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Abstract

Multiple sclerosis is a neurological disease causing a degeneration of myelin around
the axons in the central nervous system. This process leaves traces in the form
of lesions, which can be distinguished in an MRI examination. It is important to
detect these at an early stage to state diagnosis and initiate medication.

In this Master’s Thesis, an automatic segmentation algorithm was developed,
with the purpose of segmenting possible multiple sclerosis lesions. Secondly,
a progression model was developed with the purpose of estimating the state
of each individual lesion. The implementation was based on synthetic contrast
weighted images, segmentation maps and quantitative relaxation maps produced
by SyMRI (SyntheticMR, Linköping, Sweden).

The automatic segmentation algorithm has a relatively high sensitivity but low
precision, causing a large number of false positives. The algorithm performed
better in the cerebrum compared to the cerebellum. The large number of false
positives appeared mainly due to partial volume effects, creating hyperintense
artifacts in synthetic T2W FLAIR images. A larger amount of data would have
been desirable to create a more robust algorithm.

The progression model showed promising results, with a clear correlation to the
synthetic contrast-weighted images and segmentation maps available in SyMRI.
The progression model could be useful in disease monitoring, medical decisions
and diagnosis of Multiple Sclerosis.
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Notation

Abbreviations

Abbreviations Meaning

BBB Blood–brain barrier
CNS Central nervous system
CSF Cerebrospinal fluid
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DSC Dice similarity coefficient

FLAIR Fluid-attenuated inversion recovery
FN False negative
FP False positive
GM Gray matter
MRI Magnetic resonance imaging
MS Multiple sclerosis
PD Proton density

PPMS Primary progressive multiple sclerosis
PPV Positive predictive value
PSIR Phase sensitive inversion recovery
qMRI Quantitative magnetic resonance imaging

RF Radio frequency
RRMS Relapsing–remitting multiple sclerosis

R1 Spin-lattice relaxation rate
R2 Spin-spin relaxation rate

SPMS Secondary progressive multiple sclerosis
TE Echo time
TI Inversion time
TN True negative
TP True positive

TPR True positive rate
TR Repetition time
T1 Spin-lattice relaxation time
T2 Spin-spin relaxation time

WM White matter



1
Introduction

This report is the final result of a Master’s Thesis within the field of Biomedical
Engineering performed at Linköping University, in collaboration with Synthet-
icMR AB (Linköping, Sweden). In this chapter, a short background is presented
together with the purpose and limitations of this work.

1.1 Background

Multiple Sclerosis (MS) is an autoimmune disease that causes degeneration of
myelin in the central nervous system (CNS). This causes inflammation and tissue
destruction, which can be distinguished by magnetic resonance imaging (MRI),
which is used to diagnose the disease [1]. It is important to state an early diag-
nosis since it has been proven that medication is most effective during the early
stages of the disease [2].

The MR images are studied manually, searching for radiological abnormalities
that can confirm the diagnosis. However, there are many factors that can cause
the radiologist to miss such abnormalities, such as fatigue, insufficient commu-
nication, lack of concentration or unintentional blindness. It can therefore be
motivated to assist the radiologist with computer-aided detection, so that vague
lesions are not overseen [3].

Furthermore, there are no restrictions that state how a manual segmentation
should be performed, leading to different segmentation results between individ-
uals. In Figure 1.1 it is seen how the same area is segmented differently, not only
causing a great diversity in lesion area, but in this case also affecting the total
number of lesions. The differences can be problematic when examining how le-
sions change over time, since it is a question of interpretation. This would not

1



2 1 Introduction

be a problem if computer-aided segmentation was used, eliminating the human
factor and preference.

Figure 1.1: Manual segmentation can be highly individual

Examples of MS diagnosed brains can be seen in Figure 1.2 and 1.3 where the
assumed lesions are pointed out by red arrows. When studying the two figures,
one can see that the lesions vary in size, shape and intensity. Lesions appear hy-
perintense in a T2W FLAIR contrast weighted image and hypointense in a PSIR
contrast weighted image. However, these kinds of areas are not necessarily patho-
logical, an example of this can be seen in Figure 1.4, where perivascular spaces
are present. These are nonpathological and appear naturally with rising age.

Figure 1.2: A MS diagnosed patient, the red arrows point out the location of
the assumed lesions, which vary in intensity, shape and size

Figure 1.3: A MS diagnosed patient with a wide range of possible lesions
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Figure 1.4: A healthy volunteer, with presence of perivascular spaces, which
should not be segmented as MS lesions

Furthermore, it could be useful for the radiologist to know the state of progres-
sion for each individual lesion. This could ease the decision between the various
number of treatments available, and could be used as direct feedback if a treat-
ment is sufficient or not, showing stagnation of the progression or re-progression
if the tissue is healed.

This Master’s Thesis is based on synthetic MRI, which is a simulation method
that is used to generate contrast weighted MR images by quantitative MRI (qMRI).
The software SyMRI (SyntheticMR, Linköping, Sweden) can generate several contrast-
weighted images, parametric maps and different segmentation maps, all based on
one single scan [4]. From an image-processing point of view, this is a great advan-
tage, since additional registration steps is not required.

1.2 Purpose

The purpose of this master’s thesis is to create an automatic segmentation algo-
rithm for MS lesions, using qMRI data. Secondly, it is investigated if it is possible
to differentiate lesions from healthy tissue using quantitative data, and to create
a model that classifies lesions based on their progression.



4 1 Introduction

The following two aims have been stated for this master’s thesis:

• Create an algorithm that performs an automatic segmentation of possible MS
lesions.

• Examine whether any characteristics of MS lesions can be found in the quanti-
tative MR data, and propose a model that classifies these lesions based on their
progression.

1.2.1 Limitations

A lesion is defined as a hyperintense area in a T2W FLAIR image that has a min-
imum diameter of 3mm [5]. There are many typical locations for MS lesions in
the CNS. In this thesis, the focus will be to detect lesions located in white mat-
ter, cortical lesions are excluded due to their vague appearance. Lesions located
in the spinal cord are not included. The lesions are classified as possible lesions
since no radiologist has confirmed the manual segmentation. A white matter hy-
perintensity detected in a patient with diagnosed MS will be considered as an MS
lesion and a white matter hyperintensity detected in a healthy volunteer will be
considered nonpathological.
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Theory

The theory basis of the Master’s Thesis is included in this chapter. The back-
ground and pathogenesis of Multiple Sclerosis are presented including how the
diagnosis is determined using MRI. A description of conventional MRI and syn-
thetic MRI is also included.

