
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Datateknik

2022 | LIU-IDA/LITH-EX-A--22/080--SE

Enhancement of an Ad Reviewal
Process through Interpretable
Anomaly Detecting Machine
Learning Models
Förbättring av en annonsgranskingsprocess genom tolkbara och
avvikelsedetekterande maskinsinlärningsmodeller

Eric Dahlgren

Supervisor : Anders Fröberg
Examiner : Arne Jönsson

External supervisor : Eric McGivney

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-
ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-
pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-
ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-
heten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-
nens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for a
period of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to down-
load, or to print out single copies for his/hers own use and to use it unchanged for non-commercial
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional upon the consent of the copyright owner. The publisher
has taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to bementionedwhen his/her work
is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

©Eric Dahlgren

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

Technological advancements made in recent decades in the fields of artificial intelli-
gence (AI) and machine learning (ML) has lead to further automation of tasks previously
performed by humans. Manually reviewing and assessing content uploaded to social me-
dia and marketplace platforms is one of said tasks that is both tedious and expensive
to perform, and could possibly be automated through ML based systems. When intro-
ducing ML model predictions to a human decision making process, interpretability and
explainability of models has been proven to be important factors for humans to trust in
individual sample predictions.

This thesis project aims to explore the performance of interpretable ML models used
together with humans in an ad review process for a rental marketplace platform. Utiliz-
ing the XGBoost framework and SHAP for interpretable ML, a system was built with
the ability to score an individual ad and explain the prediction with human readable
sentences based on feature importance. The model reached an ROC AUC score of 0.90
and an Average Precision score of 0.64 on a held out test set. An end user survey was
conducted which indicated a lack of trust in the model, but an appreciation for the local
prediction explanations. While most related work focus on model performance, this thesis
contributes with a smaller model usability study which can provide grounds for utilizing
interpretable ML software in any manual decision making process.

Acknowledgments

I want to thank the people at Qasa for being kind and welcoming during my thesis project.
Everyone was truly helpful and did not mind spending extra time sharing their knowledge. I
want to give a special thanks to Eric McGivney for being an excellent advisor for the project.

I also want to thank this thesis academic advisor and examiner, Anders Fröberg and Arne
Jönsson, for giving great feedback regarding the thesis project and report after all milestones.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 2
1.3 Research questions . 2

2 Theory 4
2.1 Machine learning . 4
2.2 Decision trees . 5
2.3 Gradient boosting . 7
2.4 Evaluation metrics . 8
2.5 Interpretable machine learning . 11

3 Method 17
3.1 Implementation frameworks and libraries . 17
3.2 Dataset . 17
3.3 Model implementation . 18
3.4 Model explanation and interpretation . 20
3.5 System evaluation review . 20

4 Results 21
4.1 Model performance . 21
4.2 Model explanation and interpretation . 21
4.3 System implementation and architecture . 21
4.4 Evaluation survey . 23

5 Discussion 25
5.1 Results . 25
5.2 Method . 27
5.3 The work in a wider context . 28

6 Conclusion 30
6.1 Research questions . 30
6.2 Future work . 30

v

Bibliography 31

vi

List of Figures

1.1 Flowchart of ad review decisions. 2

2.1 A simple decision tree. 5
2.2 ROC curves for two classifiers, compared to random guessing. 10
2.3 Explanation force plot of a positive sample from the breast cancer datset. 13
2.4 Explanation force plot of a negative sample from the breast cancer dataset. 13
2.5 Feature importance bar plot of the 10 most important features in the breast cancer

dataset. 14
2.6 Beeswarm plot of the 10 most important features. 15
2.7 Dependence plot for feature worst concave points. 15

4.1 ROC curves for each model. 22
4.2 Precision-Recall curves for each model. 23
4.3 A SHAP summary plot for the XGBoost model. 24
4.4 Survey responses from the ad review employees regarding using the model. 24

vii

List of Tables

2.1 A confusion matrix. 10

3.1 Number of samples for each target variable. 18
3.2 Engineered features . 19
3.3 All models and their respective parameter grids used for optimization. 20
3.4 Survey given to the ad review staff after a session with the model prediction scores. 20

4.1 ROC AUC and AP for the models. 21
4.2 Survey given to the ad review staff after a session with the model prediction scores. 22

viii

1 Introduction

Manually reviewing and assessing content uploaded to social media and marketplace platforms
is an expensive and tedious process. For each ad or piece of content uploaded to such a plat-
form, without aiding software systems, a manual reviewer must determine the level of security
or threat this content poses for the platform and its users. Improvements in automation and
artificial intelligence (AI) systems can alleviate manual processes for humans, possibly even
replacing their work tasks. The field of Machine Learning (ML) leverages large amounts of
data to build systems that make predictions regarding unseen data. Such a system, given
data from previous review assessment and decisions can possibly ease the reviewal process and
make it more effective.

1.1 Motivation

The technological advancements made in recent decades in the field of AI and ML have led to
further automation of tasks previously done by humans. Predictive models can with certainty
provide predictions for decision making tasks and suggest or indicate that an event, any user
generated content, or images have properties that a person normally would scan for. An
example where machine learning models have successfully been applied to provide grounds for
decision making is computer-aided diagnosis systems used in the medical field. Using machine
learning and data mining methods, the data collected from previous medical examinations and
their respective diagnoses made by medical experts can be utilized and learned from [16]. As
Ahmad et al. describes [1], the expansion of machine learning techniques in the medical field
has lead to an increased need for explanations of machine learning systems. The important
decisions made based on predictive models to for instance, diagnose patients, assign patient
risk statuses, among others, raises a desire to obtain information regarding the reason behind
the prediction.

This thesis project was conducted in collaboration with Qasa AB, a company that provides
a rental marketplace service for sublets of apartments and other property. In the event of a
landlord uploading their ad to the platform, it is manually reviewed by an employee. This
employee scans the uploaded ad for anomalies according to a set of rules as well as using
their gut feeling regarding the authenticity of the ad and the landlord user. The ad is then
published or denied due to it not passing the set of rules or seeming fraudulent by the reviewer.

1

1.2. Aim

Figure 1.1: Flowchart of ad review decisions.

As with any business, there is financial incentive to automate simple decision making processes
involving human labor. Another problem with manual review is there is human error involved.

Similar to a computer aided diagnosis tool, their is a potential to provide predictions and
explanations regarding an ad before any employee sees it. As a first step towards automation,
this could possibly increase review efficiency and even create a safer platform if the predictive
model is able to detect fraud cases. The manual ad reviewers provide labeled samples of
uploaded rental objects for the training of a supervised learning algorithm. As shown in Figure
1.1, there is vast information regarding each uploaded ad, all of which is stored alongside a
review decision. I.e. there is potential for usage of data mining techniques and machine
learning algorithms to capture and find irregularities in the labeled samples.

In machine learning research, scanning data to find outliers is referred to as Anomaly
Detection [25]. Supervised Anomaly Detection can simply be defined as a classification task
requiring labeled data containing both normal and anomalous samples of which to build a
predictive model from. Many anomaly detection implementations [32, 14, 7] have used Gradi-
ent Boosting Machines [9] with promising results. The Gradient Boosting Machine Algorithm
generates several weak Decision Tree learners, and combines the outputs from these to make
predictions regarding data.

1.2 Aim

The aim of the thesis project is to build and evaluate an anomaly detection system for an ad
reviewing platform dedicated to a rental marketplace application, using a Gradient Boosting
Machine classifier. The purpose of the system is to aid manual ad reviewing staff in finding
unacceptable or fraudulent ads which in turn yields a safer platform for the end user and could
create a more efficient manual ad review workflow. While the performance of the model is
important to evaluate, this thesis also aims to conduct research regarding the utility it provides
to the ad reviewing staff in making decisions, as well as how the system can provide model
prediction explanations.

1.3 Research questions

The following list presents the research questions that will be answered in the thesis.

1. What Area Under the Receiver Operating Characteristic Curve, Average Precision1 met-
ric performances can be achieved using a binary Gradient Boosting Machine model that
is trained on previous uploaded ads and their ad review decisions?

