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Abstract: NIMA-related kinase7 (NEK7) plays a multifunctional role in cell division and NLRP3
inflammasone activation. A typical expression or any mutation in the genetic makeup of NEK7
leads to the development of cancer malignancies and fatal inflammatory disease, i.e., breast cancer,
non-small cell lung cancer, gout, rheumatoid arthritis, and liver cirrhosis. Therefore, NEK7 is a
promising target for drug development against various cancer malignancies. The combination of drug
repurposing and structure-based virtual screening of large libraries of compounds has dramatically
improved the development of anticancer drugs. The current study focused on the virtual screening
of 1200 benzene sulphonamide derivatives retrieved from the PubChem database by selecting and
docking validation of the crystal structure of NEK7 protein (PDB ID: 2WQN). The compounds
library was subjected to virtual screening using Auto Dock Vina. The binding energies of screened
compounds were compared to standard Dabrafenib. In particular, compound 762 exhibited excellent
binding energy of −42.67 kJ/mol, better than Dabrafenib (−33.89 kJ/mol). Selected drug candidates
showed a reactive profile that was comparable to standard Dabrafenib. To characterize the stability
of protein–ligand complexes, molecular dynamic simulations were performed, providing insight
into the molecular interactions. The NEK7–Dabrafenib complex showed stability throughout the
simulated trajectory. In addition, binding affinities, pIC50, and ADMET profiles of drug candidates
were predicted using deep learning models. Deep learning models predicted the binding affinity
of compound 762 best among all derivatives, which supports the findings of virtual screening.
These findings suggest that top hits can serve as potential inhibitors of NEK7. Moreover, it is
recommended to explore the inhibitory potential of identified hits compounds through in-vitro and
in-vivo approaches.
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1. Introduction

Cancer is the most common cause of death, with a high mortality rate worldwide
causing 10 million fatalities per year. Cancer is characterized by unregulated cell growth
and rapid proliferation [1]. Uncontrolled cell proliferation, aggregation, and an aberrant
cell cycle are hallmarks of human cancer. Typically, cell division is controlled by several
regulatory factors, including protein kinases [2]. Among all known protein kinases, NIMA
(never in mitosis, gene A) related kinase7 (NEK7) plays a multifunctional role [3], including
centrosome duplication, intracellular protein transport, mitotic spindle assembly, DNA
repair, and cytokinesis [4–7].

NEK7 is a highly conserved serine/threonine kinase consisting of approximately
302 amino acids [6]. NEK7 is structurally related to NEK6, which shares 85% amino acid
sequence identity. However, NEK7 is involved in critical roles that NEK6 cannot take over.
NEK7 is centrosome-localized and is known to be highly expressed in a variety of vital
organs such as the heart, lung, fat, brain, liver, and spleen [8]. It enhances the centrosome
duplication efficiency by promoting the pericentriolar material at the centrosome during
the S and G1 phases [3].

In addition, NEK7 also encourages the proliferation of resting cells, which indicates
its high-level involvement in various cancer types, including non-small lung cancer, breast
cancer, NLRP3-related inflammatory disease, and gastric cancer progression [9]. NEK7 also
has a promising role in growth and survival. NEK9 regulates the activation of NEK7 during
mitosis, which promotes spindle assembly, centrosome separation, and mitotic division of
the cell [7].

Besides promoting the proliferation of various resting cells, NEK7 is also involved in
the progression and development of fatal inflammatory diseases, including Alzheimer’s
disease, auto-immune disorders, inflammatory bowel disease, gout, and tumor forma-
tion [10]. Researchers have reported the involvement of NEK7 in the activation of NLRP3
inflammasome via ROS species formation, lysosomal destabilization, and potassium efflux.
Stimulation of inflammatory mediators by NEK7 induces fibrosis and diabetic retinopathy
and leads to hepatic carcinoma [10]. In brief, any mutation or atypical expression of NEK7
leads to the development of cellular oncogenesis and may provoke a fatal inflammatory
response, causing tumorigenesis of multiple organs. These findings lend testimony to the
involvement of NEK7 in the progression and development of numerous deadly diseases.

NEK7 is a promising target for multiple diseases, primarily cancer-related therapy
research. NEK7 came into consideration two decades ago [2], but it has yet to be explored as
a therapeutic target for preventing and treating NEK7-related diseases. A few medications
have recently been developed to target the NEK7-mediated inflammasome pathway, but
the mechanism and treatment outcomes are not specific and consistent [2].

Moreover, there is no FDA-approved medication that can selectively inhibit the ex-
pression of NEK7. Only Dabrafenib has shown activity against BRAF-mutant melanoma,
which expresses more NEK9 [1]. These findings indicate that no published work has
reported the selective and potent inhibitors of NEK7. As a result, the current study seeks
more specific inhibitors that will provide a beneficial treatment option for NEK7-related
cancer malignancies.

The current study focused on structure-based virtual screening (SBVS) of 1200 com-
pounds library and drug repurposing of FDA-approved drug Dabrafenib. Dabrafenib demon-
strated inhibitory potential against NEK9 with an IC50 value ranging from 1–9 nM [11,12].
Dabrafenib is comprised of benzene sulphonamide scaffolds. The basic sulphonamide
group occurs in numerous biological active compounds [12], including anti-microbial [13],
anti-tumor [14], anti-thyroid [15], antibiotics [16], and carbonic anhydrase inhibitors [17].
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Clinically, sulphonamide-possessing drugs are used to treat lower urinary tract in-
fections, whereas aromatic or hetero-aromatic sulphonamide derivatives possess a wide
range of biological activities, including anti-tumor, anti-rheumatic, anti-microbial, and
anti-inflammatory [18–21]. These findings have provided a strong rationale to retrieve
structural analogues of Dabrafenib containing a basic sulphonamide nucleus.