2.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a neurological disease that affects the central nervous
system (CNS). The disease is mainly detected within the age span of 20-40 years
and women are more often affected than men. The prevalence of the disease
varies greatly over the world and the highest number of cases is seen in Europe
and North America, while it is more uncommon in Africa and East Asia [6]. To-
day, it is not fully known what triggers the outbreak of the disease, but many
studies indicate that it has both genetic and environmental causes. It has been
proved that the risk of developing MS increases with increasing distance from
the equator [7]. It has been suggested that MS could develop due to different
types of viral infections, for example the Epstein-Barr virus, if the person caught
the infection as a young adult [7]. Other factors such as smoking have also been
suggested to increase the risk of developing MS [8].

2.1.1 Symptoms and Progression

The symptoms of MS vary greatly between individuals, which can complicate
the diagnosis of the patient. The most common symptoms are movement and
coordination problems, impaired hearing, fatigue and impaired vision. Some
people also experiencing bladder issues, sexual dysfunction, cognitive problems
and pain [6].
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6 2 Theory

The progression pattern of the disease is divided into the following types:

• RRMS - Relapsing–Remitting Multiple Sclerosis

• SPMS - Secondary Progressive Multiple Sclerosis

• PPMS - Primary Progressive Multiple Sclerosis

Approximately 80-90% of the MS patients initially develop the RRMS type. Dur-
ing this stage, the patient will experience active periods with symptoms, but after
some time, the body will undergo a relapsing process where a spontaneous neu-
rological recovery is seen. During the remittance period, the MS patient experi-
ences a full recovery. Many RRMS patients will gradually progress into the SPMS
stage, in which the recovery decreases after each attack and gradually increas-
ing the dysfunction of the damaged neurons, see Figure 2.1. The other 10-20%
of the MS population develop PPMS, which is characterized by its progressive
dysfunctionality and no relapsing activity [9]. The life expectancy is reduced by
5-10 years for a person diagnosed with MS, and it may take many years before
developing complete disability [10].

Figure 2.1: An example of the changes in disability during RRMS and SPMS

2.1.2 Anatomy of the Central Nervous System

The communication within the brain and between the rest of the body is con-
trolled by the nerve cell, also called neuron, which is illustrated in Figure 2.2.
The nucleus of the neuron is found in the cell body where dendrites branch out
to nearby axons which have a longer and more robust structure compared with
the dendrites. The electrical impulses propagate along the axon and are sent to
the following neuron by electrochemical stimulation. Some axons are myelinated,
which means that they are enclosed by a myelin sheath that is produced by oligo-
dendrocytes. The myelin sheath is a multi-layered lipid- and protein rich sub-
stance that insulates the axon, which will increase the signal propagation speed.
There are gaps between the myelin sheaths along the axons, these are called the
nodes of Ranvier. When an action potential is triggered at a Ranvier node, it will
cause an ionic current that will flow rapidly through the myelin sheaths. The
signal appears to leap between each node due to the depolarization of the myelin
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sheath, which will in turn trigger an action potential of the next node. Myelin
has low conductivity, which prevents the loss of electrical signals to surrounding
tissue [11].

Figure 2.2: Anatomy of the nerve cell. Used with permission from Wikimedia
Commons. [12]

The myelin concentration is highest in white matter (WM), where the myelin
sheaths give its white appearance. The gray matter (GM) covers the surface of the
brain, called cortex, and contains neural cell bodies, dendrites and unmyelinated
axons, see Figure 2.3. The brain can be divided into two parts, the cerebrum
and cerebellum. These are indicated in Figure 2.4. The ventricles, containing the
cerebrospinal fluid (CSF), are located in the centre of the brain [11].

Figure 2.3: White- and gray matter in the brain. Used with permission from
Wikimedia Commons. [13]
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Figure 2.4: Cerebrum and cerebellum, modified and used with permission from
Wikimedia Commons. [14]

The blood-brain barrier (BBB) refers to the capillary walls located in the CNS.
The BBB regulates the exchange of ions and molecules between the blood and the
CNS and it is far more regulated and selective compared to the other parts of the
microvasculature system, due to its special endothelial cells. This barrier is vital
in order to establish a proper neural function and to protect the nervous system
from pathogens and toxins [15].

2.1.3 Pathogenesis

MS is an autoimmune disease which causes an abnormal immune response against
the body’s own tissue, causing a degeneration of the myelin layer along the axons.
This will slow down, distort or interrupt the nerve impulses propagating along
the axon, causing the symptoms described earlier. The disease is called Multiple
Sclerosis referring to the numerous scars, also called plaques or lesions, that are
characteristic of the areas where the demyelination has occurred [16].

Figure 2.5: Degeneration of myelin in MS

The degeneration of myelin is caused by the loss of oligodendrocytes, which will
complicate the maintenance of the myelin layer [7]. As the disease progresses, it
does not only damage the myelin sheaths, with time it will also damage the axons,
preventing the electrical signal to pass [1]. In the earlier stages of the disease the
oligodendrocytes are capable to perform a remyelination of the axons, but this
process does not last, causing the disease to progress in to the SPMS phase [7].
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The BBB is thought to be disrupted during MS, resulting in an increased per-
meability, causing lymphocytes to migrate into the CNS. The migrated T- and
B-cells undergo an autoimmune response against the myelin. The reason for this
response is not fully known [15]. The autoimmune response will stimulate the
B-cells to secrete immunoglobulins and multiply, and the T-cells start the de-
generation of myelin [17]. The increasing number of B-cells are detected in the
oligoclonal bands, which are used for diagnosis [15].