2. How can this model be interpreted and provide explainable predictions to the end user?
1Performance metrics are described in detail in Chapter 2

2

1.3. Research questions

3. What is the usability of the model predictions when added to the ad reviewal user
interface?

3

2 Theory

2.1 Machine learning

As Lindholm et al. [17] intuitively describes, machine learning is the process of creating
a computer program that processes data, makes predictions, or suggests actions to take or
decisions to make based on useful information extracted from this data. What differs machine
learning from regular data analysis is that this process is automated, and the computer program
is learnt from the data. The computer program is generic in the sense that it is adapted to
a specific application by automatically adjusting its parameters based on seen training data,
but while referring to the process as being done by a generic computer program is intuitive,
it is important to grasp that it is really a mathematical model. This mathematical model
aims to describe the relationship between a set of features and corresponding target variables
(such as decisions, labels etc.). Thus, it tries to capture the main important properties of the
data, and compress this into a mathematical form. Applications of machine learning where
the training data consists of a set of features, called input vectors, and their corresponding
targets are named supervised learning problems [2].

Supervised learning
When the relationship between input x and output y is too complex to describe explicitly, the
problem can usually not be solved by simply applying a set of rules as a model [17]. Instead,
the approach of supervised learning is to learn this relationship from data containing observed
pairs of input and output values. Intuitively, it describes a process of learning from previous
examples.

The training data consists of n input-output data points (xi, yi) where i = 1, ..., n, and every
data point can be seen as a snapshot of how y depends on x. The example of recognizing
handwritten digits can typically be modelled as a supervised learning problem. As described
by [2], each digit corresponds to a 28 × 28 pixel image, resulting in an x vector with 784 real
numbers representing the gray scale intensity of each pixel. For each xi in the training data
there is a corresponding output target yi ∈ Y,Y = {0, . . . ,9}, that represents the identity of
the digit in the image. After executing a supervised machine learning algorithm, the result
can be expressed as a function y(x) that can output a y ∈ Y given an input vector x of 784
dimensions. The exact function y is determined through the training data, which [2], refers

4

2.2. Decision trees

to as the training phase. The function can then intuitively be evaluated on images specifically
used for testing, that has not been observed during training. The goal is to generalize the
function in a manner that it performs well on unobserved data, decreasing its variance, but
still manages to capture regularities in the training data. This is achieved through increasing
the bias in the estimated parameters during training.

2.2 Decision trees

Decision trees are supervised machine learning models which systematically learn rules from
the training data [17]. As the name suggests, the rules learned form a tree graph structure,
specifically a binary tree, and the selection process traverses the tree, performing a sequence
of binary decision, terminating at a leaf position [2]. At this leaf, a decision regarding the
specific data point can be made. In this manner, the decision tree divides the input space of
the specific problem into multiple disjoint regions.

Figure 2.1: A simple decision tree.

Figure 2.1, as presented in [17], displays a simple decision tree that has not been learnt
from training data, but is able to classify a vector x = [x1 x2]

T as a categorical value y. In
this case the color Green or the color Purple. The tree is built from a set of two rules, each
corresponding to a node in the tree. If a sample is to be classified, and the rule at the root
node is true, the sample proceeds down the left tree branch, terminating at a leaf position,
and ultimately belonging to the R1 region. If the condition does not hold, the sample proceeds
to the right, to the internal node. Here it is conditioned again against a new statement, and
finally terminates at either the R2 leaf or the R3 leaf. While this is an extreme simplification
of the decision tree model, it truthfully represents how decision trees perform inference.

Learning decision trees
Decision trees can mathematically be described as a piecewise constant function of an input
x [17]. Notated as,

ŷ(x) =
L

∑
ℓ=1

ŷℓI{x ∈ Rℓ} (2.1)

where L is the total number of leaf node regions in the tree, Rℓ is the ℓth region and ŷℓ is
the constant prediction for the ℓth region. The function I is the indicator function, defined as
I{x ∈ Rℓ} = 1 if x ∈ Rℓ and I{x ∈ Rℓ} = 0 otherwise.

When learning a decision tree, the goal is to find values for the parameters that define
function 2.1, but also the total size of the tree, L. In the regression case, computing the

5

2.2. Decision trees

constants ŷℓ, ℓ = 1, . . . , L, can be done by simply averaging the target of the training data
samples that fall into each region, assuming the shape of the tree is know. However, finding
the regions Rℓ and the shape of the tree is a seemingly difficult task without experiencing
a combinatorial explosion from all possible trees. Therefore, to find appropriate splits when
learning a tree a heuristic algorithm called recursive binary splitting is utilized. This algorithm
is greedy in a sense that the tree is constructed from a set of local decisions, without regarding
the complete tree. The goal in each step of the algorithm is to find a split that describes the
training data as well as possible, while not considering future additional splits [17].

Considering a first split at the root node, the goal is to select one of the n features in the
input space xi, . . . , xn, and a corresponding condition cutpoint s that divides the space into
two halves,

R1(j, s) = {x ∣ xj < s} and R2(j, s) = {x ∣ xj > s}. (2.2)

To find the optimal split in the regression case, the squared prediction error for all training
data is computed for each region,

∑
i∶xi∈R1(j,s)

(yi − ŷ1(j, s)))2 + ∑
i∶xi∈R2(j,s)

(yi − ŷ2(j, s)))2 (2.3)

and is minimized with selections of j and s. With optimal j and s found, the algorithm
can continue in the same way for the left and right branches, recursively.

For the classification case there are two main differences due to the categorical nature of
the output target. First, the prediction associated with each region can not be an average of
the samples that fell into each region. Instead a majority vote function is introduced, where
the predicted output ŷℓ represents the majority category of all training samples that fell into
this region. Secondly, the squared prediction error can not be used and a different, more
generalized splitting criterion can be defined:

min
j,s

n1Qq + n2Q2 (2.4)

In equation 2.4 n1 and n2 represent the number of samples in the left and right notes of the
split, and Q1 and Q2 denote the costs for these nodes. Comparing this equation to equation
2.3, the generalization holds for the regression case if the mean squared error is used as Qℓ.
To alleviate the choosing a Qℓ for the classification case, the function,

π̂ℓm =
1

nℓ
∑

i∶xi∈Rℓ

I{yi =m} (2.5)

is introduced. Equation 2.5 represents the proportion of training observations in the ℓth
region that belong to the mth class, which allows for a splitting criterion Qℓ based on these
class proportions. Two common splitting critera for classification trees are the Gini index

Qℓ =
M

∑
m=1

π̂ℓm(1 − π̂ℓm) (2.6)

and the entropy critera,

Qℓ = −
M

∑
m=1

π̂ℓm log π̂ℓm) (2.7)

6

2.3. Gradient boosting

The recursive binary splitting algorithm can be performed until there is only a single
sample in each region. However, this type of fully exhaustive tree, and very complex model
has typically been overfit to the training data. Decision and regression trees are therefore most
often built using a set of hyperparameters to mitigate this issue. There is a possibility to limit
the growth of the tree by deciding the number of nodes in the tree L, the maximum depth
of the tree or introducing a constraint regarding the minimum number of training samples
associated with each leaf node.

Decision tree advantages and disadvantages
There are many reasons for the popularity of decision trees in the field och data mining and
machine learning. First off, if the trees have a reasonable size, they provide model interpreta-
tion [11]. Looking at a learned decision tree provides intuitive insights into how the data points
are divided by the model. Decision trees are also invariant under monotone transformations
of the individual features. Thus, normalization or other transformations are not an issue, and
they are immune to the effect of feature outliers. Lastly, the when learning a decision tree,
there is an internal feature selection regarding on which features to split on. Decision trees
are therefore unaffected by input vectors containing many unimportant features.

Decision trees are however not as performant as other methods, which prevents them from
being the perfect supervised learning tool. Introducing Boosting methods to decision trees
will greatly improve performance while sacrificing some other advantages like interpretability.
Boosting combines the outputs of many weak learners to yield a powerful, so called committee
[11].

Boosted decision trees
Lindholm et al. [17] describes boosting as ”learning a sequence of weak classifiers, where each
classifier tries to correct the mistakes made by the previous ones”. The boosted tree model
can therefore mathematically be seen as a sum of several decision tree outputs,

fM(x) =
M

∑
m=1

T (x; θm) (2.8)

where θM is the set of all regions Rℓi and constants yℓi for i = 1, . . . ,M , and T (x; θm) is the
output of the mth tree, given an input sample x. This model is induced in a forward stagewise
manner where trees are built sequentially dependant on their previous tree. At each step in
the procedure,

θ̂m = argmin
θm

N

∑
i=1

L(yi, fm−1(xi) + T (xi; θm)) (2.9)

must be solved. In equation 2.9, the function L denotes any loss function. Thus, at each step
in the procedure, θm is chosen to minimize the loss between the target variable and the current
model fm−1, in addition to the new tree T .

An early successful boosting model was AdaBoost [8] which is is often used together with
tree stump classifiers (decision trees with depth 1). AdaBoost initializes weights for each
training observation which are used to calculate the current error of the model, and are up-
dated iterativly depending on if the corresponding observation was correctly classified or not.
AdaBoost also uses weights for each stump output, which are based on said model error.