The library of 1200 structural analogues of Dabrafenib was retrieved from the Pub-
Chem database and subjected to the in-silico drug discovery process. The discovery of
a new anti-cancer agent is an extensive and laborious process. Thus, computer-aided
drug design (CADD) [22] methods could serve as an alternative drug development strat-
egy [23]. Among in-silico approaches, drug repurposing is an advanced tool for revisiting
the activities of already approved drugs [24], which can save time and money [25].

The current study was focused to revisit the activity of Dabrafenib against NEK7
protein [26]. In addition, structure-based virtual screening (SBVS) [26] of 1200 structural
analogues of Dabrafenib was carried out using molecular docking [27] and deep learning
models [28]. SBVS is an advanced technology for the identification of potential hits with
significant pharmacological properties against multiple molecular targets. Several robust
docking programs are available for docking purposes in commercial and academic settings.
In the present study, the Auto Dock Vina was used for virtual screening [29,30]. Moreover,
density functional theory studies were conducted to explore the chemical reactivity profile
of top-ranked analogues obtained through virtual screening. The structural geometry
optimization and frequency calculations were performed. In addition, frontier molecular
orbital (FMO) analysis and global reactivity descriptors were also determined. The efficacy
of any drug is determined by its interaction with targeted biomolecules. Deep learning
algorithms [31] were used for prediction of binding affinity and pIC50 values of top hits
obtained via virtual screening. Predicted values of top hits were compared to in-vitro
activity of Dabrafenib.

Furthermore, in-silico ADMET properties were also determined using a message-
passing neural network (MPNN). The MPNN model is widely used for prediction of
molecular properties such as blood brain barriers, human intestinal absorption, and sol-
ubility profiles [32]. The molecular docking approach only provides a static view of the
molecular interactions of the complex. Still, to determine the stability of the protein–ligand
complex, molecular dynamic simulations (MD simulations) have been performed to de-
termine the stability, which provide significant insight into the molecular interactions of
top-ranked complexes under accelerated conditions. Top hits obtained through structure
based virtual screening a shown in Figure 1. All hits shared the same pharmacophore with
standard Dabrafenib.

This is the first comprehensive computational study for the identification of selective
inhibitors of the NEK7 protein. The current study has utilized the latest computational
approaches, suggesting identified hits as a new strategy for treatment of NEK7-associated
malignancies. Findings of the current study suggest the exploration of the inhibiting poten-
tial of these hits at the molecular level using in-vitro and in-vivo experimental techniques.
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Figure 1. Top Hits obtained through SBVS. All hits were sharing same basic Pharmacophore with
standard Dabrafenib.

2. Experimental
2.1. Computational Studies
2.1.1. Density Functional Theory Calculation

The ground state electronic energy is ascertained by electron density of the com-
pound [33]. The electron density defines the number of electrons, nuclear charge and
position of the nuclei in a compound [34]. Variation in electron density yields different
ground state energy, and both of these properties are related by density functional the-
ory methods [35]. DFT methods are based on suggestions that electron density can be
accurately assumed by the set of specific orbitals using an exchange correlation such as
B3LYP [36]. Based on their computational accuracy, DFT methods are a reliable and effi-
cient approach for correct estimation of electronic properties of the compound [37]. The
structural geometries of selected compounds were optimized through DFT studies. DFT
calculations were executed on Guassian09 program [38] using B3LYPfunctional correlation
and 6-31G* as a basis set [39]. It is a compelling theory to calculate the electronic structure
of atoms and molecules. Gauss View 6 was used for visualization of output files [40]. In
addition, DFT/B3LYP method was employed for generation of Frontier molecular orbitals
(FMOs), electrostatic surface potential map and global and local reactivity of descriptors.
After completion of calculations, the output log file was visualized in Gauss View 6 for
determination of optimization energy, dipole moment, frequency and polarizability [41].

2.1.2. Structure Based Virtual Screening (SBVS)

Drug candidates were retrieved from the PubChem database (https://pubchem.ncbi.
nlm.nih.gov/) (accessed on 28 April 2022) to create the ligand library. There were 1200 struc-
tural analogues of Dabrafenib in the library. PyRx software was used to prepare the com-
pounds library, which was converted to pdbqt format for virtual screening using Auto
Dock Vina. The MMFF94 force field was used to minimize the energy of ligands. The

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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crystallographic structure of the targeted protein was retrieved from Protein Data Bank
(https://www.rcsb.org/) (accessed on 1 May 2022) (PDB ID: 2WQN). After that, MGL
tools were used to prepare macromolecule, which included removing Het atoms and water
molecules, and the addition of polar hydrogen. The protein was examined for any missing
residues. Furthermore, Kollman’s charges were used to neutralize protein, and Gasteiger
charges were calculated. Finally, for virtual screening of the compound library using Auto
Dock Vina, a 1-angstrom grid box was built centered on the crystalline structure of protein
at the point of co-crystal ligand (ADP) binding-site coordinates. The central xyz axis of the
grid box was set to 80 × 80 × 80. Virtual screening was carried out after the targeted protein
was prepared utilizing Auto Dock Vina’s script-based technique. The exhaustiveness was
set to 5 and the number of nodes was set to 20. The virtual screening was repeated twice
to ensure the accuracy of docking results. In addition, docking protocol was validated
by re-docking the co-crystal ligand with targeted protein. A RMSD value of less than
2 angstrom indicates the reliability of the docking pose. After completion of virtual screen-
ing, the output findings of the virtual screening module were analyzed and docking scores
of drug candidates were compared to standard Dabrafenib. Only four compounds were
found to have higher docking scores than standard Dabrafenib. The top hits were subjected
to further analysis using deep learning algorithms. Deep learning models were used to
predict drug affinity and determine the stability of protein–ligand complexes.