2.1.4 Progression of MS Lesions

It is widely agreed that the degree of disability in MS is correlated with axonal
damage [2, 18–22]. The axonal damage is most active during the early stage of the
lesion progress and the breakdown of the axons is more aggressive in the early
years of the disease [2, 22]. A great correlation between myelin degeneration
and axonal damage has been observed. The denuded axons appear to be more
vulnerable to the toxic products produced by the macrophages [22], and myelin
contribute with structural properties that maintain the cytoskeleton of the axon
[2]. A correlation between axonal damage and numbers of macrophages and T-
cells has been seen, suggesting that these also contribute to degeneration of the
axons, either directly or due to toxic biproducts [2, 22]. During the acute phase,
where degeneration of myelin and axons are most active, there is an increase in
inflammation and oedema within the lesion [21]. The newly formed lesions often
show a combination of demyelination, inflammation, oedema, axonal damage
and early remyelination, since these processes occur dynamically, and not in any
typical order [18]. Active lesions are often highly oedemic [21].

The nervous system is capable of remyelinating axons if there are a presence of
oligodendrocytes, which reproduces the myelin sheaths, although with a shorter
and thinner appearance [22]. The remyelination process is rapid and most effi-
cient during the early MS stages. The remyelination appears most often at the
rim of the lesion, but in some cases full repair is seen. These areas are referred
to as shadow plaques. The remyelination reconstructs the structure of the axon
and protects it from further destruction. The newly produced axon also restores
the conductance over the axon, which improves the neurological function [23].
The lesions that do not manage to remyelinate may undergo necrosis. An expan-
sion of the extracellular space is formed [18], causing extracellular free water to
accumulate within the lesion [19].
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2.1.5 Diagnosis

MS cannot be diagnosed by a single test. An international standard for the di-
agnosis is followed by the McDonald Criteria which are an approved diagnostic
method that is used in 96% of the countries across the world [6]. The criteria can
be summarized to that there has to be a dissemination in both time and space, i.e.
there must have been inflammations in different locations that are typical for MS
at at least two different time instances [5]. The criteria for dissemination in time
can be fulfilled by an MRI scan, searching for active lesions which are enhanced
by an injection of gadolinium contrast [24]. Typical MS lesions are cortical, in-
fratentorial, juxtacortical, periventricular or located within the spinal cord. If
there has only been one attack, a CSF examination should be performed, for ex-
ample with protein electrophoresis which will detect the presence of oligoclonal
bands, which has been proved to be a suitable prediction of a second attack [5].

2.1.6 Treatment and Therapy

At the time of writing there is no cure for MS, but disease-modifying therapies
(DMTs) are used in most countries [6]. There are many kinds of DMTs, but all
modulate or suppress the immune system. The agents can be given orally, by
injection or by infusion with the aim to reduce the number of relapses and delay
the progression of disability. The DMTs are unsuccessful for PPMS but have a
beneficial impact on RRMS and SPMS. However, the treatment is complex, the
disease is highly individual and is associated with many different side effects [25].
The treatment should be started as soon as possible to prevent axonal damage [2].
If the patient suffers from PPMS, a symptomatic treatment and physical therapy
is used instead. At this stage it is not possible to restrain the development of the
disease [25, 26].

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a technique used within the field of med-
ical imaging. The technique uses the fundamental properties of the positively
charged proton, i.e. the hydrogen nucleus, which is highly concentrated in fat
and water. This is beneficial when identifying inflammation, since water is accu-
mulated in those regions, making MRI a sensitive diagnostic technique [27].

All elementary particles inherit an intrinsic property called spin, which means
that it rotates around its own axis. Due to the fact that it is a moving charge, it
also means that it has a magnetic field surrounding it, and it is around the axis of
this magnetic field that the proton rotates [27].

The patient is positioned inside the MR scanner where a strong magnetic field,
B0 is operating. The magnetic field will cause the protons to align with B0, gener-
ating a net magnetization,M0, that has the same direction as B0. The precessional
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frequency of the protons will adapt to B0 according to the Larmor Equation 2.1,
where γ is the gyromagnetic ratio of the hydrogen atom [27].

ω0 = γB0, where γ = 42, 57MHz/T (2.1)

The net magnetization of the body is much smaller compared with the external
magnetic field, so it is not possible to measure the magnetization in this direction.
For this reason, the signal will be measured in the transverse plane, which is
accomplished by using a radio frequency (RF) pulse. The RF pulse oscillates
with the given Larmor frequency and is generated by the transmit coil, acting as
a constant magnetic field B1, on the effected protons. B1 is perpendicular to B0,
and causes the protons and therefore also M0 to turn into the transverse plane.
The flip angle, α, is calculated according to Equation 2.2 [27].

α = γB1tp (2.2)

Often a flip angle of 90◦ is used, and it is accomplished by adjusting the duration
of the pulse, tp. The RF pulse will cause a coherent spin pattern. M0 induces
a current in the transmit coil where the voltage of the signal is measured. The
signal decays exponentially, and M0 aligns gradually with B0 when the RF pulse
is switched off. The relaxation times T1 and T2 are measured during the relax-
ation to the initial state. T1 is defined as the time required to reach 63% of M0
and varies between different tissue types. Similarly, T2 is defined as the time re-
quired for the protons to dephase in the transverse plane [27].

Conventional contrast weighted images are generated by the use of different com-
positions of pulse sequences, which consist of the emitted RF-pulse and gradient
pulses that are sent out with a specific pattern and timing. The two parameters
repetition time (TR) and echo time (TE) control at which points in time the mea-
surements appear, and adjustment of TR and TE makes it possible to acquire the
desired tissue contrast [27].

In order to know the spatial position of the signal, gradients are added to the
magnetic field. According to Equation 2.1, we know that a change in the static
field B0 will cause a change in frequency. The change in the gradient field in each
position is known. The receiver is tuned into only detecting a specific frequency
and it is therefore possible to determine where the signal has arisen [27].

2.2.1 Synthetic MRI

Synthetic MRI is a simulation method that is used to generate contrast weighted
images based on an MR quantification scan. SyntheticMR uses a sequence that
measures relaxation rates R1 and R2 and proton density (PD). The sequence uses
multiple echoes which makes it possible to calculate T2 in each pixel since TE
and TR are known. By repeating the sequence several times with varying delay
times, it is also possible to calculate T1 in each pixel. This will result in a total of
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eight images which can be transformed into R1, R2 and PD maps [28], see Figure
2.6.

