RQ1.2: To what extent are software tools utilized in industry to address the iden-
tified information needs?

RQ1.3: Do practitioners assign priorities to identified information needs based on
importance, frequency and effort?

Information Needs - RQ 1.1
To answer RQ1, we identified a total of 27 information needs. The identified information
needs have been classified as testing, code & commit, confidence, bug, and artifacts. Testing

19

4. Results Summary and Contributions

Table 4.1: Importance, Frequency, Effort and Time With Respect To Infor-
mation Needs

ID Information Need Im
po

rt
an

ce

Fr
eq

ue
nc

y

E
ffo

rt

T
im

e

C1 How much confidence do we have in the release to deploy
to the customers?

4,8 4,9 5,0 15-20

CC6 Is the given feature ready to release to customers? 4,5 4,6 5,0 15-20
B3 Is the bug fix ready to release to customers? 4,5 4,6 5,0 15-20
C2 How much confidence do we have in the test suite? 4,1 4,9 5,0 ą20
C3 How much confidence do we have in stand-alone projects to

be merged into the master branch/baseline?
4,1 4,7 4,8 ą20

CC2 What is the status/health of new code changes? 4,1 4,6 4,8 15-20
CC4 Which change request does the specific commit implements? 4,0 4,7 3,5 10-15
CC1 Does the final release to customers include my code? 4,0 3,7 2,5 5-10
T3 In which environment/machine do specific test cases fail? 3,8 4,7 4,5 ą20
T7 Which test cases are flaky? 3,7 4,7 5,0 ą20
CC5 Is the given feature implemented? 3,6 4,6 4,5 10-15
B1 Which bugs have been fixed in the specific release? 3,2 4,3 3,3 10-15
T5 What are the build/test results of my commits? 3,1 4,7 5,0 ą20
CC3 Which requirement does the specific commit implements? 3,0 4,7 3,0 10-15
B4 Who broke the build? 3,0 3,5 4,0 ą20
T6 What are the unstable areas of the code that require more

testing/attention?
2,9 4,3 5,0 20

CC8 How has my code affected non-functional properties of the
product?

2,7 4,6 3,4 ą20

A1 What tasks are pending in the pipeline for a long time? 2,6 2,7 4,0 15-20
B2 How many bugs are still open with specific release? 2,4 2,6 2,0 10-15
T1 Which test cases/suites have been run on which product? 2,2 4,3 5,0 15-20
T2 Which test cases/suites have been run on which branch? 2,1 4,3 5,0 15-20
T4 Which test suite’ execution times have increased recently? 1,9 3,6 1,0 10-15
T8 What is a test execution history of a specific test case? 1,5 3,6 1,0 10-15
CC9 Which internal release notes have my comments/code? 1,5 1,9 5,0 ą20
A2 When and why was this artifact created/modified? 1,3 1,7 3,5 15-20
A3 Who created this artifact? 1,3 1,7 3,0 15-20
CC7 How often does a specific employee deliver new code to the

system?
1,0 1,1 5,0 ą20

and code & commit each has eight associated needs as shown in Table 4.1. Three needs
were identified in the confidence level category, four in the bug category, and five within
artifacts. The details of the information needs are presented in Section 7.

How Practitioners Manages Information Needs - RQ 1.2
Table 4.2 shows how companies (A-E) deal with information needs, what tools they use
to deal with them, and who is interested in them. "In-house visualization" refers to the
visualization tools that have been built by the company’s IT department to address the
information needs. "External visualization tool" refers to situations wherein stakeholders
can seek answers from the direct output of external tools or plugins. For example, answers
for T1 & T2 can be directly sought through the default output from the Jenkin’s test
framework, or through the use of plugins with no manual intervention necessary. "Manual
inspection" is a combination of internal/external tools and human intervention such as
manually traversing the logs, sending emails to colleagues, or querying databases. We
observed that only case A has in-house visualization tools that provide complete answers

20

4.1. Answers to Research Question 1

to T4, CC1-4, C1,3 and partial answers to T3 and C2 due to the fact that this company
needs external tools to get a complete answer. On the other hand, ten information needs
out of twenty-seven, such as T5-6,8, CC5-7,9, B3, and A2-3, can only be answered through
manual inspections of output from tools. A general summary to increase readability about
information needs, their stakeholders and how it is addressed is presented in Table 4.2.

Jenkins [81] is a widely adopted CI tool for addressing the identified information needs,
followed by GitHub 1 and Jira 2. Gerrit 3 was mentioned only once by case E to address
CC1. We asked participants about stakeholders that would be interested in knowing the
answers to the identified information needs as represented in Table 4.2. We observed that
none of the information needs belonged to just one stakeholder but several. Different
stakeholders are connected to needs in different capacities. "Compliance Authority" is an
external stakeholder that requires answers to certain questions before the product can be
released to customers. This was only applicable to case E.

Information Need’s Priorities Based on Importance,
Frequency & Effort - RQ 1.3
Practitioners were asked to rank the information needs based on their importance, fre-
quency of occurrence, and effort involved in addressing them prior to building or selecting
an appropriate tool. Practitioners should prioritize information needs that are most critical
and frequently requested in order to boost productivity and save time [11]. Eight (29%)
information needs, as presented in Table 4.1, are marked as either "important" or "very
important". Participants consider information needs such as C1-3, CC1,2,4,6, and B3 sig-
nificantly important. On the other hand, six (22%) information needs have been marked
as either "good to know" or "of little importance". We did not see any correlation between
the needs and classification. The needs cover different activities such as test execution time
(T4), test case life cycle (T8), internal release notes (CC9), artifact related question (A2-3)
and employee performance (CC7).

When it comes to the frequency of answering the information needs, 17 needs (62%) were
marked as either "frequently" or "very frequently" as represented by the bold text in Table
4.1. Three (11%) needs — which received a low ranking for importance — were marked
as either "depends on context" or "rarely". All important needs (i.e., moderately to very
important) were sought either "frequently" or "very frequently" in day-to-day to routines of
the practitioners.

As far as effort to address information needs is concerned, 17 information needs (63%) were
marked either as "difficult" or "very difficult". One can imagine the magnitude of difficulty
practitioners faced due to the fact that all frequently sought needs were mentioned either
as "difficult" or "very difficult". Only four (14%) needs were marked either "easy" or "very
easy".

As seen in the Table 4.1, we also asked how much time practitioners spent looking for
information. It took more than 10 minutes to answer 24 (87%) information needs, whereas
just 3 needs were answered in under 10 minutes. All of the "frequently" labeled needs took
more than 10 minutes to address.

1https://github.com
2https://www.atlassian.com/software/jira
3https://www.gerritcodereview.com/

21

4. Results Summary and Contributions

Table
4.2:

Strategies,Tools
and

Stakeholders
W

ith
R

espect
To

Inform
ation

N
eeds

C
urrent

H
andling

A
pproach

T
ools/

Strategies
U

sed
T

eam
s

L
abelID

In-house Tools
External Tools

Manual Inspection of Tools’ output

Jenkins

GitHub

Gerrit
Jira

Manual (e.g., send email, call, etc.)

Development
Testing
Project Management
Release Team
Compliance Authority

T
1

W
hich

test
cases/suites

have
been

run
on

w
hich

product?
A

B
C

D
A

B
C

D
X

X
X

X
X

T
2

W
hich

test
cases/suites

have
been

run
on

w
hich

branch?
A

B
C

D
A

B
C

D
X

X
X

X
X

T
3

In
w

hich
environm

ent/m
achine

do
specific

test
cases

fail?
A

A
B

D
E

B
D

E
X

X
X

X
T

4
W

hich
test

suites’
execution

tim
es

have
increased

recently?
A

X
X

X
X

T
5

W
hat

are
the

build/test
results

of
m

y
com

m
its?

A
B

D
E

A
B

D
E

A
B

D
E

X
X

T
6

W
hat

are
the

unstable
areas

of
the

code
that

require
m

ore
testing/attention?

B
C

E
B

C
E

X
X

X
T

7
W

hich
of

the
test

cases
are

flaky?
A

B
C

D
E

A
B

C
D

E
A

B
C

D
E

A
B

C
D

E
X

X
X

X
T

8
W

hat
is

a
test

execution
history

of
a

specific
test

case?
D

E
D

E
D

E
D

E
X

X
X

C
C

1
D

oes
the

final
release

to
custom

ers
include

m
y

code?
A

E
B

D
C

E
B

D
C

X
X

X
X

C
C

2
W

hat
is

the
status/health

of
new

code
changes?

A
B

C
E

B
C

E
B

E
C

X
X

X
X

C
C

3
W

hich
requirem

en t
does

the
specific

com
m

it
im

plem
ents?

A
B

D
E

B
D

E
B

D
E

X
X

X
X

C
C

4
W

hich
change

request
does

the
specific

com
m

it
im

plem
ents?

A
B

D
E

B
D

E
B

D
E

X
X

X
X

C
C

5
Is

the
given

new
feature

im
plem

ented?
A

B
D

E
A

B
A

B
D

E
X

C
C

6
Is

the
given

feature
ready

to
release

to
custom

ers?
A

B
C

D
E

A
B

A
B

C
D

E
X

X
X

C
C

7
H

ow
often

does
a

specific
em

ployee
deliver

new
code

to
the

system
?

A
D

A
D

X
C

C
8

H
ow

has
m

y
code

aff
ected

non-functional
properties

of
the

product?
B

B
D

B
D

X
X

X
C

C
9

W
hich

in ternal
release

notes
have

m
y

com
m

ents/code?
A

D
A

D
X

X
C

1
H

ow
m

uch
confidence

do
w

e
have

in
the

release
to

deploy
to

the
custom

ers?
A

B
D

E
B

B
D

E
B

D
E

X
X

X
X

X
C

2
H

ow
m

uch
confidence

do
w

e
have

in
the

test
suite?

A
A

B
D

E
A

B
D

E
B

D
E

X
X

X
X

C
3

H
ow

m
uch

confidence
do

w
e

have
in

stand-alone
projects

to
be

m
erged

into
the

m
aster

branch/baseline?
A

B
D

E
B

B
D

E
B

D
E

X
X

X
B

1
W

hich
bugs

have
been

fixed
in

the
specific

release?
A

A
B

D
E

A
B

D
E

X
X

B
2

H
ow

m
any

bugs
are

still
open

w
ith

specific
release?

A
B

C
D

E
A

B
C

D
E

A
B

C
D

E
A

B
C

D
E

X
X

X
B

3
Is

the
bug

fix
ready

to
release

to
custom

ers?
A

B
C

D
E

A
B

C
A

B
C

A
B

C
D

E
X

X
X

B
4

W
ho

broke
the

build?
B

D
E

B
D

E
B

D
E

B
D

E
X

X
X

A
1

W
hat

tasks
are

pending
in

the
pipeline

for
a

long
tim

e?
A

B
A

B
A

B
A

B
X

X
X

A
2

W
hen

and
w

hy
w

as
this

artifact
created/m

odified?
C

D
E

C
D

E
C

D
E

X
X

X
A

3
W

ho
created

this
artifact?

C
D

E
C

D
E

C
D

E
X

X
X

22

4.2. Answers to Research Question 2

4.2 Answers to Research Question 2
This section contains a summary of the RQ2 results. The RQs are displayed below to
improve reading. These RQs were covered in Papers II and III. This RQ is about improving
feedback speed during automated regression testing. The responses to RQ2 are for the
"Timely Feedback" part of Figure 1.1.

RQ2: To what extent, can different tools/techniques be utilized to achieve
faster feedback and increase trust in the given feedback during regression
testing in CI/CD?

RQ2.1: How can DBT lever test feedback on CI pipelines?
RQ2.2: Is there a difference between diversity functions in selecting integration-

level automated test cases?
RQ2.3: How does diversity compare with other prioritization approaches on CI

feedback cycles concerning fault detection rates, coverage of features, and optimized
execution time?

DBT to Lever Test Feedback on CI/CD Pipelines &
Differences in Diversity Functions - RQ 2.1 - 2.2
In this case study we consider three distinct attributes in a test case: test requirements,
test dependencies, test steps. As a functional assessment of the system under test, a test
requirement serves as an approval criterion. Test requirements include things like validating
a system need (e.g., a hardware element should respond properly to network commands).
Dependencies on functionality for testing are also known as test dependencies, and they are
not included in the approval criteria. Test dependencies refers to test requirements that
must be present to test the specific test requirements. For example, to test the test require-
ment A, the SUT must contain test requirement X, thus making X as a test dependency. Test
requirements and dependencies are the necessary components for a test to be carried out
successfully. Test steps are the plain language description of user activities and expected
outcomes that a tester creates. Because these tests are at the integration level, the natural
language description is eventually converted into test code that can be executed.

We evaluated diversity-based selection techniques in terms of the percentage of number
of requirements covered by the test cases, dependencies, and steps covered as we reduced
the number of test cases in steps of 5% of the total number of test cases. This enables
us to observe how coverage changes when we run fewer test cases. As a control group,
we utilized random selection (RDM), whereas the remaining three levels represent various
similarity functions used in published studies [39], [40], [42], [82]: Normalised Levenshtein
(NL), Jaccard Index (JI) and Normalised Compression Distance (NCD).

When it comes to test requirement and dependency coverage, both the JI and NL techniques
outperform RDM and NCD by offering higher and more sustainable coverage when the
number of test cases is reduced. It is worth noting that both techniques can eliminate up
to 85% (931 /1096) of test cases while still covering all distinct test criteria (Figure 4.1).
In other words, even if a developer is working locally on a single test requirement, she can
submit her changes to the CI server and receive feedback from all test requirements while
only running 15% of the test suite. NL and JI outperform other selection techniques when
test dependencies are considered (Figure 4.2). It is important to note that while each test
covers a single requirement, each test case may have multiple dependents. Surprisingly,
NCD has performed worse than RDM. When employed on small strings, compression can

23

4. Results Summary and Contributions

impair NCD, according to Feldt [40]. Our dataset’s test requirements are short strings,
which may favor NL because the edit distance provides a fine-grained similarity value.

Since the time falls linearly as we remove test cases (see Figure 4.3), the first conclusion to
be drawn is that we cannot differentiate the strategies when time reduction is concerned. On
the other side, we can see the benefits of DBT in CI pipelines by integrating findings from
time (Figure 4.3) and coverage (Figure 4.1-4.2). Note that the full test suite runs overnight
since developers cannot wait an average of 225 minutes for testing results. However, as
shown in Figure 4.3 shows that only 15% of the test cases can be successfully executed in
17 minutes by a developer.

Figure 4.4 illustrates our findings for test steps in automotive company. Regrettably, the
case company could only share information on test steps at this time. Nonetheless, the
results are informative, especially when compared between the two units of analysis. NL
beats the existing similarity functions by offering high and durable test step coverage, similar
to the results from Surveillance Company. Notably, test cases for Automotive company are
also integration-level test cases written in natural language. Figure 4.4 demonstrates that
even after removing 75% (1479 /1972) of the most identical test cases, NL can consistently
cover 99% (1082 /1093 steps) of distinct test steps. When compared to random selection,
more than half (58 percent = 634 steps) of unique test steps are discarded. Test steps, on
the other hand, are short strings that further impair NCD’s performance.

Test selection strategies in general are susceptible to the risk of discarding test cases, because
ideally, all test cases should be executed [36]. Our approach is based on the assumption
that the whole test suite is run nightly. As a result, failures should be reported the following
day so that developers can debug and, if required, revert their changes.

Results from both of our case studies show that similarity functions behave differently
depending on the type of property being tested in the test case. As a result, NCD and
NL both did worse than JI and NL because the data from all three properties (steps,
requirements, and dependencies) were all small strings of text. If we use a longer string
(like a concatenation of all three properties), we think NCD will work better.

DBT Comparison with an Industry Tool - RQ 2.3
We looked at three different ways of prioritizing (diversity, failure history, and time) to see
how they affected coverage, failure detection rates, and the time it took to run tests. Failure
history and time prioritizes were used by a Swedish company in their day-to-day activities.

All of the techniques, except for the time-based prioritization (i.e., Figure 4.5), work in a
linear way when it comes to time. In other words, there are no specific advantages to using
one method over the other because most tests take the same amount of time to run. In
terms of average percentage of fault detected (APFD4, putting failure rate first is the best
way to get the best results. All failures are quickly found by first running the test cases
that, based on the history, fail more often. For example, 90% of the faults are found after
only 5% of the tests have been run.

Diversity has the best results when it comes to mean coverage. With only 15% of the tests
covering all of the features. This isn’t the case with APFD. Failure Rate is very similar
to other techniques. There is a bigger difference in coverage between the techniques if you
have a smaller budget. It is better to use Random prioritization than both Failure Rate and
Time, if you have a budget that allows 30% or 40% of test cases to be executed. Random

4APFD can provide faster feedback on the SUT, and help software programmers begin
locating and resolving defects earlier than might otherwise be possible

24

4.2. Answers to Research Question 2

!" $%" $!" &%" &!" '%" '!" (%" (!" !%" !!")%")!" *%" *!" +%" +!" ,%" ,!"
!" #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ %% &#
'(#$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ %% &#
)*+ ,, ,- ,% ,. ,. /0 /0 // /# /1 -/ -- -1 %/ %% 0, 1/ 1. .-
'2* ,. /0 /. -- -$ %1 %# %$ 0% 00 1, 1% 1. &/ &1 ., .. ## %

$

#$

.$

&$

1$

0$

%$

-$

/$

,$

#$$

3
45
647
58
9:
9;
4<9

=<
4:9

>?
@:9

A
9B
<=

34564:9A589;4<9=<47C=9=

2589:CD94564E9=<4)9>?@:9A9B<=

Figure 4.1: Results from test selection on test requirements using data from
the surveillance company

!" $%" $!" &%" &!" '%" '!" (%" (!" !%" !!")%")!" *%" *!" +%" +!" ,%" ,!"
!" #$$ #$$ #$$ #$$ #$$ #$$ #$$ %% %% %% %% %% %% &' (# '()* +& #)
,- #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ #$$ &' (# '()* +& #)
./0 %(%1 %+ %+ && (% (& (((# 1& 1* 1# '% '+)) *1 *$ +* #*
,2/ %$ &# (* 1' '% ') '#)()+ *% ** +(+) +$ #' ## % &)

$

#$

+$

*$

)$

'$

1$

($

&$

%$

#$$

3
45
647
58
9:
9;
4<9

=<
4;
9>
9?
;9
?7
@9
=

34564:9A589;4<9=<47B=9=

2589:BC94564D9=<4/9>9?;9?7@9=

Figure 4.2: Results from test selection on dependence coverage using data
from the surveillance company

25

4. Results Summary and Contributions

!" $%" $!" &%" &!" '%" '!" (%" (!" !%" !!")%")!" *%" *!" +%" +!" ,%" ,!"
!" #$% #$& '() '%& '*('*+ ')% '), '+, ''% '$% '$& %* %, &(+) '(',)
-. '%('%' '&% ',# ',$ '+% '+' '#& '$) %))$ &, ,, +, #% #, '* '+ *
/01 '(% '(& '%& ')' '&$ ',* '+' '+$ '') '$# '$' *$ *& *$ &# ,$ #, '% ''
-20 #$# '(* '() '%# '*, ')& '&% ',$ '#& '#$ (+ %* %$ *&)$ && &' ++ #,

$

&$

'$$

'&$

#$$

34
5
67
89
76
:6
;<
86
78=

67
86
>8
7><

486
?5

4@
<8
6>
A

B79C7D659E6F786>87;G>6>

34567D6F<;849@

Figure 4.3: Results from test selection on time reduction using data from the
surveillance company

!" $%" $!" &%" &!" '%" '!" (%" (!" !%" !!")%")!" *%" *!" +%" +!" ,%" ,!"
!" #$%# #&%' #(%(#(%) #(%) #(%) #(%) #(%) #(%) #(%) #(%) #(%) #(%) #(%) #*%+ $*%' ('%# ',%' (%+
-./ #$%) #&%& #0%* #+%) $&%0 #)%' $+%# &&%(&$%0 &*%& ($%& (&%) ((%0 00%, *,%, 0,%# '&%0 ,#%) ,&%+
12 +))%) +))%) +))%) +))%) ##%* ##%* ##%* ##%* ##%* ##%* ##%* ##%* ##%* ##%* #$%# #'%(&&%# 0*%' ,,%&
13. (+%, 0$%(0,%* *0%# *'%0 '0%# ',%' '+%* ,0%, ,)%+ +&%' +(%# +*%(+)%+ $%$ &%' 0%$ *%) ,%*

)

+)

,)

')

*)

0)

()

&)

$)

#)

+))

4
56
758
69
:;
:<
5=:

>=
5>=
:?
>

45675;:@69:<5=:>=58A>:>

!"#$%&'$(")(*$+,(-,$.+

Figure 4.4: Results from Automotive company regarding coverage of test steps
as we select fewer test cases

26

4.3. Answers to Research Question 3

0

30

60

90

120

150

180

210

0 10 20 30 40 50 60 70 80 90 100
Budget

Ti
m

e
(m

in
ut

es
)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Budget

AP
FD

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Budget

C
ov

er
ag

e
(%

)

Technique Diversity FailureRate Random Time

Figure 4.5: Results for mean time, APFD and coverage of different prioriti-
sation techniques considering an increasing test execution budget.

can cover 20% more features than both techniques. Test suites that were prioritized by
time did the worst in both measures, so we don’t think it should be used in CI cycles.