2.1.3. Molecular Dynamics Simulation

The molecular docking experiment provided an initial static protein–ligand complex
for molecular dynamic studies. Desmond, a package from Schrödinger LLC [42], was used
to run molecular dynamic simulation for 100 ns. Molecular docking studies provide insight
into the binding state of ligand with protein. Docking produces the static orientation of a
ligand molecule inside active pockets of targeted protein [43], and MD simulations measure
the average displacement of atoms with respect to a reference. MD simulations provide
information about the stability of the best complex [44,45].

Maestro or Protein Preparation Wizard were employed for processing of the protein–
ligand complex. The system was prepared in the system builder tool of the Desmond
package. The system was solvated by Monte-Carlo equilibration, TIP3P solvent model ex-
tended 10.0 angstrom in each direction. The counter NaCl ions at a concentration of 0.15 M
were added to neutralize the system. The optimized potential for liquid simulation (OPLS
2005) [46] was used as a forcefield to generate parameter files [46]. The pressure control was
conducted through the Martyna−Tuckerman−Klein chain coupling scheme with a cou-
pling constant of 2 ps [47], whereas the Noose–Hoover chain coupling scheme was used for
temperature control [48]. The energy minimization was performed for 20,000 steps in order
to remove any intra-molecular steric clashes. Initially, the system was equilibrated (NVT
ensemble) for 1 ns, and afterwards the NPT ensemble was performed for an additional
1 ns at 300 K temperature and 1 bar pressure. Finally, production run was performed for
100 ns under periodic boundaries conditions. The Particle Mesh Ewald (PME) method [49]
was used to determine electrostatic interactions [50]. The Verlet/Leapfrog algorithm was
used for numerical integration. A time step of 1 fs was used for minimization and a
time step of 2 fs was used for molecular dynamic simulation [51]. Thermal MM-GBSA.py
script [52,53] was used to calculate the ligand strain and ligand-binding free energy for
docked conformations over a 100 ns period [54].

2.1.4. Prediction of Binding Affinities, pIC50 and ADMET Properties Using Deep
Learning Models

Dabrafenib, which has been approved by the FDA, has been found to be effective
against BRAF-mutant melanoma with a high level of NEK9 protein expression. Dabrafenib’s
inhibitory concentration was in the nanomolar range, 1–9 nM [1]. The drug’s effectiveness
is largely determined by its binding affinity (IC50) and ADMET profile. Therefore, we
have employed deep learning models to predict IC50, pIC50, and ADMET properties of

https://www.rcsb.org/
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top hits acquired through virtual screening in order to provide a direct comparison of
binding affinities of top hits with standard Dabrafenib. Predicting the binding affinity and
ADMET characteristics in silico, rather than using an experimental method, is a promising
alternative. Deep learning (DP) models were used to predict drug target interactions (DTI)
in the current work, which were formulated on encoder and decoder architectures. A DL
model takes the SMILES string and amino acid sequence of the targeted protein as input
and uses over 17 state-of-the-art DP learning techniques to predict drug efficacy indicators
(Figure 2). The MPNN-CNN deep learning algorithms were used for affinity prediction in
this work, while the MPNN model was used for ADMET predictions [32].

Figure 2. Implementation of Deep learning Model.

3. Results and Discussion

The 1200-compound library was retrieved from the PubChem database and subjected
to SBVS and the FDA drug Dabrafenib. Dabrafenib was maintained as the standard drug to
which docking scores of 1200 compounds were compared. It was observed that only four
combinations have better docking scores and binding affinity than standard Dabrafenib.
These four compounds were considered top hits and subjected to further analysis, including
geometry optimization and FMO analysis via density functional theory studies. Moreover,
IC50, pIC50, and ADMET properties of the top four compounds were also predicted using
deep learning models.

3.1. Density Functional Theory Studies (DFTs)

Quickly calculating physicochemical properties of atoms, bonds and molecules is
necessary to process thousands or millions of structures in data mining investigations.
Calculations in quantum chemistry based on ab initio and density functional theory (DFT)
yield increasingly reliable assessments of many characteristics [55]. The B3LYP hybrid func-
tional is likely the most popular DFT functional, and its cost-effectiveness has been widely
acknowledged. Nonetheless, DFT computations are still too computationally expensive to
be conducted on single workstations or tiny clusters in less than a few hours [56].

3.1.1. Optimized Geometries

In the present study, geometries of FDA-approved drug Dabrafenib and top hits
were completely optimized using the DFT/B3LYP method and 6-31G* as a basis set. No
negative frequencies were obtained after the geometry optimization, which demonstrates
that current geometries are true local minima. Optimized structures of drug candidates are
presented in Figure 3.
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Figure 3. Optimized structures of selected compounds.

The compound 762 showed high value for polarizability and dipole moment, which
indicates its high polarity and chemical reactivity. Optimization and polarizability values
of top hits and Dabrafenib are given in Table 1.

Table 1. Energetic parameters of top hits and standard Dabrafenib.

Compound Optimization Energy
(Hartree)

Polarizability (α)
(a.u.)

Dipole Moment
(Debye)

Compound 208 −2712.903 340.588 13.330

Compound 248 −2391.895 345.671 7.283

Compound 255 −2238.320 304.820 8.827

Compound 762 −2699.752 360.213 10.042

Dabrafenib −2407.203 319.254 6.682

3.1.2. Frontier Molecular Orbital (FMOs)

The way a molecule interacts with other species is determined by its frontier molecular
orbitals. The highest occupied molecular orbital, or HOMO, is the outermost orbital-bearing
electrons, and it primarily works as an electron donor. The lowest unoccupied molecular
orbital, or LUMO, is the innermost orbital with free electron acceptor sites. The ionization
potential ought to be proportional to the HOMO energy, while the LUMO energy should
be proportional to the electron affinity (Table 2).
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Table 2. ∆Egap of HOMO/LUMO orbitals of selected compounds.