Figure 2.6: Quantitative maps

These maps chart the magnetic properties of the tissue and make it possible to
synthesize the data into contrast weighted images such as T1W, T2W, PDW, T2W
FLAIR and PSIR, appearing very similar to conventional images. Examples of
synthetic images can be seen in Figure 2.7. Consequently, one could say that
synthetic MRI is a form of translation where it is possible to translate the quanti-
tative maps into contrast-weighted images [4].

Conventional MR has a disadvantage since the emitted signal intensity is affected
by several scanner settings. The image appearance will for example be effected
by inhomogeneities in the B1-field and sensitivities in the coils, which vary be-
tween different scanners but also between examinations, making it impossible to
compare the intensities between images acquired at different time instances [28].
This disadvantage does not occur in synthetic MRI since the quantification has
an absolute scale, which is independent of scanner settings and imperfections of
the system [29, 30].

The synthetization is based on the signal equations, (Equation 2.3, 2.4 & 2.5)
together with the result from the acquired parametric maps. By adjusting TR, TE
and TI virtually it is possible to calculate a synthetic contrast weighting within
each pixel. Equation 2.3 is used to create T1-, T2- and PD-weighted images, by
adjustment of TR and TE [29].

S = P D(1 − e−R1T R)e−R2T E (2.3)

SP SIR = P D(1 − 2e−R1T I + e−R1T R)e−R2T E (2.4)

SFLAIR = |SP SIR|
{

where T I is chosen so that
(1 − 2e−R1T I + e−R1T R) = 0 for CSF

(2.5)
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Figure 2.7: The synthetic weighted contrast images

SyMRI also generates different tissue maps, such as myelin, GM, WM and CSF.
These maps are based on statistical studies on healthy subjects [31], an example
of the tissue maps can be seen in Figure 2.8.

Figure 2.8: The tissue composition maps
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2.2.2 Appearance of MS in MRI

As described in section 2.1.4, there is a change in tissue composition within the
MS lesion, and these changes can be detected in an MR image. T2W FLAIR is
commonly used to detect MS lesions due to their prominent appearance in this
contrast weighting. Inflammation causes an accumulation of water which will
generate a hyperintense appearance due to decreased R2 rate. One disadvantage
with the T2W contrast weighted image is that it is incapable of describing disease
activity. The hyperintense appearance can be a sign of inflammation, oedema or
axonal loss, but it is not possible to differentiate these conditions [18, 20], result-
ing in a poor correlation between disability and T2W lesion load [22]. However,
the T2W contrast is important to more easily fulfill the dissemination in space
criteria for diagnosis [18].

Disease activity is estimated with the use of a contrast agent called gadolinium,
which is a paramagnetic substance. An active lesion will accumulate the contrast
agent, causing a hyperintense appearance in the T1W image due to the shortened
T1 relaxation. This is an indication that there is a disruption of the BBB, and
that the lesion belongs to an early inflammatory phase [20]. Unenhanced T1W
lesions can be both hypointense and isointense, but are always hyperintense in
T2W [18]. All lesions undergo this active phase, which lasts for 2-8 weeks before
the damage of the BBB is repaired. The active lesions are a sign of myelin destruc-
tion [20], and long-time-active lesions run a greater risk of evolving to persistent
black holes [18].

Unenhanced T1W lesions appear hypointense and are often referred to as black
holes [2, 18]. The lower signal appears due to a widening of the extracellular
space, that is created due to axonal loss and oedema. Many T1W lesions are isoin-
tense and are therefore not visible in the image. Most of the black holes show
signs of irreversible tissue destruction and have a greater correlation of clinical
disability than the T2W lesion load [18, 20]. Some black holes become perma-
nent, others manage to disappear with time which is an indication of repair and
remyelination. The black holes are more common in SPMS than in RRMS which
may indicate that the remyelination mechanism is failing with the progression of
the disease, causing increased disability [20].

The remyelination is a frequent process in MS and generates a hyperintense ap-
pearance in a T2W image. The signal is weaker compared to demyelinated le-
sions but brighter than normal appearing white matter. This is also true for the
shadow plaques which are associated with full repair. The change in signal inten-
sity can be explained by the newly produced myelin sheaths which are thinner
than normal, causing a larger extracellular space. Similarly, this can be seen for
T1W remyelinated lesions where the slightly expanded cellular space increases
the T1 relaxation, generating a signal between the signals of white matter and
demyelinated lesions [22].
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Examples of three different lesion stages can be seen in Figure 2.9. The lesion
located at the yellow arrow has a vague appearance in T2W FLAIR and PSIR, and
is not visible in T1W, indicating an early stage of the progression phase. The le-
sion located at the orange arrow is visible in all images, the appearance in T1W
indicates an increase of oedema and inflammation. The lesion located at the red
arrow has a distinct appearance in T1W, indicating a black hole and severe axonal
damage. The appearance is even more prominent in the PSIR image, and a dark
area has appeared within the hyperintense lesion in T2W FLAIR. This indicates
increased water content since the signal of the free water is suppressed by the
inversion recovery.

Figure 2.9: An example of three lesions with different progression states
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Method

This chapter describes the method used in this study. The used data are described
briefly, and a description of the manual segmentation is given. The implementa-
tion of the two aims is described including the approach to validate the results.

3.1 Study Participants

The data used for this study are divided in two separate groups. The first group
consists of 4 healthy volunteers and the second group consists of 12 patients di-
agnosed with MS. The MS group consisted of eight females and four males, with
a mean age of 36.82 ± 8.79 years. The healthy volunteers have a mean age of
39.33 ± 7.89 years with an equal distribution of men and women. During the im-
plementation phase, two data sets of MS and two data sets of healthy volunteers
were used. These data sets were not used in the validation phase.

3.2 Image Acquisition and Synthetisation

The data have been collected with a 3T Philips Medical Systems Achieva dStream
scanner. The data have a slice thickness of 4.5mm, slice gap of 0.5mm and an
in-plane resolution of 0.6x0.6mm for the patients diagnosed with MS. For the
volunteer data, there is a slice thickness of 4.0mm, a slice gap of 1.0mm and an in-
plane resolution of 0.48x0.48mm. The data were collected by the QRAPMASTER
sequence and post processed with SyMRI prototype 18Q3 (0.45.6). The different
parameters used to synthesize the contrast-weighted images can be seen in Table
3.1.