4.3 Answers to Research Question 3
This section contains a summary of the RQ3 results. The RQs are displayed below to
improve reading. These RQs were covered in studies IV, V, and VI. These studies are
conducted in response to one of the identified information needs labeled T7 in Table 4.1.
We investigated the issue of test flakiness using various techniques and methods. The
responses to RQ3 concern the “Trustworthy Feedback” part of Figure 1.1.

RQ3: To what extent, can different tools/techniques be utilized to reduce
test flakiness and increase trust in the given feedback during regression
testing in CI/CD?

RQ3.1: What factors do practitioners perceive as affecting the test flakiness?
RQ3.2: What are the root causes of test flakiness in closed source industry and

how do professionals address test flakiness?
RQ3.3: Can perceived factors (i.e., test case size and simplicity) explain whether

a test case is flaky or not?
RQ3.4: To what extent do the chosen factors reveal test flakiness? Are there more

effective combinations of factors, or are some factors better in isolation?
RQ3.5: What type of information can MDFlaker reveal to developers to help

understand the root causes of test flakiness?
RQ3.6: What are the predictive accuracy of Naive Bayes, Support Vector Machine

and Random Forest concerning flaky test detection and prediction?
RQ3.7: To what extent the predicting power of machine learning classifiers vary

when applied on software written in other programming language?

Practitioners’ Perceptions about Test Flakiness- RQ 3.1
Paper IV found 19 factors that professionals perceive affect test flakiness. These perceived
factors are divided into four categories: test code, system under test, CI/test infrastructure,
and organization-related. We concluded that some of the perceived causes in test flakiness
in closed source development are directly related to non-determinism, whilst others involve

27

4. Results Summary and Contributions

different aspects, such as a lack of suitable test case properties, deviations from established
processes, and ad hoc decisions. Six perceived factors have been documented in the litera-
ture as characteristics of effective test cases, three perceived factors are related to a system
under test, eight perceived factors concern CI/Test infrastructure, and two perceived factors
are organizational-related.

Practitioners shared whether the perceived effect of the perceived factor can either increase
or decrease test flakiness. We grouped these perceived factors based on their effect as
represented by Figure 4.6. Fifteen perceived factors out of nineteen are claimed to decrease
test flakiness whereas four factors to increase test flakiness.

Root Causes of Test Flakiness in the Investigated
Companies - RQ 3.2
We explored the core causes of test flakiness in terms of the test smells encountered by
professionals, in addition to capturing the various aspects of managing/identifying test
flakiness. Many studies [83]–[86] have investigated the relationship between test smells
and test flakiness. We provided the list of test smells in the survey 5 that is known to
relate to test flakiness. ‘Asynchronous wait’ and ‘configuration & dependency issues’ have
been mentioned as a major root cause of test flakiness by all participants, as represented
by Figure 4.7 (h). Other major concerns expressed by almost half of the participants
included ‘GUI’, ‘I/O operations’, ‘Randomness’, ‘Test order dependency’, and ‘Time’. Four
of the test smells, as shown in Figure 4.7, were not encountered by any of the participants:
’Concurrency,’ ’Resource leak,’ ’Floating-point operations,’ and ’Unordered collections.’

Practitioner’s Perceptions vs Test Artifacts - RQ 3.3
To see if the developers’ expectations were in line with what they had labelled as flaky
or not, we examined the test artifacts that were readily available. To get a statistical
assessment of the size and simplicity of the test cases, automated scripts were used. We
counted the number of assertions in the test case to represent the term simplicity, where a
low number of assertions signals a simple test case. The size of the test case represents the
number of lines of code without counting comments. Figure 4.8 presents the box-plot for
test case size and simplicity within two companies with respect to flaky or non-flaky tests.
A correlation between test flakiness and test case size was found in company B, according to
our findings. Figure 4.8 shows that the non-flaky tests in company B have a lower number
of lines than the flaky tests. The median for non-flaky tests in cases A and B is 24 and
35 respectively. The median in flaky tests in case B is 95 which is far more higher than
from non-flaky tests. For company A, we did not have flaky tests. However, the lines of
codes in non-flaky tests in company A are on similar level to the lines of codes in non-flaky
tests in company B, as shown in Figure 4.8. We suspect that this is one of the reasons why
company A has not suffered flakiness.

Case B revealed a similar distinction between test flakiness and test case simplicity. As
illustrated in Figure 4.8, non-flaky tests in case B have fewer assertions than flaky tests.
The median for non-flaky tests in cases A and B was 2, while the median for flaky tests
in case B was 5. Case A has one to two assertions in each non-flaky test case, with the
exception of a few circumstances when the number of assertions surpasses fourteen (i.e.,
outliers in Figure 4.8). Again, we believe this is the explanation for the lack of flakiness in
case A. The authors concluded, based on a data set of studied instances, that two of the
perceived factors (i.e., test case size and test case simplicity) have an effect on test flakiness.

5https://tinyurl.com/yxpw3vgu

28

4.3. Answers to Research Question 3

De
cr
ea

se
In
cr
ea

se

Te
st

in
g

fo
r fl

ak
y

te
st

s
at

 d
iff

er
en

t s
ta

ge
s

Av
oi

di
ng

 te
st

in
g

of
 a

 c
om

pl
ex

fe

at
ur

e
En

vi
ro

nm
en

t H
an

dl
er

s
ou

ts
id

e
te

st

ca
se

s

Ad
va

nc
ed

 te
st

 re
su

lts
 re

po
rti

ng

Au
to

m
at

ed
 te

st
 c

as
e

in
sp

ec
tio

n
Te

st
 c

as
e

ro
bu

st
ne

ss

Sy
st

em
 u

nd
er

 te
st

 /
te

st
 c

as
e

ex
ec

ut
io

n
tim

e
Te

st
 c

as
e

in
de

pe
nd

en
ce

U
nd

er
m

in
in

g
th

e
ne

tw
or

k
in

fra
st

ru
ct

ur
e

Pe
rs

ev
er

an
ce

 to
 re

du
ce

 te
st

 fl
ak

in
es

s
Re

ru
n

te
st

 c
as

es
Te

am
 e

xp
er

ie
nc

e
in

 h
an

dl
in

g
te

st

fla
ki

ne
ss

Te
st

 c
as

e
si

m
pl

ic
ity

Re

qu
ire

m
en

ts
 c

la
rit

y
En

vi
ro

nm
en

t u
nd

er
st

an
di

ng

C
I i

ns
ta

bi
lit

y

Te
st

 c
as

e
ag

e

Te
st

 s
m

el
lin

es
s

Te
st

Fl
ak

in
es

s
Te

st
 c

as
e

si
ze

Fi
gu

re
4.

6:
Te

nt
at

iv
e

M
ap

pi
ng

of
R

el
at

io
ns

hi
ps

B
as

ed
on

Pe
rc

ep
tio

ns
.

29

4. Results Summary and Contributions

0

5

10

15

N
um

be
r

of
 P

ar
tic

ip
an

ts

0

5

10

15

N
um

be
r

of
 P

ar
tic

ip
an

ts

0

5

10

15

N
um

be
r

of
 P

ar
tic

ip
an

ts

(a) At what stage of
testing have you

observed test flakiness?

(b) Do you have any
review process for
writing a test case?

(i.e. Does anyone, other
than the person who
wrote the test case,
review the test case)

(c) What is the rate of
test cases that you
believe exhibit flaky

behaviour?

(d) How much time do you
spend resolving test

case flakiness for each
suspected case?

(e) What mechanism, do
you employ to determine

whether tests exhibit
flakiness?

(f) Given your recent
experience, where you
noticed test flakiness,
please describe your

immediate action

(g) If you notice a test
case as flaky, do you

use any type of
annotation such as

"@FlakyTest", "@Repeat",
"@Ignore" or

"@ReRunThis"

(h) Given your
experiences, where you
noticed test flakiness,
please describe the

cause of this particular
test flakiness

17

11

6

2

17

0
1

5

12

0
1 1

11

4

2

18

16

6

8

1

11

7

2

66

0
1

17

18

2

11

18

2

9

0 0

5

0

88

Integration
Testing

System
Testing

Acceptance
Testing

Unit
Testing

Yes No I Don't
Know

1% − 5% 5% − 10% 10% − 15% 15% − 20% A few
minutes

to half an
hour

Half an
hour to

some hours

Up to a
day

Several
days

Changing
or

resetting
the test

execution
environment

Inspecting
test

execution
logs

Inspecting
test case
definitions

Instrumenting
the

software
to find

whether
failing
tests
cover

changed
code

Rerunning
the test

I created
the bug
report
and let

the tester
handle it

I created
the bug

report and
let the

developer
handle it

I disabled
the test

case

I ignore
the test

that
exhibit
flaky

behavior

I opened
the source

code to
invetigate

I opened
the test
case to

investigate

No Yes

Asynchronous
Wait

Concurrency Configuration
and

dependency
issues

Floating
point

operations

GUI I/O
operations

Randomness Resource
leak

Source
code

defects

Test order
dependency

Time Unordered
collections

Figure 4.7: Survey Results Presented with Questions in Each Facet

30

4.3. Answers to Research Question 3

0

50

100

150

200

250

S
iz

e

0

5

10

S
im

pl
ic

ity

A B A B

●●●●●●●●●●

●

●
●
●●●

●

●●●

●

●
●

●

●

●

●

●

●
●
●●
●●

●

●●

●

●

●

●
●
●●

●●●

●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●●●

●●●●

●

●

●

●

●

●●●●

●●●

●

●

F NF F NF F NF F NF

Figure 4.8: Size (i.e., lines of non-comment codes) and simplicity (i.e., number
of assertions) in the test artifacts within companies A and B with respect to
flaky and non-flaky tests. Note: case A did not provide any marked flaky
tests and claimed that all tests are non-flaky

Multi-Factor Approach for Flaky Test Detection and
Automated Root Cause Analysis - RQ 3.4 - 3.5
Paper V presented and tested MDFlaker: a multi-factor technique for flaky test identifi-
cation on open-source data. This technique does not only detect flaky test cases, but also
explains why they are flaky. MDFlaker is composed of the following factors: trace-back cov-
erage, test smell, flaky frequency, and test case size. MDFlaker employs a machine-learning
method (k-Nearest Neighbour or KNN) to classify whether failed test executions are flaky
or not after acquiring information about the aforementioned factors in failed test instances.
Each factor employed by MDFlaker is summarized here.

Trace-back coverage: This factor is a modified technique based on Bell’s differential
coverage [87]. Trace-back is a simple technique that uses information from test execution
logs to flag a failed test case as flaky if it did not execute on a code change.

Flaky Frequency: MDFlaker keeps a history for each test case where the outcome changes
without any changes to the codebase. The tests that switch their results without any
changes to the codebase on multiple occasions in the past have a greater flaky frequency
and are more likely to be flaky [88], [89].

Test Smells: Many studies empirically show the relationship between test smells and test
flakiness [83], [84], [86]. In order to leverage from such relationships, MDFlaker detects and
maintains a database of test cases and the number of test smells present in the test cases.

Test Case Size: MDFlaker maintains a database of each test case’s lines of code. There
is evidence that the size of the test case adds to test flakiness [89].

Each of the aforementioned factors provides significant information on its own, but when
combined, they provide an aggregated score on test flakiness. We utilize these scores and
the associated information to both prevent future test flakiness and to identify and remedy
existing test flakiness.

MDFlaker’s architecture is depicted in Figure 4.9. Test size and smell statistics are extracted
from GitHub’s source/test code. The trace-back coverage is estimated using the Travis build
history and GitHub modifications. Finally, the flaky frequency is computed using the build

31

4. Results Summary and Contributions

!"#$%&'(&)*
+",&)

-",./%0*."1)

2#.3, 4.)*"$5

617#*

(&)* !8&33) 9
(&)* !.:&

($0%&;<0%=
+">&$0?&

@30=5
@$&A#&1%5

BC*$0%*."1

D2
EFF -",&3

!"#$% & '()*
!"#$%

Figure 4.9: A high level architecture of MDFlaker.

history and changes on GitHub. Every piece of data is kept in a database. We used the
KNN model to predict if failed test executions are flaky or not.

According to the findings of Paper V and as we can see in Table 4.3, combining all factors
often results in high precision, accuracy, and recall. By comparing the results, in Table
4.3, we see that the different factors are more effective in identifying flaky tests than a
random approach, despite the high proportion of flaky tests in our evaluation subset (circa
55%). However, because different combinations produce different results, we propose that
the availability of artifacts should be the primary motivator for selecting the combination
of factors (e.g., practitioners should avoid using frequency if history information is not
available or scarce). In detecting true positives and true negatives, trace-back and frequency
complement one other. Because test smells produce more false positives but less false
negatives than other factors, they can be coupled with history-based factor due to their
strong recall value. Size is not a good predictor since it produces many false positives and
false negatives.

While rerunning test cases can show which test cases are flaky, it provides insufficient or
no evidence concerning the root causes of test flakiness. MDFlaker gives various forms of
information (e.g., CSV files or graphs) regarding either individual test cases or a whole test
suite as part of the reporting flaky tests. This information can help developers in resolving
test flakiness or at the very least provide an idea of where to begin looking. The tables,
created by MDFlaker, contain detailed information about the test executions classified as
flaky, such as test case name, the number of test smells, types of test smells, line number,
and file name as presented in Figure 4.10 and 4.11. By visualizing additional information
connected to failures, practitioners are more equipped to debug [17].

Flaky Test Detection & Prediction: Predictive Accuracy of
Machine Learning Classifiers RQ 3.6
As a preventative measure, Paper VI examined the viability of applying machine learning
(ML) classifiers for flaky test prediction in a Python project. The purpose of this study is to
compare the predicted accuracy of three machine learning classifiers: Naive Bayes (NBC),
Support Vector Machines (SVM), and Random Forests (RF). We compared our findings to
an earlier investigation [90] of similar machine learning classifiers for Java based projects.
We examined whether test smells are effective indicators of test flakiness. As developers
must have confidence in machine learning classifier predictions, they want to know which
types of input data or test smells result in the most false negatives and positives.

The receiver operating characteristic (ROC) curve [91] for NBC with Laplace smoothing,
labeled as NBL with varied thresholds, is depicted in Figure 4.12 (A) (i.e., from 0.0 to 1.0).

32

4.3. Answers to Research Question 3

Table 4.3: Overview of accuracy, precision and recall for each combination of
factor and a random classification as a comparison baseline. As a reference,
we also included the number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN) based on the MDFlaker’s classification.

RowFactor FN FP TN TP Accu. Prec. Rec.
1 frequency 81 75 160 247 0.72 0.76 0.75
2 size 38 163 72 290 0.64 0.64 0.88
3 smells 29 222 13 299 0.55 0.57 0.91
4 trace-back 19 73 162 309 0.83 0.80 0.94
5 size, frequency 77 70 165 251 0.73 0.78 0.76
6 smells, size 69 121 114 259 0.66 0.68 0.79
7 smells, frequency 77 72 163 251 0.73 0.77 0.76
8 trace-back, size 27 76 159 301 0.81 0.79 0.91
9 trace-back, smells 18 76 159 310 0.83 0.80 0.94
10 trace-back, frequency 36 60 175 292 0.82 0.83 0.89
11 size, smells, fre-

quency
77 63 172 251 0.75 0.79 0.76

12 trace-back, size, fre-
quency

31 56 179 297 0.84 0.84 0.90

13 trace-back, size,
smells

31 64 171 297 0.83 0.82 0.90

14 trace-back, smells,
frequency

58 43 192 270 0.82 0.86 0.82

15 trace-back, smells,
frequency, size

33 48 187 295 0.85 0.86 0.89

16 random 166 124 111 162 0.48 0.56 0.49

We conducted various experiments using various training and testing data sets, including
50/50, 60/40, 70/30, 80/20, and 90/10. The ROC curve compares the sensitivity and
specificity of classifiers, which aids in organizing and visualizing their performance [91].
Sensitivity, also called true positive rate, refers to the advantage of correctly predicting
flaky tests, whereas specificity, sometimes called false positive rate, refers to the expense of
accurately classifying non-flaky tests as flaky tests. When a false positive occurs, developers
must expend effort and time determining that the error is due to a classifier error and not
a flaky test case. The best aim for the ROC curve is to advance vertically from the origin
to the top left corner (higher true positive rate) as quickly as possible, as this allows the
classifier to reach all true positives at the expense of committing a few false positives. In
Figure 4.12 (A), the diagonal line shows the method of randomly predicting the outcome.
Any classifier that appears in the lower right triangle performs worse than a random guessing
and we can see that NBL lies in the upper left triangle. As illustrated in Figure 4.12 (A),
NBL ceased producing positive classifications (i.e., flaky test predictions) around the 0.76
- 0.87 threshold. After 0.87, it commits a higher rate of false positives. Prior to doing
further experiments, we tuned several parameters in NBL, SVM, and RF. We do not aim
to include the results of all tests, as they were conducted solely to determine the optimal
parameters. The rest (i.e., simple NB, SVM with radial and sigmiod kernels) were not
included in further experiments and discarded. Figure 4.12 (A-E) provides comparisons of

33

4. Results Summary and Contributions

Figure 4.10: Images generated by MDFlaker to present different types of
information about test smells in test cases.

NBL, SVM-Linear and SVM-Poly (i.e., different kernels) for accuracy, precision, recall and
F1-score. All classifiers had high accuracies of between 93 and 96 percent. Although the
difference is not significant, NBL outperformed SVM. It can be noticed that NBL precision
is increasing (Figure 4.12 (C)) with the gradual decrease in recall (Figure 4.12 (D). With
a precision of 65 percent, the NBL indicates that 35% of what was labeled as flaky was
not. NBL also has a lower recall than SVM-Linear. SVM-Poly performs poorly in terms
of precision and recall, as expected given the non-polynomial nature of the input data set,
which is ideally suited for image processing, but the linear kernel performs better for text
classification. The F1-score (Figure 4.12 (E)) is the harmonic mean of precision and recall.
Due to the widespread problem of class imbalance in text categorization, the F1-score is
beneficial and instructive [92]. Although NBL has a lower F1-score than SVM-Linear, it
is a suitable alternative since it performs better with short documents, as in our case, the
training test case consists of six to fifteen lines of code [93]. In comparison to SVM-linear,
NBL has a greater precision but a poorer recall.