2.3 Gradient boosting

Numerical optimization provides fast approximate algorithms for solving 2.9, given that L is
any differentiable loss criterion. The loss in using f(x) to predict y on training data is,

7

2.4. Evaluation metrics

L(f) =
N

∑
i=1

L(yi, f(xi)) (2.10)

and minimizing 2.10 can be seen as a numerical optimization

f̂ = argmin
f

L(f), (2.11)

where f are the values of the predicting function f(xi) at each sample in the traning set:

f = {f(x1), f(x2), . . . , f(xN)}.

In the field of numerical optimization, there are procedures that solve 2.11 as a sum of com-
ponent vectors

fM =
M

∑
m=0

hm, hm ∈ RN ,

where each f is induced based on the current parameter vector fm−1, which is the sum of the
previous updates. The procedures that solve this problem all differ in their ways of computing
each vector hm. Gradient decent is commonly used and calculates each increment vector as
hm = −ρmgm, where ρm, the step length, is a scalar and gm ∈ RN is the gradient of L(f). The
components of the gradient gm include

gim = [
∂L(yi, f(xi))

∂f(xi)
]
f(xi)=fm−1(xi)

(2.12)

ρm is the solution to
ρm = argmin

ρ
L(fm−1 − ρgm).

The current solution is then updated as

fm = fm−1 − ρgm

It would however not be a preferred strategy to only minimize loss on the training data as
in 2.10, which easily could lead to overfitting of the model [11]. The interest lies in finding a
model that generalizes to new data. Gradient boosting is a method of boosting, introduced by
Friedman [9], that utilizes the negative gradient components in 2.12, and fits a tree T (x; θm)
at the mth iteration whose predictions are as close as possible to these. Using the squared loss
to measure closeness, this becomes a regression problem where the targets are the elements of
the negative gradient. The algorithm, as presented in [11], is described in Algorithm 1.

XGBoost
The XGBoost open-source software library provides a gradient boosting framework for multiple
programming languages including Python, R and Scala [3]. The library has been widely used
by winning teams in data science competitions which the authors mean demonstrate state-
of-the-art performance. While XGBoost does implement traditional gradient boosting tree
models, there are a few core differences that has led to the vast utilization of the framework.

2.4 Evaluation metrics

For binary classification problems the confusion matrix is often used to evaluate the model
performance on a test set [12]. It defines a set of categories, true positives (TP), true negatives

8

2.4. Evaluation metrics

Algorithm 1 The Gradient Tree Boosting Algorithm [11]
1. Initialize model with a constant value

F0 = argminγ

n

∑
i=1

L(yi, γ)

2. Iterate
for m = 1 to M do

1. Compute pseudo-residuals

rim = − [
∂L(yi, F (xi))

∂F (xi)
]
F (x)=Fm−1(x)

for i = 1, . . . , n

2. Fit a regression tree to targets rim giving terminal regions Rjm, j = 1,2, . . . , Jm.
3. For j = 1,2, . . . , Jm compute:

γjm = argminγ ∑
xi∈Rjm

L(yi, Fm−1(xi) + γ)

4. Update model:

Fm(x) = Fm−1(x) +
Jm

∑
j=1

γjmI(x ∈ Rjm)

end for
3. Output FM(x).

(TN), false positives (FP), and false negatives (FN), which describe the number of samples
that were correctly or incorrectly classified by the model. TP is the number of actual positive
samples that where correctly classified by the model, TN is the number of negative samples
that were correctly classified, FP is the number of negative samples what were misclassified as
positive, and FN, is the number of positive samples what were misclassified. Table 2.1 presents
a confusion matrix without specific values, but describes what each metric represents in terms
of classification.

Utilizing these classification measurements, there is a possibility to define other metrics.
Examples of these include,

Sensitivity, Recall or True Positive Rate (TPR) = TP

TP + FN
, (2.13)

Specificity = TN

TN + FP
, (2.14)

Precision = TP

TP + FP
, (2.15)

and,

False Positive Rate (FPR) = FP

FP + TN
. (2.16)

The confusion matrix also presents the opportunity to calculate the overall accuracy of
the model by simply summing up the diagonal of the matrix (the correctly classified TP
and TN values) and dividing by the total number of samples. While the accuracy metric
seems intuitive, early machine learning research, Provost et al. [27], argued that the metric
is misleading. Instead the authors recommended the Receiver Operator Characteristic curve
which intends to show how the number of correctly classified positive examples varies with the
number of incorrectly classified negative examples.

9

2.4. Evaluation metrics

Predicted
Yes No

A
ct

ua
l Yes True Positive (TP) False Negative (FN)

No False Positive (FP) True Negative (TN)

Table 2.1: A confusion matrix.

Receiver Operator Characteristic (ROC) curves
ROC curves have their origin in signal detection theory but have in the later decades been
utilized in medical diagnosis and machine learning [27]. The curve is constructed by plotting
the FPR (2.16 on the x-axis and the TPR (2.13) on the y-axis for different classification
thresholds.

As Fawcett [6] describes, in the case of having a model that outputs a probability or a
score, applying a threshold to these probability predictions produce a binary classifier. For
each possibly applied threshold value, a different point on the ROC curve is produced. Fawcett
suggests that varying a threshold from −∞ to +∞, conceptually traces the exact ROC curve.
While this is not computationally feasible, there are other efficient methods of generating the
curve.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit

iv
e

R
at

e

Model 1 (AUC = 0.91)
Model 2 (AUC = 0.83)

Figure 2.2: ROC curves for two classifiers, compared to random guessing.

Fawcett further explains that if the goal is to compare classifier performance, it is desirable
to reduce the ROC into a single scalar value, representing the exact performance of each
classifier. A common method is calculating the area under the ROC curve (AUC). The value
of the AUC will always be between 0 and 1.0, but since random guessing produces the diagonal
line between (0,0) and (1,1) as shown in Figure 2.2, a reasonable classifier should not have an
AUC below 0.5. An important characteristic of the AUC score is that the score is equivalent
to the probability that the classifier will rank a randomly chosen positive instance higher than
a randomly chosen negative instance.

As described by Hossin [12], due to this characteristic, the AUC value reflects the overall
ranking performance which makes it the metric of choice for evaluating scoring and ranking
models, in contrast to thresholded classifiers.

10

2.5. Interpretable machine learning

Precision-Recall (PR) curves
The Precision-Recall curve is similar to the ROC curve, but plots the Recall on the x-axis and
the Precision on the y-axis [4]. Recall is the same metric as TPR, but Precision represents
the fraction of truly positive samples that were classified as positive. The curve presents
the tradeoff between precision and recall for different decision thresholds [30]. As with the
ROC curve, the a random guessing classifier can also be plotted. In PR curve case, it can be
represented by a horizontal line displaying a constant precision score that reflects the target
distribution in the dataset [29]. If the data has a 10 to 1 ratio of positive samples with regards
to all samples, the horizontal line would be plotted at Precision = 0.1.

Similarly to the ROC AUC score, the AUC of the PR curve can also be calculated. The
average precision (AP) metric summarizes a PR curve as the weighted mean of precisions
achieved at each threshold, using the increase in recall from the previous threshold as the
weight. AP is denoted as,

AP =∑
n

(Rn −Rn−1)Pn (2.17)

where Rn and Pn are the recall and precision values at the nth threshold [30].
As argued by Saito et al. [29], the PR AUC is a more accurate metric than ROC AUC

if the dataset is highly imbalanced. That is, if the number of negative samples outweigh the
number of positive samples significantly.

2.5 Interpretable machine learning

Du et al. [5] explains the term, interpretable machine learning as a field that aims to solve the
problem that humans cannot grasp the behaviors of complex machine learning models, and
how these reach and present certain predictions or decisions. The field is also often referred
to as explainable AI. Du et al. suggests that machine learning model interpretability is an
important part in order to serve the end users of models, but also the machine learning system
developers and researchers. The end user of a model will increase their trust and willingness
to adopt it if the model provides explainability. For developers and researchers, the authors
argue that interpretability will provide better understanding of the problem, the data and why
the model performs well or not, and ultimately increase the system safety.

The authors group intepretable machine learning into two categories: intrinsic inter-
pretability and post-hoc interpretability. They define intrisic interpretability as models that
are interpretable due to how they are structured. An example being the previously described
decision tree, or linear models. Post-hoc interpretability refers to using and applying inter-
pretation methods after a model has been trained. Such techniques often include building a
second model to provide explanations for the already existing one.