17
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Contrast TR [ms] TE [ms] TI [ms]
T1W 500 10 −
T2W FLAIR 15000 100 3000
PSIR 6000 10 500

Table 3.1: Parameters of the different contrast weightings

The data is ethically approved and used with permission.

3.3 Manual Segmentation

The manual segmentation of the assumed MS lesions was performed by the au-
thor of this Master’s Thesis, and is considered as ground truth for the validation.
The segmentation was only performed for lesions located within WM, but in obvi-
ous cases, juxtacortical lesions were also included. A neuroradiologist at the De-
partment of Radiology at Linköping University Hospital was consulted on how
to segment lesions. However, the neuroradiologist has not verified the manual
segmentation.

3.4 Implementation

The implementation was performed in Matlab 2017b (MathWorks, Natick, Mas-
sachusetts, USA) and the images were generated by SyMRI, including quantita-
tive maps, synthetic contrast images and tissue composition maps.

3.5 Analysis of the MS Lesions

In order to understand the behaviour of the pathological voxels, they were stud-
ied in different parametric spaces. It was found that the lesion voxels were clus-
tered within a specific area when imported to an R1-R2 space. This can be seen
in Figure 3.1 where the green voxels are collected from a (whole) healthy brain,
and the blue voxels are collected from the manually segmented lesions. As seen
in Figure 3.1, the MS voxels have a specific distribution in the R1-R2 space, to-
gether with the typical locations for WM, GM and CSF [32]. This discovery was
used to define the progression model and was also used in a minor part of the
automatic segmentation algorithm.
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Figure 3.1: The distribution between MS and healthy tissue

3.6 Development of the Automatic Segmentation
Algorithm

The algorithm operates slice wise and has been designed with the main purpose
of eliminating areas that are non-pathological, taking advantage of the large in-
formation within the quantitative data. The structure of the algorithm can be
seen in Figure 3.2 and is further explained below.

Figure 3.2: The automatic segmentation algorithm
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3.6.1 Intracranial Mask and Intensity Adjustment

The development of the algorithm starts with the removal of the cranium which
is done by using the intracranial mask available in the SyMRI software. An inten-
sity adjustment is performed for the PSIR and FLAIR images since the values in
these images are used later in the algorithm and need to be of similar magnitude.

3.6.2 WM Mask

A binary WM mask was created with the purpose of only keeping voxels consist-
ing of white matter. However, lesions seldom contain any WM in SyMRI, due to
the relaxation change caused by the degeneration of myelin and oedema. There-
fore, an operation that covers the holes caused by lesions, ventricles or brain folds
was added. The resulting mask can be seen in Figure 3.3.

Figure 3.3: The WM mask

3.6.3 CSF- & GM Mask

A CSF- and GM mask were used with the purpose of removing ventricles, brain
folds, exterior fluids and cortex. It is important to create these two tissue types to
one united mask since GM and CSF typically are connected, making the elimina-
tion more effective. However, all CSF- and GM voxels cannot be removed since
lesions can mimic the appearance of GM tissue (non-myelinated) and CSF (severe
tissue destruction).

The CSF mask is created in two separate steps since the periventricular lesions
consist of a larger amount of water and therefore has to be treated separately. The
separation was performed with a simple algorithm that differentiated the ventri-
cles by finding a greater continuous area consisting of CSF located in the centre
of the brain. A threshold of 75% was used for this area, removing all voxels hav-
ing a larger CSF concentration than the threshold. For the exterior CSF a lower
threshold was used, 20%, making it possible to remove brain folds of larger size.
The edge of the intracranial mask was added with the purpose of connecting all
exterior CSF.

A GM mask was thereafter created with a threshold of 70%. The three masks
were merged together, as seen in Figure 3.4. However, small areas in the result-
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ing mask were removed since these could be possible lesions. This mask is effec-
tive, since the added cranial edge reassures that the exterior CSF and connecting
GM will be removed. However, the removal of smaller areas often results in that
smaller brain folds remain after the operation.

Figure 3.4: The different stages of the CSF- & GM mask

3.6.4 Exterior Gradient Mask

This step is performed to remove the outer parts of the cortex. This area is typ-
ically hyperintense in synthetic T2W FLAIR due to partial volume effects, but
should not be confused with pathological tissue. The surroundings were mod-
ified to generate a large difference between the remaining tissue and the edges.
A magnitude gradient, calculated in two directions was applied, generating large
gradient at the edges, due to the great value difference. The resulting gradient im-
age was translated into a binary image and thereafter used as a mask to remove
the edges. The exterior gradient mask can be seen in figure 3.5

Figure 3.5: The exterior gradient mask

3.6.5 Multiplication of FLAIR, Inversed PSIR and Inversed Myelin

The purpose of this step was to enhance the lesions, making them more promi-
nent compared to the surrounding nonpathological tissue. A multiplication of
T2W FLAIR, PSIR and myelin was performed, where the PSIR image and the
myelin map were inverted so that the lesions also appear hyperintense in these
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images. The myelin tissue map was used since a decrease of myelin is an indica-
tor of where the lesions are located. The result of this operation can be seen in
Figure 3.6

Figure 3.6: A multiplication of T2W FLAIR, inversed PSIR and inversed
myelin tissue map were used to enhance the lesions

3.6.6 Gradient Operation

A gradient operation was performed to detect the lesion edges. This operation
measures the gradient magnitude in two directions for each voxel. This is a good
approach since lesions often are surrounded by WM, causing a prominent signal
change because of their hyperintense appearance. The result of this operation
can be seen in the first part of Figure 3.7. The gradient was thereafter binarized,
resulting in the second part of the same figure. As can be seen, minor cortex
objects remain in the lesion mask. Hence, an erosion was performed, excluding
minor objects. By dilating this mask, and perform a multiplication with the first
gradient mask, the remaining GM were removed, without shrinking the edges of
the lesions. The final result is seen in the third part of Figure 3.7.
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Figure 3.7: The gradient operation and resulting binary mask

3.6.7 Myelin Mask

This mask is used to take advantage of the pathogenesis of the lesions. Since the
degeneration of myelin is one of the earliest processes, it is a good indicator of
where the lesions are located. As before, the threshold has been chosen with care,
so that early lesions do not vanish. The threshold was set so that voxels consist-
ing of over 35% myelin are removed. The maximum concentration of myelin in
SyMRI is 50%. The resulting mask can be seen in Figure 3.8.