34

4.3. Answers to Research Question 3

Test Case
Number of
Smells Smell typeTip Location Path

test_lex_attrs_like_url 6 Network URL 58 D:\spacy\tests\lang\test_attrs.py
test_lex_attrs_like_url 6 Network URL 58 D:\spacy\tests\lang\test_attrs.py
….... ….. ….. …... ….. …...
test_issue1506 5 Training For in range 24 D:spacy\tests\regression\test_issue1501-2000.py
test_issue1506 5 Training For in range 26 D:\spacy\tests\regression\test_issue1501-2000.py

Figure 4.11: A Snapshot from CSV File: Detailed Description of Test Smells,
their Type, Test Case Name, Line Number and File Name from the Project
Under Investigation

In comparison to decision trees, NBL, and SVM, RF produces lower classification errors and
higher F1-scores. Precision, which is what we are most concerned with, is typically higher
than that of SVM and NBL. Additionally, the authors [80] concluded that RF outperforms
NBL and SVM. Figure 4.13 presents the performance of RF with respect to selected metrics.
mtry denotes the number of variables randomly selected as candidates for each split, whereas
ntree denotes the number of trees to grow. Because there is no method to determine the
ideal mtry and ntree values, we tested with various choices, as illustrated in Figure 4.13.
The mtry has a direct effect on precision and recall. With an increase in mtry, precision
decreases and recall increases; this is an undesirable scenario. The ideal value of mtry is 5,
which results in increased precision and decreased recall regardless of the number of trees.
The modification in mtry had no effect on accuracy, but as previously said, we are interested
in precision as well as accuracy.

As can be shown, RF with mtry = 5 and ntree=250 outperforms all other classifiers in
terms of precision only. RF has a precision of greater than 90% and a recall of less than 10%.
We did not attain a high degree of precision (i.e., greater than 90%) in all classifiers. NBL
provides unexpected results although it holds a good reputation in terms of detecting spam
emails [94]. In comparison to NBL and SVM, RF has several distinguishing characteristics,
including: 1) it can work with thousands of different input features without requiring feature
deletion; 2) it approximates critical classification characteristics; and 3) it is extremely
resilient to noise and outliers [95].

Predicting Power of ML Classifiers with Respect to Other
Languages - RQ 3.7
Due to the fact that we used machine learning classifiers on test case code, paper VI
specified specific features of test cases that contributed to the test cases being flaky or not
flaky. Table 4.4 displays the 20 features with the biggest information gain, as well as their
frequency in flaky and non-flaky tests. We classified the features according to the categories
proposed by Luo et al. [83]. The top feature "conn" was present in 1361 flaky tests and
in 15 non-flaky tests. This feature is connected with external connection to input/output
devices and falls under the "IO" category. The second most common feature is "double,"
which appeared in 1190 flaky tests and 12 non-flaky tests classified as "IO," followed by
"floating point operations." The fourth most common feature, "tabl," was related to table
formation during runtime for database queries, and it appeared 1150 times in flaky tests
and 52 times in non-flaky tests.

When we compared our findings to those of Pinto et. al [90], we noticed two differences.
First, the top 20 features in both research projects are substantially different. Only two
features, "tabl" and "throw," highlighted with a star (*) in Table 4.4, were found to be

35

4. Results Summary and Contributions

0.00

0.25

0.50

0.75

1.00

0.00
0.25

0.50
0.75

1.00
1 −

 specificity

sensitivity

nam
eN

B
L−

50/50L

N
B

L−
60/40L

N
B

L−
70/30L

N
B

L−
80/20L

N
B

L−
90/10L

A

●

●

●
●

●

93 94 95

50/5060/4070/3080/2090/10
D

ata P
artitions

Accuracy Values (%)

C
lassifier

●
N

B
Laplace=

1

S
V

M
−

Linear

S
V

M
−

P
oly

B
●

●
●

●

●

20 30 40 50 60

50/5060/4070/3080/2090/10
D

ata P
artitions

Precision Values (%)

C
lassifier

●
N

B
Laplace=

1

S
V

M
−

Linear

S
V

M
−

P
oly

C

●
●

●

●
●

20 30 40 50 60

50/5060/4070/3080/2090/10
D

ata P
artitions

Recall Values (%)

C
lassifier

●
N

B
Laplace=

1

S
V

M
−

Linear

S
V

M
−

P
oly

D

●

●

●
●

●

20 30 40 50 60

50/5060/4070/3080/2090/10
D

ata P
artitions

F1 Score

C
lassifier

●
N

B
Laplace=

1

S
V

M
−

Linear

S
V

M
−

P
oly

E

Figure
4.12:

Perform
ance

com
parison

am
ong

classifiers.
(A

)
represents

the
R

O
C

curve
of

N
B

L
classifier

w
ith

different
data

partition
and

probability
score.

(B
-E)

represents
the

accuracy,
precision,

recall
and

F1-score
of

different
classifiers

w
ith

a
different

data
partition,respectively.

36

4.3. Answers to Research Question 3

Accuracy F1−Score Precision Recall

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

25

50

75

mtry

V
al

ue
s

300

400

500

600

700

ntree

Figure 4.13: Performance of RF with different parameters (i.e., number of
trees and mtry).

Table 4.4: Top 20 features and assigned category

Features #FT #Non
-FT

Assigned cate-
gory from Luo
et. al [83]

conn 1361 15 IO
double 1190 12 floating point
tabl* 1150 54 -
rsnext 500 22 Unordered col-

lections
for 241 15 -
jdbcassertfullresultsetr 900 0 IO
messag 1101 87 concurrency
null 334 88 -
sclose 360 0 IO
select 1080 15 IO
sgettransactioncommit 700 15 IO
expr 162 2 -
tcommit 134 5 -
true 700 11 -
epsilon 383 0 floating point
fail 269 13 -
jdbcassertcolumnnamesr366 0 IO
throw* 592 49 -
rsclose 300 0 IO
row 161 3 -

similar in both studies. However, we discovered that the majority of our features were
connected to the "IO" output category, as shown in Table 4.4, which supported the findings
of Pinto et al., who stated that "all projects showing flakiness are IO-intensive." Second, we
have lower precision, recall, and f1-score than Pinto et al., except in one case where random
forest provided 0.92 precision, thus observing different results contrary to what Pinto et
al. claimed: "Although the analyzed projects are largely written in Java, we do not expect
major variations in the results if another object-oriented programming language is chosen
instead, because some terms may be shared among them [90]."

37

4. Results Summary and Contributions

4.4 Answers to Research Question 4
This section contains a summary of the RQ4 results. The RQs are displayed below to
improve reading. These RQs were covered in studies I, III, and VI. The responses to RQ4
concern the "Well Described Complexity" section of Figure 1.1.

Challenges and Effects in the Adoption of DBT - RQ 4.1
Paper III listed three distinct themes as part of identifying challenges in adopting DBT and
perceived effects of DBT. These themes are (1) testing activities, (2) organizational factors,
and (3) test infrastructure. Various sets of challenges and effects were categorized under
these themes to give insights such as more challenging areas or aspects in which DBT can
be more effective. Figure 4.14 summarizes all themes with corresponding challenges and
perceived effects of DBT. "Testing theme" refers to the challenges and effects of regression
test activities at the case company, such as how to handle different levels of testing or tacit
knowledge from experienced practitioners. The theme "organizational factors" focuses on
the main challenges and effects of DBT in how engineers collaborate as a team, such as how
they maintain test artifacts (test case templates, test execution logs, or design guidelines).
These artifacts demonstrate how DBT can assist practitioners in producing better tests or
improving test repository upkeep. The theme ‘testing infrastructure‘ discusses some of the
challenges which are connected to the instrumentation behind the automated testing tool
chain used in the company.

RQ4: What are the challenges/recommendations in adopting the tool-
s/techniques mentioned in RQ2 and RQ3 and in answering information
needs, identified in RQ1?

RQ4.1: What challenges and effects impact adoption of DBT in CI pipelines?
RQ4.2: What can we learn about the predictive power of test smells using machine

learning classifiers mentioned in RQ1?
RQ4.3: What challenges are faced by the practitioners that develop and maintain

visualization tools for the software team?
RQ4.4: What are the recommendations from practitioners that develop and

maintain visualization tools for software teams concerning challenges, identified in
RQ4.3?

Participants, in Paper III, noted that, in terms of technical challenges, the test repository
itself should be automated to eliminate the burden associated with artifact inconsistencies
(C3,E2). Shorter cycles with selected testing should include a form of confidence score in
association with their CI process to highlight the risk associated with not running all tests at
a single build (C6, E6). In terms of adoption, the main technical documented challenges are
related to the compatibility of an extendable automated test instrumentation and the test
prioritizing technique (C7,E7). The majority of the adoption challenges are associated with
test processes and artifacts, such as assisting practitioners in decision making (C1,C2,E1),
understanding how the technique is employed in their process (C4,E4), or giving compliance
checks and transparency to team members (C5,E5).

Challenges Concerning Predictive Power of Machine
Learning Algorithm in Determining Test Flakiness - RQ 4.2
During the work with Paper V, we discovered that it is not just the frequency of test smell
that causes a flaky test case, but also its coexistence with the test class code (i.e., tear up and

38

4.4. Answers to Research Question 4

Figure 4.14: Overview of themes identified during our thematic analysis. Each
theme includes a set of challenges and perceived effects related to the adoption
of DBT.

Table 4.5: Test Smells as Strong and Weak Predictors Together with Source
of their Existence

Test Smell Category Prediction
Cate-
gory

Test
Case

Test
Class

Operating
System

External
Li-
braries

Hardware

Async wait Strong [�] - - - -
Precision (float oper-
ations)

Strong [�] - - - -

Randomness Strong [�] - - - -
IO Strong [�] - - - -
Unordered Collection Weak [�] [�] [�] - -
Time Weak [�] [�] [�] - [�]
Platform Weak [�] [�] [�] [�] -
Concurrency Weak [�] [�] [�] - -
Test order depen-
dency

Weak [�] [�] [�] [�] [�]

Resource Leak Weak [�] [�] [�] - -

down code etc.,) or external circumstances such as operating systems or certain products.
For example, The test smell ’Conditional Test Logic’ as mentioned in [96] refers to nested
and complex ’if-else’ structure in the test case. Depending on which branch of ’if-else’ is
executed, the system under test may require specific environment settings. Failing to set
the environment, during different executions, will flip the test case outcome, thus making
it flaky. We come up with a list of test smells that are strong or weak predictors of test
flakiness, as shown in Table 4.5. Strong predictors are those test smells that were present
in both true positive and negative cases, whereas weak predictors were present exclusively
in false negative and positive instances. Although test smells classified as weak predictors
in this study are still useful for identifying test flakiness, they are ineffective with machine
learning classifiers because they require additional information such as the operating system
on which they are running and whether or not specific configurations should be deployed.
Test smells categorized as strong predictors are extremely valuable for machine learning

39

4. Results Summary and Contributions

classifiers since they exist independently of the test case function and do not require further
information.

Challenges & Recommendations in Addressing Information
Needs through Visualization Tools - RQ 4.3 - RQ 4.4
Paper I looked into the challenges practitioners experienced while creating visualization
tools or selecting from a vast range of external (commercial or open-source) visualization
tools. A good visualization tool increases decision making, ad hoc data analysis, user col-
laboration and communication, and return on investment [63]. The investigation’s goal is to
identify practitioners’ challenges when building visualization tools. We mapped challenges
to identified information needs. The paper also compiled a list of practitioner recommenda-
tions for designing and maintaining visualization software. We discovered eight challenges
and ten recommendations across all investigated organizations.

Challenges:

• Visualization Tools Development & Maintenance: Developing and maintain-
ing visualization tools as business products presents a significant amount of difficulty.
Unfortunately, due to the difficulty of deciding whether to develop an in-house so-
lution or to investigate online resources (i.e., open-source, commercial off-the-shelf,
etc.), visualization tools receive insufficient attention and resources.

• Information Quality & Trust in Tooling: It’s difficult to earn the trust of
developers and testers in visualization tools developed by other teams while also
protecting the integrity of the data being shown.

• Tool Creators vs Tool Users: It is critical to establish a connection between tool
users and tool creators, which is a significant problem. The absence of communication
between two distinct user categories has an effect on the feedback loop.

• Effort vs Worth: Practitioners face challenges in persuading decision-makers at all
levels to invest in the development of diverse visualization tools for different teams
and to make it worthwhile.

• Confidentiality vs Transparency: One of the difficulties is striking a balance be-
tween confidentiality and transparency. When answering some queries, it is essential
to verify if users are authorized to receive such information.

• Different CI Work Flows: Within large organizations, various teams work on
a variety of different projects. Each team is free to choose their own continuous
integration pipeline from a number of activities. Configuring visualization software
for a variety of continuous integration workflows is challenging.

• Result Interpretations: When another team constructed the tool, the primary
challenge for engineers is interpreting the results displayed on the screen. If the
source of a result cannot be traced, it might be interpreted in a variety of ways.

• User Interface Complexities: During the release process, project managers want
to know information about the product/software, such as how many test cases failed,
what the release’s confidence level is, and so on. Selecting which data should appear
on the screen and how much flexibility we should have in tracing its origins is a
difficult task.

40

4.5. Key Contributions

Recommendations

R1 Developers will be more likely to trust the tool if it provides information about (1)
the source of the information, (2) the age of the information, and other information
quality attributes.

R2 To avoid becoming a legacy system, the visualization tool should incorporate specifics
such as requirements specifications, design documents, and so on, in the same way
that traditional product development activities do.

R3 It is recommended to create a basic architecture upon which other visualization tools
can be constructed. Teams made use of a variety of open-source applications (e.g.,
GitHub, Gerrit, Jenkins, etc.), thus developing a base protocol similar to Eiffel [10]
is encouraged.

R4 The credibility of a tool grows over time.They [developers] will trust it if they use it
regularly.

R5 To simplify the work required to configure visualization systems, it is preferable for
software teams to build identical and systematic CI pipelines (e.g., following the
company’s rules).

R6 Maintain a repository of software visualizations to reduce redundancy and increase
re-usability.

R7 Bespoke development of visualization tools should be discouraged to reduce the risk
of superfluous tools

R8 Any suggestion for a change in visualization requirements should be evaluated in real
time by the appropriate change management teams.

R9 Depending on the needs and structure of the company, resources such as CI architects
or maintainers should be increased. To support a quality product, there should be a
balance of workload between people who develop business products and those who
supply support services.

R10 Users of visualization tools should provide regular input to visualization tool devel-
opers in order for future decisions to be successful and efficient. Furthermore, these
regular exchanges would limit the possibility of results being misinterpreted.

4.5 Key Contributions
The following are the key contributions in the form of research and practical contributions.
Practitioners who are struggling to address the complexity of the CI/CD should begin
by identifying the information needs. Taking it a step further, practitioners can use the
methodologies and tools given in this dissertation, such as DBT and MDFlaker, to optimize
CI/CD in terms of improving testing feedback time and confidence. These contributions
are useful for both researchers and practitioners since they provide a systematic way to
making adjustments rather than making changes randomly and hoping for the best. We
list the key contributions below:

• Information Needs: The initial contribution to research is a list of information
needs in CI/CD. This list contains 27 frequently asked questions on continuous in-
tegration and continuous delivery by software practitioners.

• Perceived Factors that Affect Test Flakiness: We identified 19 factors that pro-
fessionals perceive affect test flakiness. These perceived factors are divided into four
categories: test code, system under test, CI/test infrastructure, and organization-
related.

41

4. Results Summary and Contributions

• Evaluation of DBT Technique/Tool: Another contribution is to conduct a de-
tailed examination of DBT techniques using industry artifacts and tools. The tech-
niques are developed and made available as an open-source tool for further research
and application.

• MDFlaker Technique/Tool: Additionally, we developed a novel technique and
tool for reducing test flakiness, as well as an automated root cause analysis for test
flakiness. The tool is open-source.

42

5 Discussion, Implications
& Future Work

Papers I through IX contain extensive discussions of the investigations. The focus of this
chapter, on the other hand, is on the synthesis of our papers combined together with its
practical and research application.

5.1 Information Needs & Data Visualization - RQ 1
and RQ 4

The Impact of Complex CI/CD pipelines on Information
Needs
Developing software products with CI/CD necessitates not only building, testing, and pack-
aging software for installation, but also doing so on a regular basis. These frequent activities
(building, deploying etc.) raise new information needs that require investigation. The prior
work, in the field of information needs identification, was limited to single stakeholders (i.e.,
developers, testers, or project managers) and a single activity (i.e., development, software
evolution, or software configurations). Few studies have been reported that identify the
information needs as well as how much effort is required to address those information needs
in the settings of CI/CD. Somewhere along the way, in addition to identifying information
needs, it is equally important to investigate if the company would be able to answer the very
same questions with less effort without CI/CD? Or are these qualitatively new questions
that can only be asked once CI/CD practices are in place?

Identifying information needs is a first step. The other difficult task is to achieve common
understanding of the specific terms used in describing software artifacts [97] particularity
software features [98] and confidence in software artifacts [97]. Similarly, the top 3 needs
in Table 4.1 might require the common understanding of the terms confidence, realease-

43

5. Discussion, Implications & Future Work

readiness or feature. Software professionals should make an effort to comprehend the con-
cepts by explicitly asking questions such as: What constitutes as acceptable confidence
for a software release? or What information is required to achieve acceptable confidence
in a software release and from what sources?. Similar questions can be raised to under-
stand What does the feature mean? or Is secure communication or standard compliance
a feature?. These types of fundamental details will refine each information need further,
thus creating a similar level of understanding among team members. The difficulty in-
creased when practitioners tried to automate the process of defining/achieving confidence
or realease-readiness by asking a question: Can confidence or release decision be achieved
through automation without human intervention?. It is equally important to investigate
the tust in artifacts as we do among team members.

We discovered that the term confidence in SUT is typically restricted to the number of test
cases passed during a given time period. The greater the number of passing test cases,
the greater the confidence in the SUT and the test suite. Concurrently, we have seen that
practitioners struggle not to view this factor as a single indicator of SUT confidence. We
also learned that the phrase "release-readiness" is assessed at impromptu meetings. A small
group of practitioners from several teams (such as the product owner, test leader, and
release manager) meet every two weeks or once a month to decide if the latest version is
ready for release or not. To clarify these terms for our future work, we plan to do further
research with the investigated companies. Furthermore, trust 1 is defined as "confident
reliance on the character, skill, strength, or truth of someone or something." As previously
stated, the quantity of test cases determines practitioners’ confidence in the quality of SUT.
Practitioners tend to lose this confidence if the outputs of those test cases cannot be trusted.
Practitioners are unsure if trust can be quantified or should be relied solely on intuition.
Clarifying phrases like confidence and trust will also help to eliminate the blame-game
mentality in organizations.