In the book Interpretable machine learning, Molnar [22] divides post-hoc methods into
local and global categories. Global methods focus on how a trained model makes predictions
by looking at and understanding the model features and learned components holistically, with
knowledge of the algorithm and the data. Molnar argues that this type of interpretability is
difficult to achieve in practice, since a human cannot comprehend any model that ”exceeds a
handful of parameters”. Molnar describes local interpretability as providing explanations for
single predictions to answer why a model outputted a certain value for a given sample. He
suggests that when looking at individual predictions, a complex model can behave ”pleasantly”
since it is possible that the prediction only depends linearly or monotonically a smaller subset
of features.

Two of the most prominent methods that provides local interpretability for single predic-
tions are Shapley Values, and Local Interpretable Model-agnostic Explanations (LIME) [28].

11

2.5. Interpretable machine learning

LIME
Ribiero et al. [28] introduced LIME as an algorithm that has the ability to explain any black
box machine learning classifier or regressor, by approximating it locally with an interpretable
model. Molnar [22] refer to these types of models as local surrogate. The surrogate models
can be any interpretable model, with the most utilized being Lasso [34] and decision trees.

The inner workings of LIME aim to understand why the model made a certain prediction,
given a specific sample, by generating a new dataset with perturbed data points and their
corresponding predictions of the underlying model [28]. The new data points are sampled
from a normal distribution, and are weighed according to their proximity to the sample of
interest. With tabular data, LIME creates samples for each feature individually by drawing
from a normal distribution with mean and standard deviation from the feature in the original
dataset. On this new dataset, LIME fits a weighted, interpretable surrogate model and uses
this model to explain the original prediction.

Molnar [22] explains an advantages of LIME being that it is possible to use the same local
interpretable model for explanation, even if the underlying model is replaced. If the recipients
of the model predictions understand decision trees best, a decision tree model can still be used
as a local surrogate model even though the underlying model was changed from a decision tree
to a gradient boosting model. Molnar also argues that the explanations from LIME, if the
surrogate model is a Lasso or a shallow tree, are human friendly. This is due to the resulting
explanations being short and selective, because of the low number of features and parameters
used in such models.

Shapley values
Shapley values originate in cooperative game theory, and was introduced by Shapley [31]. It
is a method for, in game theory terms, handing out payouts to cooperative players depending
on their contribution to the total gain. In machine learning terms, Molnar [22] explains that
the game is the prediction task for a sample in the dataset. The gain is regarded as the
actual prediction for the sample, subtracted by the average prediction for all samples. The
players represent the feature values of the sample that in a coalition aim to receive the gain.
The actual Shapley value is defined as the average marginal contribution of a feature value,
across all possible coalitions. Molnar mathematically describes the Shapley value to be defined
by a value function val of players in a set S. Further, the Shapley value of a feature is its
contribution to the payout, weighted and summed over all possible feature value combinations:

ϕj(val) = ∑
S⊆{1,...,p}∖{j}

∣S∣!(p − ∣S∣ − 1)!)
p!

(val(S ∪ {j}) − val(S)) (2.18)

where S is a subset of features and p is the number of features in total. valx(S) is defined as
the prediction for feature values in S that are marginalized over features that are not included
in S:

valx(S) = ∫ f̂(x1, . . . , xp)dPx∉S −EX(f̂(X)). (2.19)

Illustratively, Molnar describes all features values entering a room in a random order, form-
ing a coalition. Every feature value in the room participates in the game that is contributing
to the prediction. The Shapley value of a feature value can in this setting be described as the
average change in the prediction that the coalition (the feature values in the room) receives
when this feature value joins them.

Molnar argues that an advantage of Shapley values is that they are backed by solid theory.
He compares the method to LIME, which assumes linear behavior of the model locally and
suggests that there is no theory as to why this should work in practice. However, Shapley
values also require a lot of computing resources, and in most real-world applications, only

12

2.5. Interpretable machine learning

approximating the values is possible. Since the Shapley value method always uses all features,
it can be the wrong method if the aim is to provide human friendly explanations. The method
also does not provide a predictive model like LIME, which means that it is impossible to use
it to state changes in prediction given changes in input.

SHAP (SHapley Additive exPlanations)
Lundberg and Lee [18] introduced SHAP as a method for local interpretability. It is based
on Shapley values, but introduces the idea to represent Shapley values as an additive feature
attribution method, a linear model. The authors also connect several previous methods to this
class of additive feature attribution methods, including LIME. The authors released the SHAP
implementation as an open source project which has then been adopted and integrated into
other libraries such as the XGBoost framework [22].

Lundberg et al. [20] presented a novel variant of SHAP specifically created for tree based
models such as decision trees and gradient boosted trees. The introduced TreeExplainer was
able to compute exact Shapley values and reduced the complexity of the computation from
exponential to polynomial time.

Using SHAP

The following example shows SHAP being utilized to explain a gradient boosted tree classifier
that was fit to the breast cancer 1 dataset available in the open source machine learning software
library scikit learn [26]. Explanation of the predictions of individual samples can be visualized
through the SHAP force plot. This type of plot displays the Shapley values as forces, pushing
the prediction in either the positive or negative direction. It starts from the baseline, which
in the case of Shapley values is the average of all predictions.

0 1 2 3 4 5 6 7 8

worst concavity = 0.2671mean concave points = 0.03821worst concave points = 0.1015worst perimeter = 96.05worst radius = 14.97worst area = 677.9worst texture = 24.64

higher lower←→

base value
7.05
f(x)

Figure 2.3: Explanation force plot of a positive sample from the breast cancer datset.

−8 −6 −4 −2 0 2

worst concave points = 0.1841 mean concave points = 0.1469 worst radius = 20.33 worst perimeter = 141.3 worst area = 1298.0

higher lower←→

base value
-7.54

f(x)

Figure 2.4: Explanation force plot of a negative sample from the breast cancer dataset.

Figures 2.3 and 2.4 show the force plots for two samples in the dataset. The explanation
of 2.3 shows a patient with high risk of having malignant breast cancer, with the values of
the mean concave points and the worst concave points features contributing the most to the
prediction.

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html

13

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html

2.5. Interpretable machine learning

SHAP also has the ability of displaying global model explanations by averaging the absolute
Shapley values per feature, over all samples of the data. The idea is that features with resulting
large absolute Shapley values, must be the most important features globally. SHAP does these
calculations and presents them in a summary plot as shown in Figure 2.5.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

mean(|SHAP value|) (average impact on model output magnitude)

radius error

mean texture

area error

worst area

worst texture

worst concavity

worst perimeter

worst radius

mean concave points

worst concave points

Figure 2.5: Feature importance bar plot of the 10 most important features in the breast cancer
dataset.

Another type of summary plot included in SHAP is the Beeswarm plot which allows for
a similar absolute feature importance plot. However, this plot also includes feature effects.
Every point in the plot presented in Figure 4.3 is a Shapley value for a feature and a sample.
It shows several features across the y-axis and plots Shapley values for each feature on the
x-axis. Overlapping values are spread out, and SHAP also colors each point to represent the
value of the feature, from low to high.

Molnar [22] explains that this type of summary plot allows for a sense of the relationship
between the value of a feature and the impact on the model prediction. For example, the plot
makes gives the insight that high values of the worst concave points feature will, push the
prediction in the negative direction. As shown in 2.4, this was indeed the case for this specific
sample. To get an even better view of the relationship, SHAP provides the dependence plot
which provides simple global feature interpretation by plotting the feature value on the x-axis
and the corresponding Shapley value on the y-axis, globally for all data but for one feature.

In Figure 2.7 it is clearly visualized that values in the range 0 to around 0.13 will result in
a Shapley value of approximately 1. Feature values beyond 0.13 will give a largely negative
Shapley value, thus contributing to a negative score. This can be interpreted as: ”the model
has learnt that a measured value of worst concave points between 0 and 0.13 provides a higher
risk of having breast cancer”. The figure presents nearly the same information as in the worst
concave points row in the Beeswarm plot, but gives more insight into exact feature values
contributing positively or negatively to the prediction.