Compound EHOMO(eV) ELUMO(eV) ∆Egap(eV) Potential Ionization I (eV) Affinity A (eV)

Compound 208 −0.234 −0.099 0.135 0.234 0.099

Compound 248 −0.222 −0.070 0.152 0.222 0.070

Compound 255 −0.228 −0.083 0.145 0.228 0.083

Compound 762 −0.216 −0.089 0.127 0.216 0.089

Dabrafenib −0.233 −0.074 0.159 0.233 0.074

The energy gap is the difference in energy between the HOMO and LUMO orbitals,
and it is the most key variable in predicting the stability of a molecule. The HOMO–LUMO
energy gap is used to evaluate the chemical reactivity and kinetic stability of the molecule.
A soft molecule is a structure with a narrow gap that has a higher degree of polarization.
As a measure of electron conductivity, the energy difference between HOMO and LUMO
was recently employed to illustrate the bioactivity of intramolecular charge transfer (ICT).
The stronger the chemical reactivity and the less stable the kinetics, the smaller the gap.
The compound 762 has the narrowest energy gap at 0.127 eV among all the compounds.
Compound 248 has a greater energy gap, measuring 0.152 eV. Thus, it shows compound 762
is chemically more reactive than all other compounds, which are comparatively the stable
ones. In addition, the electron density of HOMO orbitals for Dabrafenib was localized over
morpholine and piperdinyl rings, whereas electron density of LUMO is localized to the
carbonitrile and benzocarbazole moiety of the drug. FMOs orbitals are shown in Figure 4.

Figure 4. HOMO–LUMO structures of the selected compounds.



Molecules 2022, 27, 4098 9 of 25

3.1.3. Global and Local Reactivity Descriptors

The HOMO and LUMO frontier orbitals are used to predict chemical reactivity. The
HOMO orbital energy of a compound is significantly correlated with its vulnerability to
electrophilic attack and ionization potential. A compound’s LUMO orbital energy is a
reliable predictor of electron affinity and nucleophilic attack. The energy of LUMO is
proportional to its electron affinity, indicating that it is susceptible to nucleophile attack.
The frontier molecular orbital energies are also related to the hard and soft characteristics of
a molecule. Hard nucleophiles have a low HOMO, whereas soft nucleophiles have a high
HOMO. Similarly, hard electrophiles have a high LUMO energy, whereas soft electrophiles
have a low LUMO energy. According to the frontier theory of electron reactivity, the
chemical reaction occurs at the point where the HOMO and LUMO have the most overlap.
All reactions require the HOMO density of the donor molecule, while all reactions require
the LUMO density of the acceptor molecule. The frontier orbital densities of individual
atoms can be used to quantify their reactivity inside a molecule. Chemical behavior is
frequently predicted using electronegativity and hardness. Compound 248 presented
greater energy gaps, indicating it to be the tougher among all compounds. Compound
208 demonstrated the greatest electrophilicity index value of 0.207 eV. This indicates that
compound 208 is an excellent electrophile among all the other compounds. The HOMO–
LUMO energy gap for Dabrafenib was found to be 0.159 eV. Dabrafenib showed a softness
value of 6 (Table 3). The Koopman’s theorem was used to express ionization energy and
electron affinity of drug candidates.

I = −EHOMO: A = −ELUMO

Table 3. Global reactivity descriptors.

Compound Hardness
(η)

Softness (S) Electronegativity
(X)

Chemical
Potential (µ)

Electrophilicity Index
(ω)

Compound 208 0.067 7.433 0.167 −0.167 0.207

Compound 248 0.076 6.566 0.147 −0.147 0.141

Compound 255 0.072 6.901 0.156 −0.156 0.167

Compound 762 0.063 7.880 0.153 −0.153 0.184

Dabrafenib 0.080 6.280 [38] 0.154 −0.154 0.149

Compound Electrodonating power
(ω-)

Electroaccepting power
(ω+)

Net
Electrophilicity(∆ω±)

Compound 208 0.299 0.132 0.432

Compound 248 0.224 0.077 0.301

Compound 255 0.254 0.098 0.352

Compound 762 0.268 0.116 0.384

Dabrafenib 0.236 0.082 0.318 [38]

We evaluated the following parameters by using their respective formulas: Hardness:
η = 1/2(ELUMO − EHOMO); Softness: S = 1/2η; Electronegativity: χ = −1/2(ELUMO +
EHOMO); Chemical potential: µ = −χ; Electrophilicity index: ω = µ/2η.

3.2. Structure Based Virtual Screening and Predicted Binding Affinities

Initially, the Molecular docking methodology was validated by redocking a co-crystal
ligand with targeted protein using the same coordinates. RMSD values of less than
2 angstrom were obtained, which demonstrate the successful validation of the docking
protocol and can be used to describe ligand poses with specificity and accuracy. Afterward,
virtual screening was conducted with 1200 ligands library and Dabrafenib. The coordi-
nates of co-crystal ligand were used to dock the ligand library and Dabrafenib. Out of
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1200 drug candidates, only four drug candidates showed excellent binding energies that
were even better than Dabrafenib. The binding energies of top hits and Dabrafenib are
tabulated in Table 4. In particular, compound 762 showed a maximum binding energy of
−42.67 kJ/mol and exhibited strong binding affinity with NEK7 protein when subjected to
the DL prediction model.

Table 4. Binding energies and Predicted binding affinities via Deep learning model.