Figure 3.8: The myelin mask

3.6.8 R1-R2-PSIR Check

In this step the analysis described in 3.5 was applied. After investigations it was
found that a R1-R2-PSIR space was appropriate to differentiate healthy tissue
from pathological, since the lesions always appear dark in a PSIR image. How-
ever, healthy tissue is also found within this distribution, and therefore uninten-
tionally included. In order to determine if a voxel belongs to the space, an alpha
shape was created, which is a shape that surrounds the voxels in the defined
space. The inbuilt Matlab function alphaShape, was used with an alpha radius
equal to 0.75. The resulting alpha shape and mask can be seen in Figure 3.9.
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Figure 3.9: Left: The alpha shape defining the MS cluster. Right: The result-
ing binary mask

3.6.9 R1-R2-PD Check

A second parametric space was defined with the purpose of removing perivas-
cular spaces. Perivascular voxels were segmented from two volunteer data sets
and placed in a parametric space together with the segmented MS voxels. It was
concluded that a R1-R2-PD space was most effective to differentiate the perivas-
cular spaces from lesions. The implementation of the perivascular alpha shape
was designed in the same way as described above. The resulting alpha shape and
binary mask is seen in Figure 3.10

Figure 3.10: Left: The alpha shape defining the space of perivascular spaces.
Right: The resulting binary mask
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3.6.10 Morphological Operations and Size Criteria

Some morphological operations were performed in the last step of the algorithm
which included the removal of spur pixels and to fill out minor holes in the al-
ready defined lesions. Thereafter smaller sized objects were removed. As de-
scribed in 1.2.1, a lesion has a width of at least 3mm by definition. However, with
the risk of removing too much pathological tissue in the earlier stages, a limit of
2.5mm was used in the algorithm, using the specific pixel width of the data set.
The maximum distance within the detected lesion was calculated by applying
the object pixels twice to the inbuilt matlab function pdist2, which calculates the
pairwise distance between two sets of observations. If the size criteria was not
fulfilled, the detected object was removed. Lastly, objects that had a geometry
that did not include a 3x3 pixel shape were removed, since small slim objects of-
ten remains from brain folds while the lesions have a more expanded shape. The
result can be seen in Figure 3.11.

Figure 3.11: Morphological operation and fulfillment of size criteria

3.6.11 The Resulting Lesion Mask

The resulting lesion mask is applied to the image obtained in section 3.6.5 and
translated into a colour scale. The final result of the automatic segmentation can
be seen in Figure 3.12 where it is applied to the T2W FLAIR image.

Figure 3.12: The final result of the segmentation
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3.6.12 Summation of All Steps

The result from each step is summarized in Figure 3.13.

Figure 3.13: The different steps of the automatic segmentation algorithm
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3.7 Development of the Progression Model

The structure of the progression model was mainly based on the discoveries de-
scribed in 3.5. The idea was to mimic the pathological voxel "migration" through
the R1-R2 space. As a prepossessing step, outliers were removed from the data
to get a more robust model.

3.7.1 Calculation of the Progression Curve

Based on the MS cluster, a third-degree polynomial function R2(R1) was esti-
mated, using the curve fitting toolbox in Matlab. The third-degree polynomial
was chosen since it mimicked the MS pattern most correctly, starting close to the
CSF cluster position and ending close to the WM cluster position. The resulting
equation can be seen in Equation 3.1 and the polynomial can be seen in Figure
3.14.

R2(R1) = 3.259R13 − 16.05R12 + 27.29R1 − 2.989 (3.1)

Figure 3.14: The calculation of the progression line R2(R1)

In the model it is assumed that a lesion travels from right to left by the progres-
sion line over time. The progression starts at the relaxation rates that are associ-
ated with healthy white matter. Demyelination and inflammation will cause the
lesion to progress downwards the progression line, the further it goes, the more
tissue destruction. A further progression is also associated with water accumula-
tion due necrosis. However, a lesion could also wander in the opposite direction
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with time, due to remyelination and healing of the tissue.

The progression line is associated with values between 0-100 that are evenly dis-
tributed throughout the line. A progression value of 0 is associated with healthy
tissue and a progression value of 100 is associated with total tissue destruction.
When performing the progression classification of an MS-voxel, the voxel is pro-
vided a progression value associated with the part of the progression line that is
closest to the MS-voxel. Summarized, the progression model depends on both R1
and R2 and is limited to a value between 0-100, i.e. Z(R1, R2) ∈ [0, 100].

3.7.2 The Resulting Progression Model

The progression model was applied to the manually segmented lesions, where
the assigned progression value was translated into a colour scale, where red rep-
resents a further progression. An example of the this can be seen in Figure 3.15.

Figure 3.15: The progression model

3.8 Testing

In order to validate the results correctly, the testing data were not used during
the implementation phase. The result from the automatic segmentation was com-
pared with the manually segmented ground truth. The resulting progression
model was tested on the manually segmented lesions and compared with the tis-
sue maps and synthesized images in SyMRI.
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3.9 Statistical Validation Tools

The results were validated based on two different methods. The first was to val-
idate the result pixel wise, which indicates how well the overlap between the
ground truth and the results were. These measures provide information of how
well the algorithm segments the lesions and are here referred to as sensitivity
and precision. The second method validates the total number of lesions, with the
purpose of estimating how many lesions that were missed, and how many lesions
that were falsely detected. A brief description of these statistical measures is seen
below.

3.9.1 Statistical Measures of Performance

The statistical measures used for validation are dependent on the variables below.

• True positive (TP) - Lesion data that were classified correctly

• False positive (FP) - Non-lesion data that were classified incorrectly

• False negative (FN) - Lesion data that were classified incorrectly

If two lesions are merged together to one bigger lesion in the algorithm, this re-
sults as in two TP in the result. If only a part of the real lesion is segmented, this
will be counted as one TP. The idea is to only look at the total number of lesions
based on the ground truth, i.e. the size does not matter in this case.