Related work
Zytek et al. [36] implemented and evaluated a visual analytics tool for interpretability of
a machine learning model built to aid in a child welfare screening process. The authors

14

2.5. Interpretable machine learning

−4 −3 −2 −1 0 1 2

SHAP value (impact on model output)

radius error

mean texture

area error

worst area

worst texture

worst concavity

worst perimeter

worst radius

mean concave points

worst concave points

Low

High

Fe
at

ur
e

va
lu

e

Figure 2.6: Beeswarm plot of the 10 most important features.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

worst concave points

−4

−3

−2

−1

0

1

SH
A

P
va

lu
e

fo
r

wo
rs

t
co

nc
av

e
po

in
ts

Figure 2.7: Dependence plot for feature worst concave points.

also identified key challenges in introducing model predictions in high-stakes decision making,
and concluded early in the study that local feature contributions were an important factor in
taking on these challenges. The team used SHAP to generate local feature importance for each
sample, but implemented an own way of showing these as an interface for the child welfare
screeners. In this interface, each feature was listed and sorted according to positive feature
contribution. The results of the usability study showed that showing all 400 features was too
much information for the screeners to digest. The authors also found that users wanted to

15

2.5. Interpretable machine learning

receive information regarding predictions in a language and format that was like their own and
not in machine learning terms. The usability study was entirely qualitative, and the authors
concluded that future work should quantitatively measure how well the tool mitigates the
identified machine learning usability challenges.

Lundberg et al. [19] presented an interpretable and explanatory machine learning system,
built to predict the risk of hypoxemia during surgery. An XGBoost model was trained on
time series data from over 50000 surgeries and was then used in surgery to perform real-time
inference from sensor and static data. The system was called Prescience, and used SHAP
for local explanation of the real-time predictions provided by the model. Explanations were
presented in a human friendly manner, where the three most important features were shown
in the interface, explaining the change in risk the feature provided. The actual feature names
were not presented and instead a human readable format of them were. For example, if the
feature Height/weight was contributing to the risk due to a high value, the explanation would
be High BMI: 30. The qualitative terms to describe the value were based on the features
value distribution in the training dataset. A usability study like [36] was not conducted,
however, tests were ran with previously recorded procedures to see the potential benefit the
system could provide to a physician. The tests showed through ROC evaluation curves that
the anesthesiologists performed significantly better when assessing the risk together with the
system, than without.

16

3 Method

3.1 Implementation frameworks and libraries

The model implementation and evaluation was solely written in the Python programming
language, using the open source machine learning library scikit-learn1 together with Python
implementation of the XGBoost2 gradient boosting framework. For data cleaning, feature
engineering and other data manipulation, the open source library pandas3 was utilized. Visu-
alization of data was done with another open source library named matplotlib4. Finally, model
explanation and interpretation was done with the open source library SHAP5.

3.2 Dataset

Contained in each sample was a tabular snapshot of the home object that was submitted to
the platform, together with two target variables: the decision, and the reason why the decision
was made. The decision was a multi-class variable with value

t ∈ {Publish,Edit ad,Deny,Deny and remove user}.

The reason variable was a multi-label variable meaning that there could be several reasons
for each sample. The reasons were defined as key reasons for the denial of ads among the ad
review staff. Mathematically, the reasons can be formulated as an encoded vector of length
R, the total number of reasons, where dimension i is set to 1 if reason i is present in the list
of reasons for each sample.

Each sample also included all information on the landlord user and aggregations of its
previous activities on the platform, information regarding the rental duration, and data on
the location of the rental object such as longitude and latitude, and zip code. Each sample
contained 163 features and the dataset contains 15298 unique samples.

1https://scikit-learn.org/stable/, [26]
2https://xgboost.readthedocs.io/en/stable/, [3]
3https://pandas.pydata.org/, [33, 21]
4https://matplotlib.org/, [13]
5https://github.com/slundberg/shap, [18]

17

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
https://pandas.pydata.org/
https://matplotlib.org/
https://github.com/slundberg/shap

3.3. Model implementation

What was not included in the dataset was the images of the rental object corresponding
to each sample. However, prediction scores for these images, regarding if they were considered
to be relevant for the platform or not, could be fetched.

3.3 Model implementation

This section aims to describe the steps taken to implement the gradient boosting model, as well
as two baseline models, and fitting them to the ad review dataset. It details what methodology
was used to answer the first research question that regards the performance of an implemented
model.

Preprocessing
The preprocessing that was done to the data included removing features that provided no
value, cleaning and creating new features by combining specific features or extracting useful
information from them using domain knowledge.

Data cleaning

The ad review dataset was processed and cleaned and many features that only consisted of
missing values or only consisted of data deemed redundant were removed. The data sourcing
pipeline simply included all fields belonging to the home table, which resulted in the inclusion
of both unused and legacy fields only consisting of missing values. A thorough overview of the
161 features, removing the ones concluded to be unusable or redundant, resulted in a dataset
consisting of 71 features.

The data cleaning process also included forcing the type of some features that were repre-
sented in an error prone manner. For instance, the longitude and latitude of the rental object
location, that were casted from a string to a float type.

As mentioned, many of the features in the ad review dataset had missing values, and while
some model types allow and can utilize missing values, the baseline models used in this project,
a logistic regression model and a decision tree model, can not. To prepare the data for training
and evaluation with these models, every missing value had to be imputed in some manner.
Since this cleaning was only done for the baseline models, a simple approach, where domain
knowledge was utilized for imputation of a constant value, was taken.

As the problem is formulated as a binary classification task, the multi-class decision target
variable was mapped into a new binary variable. The Publish class remained the same, but the
three other classes was mapped into a new Check/Deny class. The Check/Deny was defined
as the positive class and the final target variable resulted in an imbalanced binary target with
a 0.18 ratio of positive samples to all samples.

Target Number of sampels
Publish 12501
Check/Deny 2797

Table 3.1: Number of samples for each target variable.

Feature Engineering

New features were created and added to each sample through a process often referred to as
feature engineering, which as Nergesian et al. [23] describes it, is the ”practice of constructing
suitable features from given features that lead to improved predictive performance”. The most
notable ones are presented in Table 3.2.

18

3.3. Model implementation

Feature Data type Engineering process
Account age Integer Data included timestamp of account cre-

ation. Subtract current date with this fea-
ture.

Description contains URL Boolean Extracted through regular expression
matching.

Description contains email address Boolean Extracted through regular expression
matching.

Description contains phone number Boolean Extracted through regular expression
matching.

Rental duration Integer Data included start data and end data.
Subtract start from end.

User has confirmed ID number Boolean Confirmation of ID number was included
as a timestamp. If the value was not miss-
ing, the ID number had been confirmed

Recommended rent, rent deviation Float Calculated as: Recommended_rent−Rent
Rent

Max image prediction Float Maximum prediction of every image be-
longing to the ad

Mean image predictions Float Mean of all image predictions

Table 3.2: Engineered features

Train and test split
With preprocessing of the data done, the dataset was effectively divided into a 80/20 train
and test split.

Establishing a Baseline
As described in [17], an important step towards introducing a machine learning model to a
problem is to establish a reference point for the model performance. This is often a simple
model that serves to provide a lower expected level of performance. There were two baseline
models used in this thesis project. One logistic regression model and a simple decision tree
model.

Hyperparameter optimization
All models where optimized through cross-validated grid-search over a parameter grid as im-
plemented by the GridSearchCV class in scikit learn. Each parameter grid is presented in
Table 3.3. Details regarding specific parameters can be found in [26] and [3].

Each model was then fit to the training data with the optimal parameters, creating three
scoring models with no specific threshold set for classification. The output of the models were
probabilities of the given sample belonging to the Check/Deny class.

Model Evaluation
Each model was evaluated on their respective ROC AUC scores and their Average Precision
scores. No alterations were made to the score functions. The evaluation of the models served
as a reference for future model architecture or data changes.

19

3.4. Model explanation and interpretation

Model Parameter Values

Decision Tree

max_features {auto, sqrt, log2}
ccp_alpha {0.1,0.01,0.001}
max_depth {5,6,7,8,9}
criterion {gini, entropy}

Logistic Regression Cs A grid of 10 values in a logarithmic
scale between 1e-4 and 1e4

XGBoost

n_estimators {100,150,200}
learning_rate {0.1,0.2,0.3}
max_depth {2,4,6,7,10}
gamma {0.1,0.2,0.3}
colsample_bytree {0.1,0.2,0.4,0.8}

Table 3.3: All models and their respective parameter grids used for optimization.

3.4 Model explanation and interpretation

To address research question 2, a thorough analysis of previous relevant research regarding
interpretable machine learning was carried out. This included scanning books and reading
scientific papers on the subject for theory regarding algorithms and methods, and concrete
implementations of interpretable and explainable ML software. The theory and related work
regarding interpretable ML is presented in Section 2.5.