Compound Binding Energies
(kJ/mol)

Predicted Binding Affinity
(IC50) nM

pIC50 (Predicted via Deep
Learning Model)

Compound 208 −33.47 206.26 6.69

Compound 248 −35.56 268.80 6.57

Compound 255 −35.98 283 6.55

Compound 762 −42.67 61.74 7.21

Dabrafenib −33.89 1-9 (Experimental) [1] —

Among the four top hits, compound 208 exhibited promising hydrophobic and hy-
drophilic interactions. The amino acid residues involved in important molecular inter-
actions were as follows: ASP115, ARG121, GLY117, ASP179, PHE168, ILE195, ALA114,
ALA61, ILE40, and ASP118. It was observed that two hydrogen bonds were involved in sta-
bilizing the protein–ligand complex. One hydrogen bond was observed with ASP118 with a
bond length of 2.97 angstrom, while the second hydrogen bond was observed with GLY117
having a bond length of 3.14 angstrom. Important residues of the active site were engaged
in hydrophobic interactions, including van der Waals interactions, pi-alkyl and alkyl–alkyl
interactions. The docking score of compound 208 was found to be −33.47 kJ/mol. Similarly,
compound 248 exhibited stronger molecular interactions with the following amino acid
residues: ARG121, ASP118, ALA165, LYS63, ASN166, ASP179, PHE168, LEU111, VAL48,
ALA116, ASP115, and GLY117. It was discovered that important amino acid residues of the
NEK7 protein’s DLG/DFG motifs were involved in interactions. Furthermore, the amino
acids LEU111 and LYS163 interacted via hydrophobic bonds. Two important hydrogen
bonds were contributing toward the stability of conformations. One hydrogen bond en-
gaged GLY117 residues with a bond length of 2.2 angstroms. Another hydrogen bond was
engaging ASN166 amino acid with a bond length of 3.34 angstroms. Among hydrophobic
interactions, van der Waals interactions played a pivotal role in stabilizing the complex.
The docking score of the compound 248 was −35.56 kJ/mol. The putative 2D and 3D
binding modes of compounds 208 and 248 are shown in Figure 5.

Another important top hit was compound 255, which exhibited potent molecular
interactions with amino acid residues of the active site. It was the second-best drug
candidate obtained via virtual screening. Amino acid residues involved in bonding and
nonbonding interactions were as follows: PHE45, SER46, LYS63, ALA114, ASP115, GLU112,
PHE168, ASP179, VAL48, GLY43, and GLN44. It was observed that two important hydrogen
bonds with short bond lengths were contributing toward stabilizing the complex. One
hydrogen bond occurs between the electronegative oxygen atom of the compound 255
and the SER46 residue of the targeted protein. Moreover, the second hydrogen bond
was engaged in GLY117 with a bond length of 3.16 angstroms. As shown in Figure 5,
amino acid residues from the active site were involved in hydrophobic interactions with
compound 255.
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Figure 5. The putative 2D and 3D binding mode of compound 208 (A) and 248 (B). Green dashes are
indicating hydrogen bonding whereas red dashes are indicating hydrophobic interactions.

Now referring to the top hit obtained through SBVS, namely compound 762, It has
shown excellent docking scores and demonstrated significant binding affinity obtained
through deep learning models. It was observed that compound 762 was engaged in three
hydrogen bonds of moderate-to-strong strength. One hydrogen bond occurred between
the pentazole ring of the compound 762 and the electronegative oxygen atom of TYR201.
The bond length of interaction was 3.08 angstroms. Similarly, the second hydrogen bond
engaged SER234 residues with a surprisingly smaller bond length of 2.92 angstroms.
These interactions lend enough testimony to stronger molecular interactions and more
stabilized protein–ligand complexes. Furthermore, the third and last hydrogen bond
occurred between TYR237 and compound 762 with a bond length of 3.02 angstroms. All
three amino acid residues involved in hydrogen bonding belong to the activation loop of
the NEK7 protein. The remaining active site residues, ILE123, GLU228, PHE236, MET203,
PRO200, LEU246 and LEU232, engaged in hydrophobic interactions with compound 762.
The docking score and binding affinity (IC50) were predicted to be best among all top hits,
i.e., −42.67 kJ/mol and 61.74 nM, respectively. Compound 762 could be a promising drug
candidate for the treatment of NEK7-associated malignancies. The binding interactions of
compounds 255 and 762 are shown in Figure 6.
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Figure 6. The putative 2D and 3D binding mode of compound 255 (A) and 762 (B). Green dashes are
indicating hydrogen bonding whereas red dashes are indicating hydrophobic interactions.

The bonding and non-bonding interactions of standard Dabrafenib was involving
important amino acid residues of NEK7 activation loop. ARG50, LYS38, ALA165, ILE40,
GLY117, ASP115, PHE168, LEU111, LEU112, ALA114, LEU113, ALA161, ASP179, and
ILE95 were the amino acid residues implicated in molecular interactions with Dabrafenib.
Dabrafenib exhibited significant molecular interactions, which contributed towards com-
plex binding affinity. The strong interactions were observed with targeted protein and
sulphonamide rings. The sulphonamide ring was implicated in several important stabiliz-
ing contacts, including conventional hydrogen bonding with ASP115 of the activation loop,
Pi-cation interaction with ARG50, and interactions with ILE40 and ASP115 by two fluorine
atoms connected to the ring. PHE168 formed pi-cation and pi-pi T-shaped contacts with the
butylthiazole ring, whereas the pyrimidine ring produced conventional hydrogen bonds
with GLU112 and ASP179, a carbon–hydrogen connection with ALA114, and a pi-alkyl
interaction with ALA161. Due to important chemical interactions, Dabrafenib has a good
binding energy of −33.89 kJ/mol. van der Walls interactions are essential hydrophobic in-
teractions that have been observed with the amino acids LYS38, ALA165, GLY117, LEU111,
LEU113, and ILE95. Figure 7 depicts the probable binding mode of Dabrafenib with NEK7.
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Figure 7. 2D and 3D interactions of NEK7–Dabrafenib complex.