The Challenges of Data Visualization in CI/CD
Along with cataloging information needs in CI/CD, it is important to identify the means
through which those requirements can be addressed. Table 4.2 provides different means
(i.e., in-house visualization tools, external visualization tools, manual inspection etc.,) used
by practitioners for addressing information needs. Visualization tools were actively sought
out by practitioners, who viewed them as potentially useful (i.e., see Table 4.2). A lot of
the time, the tools can only provide a single piece of information that answers a specific
question. It is obvious that multiple tools are needed to answer the questions posed by the
participants in the paper. We found that both the questions participants posed and the
tools they used to get the answers they needed were not aligned. Four (C1, 3, CC6, and B3)
of the six information needs (i.e., the most important, often requested, and time-consuming
- C1-3, CC2,6, and B3) can only be met manually by inspecting output from various tools, as
shown in Table 4.2. Several companies have turned to Jenkins, GitHub, and Jira to meet
these demands in the past. Practitioners, during interview in Paper I, stated that their
organizations do not value these efforts (e.g., developing in-house solutions) and instead
spend time investigating third-party tools or plugins, which results in increased manual
work. In addition, practitioners may have difficulty deciding which tools to use to find
answers to their information needs because of the wide variety of tools available.

Choosing the right tool to meet your information needs comes with a slew of difficulties.
It is difficult to establish a tool that can meet the needs of multiple practitioners at the
same time, because they have different information needs. Because each CI tool has its
own preferences for input and output formats, it is more challenging to handle information
needs because different CI logs or outputs may be required to answer them.

1https://www.merriam-webster.com/dictionary/trust

44

5.2. Diversity Based Testing: Adoption & Challenges - RQ 2 and RQ 4

5.2 Diversity Based Testing: Adoption & Challenges -
RQ 2 and RQ 4

Adoption of Test Optimization Techniques
Some needs can be met directly by aggregating data from the output of simple tools (i.e.,
loggers), while others necessitate the use of tools that incorporate sophisticated algorithms.
For example, providing developers with faster feedback (Papers II and III) necessitated
the use of tools that include test optimization techniques. There are many test optimiza-
tion techniques in the literature, though they are not widely used in industry [99], [100].
Practitioners identified several reasons (Paper III) for not utilizing these well-established
techniques, including: 1) a lack of explainable and comprehensible techniques, 2) a lack of
testing process documentation within the organization, which further limits the use of tech-
niques, 3) technical constraints and others (see Figure 4.14). Practitioners stated, during
our investigation, that simple test optimization approaches are required that are suitable
for usage in CI/CD setups without imposing excessive technical requirements. We plan to
investigate the generalization of our findings in the future.

Diversity Based Testing is a Complement not a Replacement
Instead of replacing the overnight exhaustive test execution with DBT technique, we aim to
provide developers with a preview of that execution, allowing them to prioritize code changes
(i.e., which changes should be committed to the master branch) throughout their workday.
Despite the fact that DBT provides comprehensive coverage even with smaller subsets, this
does not guarantee that all defects will be discovered. The adoption of DBT assumes that
the entire test suite is run overnight and failures should be reported the following day so
that developers can debug and, if necessary, roll back their changes. Overall, the trade-off is
to shorten feedback time while keeping sustainable coverage, while reducing the likelihood
of dismissing test cases.

5.3 Flaky Tests - RQ 3 and RQ 4

Flaky Tests - The Dilemma and Human Factors
Since 2009, when Francis J. Lacoste [101] coined the term "flaky test", research publications
have increased year after year, with a total of 24 studies published only in 2020 [102].
Researchers and software professionals are frustrated by the prevalence of flaky tests and
are working to find reliable methods to reduce test flakiness. Research on flaky tests is
mainly divided into causes and classification of flakiness [83]–[85], [103], detection of test
flakiness [77], [87], [89], [104], and other relevant factors that affect test flakiness [90], [105],
[106]. Different domains such as web applications, embedded systems, machine learning
libraries, etc, have received attention from researcher to investigate the prevalence of test
flakiness. Very few studies [28], [105], [107] have acually investigated test flakiness in real
time industry with commercial software/hardware. In comparison with academic researcher,
flaky test mitigation techniques and how practitioners deal with flaky tests in their day-to-
day routines are of the utmost relevance.

When it comes to correcting test flakiness, human factors play a significant role [105] because
developers and testers tend to blame each other for the flakiness in the testing process.
If test flakiness is detected, software professionals are hesitant to accept responsibility.
Due to a lack of understanding of the underlying causes of test flakiness, practitioners
employ a "blame-others" strategy. According to testers, the flakiness is caused by changes
in production code, however developers assert that test case codes are flaky. We suggest

45

5. Discussion, Implications & Future Work

that proper roles and responsibilities should be defined within the teams to detect and fix
test flakiness. Another idea is to make use of the specifics about flakiness to encourage team
members to take greater ownership of the flakiness problem. The flaky frequency, number
of tests smells, and trace-back information, to name a few, can all be useful in resolving
these kinds of conflicts. For example, using the information such as whether failed test case
was executed on the latest code changes or not (e.g., trace-back), the number of tests smells
in the test case, the flaky frequency can help in resolving such conflicts.

Flaky Tests - The Other Factors
The results interpretation after using machine learning classifiers to predict test flakiness is
not simple. For example, looking only at the accuracy results (i.e., Figure 4.5) of classifiers
can be deceiving. The important factor for classifier selection is to ask the right question
and motivate the choice of using specific classifier such as are we interested in detecting
flaky tests correctly (i.e., precision) or marking a non flaky test as flaky is not
cost effective (i.e, recall). It is important to look at precision, recall and accuracy all
together for classifier selection. We can assume that practitioners are more interested in
precision than recall because the test suite size, in many organizations, is very large and
they cannot inspect all test cases. In this particular case, any classifier that correctly flag
flaky tests will be encouraged. Precision can answer the question; "If the filter says this
test case is flaky, what’s the probability that it’s flaky?”.

In addition, the performance of machine learning classifiers depends on other factors such
as: (1) whether the ML code is written by the non-programmer researcher, undertaking the
research, using R libraries or some commercial/open-source libraries (Weka [108] in case of
Pinto et. al [90]), (2) the selection of ML model based on the number of features in the
training samples, (3) The variety provided by parameter tuning which might be problematic
and necessitate unique considerations that can effect classifiers, etc.

5.4 Discussion Around Selected Methods - RQ 1 - RQ 4
Software engineering is a cross-disciplinary subject and it is important to understand the
methods that are available to us, their limitations and when they can be applied. Basili
[109] presented four different methods:

• Scientific: Observations are made of the world and a model is constructed, such as
a simulation model.

• Engineering: Look at the current solutions, make some suggestions for improvement,
and then assess the results.

• Analytical: After proposing a theoretical framework, it is compared to empirical
evidence.

• Empirical: Empirical studies, such as case studies or experiments, are used to propose
and evaluate a model.

The scientific method is employed in a variety of fields, such as simulating a telecommuni-
cations network to assess its performance [110]. The engineering method and the empirical
method can be seen as variations of the scientific method [109]. Electromagnetic theory
and algorithmic design are two examples where the analytical method has traditionally been
applied [111]. Empirical studies are employed in social sciences and psychology, where we
cannot state natural laws like in physics, thus heavily influenced by human behavior [111].

We considered empirical methods a suitable candidate due to the opportunity to work in
collaboration with industry as well as lack of empirical evidence in software engineering

46

5.5. Research & Practical Implications

research [111]. Taking a step further, since we were dealing with practitioners and their
challenges in achieving optimized CI/CD, we used mostly exploratory [112] methods ex-
cept during Paper IV and V where we employed improving method. We did not employ
descriptive methods because we were not interested in findings that described the ways in
which the case study organizations operated – frequently by identifying roles or stakehold-
ers and outlining a flow of activities. In addition, it is difficult to isolate specific factors
and their causal relationships [67]when using descriptive methods. The reason to use ex-
ploratory method is that the objects are studied in their natural environment and findings
are derived from the observations made.

Ethnographic investigations, such as workplace observations, could also yield valuable infor-
mation about the research questions under consideration, particularly RQ1: identification
of CI/CD information needs. A more accurate comparison between what practitioners say
and what they actually do can be made by observing them in action as they go about
their daily tasks at hand. Unfortunately, because to Covid-19 2 constraints, we were not
permitted to visit companies, which limited our methodological options.

5.5 Research & Practical Implications
During workshops, we demonstrated and presented our findings to practitioners through
demos and presentations. The goal was to seek practitioner validation on whether or not
our work may boost developer productivity in their day-to-day routine. We discovered that
our work was well received because practitioners are struggling to address the complexity
of CI/CD while providing faster feedback, increasing test/feature coverage, and decreasing
test flakiness. Furthermore, we anticipate that our research will provide context for the
development of tools and techniques in CI/CD to address a variety of challenges. For ex-
ample, from the list of identified information needs in Paper I, practitioners might identify
the most frequent and important needs that may be applicable in their CI/CD contexts and
commence talks about systematic strategies to meet them. Throughout the investigation in
Paper I, practitioners from various companies expressed similar needs, indicating repetition
of information sought over time, necessitating the actions necessary to catalog information
needs. Additionally, we provided a list of challenges experienced by practitioners when
visualizing data in CI/CD, as well as recommendations for overcoming such challenges. We
believe that practitioners will take these recommendations into account in their companies.
Similarly, practitioners can benefit from our investigations into the use of test optimiza-
tion techniques (e.g., DBT vs. other techniques) to achieve faster feedback and increased
coverage, As a result of our research in the field of flaky test prevention, detection, and
prediction, practitioners can not only detect flaky tests but also answer the question: why
is the test case flaky? In order to resolve test flakiness, our work offers developers with an
indication on where to investigate.

We believe that our research could serve as a foundation for additional work by other
researchers interested in delving deeper into questions such as: what do identified informa-
tion needs mean to different practitioners in different settings? Furthermore, researchers
can conduct additional studies to gather information about what practitioners say and
what they actually seek for. Validation of our challenges and recommendations (e.g., RQ
4), identified during a study in other contexts is greatly appreciated. The replication of
our flaky test investigations will help to strengthen the community who will drive future
research.

2https://www.who.int/emergencies/diseases/novel-coronavirus-2019

47

5. Discussion, Implications & Future Work

5.6 Future Work
The identification of information requirements was the result of collaboration between five
software companies. It is essential, however, to investigate what practitioners state and
what they do. An ethnographic study in a workplace context is one possibility for the near
future. For example, a researcher might go to a site and collaborate with practitioners to
observe how they go around gathering the answer they need. Such research will provide
insights that may be useful in directing future work.

The tools and strategies presented in this work, we encourage practitioners to employ them
in their day-to-day practice and share their experiences. It’s worthwhile to dig deeper
into the different scenarios in which tools and strategies have been evaluated. Evaluation
in different context is important. We discovered that the flakiness of system testing in
embedded system software may differ from that of stand-alone software that does not require
any special hardware. The presence of flakiness in web applications may be different than in
desktop programs. Research on test flakiness in embedded systems is scarce at the time of
writing this dissertation. This is why we draw the attention of researchers and practitioners
to this necessity. We concluded that test flakiness is context-dependent (i.e., open-source,
closed-source, web programming, embedded systems, etc.).

48

6 Conclusion

Preliminary results suggest that practitioners have difficulties in adopting CI/CD and these
difficulties grow when the practice requires optimization. The CI/CD optimization process
can be approached in various ways, but our work focused on four: 1) understanding/iden-
tifying the information needs of software practitioners in CI/CD, 2) Adopting simple test
optimization approaches that are realistic for use in contemporary CI/CD environments
without adding too many technical requirements, 3) Understanding/identifying perceived
causes and automated root cause analysis of test flakiness, thereby providing developers
with indications on how to resolve test flakiness, leading to an increase in developer trust
in feedback and 4) Understanding/identifying challenges in addressing information needs,
providing faster feedback and trusting the feedback. We have conducted our investigation
in close collaboration with embedded software industry in form of single or multiple case
studies. We also used open-source data projects in some Papers for comparative analysis.

6.1 Information Needs - Answers to RQ1 and RQ 4
Testing, code and commit, confidence level, bug and artifacts were some of the 27 infor-
mation needs that we identified for software professionals. There are many other software
professionals besides developers who look for different kinds of information in their daily
routines, such as managers, testers, and so on. There is a discrepancy between the identified
needs and the techniques employed to meet them, according to our findings. Because some
information needs cannot be met by current tools, manual inspections are required, which
adds time to the process. Information about code & commit, confidence level, and testing
is the most frequently sought for and most important information. Our research revealed
eight challenges that practitioners encountered when creating or maintaining visualization
tools. Our work compiled a list of ten recommendations from practitioners for those who
are having difficulty visualizing information needs.

49

6. Conclusion

6.2 Test Optimization Techniques - Answers to RQ2
and RQ 4

Using a DBT approach to test case selection in continuous integration pipelines is the sub-
ject of our investigation. Integration level test cases given in natural language are compared
using three different functions (Jaccard Index, Normalized Leven-Shtein, and Normalized
Compression Distance). Our findings with two industrial partners show a significant re-
duction in the time (up to 92 percent faster) required to receive feedback from tests on
a built version of the SUT. With a test suite cut by 85%, 65%, and 70%, we are able to
cover all of the test requirements, dependencies, and processes completely and accurately.
Furthermore, our findings show that the results of the diversity functions on different types
of test artifacts differ and are comparable. We found that DBT can be used to increase the
variety of a test set, thereby providing empirical evidence on the effectiveness of diversity
based test optimization.

In addition to comparison of different functions within DBT, we examined three alterna-
tive methods of prioritization: diversity-based testing, which prioritizes the execution of
a diverse set of test cases first, failure rate prioritization, which favors tests that failed in
earlier builds, and time prioritization, which gives preference to the execution of tests that
are executed quickly. Our findings show that diversity and failure-based prioritization are
compatible, allowing testers to achieve high feature and failure coverage earlier in the test-
ing cycle. As a result, time-based prioritization produces significantly faster test suites, but
at the expense of very low feature and failure coverage. Thus, depending on their testing
objective, we advise practitioners to prioritize diversity or failure rate.

To target stakeholders interested in implementing testing optimization approaches in CI/CD
pipelines, our thematic study reveals 10 challenges and 7 reported effects. Our interview
data reveals relevant process and practical aspects that foster adoption of these techniques.
We concluded that developers want fast feedback on a large number of integrated features
to verify their code changes, and they want their test suites to be linked to a confidence
score that indicates the likelihood of missing failures due to fewer tests being run. These
seven advantages are meant to encourage practitioners to use test prioritization, particularly
diversity-based testing in CI pipelines, by highlighting the challenges and effects of such
adoption. Additionally, our theme analysis suggests that many test infrastructure concerns,
such as flaky tests and non-functional tests, are still unaddressed by test prioritization
strategies. This finding suggests possible directions for future exploration.

6.3 Flaky Tests - Answers to RQ 3 and RQ 4
We presented the root causes of test flakiness experienced by professionals following a
manual and automated analysis of the test cases code for flaky tests.We attempted to
capture practitioners’ perceptions of test flakiness and the factors that influence it. We
discovered 19 perceived flakiness-increasing or decreasing factors. The identified perceived
factors were categorized as Test Code, System Under Test, CI/Test Infrastructure, and
Organization Related. Although the perceived factors aided the researched companies in
reducing test flakiness, we concluded that what practitioners perceive as factors affecting
test flakiness are, in reality, properties of a good test case (i.e., ‘simple test case’, ‘small test
case’) and well defined software practices. Thus, Understanding the present perceptions or
realities of practitioners is necessary to address test flakiness issues. For example, two of
the identified perceived factors (i.e., test case size and simplicity) were observed in the test
artifacts which represent that the practitioner’s perceptions are important to consider to
reduce test flakiness.

50

6.3. Flaky Tests - Answers to RQ 3 and RQ 4

Detecting flaky tests and pinpointing the underlying causes take a significant amount of time
for developers. We proposed a light weight technique named trace-back coverage to detect
flaky tests. Trace-back coverage was combined with other factors (named as MDFlaker) such
as test smells inducing test flakiness, flaky frequency and test case size to investigate the
effect on revealing test flakiness. When all factors are taken into consideration, the result’s
accuracy is increased. There are many advantages to MDFlaker over other tools, including
less work to implement for any language, shorter execution times and more information for
root cause analysis.

Different sophisticated machine learning algorithms are being used in our efforts to address
flaky test concerns. Open-source data was used as a testing ground for three machine
learning classifiers: Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest
(RF). In comparison to NBL (precision 70% and recall > 30%) and SVM (precision 70%
and recall > 60%), we found that only RF had higher accuracy (i.e., > 90%), but recall
was very low (i.e., 10%). We concluded that predicting accuracy of ML classifiers are
strongly associated with the lexical information of test cases (i.e., test cases written in Java
or Python). We investigated why other classifiers failed to produce expected results and
concluded that; 1) flaky test cases are caused by a combination of the test smell and an
external environment; however, the external environment was not considered in this study,
2) Classifiers using machine learning should take into account not only the frequency of test
smells in the test case, but also other significant test case syntax that have the power to
cancel out the effect of test smells.

51

Papers

The papers associated with this thesis have been removed for

copyright reasons. For more details about these see:

https://doi.org/10.3384/9789179294236

https://doi.org/10.3384/9789179294236

Bibliography

[1] Jez Humble and David Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, en. Addison
Wesley, 2011. [Online]. Available: https://www.pearson.com/conten
t/one-dot-com/one-dot-com/us/en/higher-education/program.
html (visited on 12/28/2021).

[2] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta,
“How Open Source Projects Use Static Code Analysis Tools in Con-
tinuous Integration Pipelines,” in 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR), May 2017,
pp. 334–344. doi: 10.1109/MSR.2017.2.

[3] J. Gmeiner, R. Ramler, and J. Haslinger, “Automated testing in the
continuous delivery pipeline: A case study of an online company,” in
2015 IEEE Eighth International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW), Apr. 2015, pp. 1–6. doi:
10.1109/ICSTW.2015.7107423.

[4] J. Wettinger, U. Breitenbücher, M. Falkenthal, and F. Leymann, “Col-
laborative gathering and continuous delivery of DevOps solutions
through repositories,” en, Computer Science - Research and Devel-
opment, vol. 32, no. 3, pp. 281–290, Jul. 2017, issn: 1865-2042. doi:
10.1007/s00450- 016- 0338- z. [Online]. Available: https://doi.
org/10.1007/s00450-016-0338-z (visited on 12/28/2021).

[5] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M. D.
Penta, and A. Zaidman, “Continuous Delivery Practices in a Large

193

Bibliography

Financial Organization,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Oct. 2016, pp. 519–
528. doi: 10.1109/ICSME.2016.72.

[6] P. Rodríguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suo-
malainen, J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, and M.
Oivo, “Continuous deployment of software intensive products and ser-
vices: A systematic mapping study,” Journal of Systems and Software,
vol. 123, pp. 263–291, Jan. 2017, issn: 0164-1212. doi: 10.1016/j.
jss.2015.12.015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121215002812.

[7] M. Leppänen, S. Mäkinen, M. Pagels, V. P. Eloranta, J. Itkonen, M. V.
Mäntylä, and T. Männistö, “The highways and country roads to con-
tinuous deployment,” IEEE Software, vol. 32, no. 2, pp. 64–72, Mar.
2015, issn: 0740-7459. doi: 10.1109/MS.2015.50.

[8] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in 2016 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), Sep. 2016, pp. 426–437.

[9] D. Ståhl and J. Bosch, “Experienced benefits of continuous integra-
tion in industry software product development: A case study,” in The
12th IASTED International Conference on Software Engineering, 2013,
pp. 736–743.

[10] D. Ståhl, K. Hallén, and J. Bosch, “Achieving traceability in large scale
continuous integration and delivery deployment, usage and validation
of the eiffel framework,” en, Empirical Software Engineering, vol. 22,
no. 3, pp. 967–995, Jun. 2017, issn: 1573-7616. doi: 10.1007/s10664-
016 - 9457 - 1. [Online]. Available: https : / / doi . org / 10 . 1007 / s
10664-016-9457-1 (visited on 03/06/2020).