3.5 System evaluation review

Attending to the usability of the implemented model and identifying if it served a purpose or
provided insightful information to the ad review staff, a test was run where half of the ads
would show the model prediction score and half would not. A survey highly inspired by [36]
was then conducted. The questions of the survey are presented in Table 3.4

Statement/Question Response type
In general, the prediction score impacted my decisions. 5-point Likert scale
In general, I trusted the prediction scores. 5-point Likert scale
The prediction scores were helpful overall. 5-point Likert scale
The score explanations were helpful in general. 5-point Likert scale
What caused you to trust the model more or less? Free response
Any other comments? Free response

Table 3.4: Survey given to the ad review staff after a session with the model prediction scores.

20

4 Results

4.1 Model performance

Table 4.1 presents the model performance metrics on test data for each model. The XGBoost
model outperforms the baseline models on both metrics.

Model ROC AUC Score AP Score
XGBoost 0.90 0.64
CART 0.80 0.43
Logistic Regression 0.79 0.36

Table 4.1: ROC AUC and AP for the models.

4.2 Model explanation and interpretation

The SHAP library was utilized to understand the feature importance of the best performing
model in a global manner, specifically by using the SHAP Beeswarm plot, as presented in 4.3
to present the most important features and noting their Shapley values for different feature
values.

With insights regarding how certain feature values affected the models output, human
readable strings were constructed for explanation of local model predictions, that could be
given to an ad reviewer to explain a highly positive score given by the model for a specific
ad. These string and their respective feature name are presented in Table 4.2. This was done
as an attempt to provide human friendly explanations as discussed by Molnar [22], instead of
for instance showing the ad reviewerse a SHAP force plot (2.3) for each sample. The strings
were only defined for the most important features that could be reasonably interpreted and
explained.

4.3 System implementation and architecture

In order for the model to be utilized in the ad review administration system, the model had to
be accessible and put in a production environment as other software systems. To achieve this,

21

4.3. System implementation and architecture

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (Positive label: 1)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
Po

sit
iv

e
R

at
e

(P
os

iti
ve

la
be

l:
1)

XGBoost (AUC = 0.90)
CART (AUC = 0.81)
Logistic Regression (AUC = 0.79)

Figure 4.1: ROC curves for each model.

Feature Explanation string
User number of admin notes ”Landlord has previous admin notes”
User number archived homes ”Landlord has none or very few pre-

vious archived homes”
User account age ”Landlord recently created their ac-

count”
Image predictions, mean positive ”Images are predicted to be non home

images”
Home recommended rent, rent deviation ”Rent deviates from recommended

rent”
User report count ”User has been reported before”

Table 4.2: Survey given to the ad review staff after a session with the model prediction scores.

the serverless computing platform AWS Lambda1 was utilized to create an inference service
which utilized the XGBoost ad review model and its data preprocessing steps to perform real
time inference of uploaded ads.

In practice, whenever a home was published for review, the Qasa backend service could
send a payload representing the user and the home to this service, and receive an ad review
prediction from the model, to store this in the database. This prediction could then be
presented to the ad reviewer in the administration system alongside the ad itself. The service
was also built to provide Shapley value based explanations to predictions that were above a
threshold t = 0.3. These were returned alongside the prediction as an explanation, only if

1https://docs.aws.amazon.com/lambda/

22

https://docs.aws.amazon.com/lambda/

4.4. Evaluation survey

0.0 0.2 0.4 0.6 0.8 1.0

Recall (Positive label: 1)

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
(P

os
iti

ve
la

be
l:

1)

XGBoost (AP = 0.65)
CART (AP = 0.46)
Logistic Regression (AP = 0.36)

Figure 4.2: Precision-Recall curves for each model.

the two greatest Shapley values for the specific sample matched any of the features that had
defined strings.

4.4 Evaluation survey

In Figure 4.4, the responses of the survey sent out to the ad reviewal employees are visualized.
4 of the 7 total ad review employees answered the survey.

23

4.4. Evaluation survey

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

SHAP value (impact on model output)

Recommended rent 1.

Rent

Recommended rent 2.

Conversion likelihood

User age

Home square meters

Rent deviation from recommended rent

Image predictions, max positive

Description contains phone number

Home tenant count

Nr. of pictures in ad

Professional user

Response time

Rent deviation from predicted rent

User account age

Image predictions, mean positive

User owns home

User number of archived homes

User number of admin notes

Currently active home count

Low

High

Fe
at

ur
e

va
lu

e

Figure 4.3: A SHAP summary plot for the XGBoost model.

0%25%50%75% 25% 50%
Percentage of Responses

The score explanations were
helpful in general.

The prediction scores were
helpful overall.

In general, I trusted the
prediction scores.

In general, the prediction
score impacted my decisions.

Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Figure 4.4: Survey responses from the ad review employees regarding using the model.

24

5 Discussion

5.1 Results

This section discusses the results as they are presented in Chapter 4.

Model performance
As described in the Section 2.4 of Chapter 2, the 0.9 AUC score of the XGBoost model says
that there is a 0.9 probability that the model will rank a randomly chosen positive sample
higher that a randomly chosen negative sample. While the aim was not to rank the newly
uploaded ads, the interpretation for scoring is the same. Compared to the baseline models
and the random guessing line, the XGBoost model shows significant better performance. For
a system that does not make any high-stake decisions on its own but simply presents a score
to a user, an AUC of 0.9 can be considered good performance.

However, the AP score of 0.64 gives other suggestions. Since there is no intuitive expla-
nation for the AP score more than it summarizes the precision-recall curve a a single score,
it is difficult to reason whether 0.64 is good or bad. What can be concluded however, is that
the XGBoost model performs better than the baseline models and significantly better than
random guessing. Random guessing would in this case give an AP result of 0.18. There is a
possibility to compare the scores of the different models and analyze the curves in Figure 4.2
for more insight into model performance. All models experience a significant drop in precision
with a slightly lower threshold than 1, indicating a high number of negative samples being
strongly predicted as positive. The curve for the XGBoost model then drops, indicating a
rapid increase in both false negatives and false positives when dropping the threshold. Ideally,
the curve should remain at a high precision level when when the threshold is lowered, which
would display the models ability to handle the positive class well, giving accurate results (high
precision) and correctly classifying all positive samples (high recall) [30].

In the case for a scoring model that aims to help a decision making process, a slightly
conservative model that often predicts false positives can be tolerated. It would however most
likely result in frustration from the end user, and a lack of trust in the model. High false
negatives are especially bad in a high-stakes decision making model.

The model performance results of the study reflect the main point made by Saito et al.[29].
The AUC results are misleading when used with a model evaluated on an imbalanced test set.

25

5.1. Results

Since the PR curve and its average precision score disregards true negative samples, which are
significantly inflated in an imbalanced classification problem, they allow for a more accurate
and intuitive interpretation of the performance results. Thus, the results of the implemented
ad review score model show decent, but not very good performance on test data when evaluated
accordingly.

Data quality

The reasons for the non optimal performance can be attributed to several factors, including
methodology factors discussed in Section 5.2. Since gradient boosting machine models have
been tried and true in many other anomaly detection studies and applications, the problem
must lie in the training data not fully capturing the proper signals. As with many other data
annotating situations for supervised learning, human error can be a factor into why the data
is noisy. However, in the case of the ad review dataset, the annotation of data is happening in
a production grade system serving thousands of users which makes it less likely to be faulty.
Another factor to the lack of quality in the data is different opinions of different ad review
staff members. If the ad review staff handle similar ads with similar properties differently, the
resulting dataset would be high in noise.

Model interpretation
In the SHAP beeswarm plot presented in Figure 4.3, the most important features of the ad
review dataset and their Shapley values for different samples are presented. The plot provides
global explanation for the implemented model.

The two most important features Currently active home count and User number of achived
homes both regard previous activity on the platform. Seemingly, the model has learnt that
a very low number of active ads for a user gives a higher probability of ad denial. This is
most likely due to new users on the platform often getting their ad denied due to them not
having experience creating ads. A slightly higher to a higher number of active homes have
lower and even negative Shapley values which indicates the model having also learnt to accept
ads created by users with experience on the platform. This is also noted in the importance of
the User account age feature. New users get denied more often.

Another notable feature that carries importance is the Rent deviation from predicted rent
feature, that uses the output of Qasas rent prediction model. Ad reviewers can deny ads due
to the rent being unreasonably high or too low, possibly indicating a fraud attempt. This
feature seems to capture these cases, giving high Shalpley values for higher deviation values.

User number of admin notes is also noted as one of the more important features. The
ad reviewers and other support staff can write notes about users being problematic in an
internal note taking system. This feature represents how many notes the user previously has.
According to the plot, the model has learnt that users with a previous record of notes should
be denied.