3.3. Electrostatic Surface Potential Map

Investigating the electrostatic surface potential (ESP) map is a key activity in drug
design as it determines the chemical reactivity of the compound and its ability to produce
important molecular interactions. It is an effective way to visualize the molecular reactivity
and evaluate the nature of ligand-binding with a targeted protein. The ESP map is depicted
by different colored regions depending upon the electronegativity of the compound. The
highly electronegative part is represented by the color red, whereas the electropositive part
is represented by the color blue. The QM calculations were performed using DFTs at the
B3LYP/6-31G* level of theory. Figure 8 depicts the ESP potential and the nature of ligand-
binding with the targeted protein. In this study, the contribution of the electronegative
oxygen atom in all interactions is indicated by the color red, whereas the contribution of the
nitrogen atom is provided in the color blue. Considering the electrostatic surface potential
map, the contribution of oxygen atoms toward interaction potential is higher than that
of nitrogen atoms. It was observed that in the case of compound 208, the electronegative
oxygen atom was acting as a hydrogen acceptor and was producing strong hydrogen
bonding with GLY117. Similarly, in compound 248, 255 and 762, electronegative oxygen
atoms were involved in stronger intermolecular interactions. In contrast, nitrogen atom
was involved in hydrogen bonding by donating the hydrogen bond for example, in case
of compound 208, nitrogen was donating hydrogen bond to ASP118 residue. In addition,
the docked conformation of ligands on the protein surface is also represented by different
colored regions (Figure 8). The red surface indicates the hydrogen bond acceptor region,
while the blue surface indicates the hydrogen bond donor locations. Whereas the grey
color areas indicate the hydrophobic interactions, including van der Waals interactions.
The red-colored surface area of protein is buried by nitrogen atoms as they act as proton
donors, whereas the blue-colored protein surface is buried by electronegative atoms such as
oxygen, fluorine and chlorine, which acts as a hydrogen bond acceptor. It can be observed
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that the grey surface area of protein is mostly involved in hydrophobic interactions, and
these regions are buried by alkyl, phenyl rings and other hydrophobic groups present
in all compounds.

Figure 8. Electrostatic surface potential map of all ligand complexes.

3.4. Buried Surface Area (BSA)

Molecular interactions are the critical factors in determining the stability of protein–
ligand complexes. Molecular interactions existing between protein–ligand complexes can
be modelled by taking into account the physicochemical properties and complementarity of
the shape of the binding interface. A useful method for determining the complementarity
of the shape and extent of molecular interactions is the estimation of the buried surface
area (BSA) of a protein–ligand complex. In the current study, the BSA of best complexes
was calculated using a new Shrake–Ruply algorithm-based tool (dr_sasa) [57] used for
calculating the solvent accessible surface area (SASA), buried surface area (BSA), and
contact surface area (CSA). All four top compounds (208, 248, 255, and 762) were subjected
to the calculation of BSA. It was observed that the targeted NEK7 protein was buried up to
80% and 70% by compounds 208 and 248, respectively. In particular, amino acid residues
ILE40 and PHE168 were strongly buried by compound 208 (49 Å2). Compound 248, on the
other hand, was strongly engaging the ARG121 and PHE168 with BSA of 39 Å2 and 41.3 Å2

respectively. The detailed buried surface area of both compounds is shown in Figure 9.
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Figure 9. Buried surface area (BSA) of compound 208 and 248.

In terms of compounds 255 and 762, it was observed that both compounds significantly
engaged the amino acid residues of the target protein. Compound 255, in particular, was
burying the surface area of the NEK7 protein by up to 360 Å2. The BSA of compound
255 with VAL48, LYS63, ALA114, and PHE168 was 168, 212, 187, and 351 Å2, respectively,
which was the best among all top hits. These values demonstrate the strong nature of
molecular interactions existing between the target protein and compound 255. In the case of
compound 762, important amino acid residues were buried by compound 762. In particular,
TYR201, TYR237, and MET241 were significantly buried by compound 762 with BSA of 64,
72, and 25.6 Å2. Moreover, it was worth noticing that the major contributing atoms were
oxygen, nitrogen, fluorine, sulphur, and chlorine, which were involved in increasing the
contact surface area of compounds with a targeted protein. The BSA of compounds 255
and 762 is shown in Figure 10.

Figure 10. Buried surface area (BSA) of compound 255 and 762.
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3.5. Molecular Dynamic Simulation

The molecular docking technique is comparatively rapid and imprecise. The docking
deficiencies and flexibility of protein may interfere with protein–ligand complex. However,
molecular dynamic simulations are computationally expensive and time-consuming but
provide reliable and accurate illustration of protein displacement. Considering these facts,
molecular dynamic simulations were undertaken using Desmond software package [58,59].
The root-mean-square deviation (RMSD) patterns provide significant insight into average
change in displacement of atoms with respect to a frame. The RMSD trajectory provides
information about the structural configuration of protein. It is computed for each frame
of the trajectory. In order to gain insight into the structure of a protein, it is important to
monitor the protein’s RMSD. Plotting the RMSD of the ligand is possible once the protein–
ligand complex is aligned on a reference protein backbone and the RMSD of the ligand
heavy atoms is measured. It is likely that the ligand has diffused from its initial binding
site if measured values exceed the protein’s RMSD by a substantial margin. Molecular
dynamic trajectory analysis is also used to determine the root-mean-square fluctuation of
the targeted protein.

3.5.1. RMSD Analysis of Protein and Protein–Ligand Complexes

The RMSD patterns for C-alpha atoms of NEK7 protein were estimated in order
to determine the effect of the bounded drug on the conformational stability of NEK7
protein. Figure 11 is displaying the progression of RMSD values for the C-alpha atoms
of NEK7 as a function of time. The 2wqn–Dabrafenib complex reaches the equilibrium
after around 5 nanoseconds of simulation, and although side chain residues displayed
fluctuations, they remained in the permissible range of 1–4 angstroms, which can be
considered insignificant [60]. The NEK7–Dabrafenib complex showed slight fluctuations
after 50 ns, which again became stable after 60 ns of simulation and remained equilibrated
throughout the simulated trajectory. RMSD fluctuation was observed from 70 to 90 ns,
which is due to the decrease in the number of contacts during this time, but after 90 ns, the
number of contacts with amino acid residues increased and RMSD pattern became stable. It
demonstrate the existence of stable molecular interactions. After being equilibrated, NEK7
RMSD values fluctuated within 2 angstrom. After 80 ns, protein RMSD showed slight
fluctuation up to 2.5 angstrom and dropped again after 95. The average RMSD value for
the protein–ligand complex and NEK7 protein is tabulated in Table 5.