[11] J. Josyula, S. Panamgipalli, M. Usman, R. Britto, and N. Bin Ali,
“Software Practitioners’ Information Needs and Sources: A Survey
Study,” in 2018 9th International Workshop on Empirical Software En-
gineering in Practice (IWESEP), ISSN: 2333-519X, Dec. 2018, pp. 1–6.
doi: 10.1109/IWESEP.2018.00009.

[12] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in Collo-
cated Software Development Teams,” in Proceedings of the 29th in-
ternational conference on Software Engineering, ser. ICSE ’07, USA:
IEEE Computer Society, May 2007, pp. 344–353, isbn: 978-0-7695-
2828-1. doi: 10 . 1109 / ICSE . 2007 . 45. [Online]. Available: https :
//doi.org/10.1109/ICSE.2007.45 (visited on 03/04/2020).

194

Bibliography

[13] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10, Cape Town, South
Africa: Association for Computing Machinery, May 2010, pp. 185–194,
isbn: 978-1-60558-719-6. doi: 10.1145/1806799.1806829. [Online].
Available: https://doi.org/10.1145/1806799.1806829 (visited on
03/04/2020).

[14] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software en-
gineering, ser. SIGSOFT ’06/FSE-14, Portland, Oregon, USA: Asso-
ciation for Computing Machinery, Nov. 2006, pp. 23–34, isbn: 978-
1-59593-468-0. doi: 10 . 1145 / 1181775 . 1181779. [Online]. Avail-
able: https : / / doi . org / 10 . 1145 / 1181775 . 1181779 (visited on
03/04/2020).

[15] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siem-
borski, and J. Micco, “Taming google-scale continuous testing,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), IEEE, 2017,
pp. 233–242.

[16] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “FAST ap-
proaches to scalable similarity-based test case prioritization,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ser. ICSE ’18, Gothenburg, Sweden: ACM, 2018, pp. 222–232, isbn:
978-1-4503-5638-1. doi: 10.1145/3180155.3180210.

[17] F. G. de Oliveira Neto, A. Ahmad, O. Leifler, K. Sandahl, and E. Enoiu,
“Improving continuous integration with similarity-based test case se-
lection,” in Proceedings of the 13th International Workshop on Au-
tomation of Software Test, Gothenburg, Sweden: ACM, 2018, pp. 39–
45, isbn: 978-1-4503-5743-2. doi: 10.1145/3194733.3194744.

[18] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and R.
Feldt, “Information flow in software testing–an interview study with
embedded software engineering practitioners,” IEEE Access, vol. 7,
pp. 46 434–46 453, 2019.

[19] F. G. de Oliveira Neto, R. Feldt, L. Erlenhov, and J. B. d. S. Nunes,
“Visualizing test diversity to support test optimisation,” in 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), Dec. 2018,
pp. 149–158.

[20] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, and M. Bohlin, “Au-
tomated functional dependency detection between test cases using
doc2vec and clustering,” in 2019 IEEE International Conference On
Artificial Intelligence Testing (AITest), 2019, pp. 19–26.

195

Bibliography

[21] M. Shahin, M. A. Babar, and L. Zhu, “Continuous Integration, De-
livery and Deployment: A Systematic Review on Approaches, Tools,
Challenges and Practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017.
doi: 10.1109/ACCESS.2017.2685629.

[22] J. Anderson, S. Salem, and H. Do, “Improving the Effectiveness of
Test Suite Through Mining Historical Data,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014,
New York, NY, USA: ACM, 2014, pp. 142–151, isbn: 978-1-4503-2863-
0. doi: 10.1145/2597073.2597084. [Online]. Available: http://doi.
acm.org/10.1145/2597073.2597084.

[23] M. Leppänen, S. Mäkinen, M. Pagels, V. P. Eloranta, J. Itkonen, M. V.
Mäntylä, and T. Männistö, “The highways and country roads to con-
tinuous deployment,” IEEE Software, vol. 32, no. 2, pp. 64–72, Mar.
2015, issn: 0740-7459. doi: 10.1109/MS.2015.50.

[24] O. McHugh, K. Conboy, and M. Lang, “Agile Practices: The Impact
on Trust in Software Project Teams,” IEEE Software, vol. 29, no. 3,
pp. 71–76, May 2012, Conference Name: IEEE Software, issn: 1937-
4194. doi: 10.1109/MS.2011.118.

[25] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ser. FSE
2014, Hong Kong, China: Association for Computing Machinery, 2014,
pp. 643–653, isbn: 9781450330565. doi: 10.1145/2635868.2635920.
[Online]. Available: https://doi.org/10.1145/2635868.2635920.

[26] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “Idflakies: A frame-
work for detecting and partially classifying flaky tests,” in 2019 12th
ieee conference on software testing, validation and verification (icst),
IEEE, 2019, pp. 312–322.

[27] M. Fowler, Eradicating Non-Determinism in Tests. Accessed [2019-04-
15 18:52:30]. [Online]. Available: https://martinfowler.com/artic
les/nonDeterminism.html (visited on 04/15/2019).

[28] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), IEEE,
2018, pp. 433–444.

[29] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, “As-
sessing transition-based test selection algorithms at Google,” in Pro-
ceedings of the 41st International Conference on Software Engineering:
Software Engineering in Practice, ser. ICSE-SEIP ’19, Montreal, Que-
bec, Canada: IEEE Press, May 2019, pp. 101–110. doi: 10.1109/ICSE-
SEIP.2019.00019. [Online]. Available: https://doi.org/10.1109/
ICSE-SEIP.2019.00019 (visited on 02/17/2021).

196

Bibliography

[30] J. Micco, Flaky Tests at Google and How We Mitigate Them,
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-
we.html. Accessed [2019-04-15 18:48:16], en. [Online]. Available:
https : / / testing . googleblog . com / 2016 / 05 / flaky - tests -
at-google-and-how-we.html (visited on 04/15/2019).

[31] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Std 610.12-1990, pp. 1–84, Dec. 1990, Conference Name: IEEE Std
610.12-1990. doi: 10.1109/IEEESTD.1990.101064.

[32] M. S. Feather, T. Menzies, and J. R. Connelly, “Matching Software
Practitioner Needs to Researcher Activities,” in Proceedings of the
Tenth Asia-Pacific Software Engineering Conference Software Engi-
neering Conference, ser. APSEC ’03, USA: IEEE Computer Society,
Dec. 2003, p. 6, isbn: 978-0-7695-2011-7. (visited on 03/04/2020).

[33] P. E. Strandberg, W. Afzal, and D. Sundmark, “Software test results
exploration and visualization with continuous integration and nightly
testing,” en, International Journal on Software Tools for Technology
Transfer, vol. 24, no. 2, pp. 261–285, Apr. 2022, issn: 1433-2787. doi:
10.1007/s10009-022-00647-1. [Online]. Available: https://doi.
org/10.1007/s10009-022-00647-1 (visited on 06/20/2022).

[34] C. Persson and N. Yilmazturk, “Establishment of automated regression
testing at ABB: Industrial experience report on ’avoiding the pitfalls’,”
in Proceedings. 19th International Conference on Automated Software
Engineering, 2004., ISSN: 1938-4300, Sep. 2004, pp. 112–121. doi: 10.
1109/ASE.2004.1342729.

[35] E. Engström and P. Runeson, “A Qualitative Survey of Regression
Testing Practices,” en, in Product-Focused Software Process Improve-
ment, M. Ali Babar, M. Vierimaa, and M. Oivo, Eds., ser. Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer, 2010, pp. 3–
16, isbn: 978-3-642-13792-1. doi: 10.1007/978-3-642-13792-1_3.

[36] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012, issn: 10991689. doi: 10.1002/stvr.
430.

[37] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon,
“Comparing white-box and black-box test prioritization,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), May 2016, pp. 523–534. doi: 10.1145/2884781.2884791.

[38] E. G. Cartaxo, P. D. L. Machado, and F. G. de Oliveira Neto, “On
the use of a similarity function for test case selection in the context
of model-based testing,” Software Testing, Verification and Reliability,
vol. 21, no. 2, pp. 75–100, 2011, issn: 1099-1689. doi: 10.1002/stvr.
413.

197

Bibliography

[39] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-
based testing through test case diversity,” ACM Trans. Softw. Eng.
Methodol., vol. 22, no. 1, 6:1–6:42, Mar. 2013, issn: 1049-331X. doi:
10.1145/2430536.2430540.

[40] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quan-
tifying the diversity of sets of test cases,” in 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
Apr. 2016, pp. 223–233. doi: 10.1109/ICST.2016.33.

[41] F. G. de Oliveira Neto, F. Dobslaw, and R. Feldt, “Using mutation test-
ing to measure behavioural test diversity,” in 13th IEEE International
Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), Mar. 2020, pp. 254–263. doi: 10.1109/ICSTW50294.
2020.00051.

[42] T. B. Noor and H. Hemmati, “A similarity-based approach for test
case prioritization using historical failure data,” in 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE),
Nov. 2015, pp. 58–68. doi: 10.1109/ISSRE.2015.7381799.

[43] A. Rainer, T. Hall, and N. Baddoo, “Persuading Developers to ’Buy
into’ Software Process Improvement: Local Opinion and Empirical Evi-
dence,” in Proceedings of the 2003 International Symposium on Empiri-
cal Software Engineering, ser. ISESE ’03, Washington, DC, USA: IEEE
Computer Society, 2003, pp. 326–, isbn: 978-0-7695-2002-5. [Online].
Available: http://dl.acm.org/citation.cfm?id=942801.943629
(visited on 04/17/2019).

[44] E. Laukkanen, M. Paasivaara, and T. Arvonen, “Stakeholder Percep-
tions of the Adoption of Continuous Integration – A Case Study,” in
2015 Agile Conference, Aug. 2015, pp. 11–20. doi: 10.1109/Agile.
2015.15.

[45] W. Sun, G. Marakas, and M. Aguirre-Urreta, “The Effectiveness of Pair
Programming: Software Professionals’ Perceptions,” IEEE Software,
vol. 33, no. 4, pp. 72–79, Jul. 2016, issn: 0740-7459. doi: 10.1109/MS.
2015.106.

[46] F. Ebert and F. Castor, “A Study on Developers’ Perceptions about
Exception Handling Bugs,” in 2013 IEEE International Conference on
Software Maintenance, Sep. 2013, pp. 448–451. doi: 10.1109/ICSM.
2013.69.

[47] H. Shah, C. Gorg, and M. J. Harrold, “Understanding Exception Han-
dling: Viewpoints of Novices and Experts,” IEEE Transactions on Soft-
ware Engineering, vol. 36, no. 2, pp. 150–161, Mar. 2010, issn: 0098-
5589. doi: 10.1109/TSE.2010.7.

198

Bibliography

[48] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia,
“Do They Really Smell Bad? A Study on Developers’ Perception of
Bad Code Smells,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, Sep. 2014, pp. 101–110. doi: 10.1109/
ICSME.2014.32.

[49] C. R. Camacho, S. Marczak, and D. S. Cruzes, “Agile Team Mem-
bers Perceptions on Non-functional Testing: Influencing Factors from
an Empirical Study,” in 2016 11th International Conference on Avail-
ability, Reliability and Security (ARES), Aug. 2016, pp. 582–589. doi:
10.1109/ARES.2016.98.

[50] J. Percival and N. Harrison, “Developer Perceptions of Process Desir-
ability: Test Driven Development and Cleanroom Compared,” in 2013
46th Hawaii International Conference on System Sciences, Jan. 2013,
pp. 4800–4809. doi: 10.1109/HICSS.2013.175.

[51] H. Tan and V. Tarasov, “Test Case Quality as Perceived in Sweden,”
in 2018 IEEE/ACM 5th International Workshop on Requirements En-
gineering and Testing (RET), Jun. 2018, pp. 9–12.

[52] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “Are
test smells really harmful? An empirical study,” en, Empirical Software
Engineering, vol. 20, no. 4, pp. 1052–1094, Aug. 2015, issn: 1573-7616.
doi: 10.1007/s10664- 014- 9313- 0. [Online]. Available: https://
doi.org/10.1007/s10664-014-9313-0 (visited on 05/22/2019).

[53] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Per-
ceptions, Expectations, and Challenges in Defect Prediction,” IEEE
Transactions on Software Engineering, pp. 1–1, 2018, issn: 0098-5589.
doi: 10.1109/TSE.2018.2877678.

[54] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How Practition-
ers Perceive Automated Bug Report Management Techniques,” IEEE
Transactions on Software Engineering, pp. 1–1, 2018, issn: 0098-5589.
doi: 10.1109/TSE.2018.2870414.

[55] Z. S. H. Abad, G. Ruhe, and M. Bauer, “Task Interruptions in Re-
quirements Engineering: Reality Versus Perceptions!” In 2017 IEEE
25th International Requirements Engineering Conference (RE), ISSN:
2332-6441, Sep. 2017, pp. 342–351. doi: 10.1109/RE.2017.75.

[56] D. Silva, L. Teixeira, and M. d’Amorim, “Shake It! Detecting Flaky
Tests Caused by Concurrency with Shaker,” in 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
ISSN: 2576-3148, Sep. 2020, pp. 301–311. doi: 10.1109/ICSME46990.
2020.00037.

199

Bibliography

[57] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja, “Test pri-
oritization in continuous integration environments,” Journal of Sys-
tems and Software, vol. 146, pp. 80–98, 2018, issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2018.08.061. [Online]. Avail-
able: http : / / www . sciencedirect . com / science / article / pii /
S0164121218301730.

[58] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in contin-
uous integration,” in Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA 2017,
Santa Barbara, CA, USA: Association for Computing Machinery, 2017,
pp. 12–22, isbn: 9781450350761. doi: 10.1145/3092703.3092709.
[Online]. Available: https://doi.org/10.1145/3092703.3092709.

[59] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving re-
gression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014, Hong Kong,
China: Association for Computing Machinery, 2014, pp. 235–245, isbn:
9781450330565. doi: 10.1145/2635868.2635910. [Online]. Available:
https://doi.org/10.1145/2635868.2635910.

[60] F. G. de Oliveira Neto, R. Torkar, R. Feldt, L. Gren, C. A. Furia,
and Z. Huang, “Evolution of statistical analysis in empirical software
engineering research: Current state and steps forward,” Journal of Sys-
tems and Software, vol. 156, pp. 246–267, 2019, issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2019.07.002. [Online]. Avail-
able: http : / / www . sciencedirect . com / science / article / pii /
S0164121219301451.

[61] E. Engström, K. Petersen, N. B. Ali, and E. Bjarnason, “Serp-test:
A taxonomy for supporting industry–academia communication,” eng,
Software Quality Journal, vol. 25, no. 4, pp. 1269–1305, 2017, issn:
0963-9314. doi: 10.1007/s11219- 016- 9322- x. [Online]. Available:
http://dx.doi.org/10.1007/s11219-016-9322-x.

[62] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas,
D. Helgesson, S. Kunze, and M. Varshosaz, “On the search for industry-
relevant regression testing research,” Empirical Software Engineering,
vol. 24, no. 4, pp. 2020–2055, 2019.

[63] M. P. Cota, M. D. Rodríguez, M. R. González-Castro, and R. M. M.
Gonçalves, “Massive data visualization analysis analysis of current vi-
sualization techniques and main challenges for the future,” in 2017 12th
Iberian Conference on Information Systems and Technologies (CISTI),
Jun. 2017, pp. 1–6. doi: 10.23919/CISTI.2017.7975704.

200

Bibliography

[64] G. S. D. Wedawatta, M. J. B. Ingirige, and R. D. G. Amaratunga,
“Case study as a research strategy: Investigating extreme weather re-
silience of construction SMEs in the UK,” en, Kandalama, Sri Lanka,
Jul. 2011. [Online]. Available: http://usir.salford.ac.uk/id/
eprint/18250/ (visited on 01/06/2022).

[65] A. OPOKU, V. AHMED, and J. AKOTIA, “Choosing an appropriate
research methodology and method,” in Research Methodology in the
Built Environment, Num Pages: 19, Routledge, 2016, isbn: 978-1-315-
72552-9.

[66] S. Bailey and D. Handu, Introduction to Epidemiologic Research Meth-
ods in Public Health Practice, English, 1st edition. Burlington, MA:
Jones & Bartlett Learning, Aug. 2012, isbn: 978-1-4496-2784-3.

[67] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software En-
gineering, vol. 14, no. 2, p. 131, Dec. 2008, issn: 1573-7616. doi: 10.
1007/s10664-008-9102-8. [Online]. Available: https://doi.org/
10.1007/s10664-008-9102-8.

[68] C. Robson, Real World Research: A Resource for Social Scientists and
Practitioner-Researchers, English, 2nd edition. Oxford, UK ; Madden,
Mass: Wiley-Blackwell, Mar. 2002, isbn: 978-0-631-21305-5.

[69] R. K. Yin, Case study research design and methods, 4th ed. Thousand
Oaks, Calif Sage Publications, 2009, isbn: 978-1-4129-6099-1. [Online].
Available: https://trove.nla.gov.au/work/11329910 (visited on
04/17/2019).

[70] J. W. Creswell, Research design: qualitative, quantitative, and mixed
methods approaches, 4th ed. Thousand Oaks, California: SAGE Publi-
cations, 2014, isbn: 978-1-4522-2609-5 978-1-4522-2610-1.

[71] M. Q. Patton, “Evaluation in the Field: The Need for Site Visit Stan-
dards,” en, American Journal of Evaluation, vol. 36, no. 4, pp. 444–
460, Dec. 2015, Publisher: SAGE Publications Inc, issn: 1098-2140.
doi: 10.1177/1098214015600785. [Online]. Available: https://doi.
org/10.1177/1098214015600785 (visited on 01/17/2022).

[72] K. Thoring, R. Mueller, and P. Badke-Schaub, Workshops as a Re-
search Method: Guidelines for Designing and Evaluating Artifacts
Through Workshops, eng. Jan. 2020, isbn: 978-0-9981331-3-3. [On-
line]. Available: http://hdl.handle.net/10125/64362 (visited on
06/29/2022).

201

Bibliography

[73] M. Morisio, I. Stamelos, and A. Tsoukias, “A new method to eval-
uate software artifacts against predefined profiles,” in Proceedings of
the 14th international conference on Software engineering and knowl-
edge engineering, ser. SEKE ’02, New York, NY, USA: Association for
Computing Machinery, Jul. 2002, pp. 811–818, isbn: 978-1-58113-556-
5. doi: 10.1145/568760.568899. [Online]. Available: http://doi.
org/10.1145/568760.568899 (visited on 01/17/2022).

[74] R. E. Stake, The Art of Case Study Research, en. SAGE, Apr. 1995,
Google-Books-ID: ApGdBx76b9kC, isbn: 978-0-8039-5767-1.

[75] A. Strauss and J. Corbin, Basics of qualitative research: Techniques
and procedures for developing grounded theory, 2nd ed. Thousand Oaks,
CA, US: Sage Publications, Inc, 1998, isbn: 978-0-8039-5939-2 978-0-
8039-5940-8.

[76] V. Braun, V. Clarke, and G. Terry, “Thematic analysis,” APA hand-
book of research methods in psychology, vol. 2, pp. 57–71, 2012.

[77] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A Frame-
work for Detecting and Partially Classifying Flaky Tests,” in 2019
12th IEEE Conference on Software Testing, Validation and Verifica-
tion (ICST), ISSN: 2159-4848, Apr. 2019, pp. 312–322. doi: 10.1109/
ICST.2019.00038.

[78] M. Sasaki and H. Shinnou, “Spam detection using text clustering,” in
2005 International Conference on Cyberworlds (CW’05), ISSN: null,
Nov. 2005, 4 pp.–319. doi: 10.1109/CW.2005.83.