Evaluation survey
Since there were only a few ad reviewers available during the testing period, the evaluation
survey had a low number of participants. This makes the survey results difficult to analyze in
a quantitative manner. However, they can still be utilized to asses the scoring model and its
explanations in a qualitative manner. As with any survey, it’s important to include enough
samples to properly represent the population one wants to understand. There are currently
seven ad reviewers at Qasa, and four of them participated in the survey.

The survey answers showed that the score did not impact the decisions of the ad reviewers
much, if at all. This is most likely due to the score and explanation not providing any new
information that the ad reviewers cannot find themselves. Half of the responders have answered

26

5.2. Method

that they did trust the model scores in general. Factoring into this is possibly the explanations
providing interpretability, or the ad reviewers finding that they are making decisions that
correlate with the model score. Half of survey answers neither agreed nor disagreed regarding
the helpfulness of the model scores, indicating that they are indifferent to the prediction scores.
Half of the responders appreciated the score explanations however, which can possibly show
that the explanation provide some guidance as to what factors of an ad to address.

For the mandatory free response question, one answer regarding understanding how the
prediction score is generated was noted. Not trusting in a model and its output due to lack
of understanding is one of the areas the field of interpretable machine learning aims to solve.
Not providing any global model explanation to the ad review staff can attribute to this survey
response. This is further discussed in Section 5.2.

5.2 Method

This section discusses the methodology of the thesis.

Model implementation
Noisy data and features that do not capture all reasons for denial of an ad is the most likely
reason for the non optimal performance, as discussed in Section 5.1. With more resources for
the thesis project, more thorough exploratory data analysis could have been done. This to
identify concrete reasons for denial of ads to assess if there are features present in the dataset
that theoretically should correlate with a denial target. If not, more thorough feature engi-
neering could have been done to create these. As Chapter 3 details, some feature engineering
was done for this reason. However, not enough.

Zhu and Wu [35] define two types of noise: attribute (feature) noise and class noise. They
suggest that class noise come from either contradictory examples or misclassifications, but
that misclassifications are rarely a problem in real-world data. Contradictory examples could
exist in the ad review dataset considering possibility for human error, and the fact that there
are multiple ad reviewers as discussed in Section 5.1. Zhu and We conclude that eliminating
samples containing class noise will likely improve classification accuracy.

While gradient boosting trees have been tried and true for supervised anomaly detection
problems, there are also unsupervised methods of anomaly detection [10] which were not
explored or researched in this thesis. There are also many other, non machine learning methods
of doing simple content moderation. Many of the rules that the ad reviewers use in their work
could simply be implemented as hard coded rules in some software program not utilizing any
machine learning model.

The model implementation methodology is however considered to follow a replicable ap-
proach, detailing each step in how the model was developed and put in production. As with
any machine learning problem, to accomplish full reliability the data used in the study would
need to be open and free for public use. The methodology can however be generalized and
adopted to any anomaly detection system created to aid a decision making process, achieving
similar results.

Model evaluation
It can be considered a flaw in the methodology to use both ROC AUC and AP for assessing
model performance, especially considering the findings of Saito et al. [29]. This does impact
the validity of the study negatively.

Due to the imbalance of the final dataset used to train the model, the Precision-Recall
curve and AP are the only results appropriate to asses model performance. Also presenting
ROC AUC gives a false sense of high performance for the model implemented in the study.
Although no decisions were made taking any of the evaluation metrics into account. Also,

27

5.3. The work in a wider context

due to the non intuitiveness of the performance metrics chosen, they were not presented to ad
review model users.

Model interpretation and explanation
Zytek et al. [36] implemented a model explanation interface for their decision making aiding
model. The authors developed a specific About model page in the interface, detailing the
architecture and logic behind the model, as well as performance metrics and global model
explanations in the form of feature importance. Similar global interpretation was not provided
to the ad reviewer staff in this thesis project, which could have contributed to a lack of trust
in the model predictions as suggested by one of the survey respondents. The authors also
detail how a local prediction explanation interface, based on SHAP, was used to present every
feature and its contribution to each specific decision case. This was also not considered for this
thesis project. Instead, it focuses on Molnars [22] discussion on human friendly explanations,
aiming to provide 1-2 concrete explanations for each case. The results in [36] indicated that
the users did not appreciate all features being shown in the local prediction interface.

Zytek et al. [36] raises Lack of Trust as one of the key usability challenges of machine
learning models, and the results of this thesis project can also indicate that this is the case.

The methodology detailing how the model was interpreted and explained shows how repli-
cability considering the simple approach of only explaining the two most contributing features.

Evaluation survey
With few survey respondents, it is difficult to grasp and analyze what the ad review staff
opinions were regarding the model predictions. This also lowers the validity of the study in
some manner. Regarding the evaluation survey, there is however a high replicability considering
its simplicity. Because of the small samples size, the reliability is also affected negatively. Since
it is difficult to draw conclusions regarding the effectiveness of the model prediction scores
shown the reviewal interface, it is also difficult to state that the study will have similar results
if repeated.

Source criticism
The sources used for this thesis have mainly been searched for and found on Google Scholar
and IEEE Xplore. Papers with a great number of citations and from trusted journals or
conferences have been highly regarded. The theory on decision trees and boosting is mainly
from the books Machine Learning - A First Course for Engineers and Scientists by Lindholm et
al., and The Elements of Statistical Learning written by Hastie et al. Both of these books have
been recommended in courses on machine learning at Linköping University and are regarded
as highly trustworthy sources for machine learning theory. Present in the bibliography are also
documentation websites from corporations such as Amazon Web Services, as well as widely
used open source machine learning libraries and frameworks.

5.3 The work in a wider context

This section discusses the ethical and societal aspects related to the work of this thesis project.

Workplace automation
Automation in the workplace has been a factor since the industrial revolution. With recent
technological advancements, many refer to artificial intelligence as the new wave of automation.
In the chapter Mind or Machine? Opportunities and Limits of Automation of the book The
Impact of Digitalization in the Workplace, Nokelainen et al. [24] detail that the most relevant

28

5.3. The work in a wider context

skill requirements for workers are ”being able to tolerate instability and adapt to new ways
of working and working environments”. The perspective of the authors suggests that there is
an ethical challenge in redefining the human meaning of work, and how to address the human
need to feel that their work is important and needed when there are algorithms and models
able to perform their task equally as well. The authors also discuss the point of the many
capabilities humans have that are actualized and developed in a workplace environment. These
capabilities include, learning, imagination, affiliation, among others. They go on to suggest
that if employment is not an option for humans, there must be other societal structures in
place that allows people to feel needed by their communities, and that allow human to still
develop these capabilities.

Discriminating content moderation
When building algorithms that handle personal data, it is important assess if the algorithm
behaves in a discriminating way towards any race, age group, gender or any other group of
people. This topic has been the focus of many news articles and papers, criticizing they way
large social media corporations have handled this issue. Content moderation has always had
the aim of providing a safe platform for the user, and many platforms are legally obliged to
moderate harmful content [15].

In the article Human rights and AI-Powered Content Moderation and Curation in Social
Media, Kenis [15] raises the issue of artificial intelligence based content moderation. She
discusses the lawsuit of the social media giant Facebook, that was sued for an algorithm
designed to show job, housing and credit ads to users. This algorithm made discriminatory
suggestions based on gender, ethnicity and race without the knowledge of advertisers.

It is the creators of models and algorithms responsibility to make fair use of data and to
confirm that the models do not predict in a discriminatory manner. Interpretable machine
learning and global explanations of models open the door to solve the issue within an orga-
nization, but taking accountability and providing transparency towards the users is key for
solving the problem at hand.

29

6 Conclusion

6.1 Research questions

This study aimed to implement an anomaly detection system, using a gradient boosting ma-
chine classifier on data sourced from an ad reviewal process, to aid in future reviewing. While
accomplishing this, the aim was also to address the models interpretability and explainability,
as well as to evaluate its usability to the ad review staff.

To conclude the study and to answer the research questions formulated in Section 1.3,
the implemented model managed to achieve an ROC AUC of 0.9 and an AP score of 0.64.
Secondly, after a thorough literature review, it was concluded that the open source software
library SHAP [18] could be utilized to provide interpretation and explanability to the model
predictions. This through utilization of its Shapley value plotting functionality to formulate
human readable explanations for the most important features. These could then be returned
alongside the prediction of a given ad in the inference service. Finally, it was difficult to
fully assess the usability of the model predictions and explanations from the conducted survey.
However, it can be noted that the models lack of performance power affected the usability and
trust of the end users, but that the model prediction explanations were found helpful.