Table 5. Average values obtained from MD simulations.

Protein-Ligand
Complex

Average Protein
RMSD (Å)

Average Protein
RMSF (Å)

Average
Protein-Ligand

Complex RMSD (Å)

Average Radius of
Gyration (Å)

Average SASA
(Residue Wise)

(Å2)

NEK7–Dabrafenib
complex 1.97 0.87 3.89 19.76 282.72

These findings suggest that the ligands stayed firmly bound to the receptor throughout
the simulation period. Moreover, small RMSD patterns indicate the fewer structural re-
arrangements and lesser conformational changes within binding site residues [61].

It is beneficial to identify local differences in the protein chain by using the root-mean-
square fluctuation (RMSF). Figure 12 peaks on the RMSF graph represent the regions of
the protein that change the most during the simulation. The average RMSF for the NEK7
backbone was 0.87 angstrom, indicating the fewer structural rearrangements (Table 5).
The N- and C-terminal ends of proteins are more likely to undergo alteration than any
other portion of the protein. In the range of amino acids from 180 to 220, the RMSF value
fluctuated, as can be seen in the RMSF graph. These residues are found in the C-terminal
lobe. The protein’s structure, such as its alpha and beta helices and strands, tends to be
stiffer and less variable than its unstructured component. According to MD trajectories, the
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residues with the highest peaks are found in loop areas or the N- and C-terminal regions.
Binding site residues with low RMSF values imply a stable ligand–protein interaction.

Figure 11. Residue wise root-mean-square deviation (RMSD) of the C-alpha atoms of NEK7 (2wqn)
and Dabrafenib Complex.

Figure 12. Root-mean-square fluctuations (RMSF) of the C-alpha atoms of NEK7 (2wqn).

The contact profiles of NEK7–Dabrafenib were computed from simulated trajectories,
as shown in Figure 13. FDA-approved drug Dabrafenib interacted with ILE40, LYS163 and
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ARG121 through Water Bridge and hydrogen bonding. The amino acid residues, ILE40,
LYS163, and ARG42, were involved in H-bonding. During MD simulations, 12 hydrogen
bonds were found to be dominant with significant occupancy. Details of hydrogen bonding
is given in Table 6.

Figure 13. NEK7-Dabrafenib Contact histogram.

Table 6. Important Hydrogen bonding observed during MD simulations.

Sr No. Hydrogen Donor Hydrogen Acceptor

1 ALA114-Main LIGAND-Side

2 LIGAND-Side LEU113-Side

3 LIGAND-Side ASP115-Side

4 ARG121-Side LIGAND-Side

5 LIGAND-Side ASP179-Side

6 LIGAND-Side GLU112-Main
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Table 6. Cont.

Sr No. Hydrogen Donor Hydrogen Acceptor

7 GLY117-Main LIGAND-Side

8 ASP115-Main LIGAND-Side

9 LIGAND-Side ALA114-Main

10 LIGAND-Side ILE40-Main

11 LIGAND-Side ARG42-Main

12 GLY41-Main LIGAND-Side

The hydrogen bond with ALA114 existed for more than 25% of simulation time.
Hydrophobic interactions existed between VAL48, LEU113, VAL48, and PHE168. These
molecular interactions contributed towards stabilizing the protein–ligand complex.

3.5.2. Radius of Gyration (Rg) and Solvent-Accessible Surface Area of Protein (SASA)

Radius of gyration (Rg) is measure of protein compactness, stability, integrity and
foldness of protein backbone. The Rg trajectory for NEK7 is depicted in Figure 14. Trajectory
analysis for the radius of gyration revealed that protein retained compactness throughout
the simulated trajectory, and only slight fluctuations were observed around 30 ns, which
stabilized after a short period of time.

Figure 14. Radius of gyration (NEK7).

Solvent-accessible surface area (SASA) is the area of protein that is accessible by the
solvent. The higher the value for SASA, the lower the stability of the protein. In the current
study, residue wise SASA was calculated and ranged between 180 to 350 Å2, which is quite
acceptable. The average SASA value was computed to be 282.72 Å2 (Table 5). The residue
wise SASA of targeted protein is shown in Figure 15.

3.5.3. Principle Component Analysis (PCA)

It is an essential multivariate statistical technique used to describe the protein dynam-
ics in a spatial scales. It is a linear relationship that extracts essential features of protein
using covariance and/or correlation matrices. These matrices are derived from the atomic
coordinate that represents the accessible degree of freedom (DOF) of the protein in a simu-
lated trajectory. In the current study, Pearson’s cross-correlation matrix was employed as it
can normalize the large protein variables and prevent high atomic variations that can skew
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the results. In addition, eigenvectors with a specific variance value also play an important
role in characterizing the motion of protein in spatial scales. In the current study, essential
dynamics of protein were calculated by applying PCA analysis to the protein trajectory.
It was observed that different variables were forming tight clusters with narrow angles,
which indicates that they were correlated with vectors (PCs) [62]. PCs are the vectors that
are used to describe protein motion with respect to variables. Two PCs are used in the
current study to characterize the protein motion. In Figure 16, it can be observed that PC1
and PC2 are clearly indicating the behavior of various variables. Distribution on the scatter
plot indicates the protein components are tightly clustered with small angles.

Figure 15. Residue wise solvent accessible surface area (SASA) for NEK7.

Figure 16. The correlation between protein variables and two top PCs.

Correlation matrices are also the correlation coefficients between variables and PCs.
In Pearson’s cross-correlation, the percent of variance in a protein variable is explained by
PCs. Figure 17 is depicting the Pearson correlation graph for NEK7 variables.
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Figure 17. Pearson correlation graph for NEK7 variables.