[79] M. R. Islam, W. Zhou, and M. U. Choudhury, “Dynamic Feature
Selection for Spam Filtering Using Support Vector Machine,” in 6th
IEEE/ACIS International Conference on Computer and Information
Science (ICIS 2007), ISSN: null, Jul. 2007, pp. 757–762. doi: 10.1109/
ICIS.2007.92.

[80] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetun-
mbi, and O. E. Ajibuwa, “Machine learning for email spam filtering:
Review, approaches and open research problems,” en, Heliyon, vol. 5,
no. 6, e01802, Jun. 2019, issn: 2405-8440. doi: 10.1016/j.heliyon.
2019.e01802. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2405844018353404 (visited on 01/20/2020).

[81] Jenkinsci/eiffel-broadcaster-plugin, original-date: 2019-01-
22T15:04:13Z, Jul. 2019. [Online]. Available: https://github.com/
jenkinsci/eiffel-broadcaster-plugin (visited on 03/27/2020).

202

Bibliography

[82] H. Hemmati, Z. Fang, and M. V. Mantyla, “Prioritizing Manual Test
Cases in Traditional and Rapid Release Environments,” in 2015 IEEE
8th International Conference on Software Testing, Verification and
Validation (ICST), Apr. 2015, pp. 1–10. doi: 10.1109/ICST.2015.
7102602.

[83] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis
of Flaky Tests,” in Proceedings of the 22Nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ser. FSE
2014, event-place: Hong Kong, China, New York, NY, USA: ACM,
2014, pp. 643–653, isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.
2635920. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
2635868.2635920 (visited on 04/15/2019).

[84] S. Thorve, C. Sreshtha, and N. Meng, “An Empirical Study of Flaky
Tests in Android Apps,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Sep. 2018, pp. 534–
538. doi: 10.1109/ICSME.2018.00062.

[85] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understand-
ing Flaky Tests: The Developer’s Perspective,” Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering - ES-
EC/FSE 2019, pp. 830–840, 2019, arXiv: 1907.01466. doi: 10.1145/
3338906.3338945. [Online]. Available: http://arxiv.org/abs/1907.
01466 (visited on 08/15/2019).

[86] A. Sjöbom, Studying Test Flakiness in Python Projects : Original Find-
ings for Machine Learning, eng. 2019. [Online]. Available: http://
urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264459 (visited on
01/20/2020).

[87] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically Detecting Flaky Tests,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), May
2018, pp. 433–444. doi: 10.1145/3180155.3180164.

[88] S. Liviu, A machine learning solution for detecting and mitigating flaky
tests, en, Oct. 2019. [Online]. Available: https://medium.com/fitbit
-tech-blog/a-machine-learning-solution-for-detecting-and-
mitigating-flaky-tests-c5626ca7e853 (visited on 12/29/2020).

[89] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
Bayesian Network Model for Predicting Flaky Automated Tests,” in
2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), Lisbon: IEEE Comput. Soc, Jul.
2018, pp. 100–107. doi: 10.1109/QRS-C.2018.00031.

203

Bibliography

[90] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, “What is the Vocabulary of Flaky Tests?” In Proceedings
of the 17th International Conference on Mining Software Repositories,
New York, NY, USA: Association for Computing Machinery, Jun. 2020,
pp. 492–502, isbn: 978-1-4503-7517-7. [Online]. Available: http : / /
doi.org/10.1145/3379597.3387482 (visited on 11/26/2020).

[91] T. Fawcett, “An introduction to ROC analysis,” en, Pattern Recog-
nition Letters, ROC Analysis in Pattern Recognition, vol. 27, no. 8,
pp. 861–874, Jun. 2006, issn: 0167-8655. doi: 10.1016/j.patrec.
2005.10.010. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S016786550500303X (visited on 01/16/2020).

[92] D. Zhang, J. Wang, and X. Zhao, “Estimating the Uncertainty of Av-
erage F1 Scores,” in Proceedings of the 2015 International Conference
on The Theory of Information Retrieval, ser. ICTIR ’15, Northamp-
ton, Massachusetts, USA: Association for Computing Machinery, Sep.
2015, pp. 317–320, isbn: 978-1-4503-3833-2. doi: 10.1145/2808194.
2809488. [Online]. Available: https://doi.org/10.1145/2808194.
2809488 (visited on 01/21/2020).

[93] Wang, Baselines and bigrams | Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics: Short Papers -
Volume 2. [Online]. Available: https://dl-acm-org.e.bibl.liu.
se/doi/10.5555/2390665.2390688 (visited on 01/25/2020).

[94] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of
machine learning techniques for phishing detection,” en, in Proceed-
ings of the anti-phishing working groups 2nd annual eCrime researchers
summit on - eCrime ’07, Pittsburgh, Pennsylvania: ACM Press, 2007,
pp. 60–69. doi: 10.1145/1299015.1299021. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1299015.1299021 (visited
on 01/20/2020).

[95] L. Breiman, “Random Forests,” en, Machine Learning, vol. 45, no. 1,
pp. 5–32, Oct. 2001, issn: 1573-0565. doi: 10.1023/A:1010933404324.
[Online]. Available: https://doi.org/10.1023/A:1010933404324
(visited on 01/14/2020).

[96] F. Palomba and A. Zaidman, “The smell of fear: On the relation be-
tween test smells and flaky tests,” en, Empirical Software Engineer-
ing, vol. 24, no. 5, pp. 2907–2946, Oct. 2019, issn: 1573-7616. doi:
10.1007/s10664-019-09683-z. [Online]. Available: https://doi.
org/10.1007/s10664-019-09683-z (visited on 08/23/2019).

[97] A. Vance, C. Elie-Dit-Cosaque, and D. Straub, “Examining Trust in
Information Technology Artifacts: The Effects of System Quality and
Culture,” Journal of Management Information Systems, vol. 24, no. 4,
pp. 73–100, Apr. 2008, issn: 0742-1222. doi: 10 . 2753 / MIS0742 -

204

Bibliography

1222240403. [Online]. Available: http://doi.org/10.2753/MIS0742-
1222240403 (visited on 05/06/2022).

[98] J. Krüger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger,
“Towards a Better Understanding of Software Features and Their
Characteristics: A Case Study of Marlin,” in Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive
Systems, ser. VAMOS 2018, New York, NY, USA: Association for Com-
puting Machinery, Feb. 2018, pp. 105–112, isbn: 978-1-4503-5398-4.
doi: 10.1145/3168365.3168371. [Online]. Available: http://doi.
org/10.1145/3168365.3168371 (visited on 05/06/2022).

[99] N. Gupta, A. Sharma, and M. K. Pachariya, “An Insight Into Test
Case Optimization: Ideas and Trends With Future Perspectives,” IEEE
Access, vol. 7, pp. 22 310–22 327, 2019, Conference Name: IEEE Access,
issn: 2169-3536. doi: 10.1109/ACCESS.2019.2899471.

[100] K. Doganay, “Applications of Optimization Methods in Industrial
Maintenance Scheduling and Software Testing,” eng, 2014, Publisher:
Mälardalen University. [Online]. Available: http : / / urn . kb . se /
resolve?urn=urn:nbn:se:mdh:diva-25944 (visited on 03/10/2022).

[101] F. J. Lacoste, “Killing the Gatekeeper: Introducing a Continuous In-
tegration System,” in 2009 Agile Conference, Aug. 2009, pp. 387–392.
doi: 10.1109/AGILE.2009.35.

[102] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A Sur-
vey of Flaky Tests,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 1, 17:1–17:74, Oct. 2021, issn: 1049-331X.
doi: 10.1145/3476105. [Online]. Available: http://doi.org/10.
1145/3476105 (visited on 03/08/2022).

[103] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in Pro-
ceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ser. ISSTA 2019, New York, NY, USA:
Association for Computing Machinery, Jul. 2019, pp. 101–111, isbn:
978-1-4503-6224-5. doi: 10.1145/3293882.3330570. [Online]. Avail-
able: https : / / doi . org / 10 . 1145 / 3293882 . 3330570 (visited on
09/08/2020).

[104] A. Bertolino, B. Miranda, and R. Verdecchia, “Know your neighbor:
Fast static prediction of test flakiness,” en, ISTI Technical Reports,
vol. 2020, no. 001, p. 1, Jan. 2020. doi: 10.32079/ISTI-TR-2020/001.
[Online]. Available: https://doi.org/10.32079/ISTI-TR-2020/001
(visited on 12/31/2020).

205

Bibliography

[105] A. Ahmad, O. Leifler, and K. Sandahl, “Empirical Analysis of Fac-
tors and their Effect on Test Flakiness - Practitioners’ Perceptions,”
arXiv:1906.00673 [cs], Jun. 2019, arXiv: 1906.00673. [Online]. Avail-
able: http://arxiv.org/abs/1906.00673 (visited on 01/20/2020).

[106] A. Ahmad, O. Leifler, and K. Sandahl, “An Evaluation of Machine
Learning Methods for Predicting Flaky Tests,” en, in 8th Interna-
tional Workshop on Quantitative Approaches to Software Quality in
conjunction with the 27th Asia-Pacifc SoftwareEngineering Conference
(APSEC 2020) Singapore, Dec. 2020, pp. 37–46.

[107] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on
the lifecycle of flaky tests,” in Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering, ser. ICSE ’20, New
York, NY, USA: Association for Computing Machinery, Jun. 2020,
pp. 1471–1482, isbn: 978-1-4503-7121-6. doi: 10 . 1145 / 3377811 .
3381749. [Online]. Available: https://doi.org/10.1145/3377811.
3381749 (visited on 04/30/2021).

[108] I. H. Witten and E. Frank, “Data mining: Practical machine learn-
ing tools and techniques with Java implementations,” ACM SIGMOD
Record, vol. 31, no. 1, pp. 76–77, Mar. 2002, issn: 0163-5808. doi:
10.1145/507338.507355. [Online]. Available: https://doi.org/10.
1145/507338.507355 (visited on 10/09/2020).

[109] “Basili, V.R.: The experimental paradigm in software engineering. In:
H.D. Rombach, V.R. Basili, R.W. Selby (eds.) Experimental Software
Engineering Issues: Critical Assessment and Future Directives. Lec-
ture Notes in Computer Science, vol. 706. Springer, Berlin Heidelberg
(1993).”

[110] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, “Analysis and Interpretation,” en, in Experimentation in Soft-
ware Engineering, C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén, Eds., Berlin, Heidelberg: Springer, 2012,
pp. 123–151, isbn: 978-3-642-29044-2. doi: 10.1007/978- 3- 642-
29044-2_10. [Online]. Available: https://doi.org/10.1007/978-3-
642-29044-2_10 (visited on 03/09/2022).

[111] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in Software Engineering, en. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, isbn: 978-3-642-29043-5 978-3-
642-29044-2. doi: 10.1007/978-3-642-29044-2. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-29044-2 (visited
on 03/09/2022).

[112] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples, 1st. Wiley Pub-
lishing, 2012, isbn: 978-1-118-10435-4.

206

Bibliography

[113] A. Rahman, A. Partho, P. Morrison, and L. Williams, “What questions
do programmers ask about configuration as code?” In Proceedings of
the 4th International Workshop on Rapid Continuous Software Engi-
neering, ser. RCoSE ’18, Gothenburg, Sweden: Association for Com-
puting Machinery, May 2018, pp. 16–22, isbn: 978-1-4503-5745-6. doi:
10.1145/3194760.3194769. [Online]. Available: https://doi.org/
10.1145/3194760.3194769 (visited on 03/05/2020).

[114] T. Fritz and G. C. Murphy, “Using information fragments to answer the
questions developers ask,” in Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering - Volume 1, ser. ICSE
’10, Cape Town, South Africa: Association for Computing Machin-
ery, May 2010, pp. 175–184, isbn: 978-1-60558-719-6. doi: 10.1145/
1806799.1806828. [Online]. Available: https://doi.org/10.1145/
1806799.1806828 (visited on 03/05/2020).

[115] A. Ahmad, O. Leifler, and K. Sandahl, “The 36th ACM/SIGAPP Sym-
posium on Applied Computing, March 22–26, 2021}{Virtual Event},”
Republic of Korea, Mar. 2021, isbn: 978-1-4503-8104-8. doi: 10.1145/
3412841.3442026.

[116] K. Y. Sharif and J. Buckley, “Observation of Open Source program-
mers’ information seeking,” in 2009 IEEE 17th International Confer-
ence on Program Comprehension, ISSN: 1092-8138, May 2009, pp. 307–
308. doi: 10.1109/ICPC.2009.5090071.

[117] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative
Intention in Code Review Questions,” in 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), ISSN: 2576-
3148, Sep. 2018, pp. 519–523. doi: 10.1109/ICSME.2018.00061.

[118] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and Usability of Programming Languages and Tools,
ser. PLATEAU ’10, Reno, Nevada: Association for Computing Ma-
chinery, Oct. 2010, pp. 1–6, isbn: 978-1-4503-0547-1. doi: 10.1145/
1937117.1937125. [Online]. Available: http://doi.org/10.1145/
1937117.1937125 (visited on 04/06/2020).

[119] V. S. Sharma, R. Mehra, and V. Kaulgud, “What Do Developers Want?
An Advisor Approach for Developer Priorities,” in 2017 IEEE/ACM
10th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), May 2017, pp. 78–81. doi: 10.1109/
CHASE.2017.14.

[120] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” en, ACM Press, 2014, pp. 643–653, isbn: 978-1-4503-
3056-5. doi: 10.1145/2635868.2635920. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2635868.2635920 (visited on
05/12/2018).

207

Bibliography

[121] A. L. McNab and D. A. Ladd, “Information Quality: The Importance
of Context and Trade-Offs,” in 2014 47th Hawaii International Confer-
ence on System Sciences, ISSN: 1530-1605, Jan. 2014, pp. 3525–3532.
doi: 10.1109/HICSS.2014.439.

[122] K. Ven, J. Verelst, and H. Mannaert, “Should You Adopt Open Source
Software?” IEEE Software, vol. 25, no. 3, pp. 54–59, May 2008, Confer-
ence Name: IEEE Software, issn: 1937-4194. doi: 10.1109/MS.2008.
73.

[123] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012, issn: 1099-1689. doi: 10.1002/stvr.
430. [Online]. Available: http://dx.doi.org/10.1002/stvr.430.

[124] T. B. Noor and H. Hemmati, “A similarity-based approach for test
case prioritization using historical failure data,” in 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE),
Nov. 2015, pp. 58–68. doi: 10.1109/ISSRE.2015.7381799.

[125] F. G. de Oliveira Neto, R. Torkar, and P. D. Machado, “Full modifica-
tion coverage through automatic similarity-based test case selection,”
Information and Software Technology, vol. 80, pp. 124–137, 2016, issn:
0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2016.08.
008.

[126] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-
based testing through test case diversity,” ACM Trans. Softw. Eng.
Methodol., vol. 22, no. 1, 6:1–6:42, Mar. 2013, issn: 1049-331X. doi:
10.1145/2430536.2430540. [Online]. Available: http://doi.acm.
org/10.1145/2430536.2430540.

[127] E. G. Cartaxo, P. D. L. Machado, and F. G. de Oliveira Neto, “On
the use of a similarity function for test case selection in the context
of model-based testing,” Software Testing, Verification and Reliability,
vol. 21, no. 2, pp. 75–100, 2011, issn: 1099-1689. doi: 10.1002/stvr.
413. [Online]. Available: http://dx.doi.org/10.1002/stvr.413.

[128] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quan-
tifying the diversity of sets of test cases,” in 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
Apr. 2016, pp. 223–233. doi: 10.1109/ICST.2016.33.

[129] H. Hemmati, Z. Fang, and M. V. Mantyla, “Prioritizing manual test
cases in traditional and rapid release environments,” in 2015 IEEE 8th
International Conference on Software Testing, Verification and Valida-
tion (ICST), Apr. 2015, pp. 1–10. doi: 10.1109/ICST.2015.7102602.

208

Bibliography

[130] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test
cases with string distances,” Automated Software Engineering, vol. 19,
no. 1, pp. 65–95, Mar. 2012, issn: 1573-7535. doi: 10.1007/s10515-
011 - 0093 - 0. [Online]. Available: https : / / doi . org / 10 . 1007 / s
10515-011-0093-0.

[131] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon,
“Comparing white-box and black-box test prioritization,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), May 2016, pp. 523–534. doi: 10.1145/2884781.2884791.

[132] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cogni-
tively diverse tests: Towards universal test diversity metrics,” in 2008
IEEE International Conference on Software Testing Verification and
Validation Workshop, Apr. 2008, pp. 178–186. doi: 10.1109/ICSTW.
2008.36.

[133] J. Campos, A. Arcuri, G. Fraser, and R. Abreu, “Continuous test gen-
eration: Enhancing continuous integration with automated test gener-
ation,” in IEEE/ACM Int. Conference on Automated Software Engi-
neering (ASE), Västerås, Sweden: ACM, 2014, pp. 55–66.

[134] A. E. V. B. Coutinho, E. G. Cartaxo, and P. D. d. L. Machado, “Anal-
ysis of distance functions for similarity-based test suite reduction in
the context of model-based testing,” Software Quality Journal, vol. 24,
no. 2, pp. 407–445, Jun. 2016, issn: 1573-1367. doi: 10.1007/s11219-
014 - 9265 - z. [Online]. Available: https : / / doi . org / 10 . 1007 /
s11219-014-9265-z.

[135] E. G. Cartaxo, F. G. de Oliveira Neto, and P. D. Machado, “Automated
test case selection based on a similarity function.,” GI Jahrestagung
(2), vol. 7, pp. 399–404, 2007.

[136] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on Software En-
gineering, vol. 27, no. 10, pp. 929–948, Oct. 2001, issn: 0098-5589. doi:
10.1109/32.962562.

[137] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software En-
gineering, vol. 14, no. 2, pp. 131–164, 2008, issn: 1573-7616. doi: 10.
1007/s10664-008-9102-8.

[138] A. Marzal and E. Vidal, “Computation of normalized edit distance and
applications,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 9, pp. 926–932, Sep. 1993, issn: 0162-8828.
doi: 10.1109/34.232078.

209

Bibliography

[139] F. G. de Oliveira Neto, R. Feldt, R. Torkar, and P. D. L. Machado,
“Searching for models to evaluate software technology,” in Proceedings
of the 1st International Workshop on Combining Modelling and Search-
Based Software Engineering, ser. CMSBSE ’13, San Francisco, Califor-
nia: IEEE Press, 2013, pp. 12–15, isbn: 978-1-4673-6284-9. [Online].
Available: http://dl.acm.org/citation.cfm?id=2662572.2662578.

[140] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for tech-
nology transfer in practice,” IEEE Software, vol. 23, no. 6, pp. 88–95,
Nov. 2006, issn: 0740-7459. doi: 10.1109/MS.2006.147.

[141] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in Software Engineering. Springer Publish-
ing Company, Incorporated, 2012, isbn: 3642290434, 9783642290435.

[142] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an ap-
propriate tool for testing experiments?” In Proceedings of the 27th
International Conference on Software Engineering, ser. ICSE ’05, St.
Louis, MO, USA: ACM, 2005, pp. 402–411, isbn: 1-58113-963-2. doi:
10.1145/1062455.1062530. [Online]. Available: http://doi.acm.
org/10.1145/1062455.1062530.

[143] P. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improv-
ing Software Quality and Reducing Risk (A Martin Fowler signature
book). Addison-Wesley, 2007, isbn: 9780321336385. [Online]. Avail-
able: https://books.google.se/books?id=MA8QmAEACAAJ.