The true positive rate (TPR) identifies the ratio between the real detected lesion
and the total number of real lesions, see Equation 3.2. The positive predictive
value (PPV) identifies the ratio between the real detected lesion and the total
number automatically segmented lesions, see Equation 3.3 [33].

T P R =
T Plesion

(T Plesion + FNlesion)
(3.2)

P P V =
T Plesion

(T Plesion + FPlesion)
(3.3)

The above equations are also applied pixel wise, to avoid confusion, these are
defined as sensitivity (Equation 3.4) and precision (Equation 3.5).

Sensitivity =
T Ppixel

(T Ppixel + FNpixel)
(3.4)

P recision =
T Ppixel

(T Ppixel + FPpixel)
(3.5)



30 3 Method

3.9.2 Dice Similarity Coefficient

Dice similarity coefficient (DSC), which is a derivation of the Kappa statistics,
was used to compare size and spatial location of the lesions between the manual
and automatic segmentation. This measure is only used for the TP lesions, with
the purpose of evaluate the overlap of the detected lesions. The formula for the
DSC can be seen in Equation 3.6, where A is the manual segmentation, B is the
automatic segmentation and n is the number of pixels [34]. Figure 3.16 illustrates
the relationship of the intersection ∩.

DSCT P = 2
n{AT P ∩ BT P }
n{AT P } + n{BT P }

(3.6)

Figure 3.16: Definition of intersection

The numerator measures the spatial overlap between the two segmentation types,
and the denumerator measure the total amount of pixels in both segmentations.
DSC equals to a value between 0 and 1, where 0 is no overlap and 1 is total over-
lap, a DSC > 0.7 is considered as a satisfactory result [34, 35]. DSC is more
sensitive to location than size, which is a suitable approach since the manually
segmented size of the lesion can differ vastly between radiologists [35]. An exam-
ple of the location sensitivity can be seen in Figure 3.17.

Figure 3.17: An example of the DSC
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Results

The result of the two aims are presented in this chapter.

4.1 Results from the Automatic Segmentation

In this section are the results from the automatic segmentation presented. Statis-
tical measures are presented in the Tables 4.1-4.6, where TPR and PPV is applied
for each individual lesion and the sensitivity and precision is applied for each
pixel in the image. The DSC is applied only to the TP lesions to get an idea how
well the overlap is for the actual lesions.

Six tables are presented, one which includes all data sets (Table 4.1). Table 4.2-
4.6 can be compared to see how the algorithm performs in the lower and upper
part of the brain. For each statistical measure, mean-, max-, min and standard
deviation values are given, and the tables are presented with some example im-
ages.

Whole brain TPR PPV Sens Prec DSC
mean 0.75 0.38 0.62 0.23 0.56
min 0.00 0.00 0.00 0.00 0.00
max 1.00 1.00 1.00 0.86 0.97
σ 0.26 0.15 0.21 0.10 0.20

Table 4.1
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4.1.1 Results from the Cerebellum and the Lower Part of the
Cerebrum

Here are the results based on lesion location for the lower part of the brain, in-
cluding images consisting of cerebellum in Table 4.2 and images containing the
upper cerebellum together with the lower cerebrum in Table 4.3. Only seven data
sets where used for the cerebellum since the remaining three did not contain any
lesions in this area. The remaining tables is based on result from all ten data sets.

Cerebellum TPR PPV Sens Prec DSC
mean 0.60 0.34 0.51 0.16 0.34
max 1.00 1.00 1.00 0.58 0.91
min 0.00 0.00 0.00 0.00 0.00
σ 0.40 0.23 0.35 0.13 0.25

Table 4.2

Figure 4.1: Result from the cerebellum, a high sensitivity and TPR, but in
this case are some FP lesions found, generating a lower precision and PPV.
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Cerebellum
& cerebrum

TPR PPV Sens Prec DSC

mean 0.68 0.18 0.53 0.07 0.48
max 1.00 0.61 1.00 0.27 0.90
min 0.00 0.00 0.00 0.00 0.00
σ 0.29 0.10 0.23 0.05 0.23

Table 4.3

Figure 4.2: The upper cerebellum and the lower part of the cerebrum gener-
ates by far most FP lesions. GM has a much more complex structure in this
area, causing the hyperintensities to be misinterpreted as lesions.

4.1.2 Results from the Cerebrum

Here are the results based on lesion location in the cerebrum. Table 4.4 shows
the results from the lower part of the cerebrum and in Table 4.5 and 4.6 are the
results from the middle versus the upper part of the cerebrum.

Lower
cerebrum

TPR PPV Sens Prec DSC

mean 0.81 0.30 0.61 0.18 0.57
max 1.00 0.86 1.00 0.47 0.90
min 0.00 0.00 0.00 0.00 0.00
σ 0.28 0.13 0.26 0.10 0.25

Table 4.4
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Figure 4.3: The lower part of the cerebrum often generates many FP lesions,
this is mainly due to the complex structure of GM.

Figure 4.4: The lower part of the cerebrum often generates many FP lesions,
in this case, the partial volume around the ventricles affects the precision
negatively.
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Middle
cerebrum

TPR PPV Sens Prec DSC

mean 0.71 0.38 0.62 0.27 0.60
max 1.00 0.94 1.00 0.70 0.97
min 0.00 0.00 0.00 0.00 0.00
σ 0.27 0.20 0.27 0.17 0.26

Table 4.5

Figure 4.5: The middle part of the cerebrum. The sensitivity and TPR in-
dicates good results, but the precision and PPV indicates that quite many
FP are found. In this case, the partial volume around the ventricles affects
the precision negatively. The DSC for the TP lesions indicates a satisfactory
result.
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Figure 4.6: The middle part of the cerebrum. A relatively good result over-
all, only a few lesions have been missed out and the DSC for the TP lesions
indicates a satisfactory result.

Figure 4.7: The middle part of the cerebrum, where the main issue for the
segmentation is the partial volume due to the large slice thickness, both
around the ventricles and shallow brain folds. This generates a severely low
PPV and precision.
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Upper
cerebrum

TPR PPV Sens Prec DSC

mean 0.71 0.47 0.61 0.29 0.57
max 1.00 1.00 1.00 0.84 0.95
min 0.00 0.00 0.00 0.00 0.00
σ 0.31 0.22 0.26 0.14 0.24

Table 4.6

Figure 4.8: Upper part of the cerebrum where the majority of lesions are
found. Some brain folds, (lower part of the image) are mistaken as lesions.