6.2 Future work

One contribution this thesis makes is a smaller usability review of a scoring model intended to
be utilized in a decision making process, interpreted and explained by state-of-the-art machine
learning interpretation software. While most studies focus on model performance, not enough
research is presented regarding the usability of these models in real-world systems.

This thesis can provide ground for utilizing interpretable machine learning software in any
decision making process currently mainly performed by humans. Regarding human friendly
explanations of machine learning models, future work should include researching automatically
generated explanation strings from Shapley values and feature names, possibly utilizing Natural
Language Processing techniques. Future work should also focus on quantifying the usability
of model interpretation and explanation tools, which this thesis did not.

30

Bibliography

[1] Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. “Interpretable ma-
chine learning in healthcare.” In: Proceedings of the 2018 ACM international conference
on bioinformatics, computational biology, and health informatics. 2018, pp. 559–560.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[3] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System.” In:

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 785–
794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http://doi.acm.
org/10.1145/2939672.2939785.

[4] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall and ROC
curves.” In: Proceedings of the 23rd international conference on Machine learning. 2006,
pp. 233–240.

[5] Mengnan Du, Ninghao Liu, and Xia Hu. “Techniques for interpretable machine learning.”
In: Communications of the ACM 63.1 (2019), pp. 68–77.

[6] Tom Fawcett. “An introduction to ROC analysis.” In: Pattern Recognition Letters 27.8
(2006). ROC Analysis in Pattern Recognition, pp. 861–874. issn: 0167-8655. doi: https:
//doi.org/10.1016/j.patrec.2005.10.010. url: https://www.sciencedirect.
com/science/article/pii/S016786550500303X.

[7] Jordan Frery, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-Guelton.
“Efficient top rank optimization with gradient boosting for supervised anomaly detec-
tion.” In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer. 2017, pp. 20–35.

[8] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting.” In: Journal of Computer and System Sci-
ences 55.1 (1997), pp. 119–139. issn: 0022-0000. doi: https://doi.org/10.1006/
jcss.1997.1504. url: https://www.sciencedirect.com/science/article/pii/
S002200009791504X.

[9] Jerome H. Friedman. “Greedy function approximation: A gradient boosting machine.”
In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. doi: 10.1214/aos/1013203451.
url: https://doi.org/10.1214/aos/1013203451.

31

https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451

Bibliography

[10] Markus Goldstein and Seiichi Uchida. “A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data.” In: PloS one 11.4 (2016), e0152173.

[11] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.,
2001.

[12] Mohammad Hossin and Md Nasir Sulaiman. “A review on evaluation metrics for data
classification evaluations.” In: International journal of data mining & knowledge man-
agement process 5.2 (2015), p. 1.

[13] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing in Science &
Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[14] Md. Khairul Islam, Prithula Hridi, Md. Shohrab Hossain, and Husnu S. Narman. “Net-
work Anomaly Detection Using LightGBM: A Gradient Boosting Classifier.” In: 2020
30th International Telecommunication Networks and Applications Conference (ITNAC).
2020, pp. 1–7. doi: 10.1109/ITNAC50341.2020.9315049.

[15] Sebnem Kenis. Human rights and AI-Powered Content Moderation and Curation in
Social Media. 2021. url: Human % 20rights % 20and % 20AI - Powered % 20Content %
20Moderation%20and%20Curation%20in%20Social%20Media (visited on 05/23/2022).

[16] Ming Li and Zhi-Hua Zhou. “Improve Computer-Aided Diagnosis With Machine Learn-
ing Techniques Using Undiagnosed Samples.” In: IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 37.6 (2007), pp. 1088–1098. doi: 10.
1109/TSMCA.2007.904745.

[17] Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön. Machine
Learning - A First Course for Engineers and Scientists. Cambridge University Press,
2022. url: https://smlbook.org.

[18] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predictions.”
In: Advances in neural information processing systems 30 (2017).

[19] Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe, Michael J Eisses,
Trevor Adams, David E Liston, Daniel King-Wai Low, Shu-Fang Newman, Jerry Kim,
et al. “Explainable machine-learning predictions for the prevention of hypoxaemia during
surgery.” In: Nature biomedical engineering 2.10 (2018), pp. 749–760.

[20] Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M. Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. “Ex-
plainable AI for Trees: From Local Explanations to Global Understanding.” In: CoRR
abs/1905.04610 (2019). arXiv: 1905.04610. url: http://arxiv.org/abs/1905.04610.

[21] Wes McKinney. “Data Structures for Statistical Computing in Python.” In: Proceedings
of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and Jarrod Millman.
2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[22] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black Box Mod-
els Explainable. 2nd ed. 2022. url: https://christophm.github.io/interpretable-
ml-book.

[23] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S
Turaga. “Learning Feature Engineering for Classification.” In: Ijcai. 2017, pp. 2529–2535.

[24] Petri Nokelainen, Timo Nevalainen, and Kreeta Niemi. “Mind or machine? Opportunities
and limits of automation.” In: The impact of digitalization in the workplace. Springer,
2018, pp. 13–24.

[25] Salima Omar, Asri Ngadi, and Hamid H Jebur. “Machine learning techniques for anomaly
detection: an overview.” In: International Journal of Computer Applications 79.2 (2013).

32

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/ITNAC50341.2020.9315049
Human%20rights%20and%20AI-Powered%20Content%20Moderation%20and%20Curation%20in%20Social%20Media
Human%20rights%20and%20AI-Powered%20Content%20Moderation%20and%20Curation%20in%20Social%20Media
https://doi.org/10.1109/TSMCA.2007.904745
https://doi.org/10.1109/TSMCA.2007.904745
https://smlbook.org
https://arxiv.org/abs/1905.04610
http://arxiv.org/abs/1905.04610
https://doi.org/10.25080/Majora-92bf1922-00a
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

Bibliography

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning in Python.” In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[27] Foster Provost, Tom Fawcett, and Ron Kohavi. “The Case Against Accuracy Estimation
for Comparing Induction Algorithms.” In: Proceedings of the Fifteenth International
Conference on Machine Learning (Apr. 2001).

[28] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier.” In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016. 2016, pp. 1135–1144.

[29] Takaya Saito and Marc Rehmsmeier. “The Precision-Recall Plot Is More Informative
than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets.” In:
PLOS ONE 10.3 (Mar. 2015), pp. 1–21. doi: 10.1371/journal.pone.0118432. url:
https://doi.org/10.1371/journal.pone.0118432.

[30] scikit-learn. Precision-Recall. 2021. url: https://scikit-learn.org/stable/auto_
examples/model_selection/plot_precision_recall.html (visited on 05/19/2022).

[31] Lloyd S. Shapley. A Value for N-Person Games. Santa Monica, CA: RAND Corporation,
1952. doi: 10.7249/P0295.

[32] Bayu Adhi Tama and Kyung-Hyune Rhee. “An in-depth experimental study of anomaly
detection using gradient boosted machine.” In: Neural Computing and Applications 31.4
(2019), pp. 955–965.

[33] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020.
doi: 10.5281/zenodo.3509134. url: https://doi.org/10.5281/zenodo.3509134.

[34] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso.” In: Journal of
the Royal Statistical Society. Series B (Methodological) 58.1 (1996), pp. 267–288. issn:
00359246. url: http://www.jstor.org/stable/2346178 (visited on 05/21/2022).

[35] Xingquan Zhu and Xindong Wu. “Class noise vs. attribute noise: A quantitative study.”
In: Artificial intelligence review 22.3 (2004), pp. 177–210.

[36] Alexandra Zytek, Dongyu Liu, Rhema Vaithianathan, and Kalyan Veeramachaneni.
“Sibyl: Understanding and Addressing the Usability Challenges of Machine Learning In
High-Stakes Decision Making.” In: IEEE Transactions on Visualization and Computer
Graphics 28.1 (2022), pp. 1161–1171. doi: 10.1109/TVCG.2021.3114864.

33

https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://doi.org/10.7249/P0295
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://www.jstor.org/stable/2346178
https://doi.org/10.1109/TVCG.2021.3114864

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Research questions

	Theory
	Machine learning
	Decision trees
	Gradient boosting
	Evaluation metrics
	Interpretable machine learning

	Method
	Implementation frameworks and libraries
	Dataset
	Model implementation
	Model explanation and interpretation
	System evaluation review

	Results
	Model performance
	Model explanation and interpretation
	System implementation and architecture
	Evaluation survey

	Discussion
	Results
	Method
	The work in a wider context

	Conclusion
	Research questions
	Future work

	Bibliography