[144] T. Mårtensson, D. Ståhl, and J. Bosch, “Test activities in the continu-
ous integration and delivery pipeline,” Journal of Software: Evolution
and Process, vol. 31, no. 4, e2153, 2019.

[145] A. Ahmad, F. G. de Oliveira Neto, E. P. Enoiu, K. Sandahl, and O.
Leifler, Replication package for "An Industrial Study on the Challenges
and Effects of Diversity-based Testing in Continuous Integration", ver-
sion Version 1.0, Dec. 2020. doi: 10.5281/zenodo.4305982. [Online].
Available: https://doi.org/10.5281/zenodo.4305982.

[146] O. S. Gómez, N. Juristo, and S. Vegas, “Replication, reproduction and
re-analysis: Three ways for verifying experimental findings,” in Pro-
ceedings of the 1st international workshop on replication in empiri-
cal software engineering research (RESER 2010), Cape Town, South
Africa, 2010, pp. 1–7.

[147] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cogni-
tively diverse tests: Towards universal test diversity metrics,” in 2008
IEEE International Conference on Software Testing Verification and
Validation Workshop, Apr. 2008, pp. 178–186. doi: 10.1109/ICSTW.
2008.36.

210

Bibliography

[148] E. Knauss, M. Staron, W. Meding, O. Söder, A. Nilsson, and M.
Castell, “Supporting Continuous Integration by Code-Churn Based
Test Selection,” in 2015 IEEE/ACM 2nd International Workshop on
Rapid Continuous Software Engineering, May 2015, pp. 19–25. doi:
10.1109/RCoSE.2015.11.

[149] D. Marijan, M. Liaaen, and S. Sen, “DevOps Improvements for Re-
duced Cycle Times with Integrated Test Optimizations for Continuous
Integration,” in 2018 IEEE 42nd Annual Computer Software and Ap-
plications Conference (COMPSAC), Jul. 2018, pp. 22–27. doi: 10 .
1109/COMPSAC.2018.00012.

[150] J. Liang, S. Elbaum, and G. Rothermel, “Redefining Prioritization:
Continuous Prioritization for Continuous Integration,” in Proceed-
ings of the 40th International Conference on Software Engineering,
ser. ICSE ’18, New York, NY, USA: ACM, 2018, pp. 688–698, isbn:
978-1-4503-5638-1. doi: 10.1145/3180155.3180213. [Online]. Avail-
able: http://doi.acm.org/10.1145/3180155.3180213.

[151] J. H. Kwon and I. Y. Ko, “Cost-Effective Regression Testing Using
Bloom Filters in Continuous Integration Development Environments,”
in 2017 24th Asia-Pacific Software Engineering Conference (APSEC),
Dec. 2017, pp. 160–168. doi: 10.1109/APSEC.2017.22.

[152] J.-M. Kim and A. Porter, “A history-based test prioritization tech-
nique for regression testing in resource constrained environments,” in
Proceedings of the 24th International Conference on Software Engi-
neering, ser. ICSE ’02, Orlando, Florida: ACM, 2002, pp. 119–129,
isbn: 1-58113-472-X. doi: 10.1145/581339.581357. [Online]. Avail-
able: http://doi.acm.org/10.1145/581339.581357.

[153] Y. Zhu, E. Shihab, and P. C. Rigby, “Test re-prioritization in continu-
ous testing environments,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Sep. 2018, pp. 69–79.
doi: 10.1109/ICSME.2018.00016.

[154] K. Petersen and E. Engström, “Finding relevant research solutions for
practical problems: The serp taxonomy architecture,” in Proceedings of
the 2014 International Workshop on Long-Term Industrial Collabora-
tion on Software Engineering, ser. WISE ’14, Vasteras, Sweden: Associ-
ation for Computing Machinery, 2014, pp. 13–20, isbn: 9781450330459.
doi: 10.1145/2647648.2647650. [Online]. Available: https://doi.
org/10.1145/2647648.2647650.

[155] N. Alshahwan and M. Harman, “Augmenting test suites effectiveness
by increasing output diversity,” in 2012 34th International Conference
on Software Engineering (ICSE), 2012, pp. 1345–1348.

211

Bibliography

[156] P. M. Bueno, W. E. Wong, and M. Jino, “Improving random test sets
using the diversity oriented test data generation,” in Proceedings of
the 2nd international workshop on Random testing: co-located with
the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), 2007, pp. 10–17.

[157] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, “Prioritizing
manual test cases in rapid release environments,” Software Testing,
Verification and Reliability, vol. 27, no. 6, pp. 1–10, 2017.

[158] E. Engström and K. Petersen, “Mapping software testing practice with
software testing research — serp-test taxonomy,” in 2015 IEEE Eighth
International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2015, pp. 1–4. doi: 10.1109/ICSTW.2015.
7107470. [Online]. Available: https://doi.org/10.1109/ICSTW.
2015.7107470.

[159] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test
cases with string distances,” Automated Software Engineering, vol. 19,
no. 1, pp. 65–95, 2012, issn: 1573-7535. doi: 10.1007/s10515-011-
0093-0.

[160] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: An empirical study,” in Proceedings IEEE Interna-
tional Conference on Software Maintenance - 1999 (ICSM’99). ’Soft-
ware Maintenance for Business Change’ (Cat. No.99CB36360), 1999,
pp. 179–188. doi: 10.1109/ICSM.1999.792604. [Online]. Available:
https://doi.org/10.1109/ICSM.1999.792604.

[161] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R.
François, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L.
Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo,
and H. Yutani, “Welcome to the tidyverse,” Journal of Open Source
Software, vol. 4, no. 43, p. 1686, 2019. doi: 10.21105/joss.01686.

[162] S. M. Edwards, Lemon: Freshing up your ’ggplot2’ plots, R package
version 0.4.4, 2020. [Online]. Available: https://CRAN.R-project.
org/package=lemon.

[163] M. Torchiano, Effsize: Efficient effect size computation, R package ver-
sion 0.8.0, 2020. doi: 10.5281/zenodo.1480624. [Online]. Available:
https://CRAN.R-project.org/package=effsize.

[164] J. Gross and U. Ligges, Nortest: Tests for normality, R package version
1.0-4, 2015. [Online]. Available: https : / / CRAN . R - project . org /
package=nortest.

212

Bibliography

[165] D. H. Ogle, P. Wheeler, and A. Dinno, Fsa: Fisheries stock analysis,
R package version 0.8.30, 2020. [Online]. Available: https://github.
com/droglenc/FSA.

[166] B. W. Yap and C. H. Sim, “Comparisons of various types of normal-
ity tests,” Journal of Statistical Computation and Simulation, vol. 81,
no. 12, pp. 2141–2155, 2011. doi: 10.1080/00949655.2010.520163.
[Online]. Available: https://doi.org/10.1080/00949655.2010.
520163.

[167] G. Neumann, M. Harman, and S. Poulding, “Transformed vargha-
delaney effect size,” in International Symposium on Search Based Soft-
ware Engineering, Springer, 2015, pp. 318–324.

[168] F. G. de Oliveira Neto, R. Torkar, and P. D. Machado, “Full modifica-
tion coverage through automatic similarity-based test case selection,”
Information and Software Technology, vol. 80, pp. 124–137, 2016, issn:
0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2016.08.
008.

[169] A. E. V. B. Coutinho, E. G. Cartaxo, and P. D. L. Machado, “Analysis
of distance functions for similarity-based test suite reduction in the
context of model-based testing,” Software Quality Journal, vol. 24, pp. ,
407–445, Dec. 2016, issn: 0963-9314. doi: 10 . 1007 / s11219 - 014 -
9265- z. [Online]. Available: https://doi.org/10.1007/s11219-
014-9265-z.

[170] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engi-
neers: Data collection techniques for software field studies,” Empirical
Software Engineering, vol. 10, no. 3, pp. 311–341, Jul. 2005, issn: 1573-
7616. doi: 10.1007/s10664-005-1290-x. [Online]. Available: https:
//doi.org/10.1007/s10664-005-1290-x.

[171] J. Kontio, L. Lehtola, and J. Bragge, “Using the focus group method
in software engineering: Obtaining practitioner and user experiences,”
in Empirical Software Engineering, 2004. ISESE’04. Proceedings. 2004
International Symposium on, IEEE, 2004, pp. 271–280.

[172] F. G. de Oliveira Neto, J. Horkoff, E. Knauss, R. Kasauli, and G.
Liebel, “Challenges of aligning requirements engineering and system
testing in large-scale agile: A multiple case study,” in 2017 IEEE
25th International Requirements Engineering Conference Workshops
(REW), 2017, pp. 315–322.

[173] E. Bjarnason, P. Runeson, M. Borg, M. Unterkalmsteiner, E. En-
gström, B. Regnell, G. Sabaliauskaite, A. Loconsole, T. Gorschek, and
R. Feldt, “Challenges and practices in aligning requirements with ver-
ification and validation: A case study of six companies,” Empirical
Software Engineering, vol. 19, no. 6, pp. 1809–1855, Dec. 2014, issn:
1382-3256. doi: 10.1007/s10664-013-9263-y.

213

Bibliography

[174] Y. S. Dai, M. Xie, K. L. Poh, and B. Yang, “Optimal testing-resource
allocation with genetic algorithm for modular software systems,” Jour-
nal of Systems and Software, vol. 66, no. 1, pp. 47–55, 2003, issn:
0164-1212. doi: https://doi.org/10.1016/S0164-1212(02)00062-
6. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121202000626.

[175] Z. Wang, K. Tang, and X. Yao, “Multi-objective approaches to opti-
mal testing resource allocation in modular software systems,” IEEE
Transactions on Reliability, vol. 59, no. 3, pp. 563–575, 2010.

[176] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making software failures
reproducible by preserving object states,” in ECOOP 2008 – Object-
Oriented Programming, J. Vitek, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 542–565, isbn: 978-3-540-70592-5.

[177] W. Jin and A. Orso, “Bugredux: Reproducing field failures for in-house
debugging,” in 2012 34th International Conference on Software Engi-
neering (ICSE), 2012, pp. 474–484.

[178] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combinato-
rial interaction testing: Empirical findings on efficiency and early fault
detection,” IEEE Transactions on Software Engineering, vol. 41, no. 9,
pp. 901–924, 2015.

[179] B. W. Boehm and P. N. Papaccio, “Understanding and controlling
software costs,” IEEE transactions on software engineering, vol. 14,
no. 10, pp. 1462–1477, 1988.

[180] A. J. Ko, T. D. Latoza, and M. M. Burnett, “A practical guide to
controlled experiments of software engineering tools with human par-
ticipants,” Empirical Software Engineering, vol. 20, no. 1, pp. 110–141,
2015.

[181] C. A. Furia, R. Feldt, and R. Torkar, “Bayesian data analysis in em-
pirical software engineering research,” IEEE Transactions on Software
Engineering, 2019.

[182] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the Cost
of Regression Testing in Practice: A Study of Java Projects Using Con-
tinuous Integration,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017, event-
place: Paderborn, Germany, New York, NY, USA: ACM, 2017, pp. 821–
830, isbn: 978-1-4503-5105-8. doi: 10.1145/3106237.3106288. [On-
line]. Available: http://doi.acm.org/10.1145/3106237.3106288
(visited on 04/15/2019).

214

Bibliography

[183] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in Continuous Integration: Assurance, Security, and Flexibility,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2017, event-place: Paderborn, Germany,
New York, NY, USA: ACM, 2017, pp. 197–207, isbn: 978-1-4503-5105-
8. doi: 10.1145/3106237.3106270. [Online]. Available: http://doi.
acm.org/10.1145/3106237.3106270 (visited on 04/15/2019).

[184] J. Morán, C. Augusto, A. Bertolino, C. de la Riva, and J. Tuya,
“Debugging Flaky Tests on Web Applications:” en, in Proceedings of
the 15th International Conference on Web Information Systems and
Technologies, Vienna, Austria: SCITEPRESS - Science and Technol-
ogy Publications, 2019, pp. 454–461, isbn: 978-989-758-386-5. doi:
10 . 5220 / 0008559004540461. [Online]. Available: http : / / www .
scitepress . org / DigitalLibrary / Link . aspx ? doi = 10 . 5220 /
0008559004540461 (visited on 09/08/2020).

[185] J. Morán, C. Augusto, A. Bertolino, C. D. L. Riva, and J. Tuya, “Flaky-
Loc: Flakiness Localization for Reliable Test Suites in Web Applica-
tions,” en, Journal of Web Engineering, pp. 267–296.–267–296. Jun.
2020, issn: 1544-5976. doi: 10.13052/jwe1540-9589.1927. [Online].
Available: https://journals.riverpublishers.com/index.php/
JWE/ (visited on 09/08/2020).

[186] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Concurrency-
related Flaky Test Detection in Android apps,” arXiv:2005.10762 [cs],
May 2020, arXiv: 2005.10762. [Online]. Available: http://arxiv.org/
abs/2005.10762 (visited on 09/08/2020).

[187] M. A. Mascheroni and E. Irrazábal, “Identifying Key Success Factors
in Stopping Flaky Tests in Automated REST Service Testing,” en,
Journal of Computer Science and Technology, vol. 18, no. 02, e16–e16,
Oct. 2018, Number: 02, issn: 1666-6038. doi: 10.24215/16666038.
18.e16. [Online]. Available: https://journal.info.unlp.edu.ar/
JCST/article/view/1087 (visited on 09/09/2020).

[188] A. Gambi, J. Bell, and A. Zeller, “Practical Test Dependency Detec-
tion,” in 2018 IEEE 11th International Conference on Software Test-
ing, Verification and Validation (ICST), Apr. 2018, pp. 1–11. doi:
10.1109/ICST.2018.00011.

[189] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic,
“Detecting flaky tests in probabilistic and machine learning applica-
tions,” in Proceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ser. ISSTA 2020, New York,
NY, USA: Association for Computing Machinery, Jul. 2020, pp. 211–
224, isbn: 978-1-4503-8008-9. doi: 10.1145/3395363.3397366. [On-

215

Bibliography

line]. Available: https://doi.org/10.1145/3395363.3397366 (vis-
ited on 09/08/2020).

[190] A. Shi, J. Bell, and D. Marinov, “Mitigating the effects of flaky tests
on mutation testing,” in Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, ser. ISSTA
2019, New York, NY, USA: Association for Computing Machinery, Jul.
2019, pp. 112–122, isbn: 978-1-4503-6224-5. doi: 10.1145/3293882.
3330568. [Online]. Available: https://doi.org/10.1145/3293882.
3330568 (visited on 09/08/2020).

[191] P. J. Fortier and H. Michel, Computer Systems Performance Evalua-
tion and Prediction. USA: Butterworth-Heinemann, 2002, isbn: 978-1-
55558-260-9.

[192] D. Bowes, T. Hall, J. Petric, T. Shippey, and B. Turhan, “How
Good Are My Tests?” In 2017 IEEE/ACM 8th Workshop on Emerg-
ing Trends in Software Metrics (WETSoM), May 2017, pp. 9–14. doi:
10.1109/WETSoM.2017.2.

[193] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok, “Refactoring Test
Code,” CWI (Centre for Mathematics and Computer Science), Ams-
terdam, The Netherlands, Tech. Rep., 2001.

[194] C. Kaner, “What Is a Good Test Case?” en, Software Testing Analysis
& Review Conference (STAR) East, Orlando, FL, May 12-16, 2003,
p. 16,

[195] A. Beer, M. Junker, H. Femmer, and M. Felderer, “Initial Investigations
on the Influence of Requirement Smells on Test-Case Design,” in 2017
IEEE 25th International Requirements Engineering Conference Work-
shops (REW), Sep. 2017, pp. 323–326. doi: 10.1109/REW.2017.43.

[196] Factor definition and meaning | Collins English Dictionary, en. [On-
line]. Available: https://www.collinsdictionary.com/dictionary/
english/factor (visited on 02/12/2021).

[197] V. Garousi and B. Küçük, “Smells in software test code: A survey
of knowledge in industry and academia,” en, Journal of Systems and
Software, vol. 138, pp. 52–81, Apr. 2018, issn: 0164-1212. doi: 10.
1016/j.jss.2017.12.013. [Online]. Available: http://www.science
direct.com/science/article/pii/S0164121217303060 (visited on
01/22/2020).

[198] H. S. Dar, “Reducing Ambiguity in Requirements Elicitation via Gam-
ification,” in 2020 IEEE 28th International Requirements Engineer-
ing Conference (RE), ISSN: 2332-6441, Aug. 2020, pp. 440–444. doi:
10.1109/RE48521.2020.00065.

216

Bibliography

[199] C. Ziftci and D. Cavalcanti, “De-Flake Your Tests : Automatically
Locating Root Causes of Flaky Tests in Code At Google,” in 2020
IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME), ISSN: 2576-3148, Sep. 2020, pp. 736–745. doi: 10.1109/
ICSME46990.2020.00083.

[200] K. Presler-Marshall, E. Horton, S. Heckman, and K. Stolee, “Wait,
Wait. No, Tell Me. Analyzing Selenium Configuration Effects on Test
Flakiness,” in 2019 IEEE/ACM 14th International Workshop on Au-
tomation of Software Test (AST), May 2019, pp. 7–13. doi: 10.1109/
AST.2019.000-1.

[201] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, “Under-
standing Reproducibility and Characteristics of Flaky Tests Through
Test Reruns in Java Projects,” in 2020 IEEE 31st International Sym-
posium on Software Reliability Engineering (ISSRE), ISSN: 2332-6549,
Oct. 2020, pp. 403–413. doi: 10.1109/ISSRE5003.2020.00045.

[202] A. Groce and J. Holmes, “Practical Automatic Lightweight Nonde-
terminism and Flaky Test Detection and Debugging for Python,” in
2020 IEEE 20th International Conference on Software Quality, Reli-
ability and Security (QRS), Dec. 2020, pp. 188–195. doi: 10.1109/
QRS51102.2020.00035.

[203] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and Ranking Flaky Tests at Apple,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP), Oct. 2020, pp. 110–119.

[204] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Non-
parametric Regression,” The American Statistician, vol. 46, no. 3,
pp. 175–185, 1992, Publisher: [American Statistical Association, Tay-
lor & Francis, Ltd.], issn: 0003-1305. doi: 10.2307/2685209. [Online].
Available: https : / / www .jstor . org / stable / 2685209 (visited on
12/29/2020).

[205] F. Palomba and A. Zaidman, “Does Refactoring of Test Smells Induce
Fixing Flaky Tests?” In 2017 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), Sep. 2017, pp. 1–12. doi:
10.1109/ICSME.2017.12.

[206] R. Shams and R. E. Mercer, “Classifying Spam Emails Using Text and
Readability Features,” in 2013 IEEE 13th International Conference on
Data Mining, ISSN: 2374-8486, Dec. 2013, pp. 657–666. doi: 10.1109/
ICDM.2013.131.

[207] S. K. Tuteja and N. Bogiri, “Email Spam filtering using BPNN clas-
sification algorithm,” in 2016 International Conference on Automatic
Control and Dynamic Optimization Techniques (ICACDOT), ISSN:
null, Sep. 2016, pp. 915–919. doi: 10.1109/ICACDOT.2016.7877720.

217

Bibliography

[208] E. Sahın, M. Aydos, and F. Orhan, “Spam/ham e-mail classification
using machine learning methods based on bag of words technique,” in
2018 26th Signal Processing and Communications Applications Con-
ference (SIU), ISSN: null, May 2018, pp. 1–4. doi: 10.1109/SIU.
2018.8404347.

[209] K. Mathew and B. Issac, “Intelligent spam classification for mobile text
message,” in Proceedings of 2011 International Conference on Com-
puter Science and Network Technology, ISSN: null, vol. 1, Dec. 2011,
pp. 101–105. doi: 10.1109/ICCSNT.2011.6181918.