3.5.4. MM-GBSA Energy Calculations

Molecular docking is a robust technique for determining the binding orientation of
a protein–ligand complex. However, it is still lacking in its ability to correctly identify
the binding affinities of docked ligands. In order to determine correct binding energies
of docked conformations, MM-GBSA energy calculations were performed, which are an
efficient and reliable method for the determination of binding free energies. The MM-
GBSA method provides free energy calculations by taking into account all hydrophobic,
hydrophilic and electrostatic interactions [63]. After energy calculations, values obtained
were more negative and showed stronger binding affinities, as compared to the docking
scores obtained from molecular docking. The following equation was used to calculate
binding free energy [64];

∆Gbind = ∆E mm + ∆G sol + ∆G SA

The MM-GBSA energies for the protein–ligand complex was determined through the
Thermal_mmgbsa script of Schrodinger. MM-GBSA energies are tabulated in Table 7.

Table 7. MM-GBSA binding energies of Dabrafenib docked at active site of NEK7.

Binding Free
Energy ∆Gbind

(kcal/mol)

∆E coulomb
(kcal/mol)

∆E covalent
(kcal/mol)

∆E H-bond
(kcal/mol)

∆E vdW
(kcal/mol)

Lipophilic
Energy

(kcal/mol)

Sol_GB
(kcal/mol)

Dabrafenib −50.44 31.05 11.71 −0.18 −38.88 −33.98 −17.74

3.5.5. MM-PBSA Energy Calculations

In MMPBSA energy analysis, the free binding energies of protein, ligand and protein–
ligand complex are estimated by following equation;

G = Ebnd + Eel + EvdW + Gpol +Gnp − TS

where, Ebnd I refers to bond energy, Eel refers to electrostatic energy and EvdW represents
van der Waals interactions. In the current study, Poisson–Boltzmann calculations were
performed using the internal PBSA solver in mmpbsa_py_energy. All units are represented
in kcal/mol. MM-PBSA energy analysis is given in Table 8.
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Table 8. MM-PBSA binding energies of Dabrafenib docked at active site of NEK7.

Binding Free Energy
∆Gbind (kcal/mol)

∆E vdW
(kcal/mol)

Eel
(kcal/mol)

ENPOLAR
(kcal/mol)

EPB
(kcal/mol)

EDISPER
(kcal/mol)

Dabrafenib −56.12 −38.27 −17.84 −26.71 32.37 47.53

3.6. ADMET Profile

In-silico ADMET properties of top-ranked hits were determined by deep learning
models; more than 17 models were employed at the backend, which provided predictions
on the ADME profile of each hit. It is an important part in drug development that can
identify the desired pharmacological properties of compounds. In the current study, the
message passing neural network (MPNN) is employed for the determination of ADMET
properties. It was observed that compound 762 showed the lowest clinical toxicity value of
0.28%. The ADMET profile of top hits is tabulated in Table 9.

Table 9. ADMET properties of top hits predicted via MPNN model.

Property Predicted Compound 208 Compound 248 Compound 255 Compound 762

Solubility −4.50 log mol/L −4.05 log mol/L −3.19 log mol/L −3.10 log mol/L

Lipophilicity 1.82 (log-ratio) 1.89 (log-ratio) 1.40 (log-ratio) 1.88 (log-ratio)

(Absorption) Caco-2 −5.14 cm/s −5.20 cm/s −5.14 cm/s −5.21 cm/s

(Absorption) HIA 91.18% 89.62% 89.69% 92.89%

(Absorption) Pgp 10.18% 13.10% 5.84% 11.42%

(Absorption)
Bioavailability F20 76.34% 75.94% 75.46% 76.42%

(Distribution) BBB 76.85% 76.66% 93.85% 86.17%

(Distribution) PPBR 79.65% 77.11% 63.16% 80.66%

(Metabolism) CYP2C19 81.26% 72.00% 37.21% 24.15%

(Metabolism) CYP2D6 62.01% 51.90% 25.60% 13.64%

(Metabolism) CYP3A4 74.21% 56.97% 60.78% 22.83%

(Metabolism) CYP1A2 36.70% 10.29% 9.08% 21.05%

(Metabolism) CYP2C9 17.86% 6.99% 4.13% 8.60%

(Execretion) Half life 8.06 h 8.01 h 7.86 h 7.88 h

(Execretion) Clearance 8.23 mL/min/kg 8.26 mL/min/kg 8.10 mL/min/kg 8.54 mL/min/kg

Clinical Toxicity 14.92% 15.59% 24.33% 0.28%

4. Conclusions

In the current study, structure-based virtual screening of a 1200-compound library and
Dabrafenib was carried out using Auto Dock Vina. These compounds are in the early stages
of drug development, and the in-silico approach used in this study was contributing toward
investigating the inhibiting potential of these compounds through molecular docking, DFTs,
and MD simulation, as well as determining the drug-like properties of these compounds
through deep learning models. The FDA-approved drug, Dabrafenib, was considered as a
standard drug to which in-silico findings could be compared. SBVS findings discovered
four important hits having better binding energies as compared to standard Dabrafenib.
In addition, the chemical reactivity profiles of top hits were determined via DFT studies.
Findings from DFT studies revealed the reactive nature of the compounds. Moreover,
the current study has utilized deep learning models for prediction of binding affinity,
pIC50, and ADMET properties. It was observed that compound 762 showed good binding
affinity and demonstrated a promising ADMET profile. Moreover, molecular dynamics
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simulations were performed to determine the stability of the protein–ligand complex under
accelerated conditions. It was observed that the ligand remained significantly attached
to the protein-activation loop, suggesting potential inhibiting activity of the compound.
In short, the findings of the current study identify top hits that could prove an effective
treatment strategy for NEK7-associated cancer malignancies. These findings will assist
researchers to develop newer leads without consuming much time and money. Further
experimental studies are also recommended for future prospects.
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