[210] A. B. M. S. Ali and Y. Xiang, “Spam Classification Using Adaptive
Boosting Algorithm,” in 6th IEEE/ACIS International Conference on
Computer and Information Science (ICIS 2007), ISSN: null, Jul. 2007,
pp. 972–976. doi: 10.1109/ICIS.2007.170.

[211] A. A. Alurkar, S. B. Ranade, S. V. Joshi, S. S. Ranade, P. A. Sonewar,
P. N. Mahalle, and A. V. Deshpande, “A proposed data science ap-
proach for email spam classification using machine learning tech-
niques,” in 2017 Internet of Things Business Models, Users, and Net-
works, ISSN: null, Nov. 2017, pp. 1–5. doi: 10.1109/CTTE.2017.
8260935.

[212] S. Vahora, M. Hasan, and R. Lakhani, “Novel approach: Naïve Bayes
with Vector space model for spam classification,” in 2011 Nirma Uni-
versity International Conference on Engineering, ISSN: 2375-1282,
Dec. 2011, pp. 1–5. doi: 10.1109/NUiConE.2011.6153245.

[213] T.-Y. Yu and W.-C. Hsu, “E-mail Spam Filtering Using Support Vec-
tor Machines with Selection of Kernel Function Parameters,” in 2009
Fourth International Conference on Innovative Computing, Informa-
tion and Control (ICICIC), ISSN: null, Dec. 2009, pp. 764–767. doi:
10.1109/ICICIC.2009.184.

[214] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of su-
pervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning, ser. ICML ’06, Pittsburgh, Pennsylva-
nia, USA: Association for Computing Machinery, Jun. 2006, pp. 161–
168, isbn: 978-1-59593-383-6. doi: 10.1145/1143844.1143865. [On-
line]. Available: https://doi.org/10.1145/1143844.1143865 (vis-
ited on 01/21/2020).

[215] C.-Y. Chiu and Y.-T. Huang, “Integration of Support Vector Machine
with Naïve Bayesian Classifier for Spam Classification,” in Fourth In-
ternational Conference on Fuzzy Systems and Knowledge Discovery
(FSKD 2007), ISSN: null, vol. 1, Aug. 2007, pp. 618–622. doi: 10.
1109/FSKD.2007.366.

218

Bibliography

[216] Z. Jia, W. Li, W. Gao, and Y. Xia, “Research on Web Spam Detec-
tion Based on Support Vector Machine,” in 2012 International Con-
ference on Communication Systems and Network Technologies, ISSN:
null, May 2012, pp. 517–520. doi: 10.1109/CSNT.2012.117.

[217] A. S. Katasev, L. Y. Emaletdinova, and D. V. Kataseva, “Neural Net-
work Spam Filtering Technology,” in 2018 International Conference on
Industrial Engineering, Applications and Manufacturing (ICIEAM),
ISSN: null, May 2018, pp. 1–5. doi: 10.1109/ICIEAM.2018.8728862.

[218] M. K. and R. Kumar, “Spam Mail Classification Using Combined Ap-
proach of Bayesian and Neural Network,” in 2010 International Con-
ference on Computational Intelligence and Communication Networks,
ISSN: null, Nov. 2010, pp. 145–149. doi: 10.1109/CICN.2010.39.

[219] L. Firte, C. Lemnaru, and R. Potolea, “Spam detection filter using
KNN algorithm and resampling,” in Proceedings of the 2010 IEEE 6th
International Conference on Intelligent Computer Communication and
Processing, ISSN: null, Aug. 2010, pp. 27–33. doi: 10.1109/ICCP.
2010.5606466.

[220] Weka 3 - Data Mining with Open Source Machine Learning Software
in Java. [Online]. Available: https://www.cs.waikato.ac.nz/ml/
weka/index.html (visited on 10/12/2020).

219

Papers

The papers associated with this thesis have been removed for

copyright reasons. For more details about these see:

https://doi.org/10.3384/9789179294236

https://doi.org/10.3384/9789179294236

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

Linköping Studies in Arts and Sciences
Linköping Studies in Statistics

Linköping Studies in Information Science

Linköping Studies in Science and Technology
No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification of
Time Margins in Digital Designs, 1977, ISBN 91-7372-
157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91- 7372-
168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System, 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-
2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic
Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmönster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-X.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

No 660 Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN 91-7373-126-
9.

No 724 Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91-7373-207-9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91-
7373-208-7.

No 726 Pär Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91-7373-212-5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91-
7373-258-3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X.

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av
informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing – An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5.

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic
Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

No 1294 Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.

No 1306 Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

No 1313 Christer Thörn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

No 1321 Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

No 1333 David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010,
ISBN 978-91-7393-335-3.

No 1337 Alexander Siemers: Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, 2010, ISBN 978-91-7393-
317-9.

No 1354 Mikael Asplund: Disconnected Discoveries:
Availability Studies in Partitioned Networks, 2010,
ISBN 978-91-7393-278-3.

No 1359 Jana Rambusch: Mind Games Extended:
Understanding Gameplay as Situated Activity, 2010,
ISBN 978-91-7393-252-3.

No 1373 Sonia Sangari: Head Movement Correlates to Focus
Assignment in Swedish, 2011, ISBN 978-91-7393-154-
0.

No 1374 Jan-Erik Källhammer: Using False Alarms when
Developing Automotive Active Safety Systems, 2011,
ISBN 978-91-7393-153-3.

No 1375 Mattias Eriksson: Integrated Code Generation, 2011,
ISBN 978-91-7393-147-2.

No 1381 Ola Leifler: Affordances and Constraints of
Intelligent Decision Support for Military Command
and Control – Three Case Studies of Support
Systems, 2011, ISBN 978-91-7393-133-5.

No 1386 Soheil Samii: Quality-Driven Synthesis and
Optimization of Embedded Control Systems, 2011,
ISBN 978-91-7393-102-1.

No 1419 Erik Kuiper: Geographic Routing in Intermittently-
connected Mobile Ad Hoc Networks: Algorithms
and Performance Models, 2012, ISBN 978-91-7519-
981-8.

No 1451 Sara Stymne: Text Harmonization Strategies for
Phrase-Based Statistical Machine Translation, 2012,
ISBN 978-91-7519-887-3.

No 1455 Alberto Montebelli: Modeling the Role of Energy
Management in Embodied Cognition, 2012, ISBN
978-91-7519-882-8.

No 1465 Mohammad Saifullah: Biologically-Based Interactive
Neural Network Models for Visual Attention and
Object Recognition, 2012, ISBN 978-91-7519-838-5.

No 1490 Tomas Bengtsson: Testing and Logic Optimization
Techniques for Systems on Chip, 2012, ISBN 978-91-
7519-742-5.

No 1481 David Byers: Improving Software Security by
Preventing Known Vulnerabilities, 2012, ISBN 978-
91-7519-784-5.

No 1496 Tommy Färnqvist: Exploiting Structure in CSP-
related Problems, 2013, ISBN 978-91-7519-711-1.

No 1503 John Wilander: Contributions to Specification,
Implementation, and Execution of Secure Software,
2013, ISBN 978-91-7519-681-7.

No 1506 Magnus Ingmarsson: Creating and Enabling the
Useful Service Discovery Experience, 2013, ISBN 978-
91-7519-662-6.

No 1547 Wladimir Schamai: Model-Based Verification of
Dynamic System Behavior against Requirements:
Method, Language, and Tool, 2013, ISBN 978-91-
7519-505-6.

No 1551 Henrik Svensson: Simulations, 2013, ISBN 978-91-
7519-491-2.

No 1559 Sergiu Rafiliu: Stability of Adaptive Distributed
Real-Time Systems with Dynamic Resource
Management, 2013, ISBN 978-91-7519-471-4.

No 1581 Usman Dastgeer: Performance-aware Component
Composition for GPU-based Systems, 2014, ISBN
978-91-7519-383-0.

No 1602 Cai Li: Reinforcement Learning of Locomotion based
on Central Pattern Generators, 2014, ISBN 978-91-
7519-313-7.

No 1652 Roland Samlaus: An Integrated Development
Environment with Enhanced Domain-Specific
Interactive Model Validation, 2015, ISBN 978-91-
7519-090-7.

No 1663 Hannes Uppman: On Some Combinatorial
Optimization Problems: Algorithms and Complexity,
2015, ISBN 978-91-7519-072-3.

No 1664 Martin Sjölund: Tools and Methods for Analysis,
Debugging, and Performance Improvement of
Equation-Based Models, 2015, ISBN 978-91-7519-071-6.

No 1666 Kristian Stavåker: Contributions to Simulation of
Modelica Models on Data-Parallel Multi-Core
Architectures, 2015, ISBN 978-91-7519-068-6.

No 1680 Adrian Lifa: Hardware/Software Codesign of
Embedded Systems with Reconfigurable and
Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-
2.

No 1685 Bogdan Tanasa: Timing Analysis of Distributed
Embedded Systems with Stochastic Workload and
Reliability Constraints, 2015, ISBN 978-91-7519-022-8.

No 1691 Håkan Warnquist: Troubleshooting Trucks –
Automated Planning and Diagnosis, 2015, ISBN 978-
91-7685-993-3.

No 1702 Nima Aghaee: Thermal Issues in Testing of
Advanced Systems on Chip, 2015, ISBN 978-91-7685-
949-0.

No 1715 Maria Vasilevskaya: Security in Embedded Systems:
A Model-Based Approach with Risk Metrics, 2015,
ISBN 978-91-7685-917-9.

No 1729 Ke Jiang: Security-Driven Design of Real-Time
Embedded System, 2016, ISBN 978-91-7685-884-4.

No 1733 Victor Lagerkvist: Strong Partial Clones and the
Complexity of Constraint Satisfaction Problems:
Limitations and Applications, 2016, ISBN 978-91-7685-
856-1.

No 1734 Chandan Roy: An Informed System Development
Approach to Tropical Cyclone Track and Intensity
Forecasting, 2016, ISBN 978-91-7685-854-7.

No 1746 Amir Aminifar: Analysis, Design, and Optimization
of Embedded Control Systems, 2016, ISBN 978-91-
7685-826-4.

No 1747 Ekhiotz Vergara: Energy Modelling and Fairness for
Efficient Mobile Communication, 2016, ISBN 978-91-
7685-822-6.

No 1748 Dag Sonntag: Chain Graphs – Interpretations,
Expressiveness and Learning Algorithms, 2016, ISBN
978-91-7685-818-9.

No 1768 Anna Vapen: Web Authentication using Third-
Parties in Untrusted Environments, 2016, ISBN 978-
91-7685-753-3.

No 1778 Magnus Jandinger: On a Need to Know Basis: A
Conceptual and Methodological Framework for
Modelling and Analysis of Information Demand in
an Enterprise Context, 2016, ISBN 978-91-7685-713-7.

No 1798 Rahul Hiran: Collaborative Network Security:
Targeting Wide-area Routing and Edge-network
Attacks, 2016, ISBN 978-91-7685-662-8.

No 1813 Nicolas Melot: Algorithms and Framework for
Energy Efficient Parallel Stream Computing on
Many-Core Architectures, 2016, ISBN 978-91-7685-
623-9.

No 1823 Amy Rankin: Making Sense of Adaptations:
Resilience in High-Risk Work, 2017, ISBN 978-91-
7685-596-6.

No 1831 Lisa Malmberg: Building Design Capability in the
Public Sector: Expanding the Horizons of
Development, 2017, ISBN 978-91-7685-585-0.

No 1851 Marcus Bendtsen: Gated Bayesian Networks, 2017,
ISBN 978-91-7685-525-6.

No 1852 Zlatan Dragisic: Completion of Ontologies and
Ontology Networks, 2017, ISBN 978-91-7685-522-5.

No 1854 Meysam Aghighi: Computational Complexity of
some Optimization Problems in Planning, 2017, ISBN
978-91-7685-519-5.

No 1863 Simon Ståhlberg: Methods for Detecting Unsolvable
Planning Instances using Variable Projection, 2017,
ISBN 978-91-7685-498-3.

No 1879 Karl Hammar: Content Ontology Design Patterns:
Qualities, Methods, and Tools, 2017, ISBN 978-91-
7685-454-9.

No 1887 Ivan Ukhov: System-Level Analysis and Design
under Uncertainty, 2017, ISBN 978-91-7685-426-6.

No 1891 Valentina Ivanova: Fostering User Involvement in
Ontology Alignment and Alignment Evaluation,
2017, ISBN 978-91-7685-403-7.

No 1902 Vengatanathan Krishnamoorthi: Efficient HTTP-
based Adaptive Streaming of Linear and Interactive
Videos, 2018, ISBN 978-91-7685-371-9.

No 1903 Lu Li: Programming Abstractions and Optimization
Techniques for GPU-based Heterogeneous Systems,
2018, ISBN 978-91-7685-370-2.

No 1913 Jonas Rybing: Studying Simulations with
Distributed Cognition, 2018, ISBN 978-91-7685-348-1.

No 1936 Leif Jonsson: Machine Learning-Based Bug
Handling in Large-Scale Software Development,
2018, ISBN 978-91-7685-306-1.

No 1964 Arian Maghazeh: System-Level Design of GPU-
Based Embedded Systems, 2018, ISBN 978-91-7685-
175-3.

No 1967 Mahder Gebremedhin: Automatic and Explicit
Parallelization Approaches for Equation Based
Mathematical Modeling and Simulation, 2019, ISBN
978-91-7685-163-0.

No 1984 Anders Andersson: Distributed Moving Base
Driving Simulators – Technology, Performance, and
Requirements, 2019, ISBN 978-91-7685-090-9.

No 1993 Ulf Kargén: Scalable Dynamic Analysis of Binary
Code, 2019, ISBN 978-91-7685-049-7.

No 2001 Tim Overkamp: How Service Ideas Are
Implemented: Ways of Framing and Addressing
Service Transformation, 2019, ISBN 978-91-7685-025-1.

No 2006 Daniel de Leng: Robust Stream Reasoning Under
Uncertainty, 2019, ISBN 978-91-7685-013-8.

No 2048 Biman Roy: Applications of Partial Polymorphisms
in (Fine-Grained) Complexity of Constraint
Satisfaction Problems, 2020, ISBN 978-91-7929-898-2.

No 2051 Olov Andersson: Learning to Make Safe Real-Time
Decisions Under Uncertainty for Autonomous
Robots, 2020, ISBN 978-91-7929-889-0.

No 2065 Vanessa Rodrigues: Designing for Resilience:
Navigating Change in Service Systems, 2020, ISBN
978-91-7929-867-8.

No 2082 Robin Kurtz: Contributions to Semantic Dependency
Parsing: Search, Learning, and Application, 2020,
ISBN 978-91-7929-822-7.

No 2108 Shanai Ardi: Vulnerability and Risk Analysis
Methods and Application in Large Scale
Development of Secure Systems, 2021, ISBN 978-91-
7929-744-2.

No 2125 Zeinab Ganjei: Parameterized Verification of
Synchronized Concurrent Programs, 2021, ISBN 978-
91-7929-697-1.

No 2153 Robin Keskisärkkä: Complex Event Processing
under Uncertainty in RDF Stream Processing, 2021,
ISBN 978-91-7929-621-6.

No 2168 Rouhollah Mahfouzi: Security-Aware Design of
Cyber-Physical Systems for Control Applications,
2021, ISBN 978-91-7929-021-4.

No 2205 August Ernstsson: Pattern-based Programming
Abstractions for Heterogeneous Parallel Computing,
2022, ISBN 978-91-7929-195-2.

No 2218 Huanyu Li: Ontology-Driven Data Access and Data
Integration with an Application in the Materials
Design Domain, 2022, ISBN 978-91-7929-267-6.

No 2219 Evelina Rennes: Automatic Adaption of Swedish
Text for Increased Inclusion, 2022, ISBN 978-91-7929-
269-0.

No 2220 Yuanbin Zhou: Synthesis of Safety-Critical Real-
Time Systems, 2022, ISBN 978-91-7929-271-3.

No 2247 Azeem Ahmad: Contributions to Improving
Feedback and Trust in Automated Testing and
Continuous Integration and Delivery, 2022, ISBN 978-
91-7929-422-9.

No 2248 Ana Kuštrak Korper: Innovating Innovation:
Understanding the Role of Service Design in Service
Innovation, 2022, ISBN 978-91-7929-424-3.

Linköping Studies in Arts and Sciences
No 504 Ing-Marie Jonsson: Social and Emotional

Characteristics of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

No 586 Fabian Segelström: Stakeholder Engagement for
Service Design: How service designers identify and
communicate insights, 2013, ISBN 978-91-7519-554-4.

No 618 Johan Blomkvist: Representing Future Situations of
Service: Prototyping in Service Design, 2014, ISBN
978-91-7519-343-4.

No 620 Marcus Mast: Human-Robot Interaction for Semi-
Autonomous Assistive Robots, 2014, ISBN 978-91-
7519-319-9.

No 677 Peter Berggren: Assessing Shared Strategic
Understanding, 2016, ISBN 978-91-7685-786-1.

No 695 Mattias Forsblad: Distributed cognition in home
environments: The prospective memory and
cognitive practices of older adults, 2016, ISBN 978-
91-7685-686-4.

No 787 Sara Nygårdhs: Adaptive behaviour in traffic: An
individual road user perspective, 2020, ISBN 978-91-
7929-857-9.

No 811 Sam Thellman: Social Robots as Intentional Agents,
2021, ISBN, 978-91-7929-008-5.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

No 11 Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.

No 13 Agné Burauskaite-Harju: Characterizing Temporal
Change and Inter-Site Correlations in Daily and Sub-
daily Precipitation Extremes, 2011, ISBN 978-91-7393-
110-6.

No 14 Måns Magnusson: Scalable and Efficient
Probabilistic Topic Model Inference for Textual Data,
2018, ISBN 978-91-7685-288-0.

No 15 Per Sidén: Scalable Bayesian spatial analysis with
Gaussian Markov random fields, 2020, 978-91-7929-
818-0.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN 9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet -
en studie av datorstödd metodbaserad
systemutveckling, 1998, ISBN 9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN 91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affärsprocesser, 2000, ISBN 91-
7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra system-
utvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN 91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden –
 Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-963-

4.
No 10 Ewa Braf: Knowledge Demanded for Action -

Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att

organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese
Christiansson: Mötet mellan process och komponent
- mot ett ramverk för en verksamhetsnära
kravspecifikation vid anskaffning av komponent-
baserade informationssystem, 2006, ISBN 91-85643-
22-X.

Contributions to
Improving Feedback
and Trust in
Automated Testing
and Continuous
Integration and
Delivery

Linköping Studies in Science and Technology
Dissertation No. 2247

Azeem Ahmad

Azeem
 Ahm

ad

 2022

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Dissertation No. 2247, 2022
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

Contributions to Im
proving Feedback and Trust in Autom

ated
Testing and Continuous Integration and Delivery

	ABSTRACT
	POPULÄRVETENSKAPLIG SAMMANFATTNING
	Acknowledgments
	Contents
	Introduction
	Personal Contributions
	Method
	Results Summary and Contributions
	Discussion, Implications & Future Work
	Conclusion
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20220421103128
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 630
 391
 None
 Left
 22.6772
 0.0000

 Both
 2
 AllDoc
 12

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20220421103128
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 630
 391
 None
 Right
 16.2992
 0.0000

 Both
 195
 AllDoc
 233

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 232
 233
 232
 233

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 557
 405

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 234
 233
 234

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 234
 233
 234

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 557
 405

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20220421103128
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 630
 391

 None
 Right
 16.2992
 0.0000

 Both
 195
 AllDoc
 233

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 243
 245
 244
 245

 1

 HistoryList_V1
 qi2base