Figure 4.9: The upper part of the cerebrum, 2 of 3 lesions where found. The
DSC for the TP lesions indicates a satisfactory result. Since no FP lesions
where found, the precision and PPV is high.
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4.2 Results of the Progression Model

The result from the progression model is presented in Figure 4.11, 4.14, 4.17,
4.20 and 4.23. Each one of these figures are accompanied with figures generated
by SyMRI for comparison. The T1W is added with the purpose of differentiate
tissue destruction via the black holes and T2W FLAIR is used for an intensity
comparison. The myelin map is added to see how far gone the demyelination
is and the CSF map is added with the purpose of finding water accumulations.
Lastly, the NON map is added which resembles pixels that have not been clas-
sified by SyMRI. This map is added since lesion areas frequently are classified
as NON, since these areas do not resemble healthy tissue. In Figure 4.10, the re-
lationship between the progression value and the mentioned parameters can be
seen.

Figure 4.10: The relation between the progression value and myelin-,
CSF-, and NON-concentration and the synthesized T1W signal. This proves
that the progression value correlates with the tissue changes seen during
lesion progression.
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Result Example 1

Figure 4.11: Final result of the progression model

Figure 4.12: Tissue concentrations generated by SyMRI

Figure 4.13: T2W FLAIR and T1W generated by SyMRI
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Result Example 2

Figure 4.14: Final result of the progression model

Figure 4.15: Tissue concentrations generated by SyMRI

Figure 4.16: T2W FLAIR and T1W generated by SyMRI
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Result Example 3

Figure 4.17: Final result of the progression model

Figure 4.18: Tissue concentrations generated by SyMRI

Figure 4.19: T2W FLAIR and T1W generated by SyMRI
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Result Example 4

Figure 4.20: Final result of the progression model

Figure 4.21: Tissue concentrations generated by SyMRI

Figure 4.22: T2W FLAIR and T1W generated by SyMRI
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Result Example 5

Figure 4.23: Final result of the progression model

Figure 4.24: Tissue concentrations generated by SyMRI

Figure 4.25: T2W FLAIR and T1W generated by SyMRI
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Discussion

This chapter contains a discussion based on the results seen in chapter 4. The
results from the automatic segmentation algorithm and the results from the pro-
gression model are discussed separately.

5.1 Automatic Segmentation Algorithm

From the result in section 4.1 it can be seen that the automatic segmentation al-
gorithm is fairly sensitive, but not precise, meaning that most of the lesions are
found, but many FP lesions are detected. It can also be seen that the algorithm
generally performs better in the cerebrum. The poor performance can partly be
explained by the lack of data, the algorithm was implemented using only two
data sets, which is too few to create a robust solution.

Table 4.1 indicates that approximately 75% of the true lesions where found and
that approximately 38% of the detected lesions are correct. This is not a satis-
fying result, since a very large number of FP lesions are detected. However, the
algorithm was designed to be sensitive, since a radiologist needs support to find
the vague lesions, the prominent are easily found. Some of the FP lesions can be
ruled out by the author, but some of these could be TP lesions, but a radiologist
would need to confirm this.

When observing Tables 4.2-4.6 it can be concluded that the algorithm performs
differently depending on brain location. Best result was seen in the middle and
upper part of the cerebrum where approximately 70% of the true lesions were
found. The upper cerebrum generates the largest PPV and precision meaning
that fewer FP lesions are found here. However, approximately 50% of the seg-
mented lesions are FP, so the result is not satisfactory. Lowest precision is seen in
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the images of the combined cerebrum and cerebellum, where an extreme amount
of FP lesions are found. The best result of the DSC is seen in the cerebrum with
a mean of approximately 0.60. This indicates a fairly good overlap, having in
mind that a satisfactory DSC is greater than 0.70, as mentioned in section 3.9.2.
However, it is important to remember that this result only regard the TP lesions,
the result would have been lower if the FP lesions were included.

It has previously been reported that synthetic T2W FLAIR suffers from hyper-
intensity artifacts which are not present in conventional images [36] [37]. The
hyperintensity artifact occur in synthetic images due to partial volume, where
the signal from both CSF and parenchyma is detected in each voxel. This is not
the case for conventional FLAIR images, where the signal from CSF is fully sup-
pressed. It is probable that the automatic segmentation algorithm would perform
better if this artifact did not exist, since the algorithm is designed to detect T2W
FLAIR hyperintensities.

The large slice thickness of 4.5mm causes problems, since it causes shallow ven-
tricles and brain folds to appear hyperintense in the synthetic T2W FLAIR, due
to the partial volume effects described above. An example of this can be seen in
Figure 5.1.

Figure 5.1: The precision and PPV is low due to the detection of shallow
brain folds, appearing as hyperintense areas in the synthetic T2FLAIR image.
These FP lesions (red arrows) are pointed out at the adjacent slices (blue and
purple arrow). Also note the partial volume around the ventricles which also
affects the result.

The large slice thickness causes an averaging of the signal creating a partial vol-
ume effect, especially around the ventricles and brain folds. The signal is there-
fore interpreted as tissue with an increased water concentration, which is very
similar to the tissue composition of a lesion. This caused the algorithm to mis-
takenly identify these areas as pathological, which effected the results negatively.
After studying several images over the cerebrum, it was found that the FP lesions
mainly occurred due to this problem. According to Rovira et al. a slice thickness
of 3mm is recommended [24], this should be considered in future studies.
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The algorithm performs poorly in slices that include both the cerebrum and cere-
bellum. GM has a more complex structure here, interacting with WM to a larger
extent. This causes the GM mask in the algorithm to be less "connected", and due
to this, parts of the GM are not removed. Comparing this to the wide areas of
WM in the cerebrum, it is easy to understand the difficulties of detecting lesions
within this area. Furthermore, this part of the brain was by far the most complex
part to analyze during manual segmentation, so it is not surprising that a poor
result is seen here.

A major drawback is the small amount of data used in this study. The algorithm
was developed on two data sets, and the development was mainly performed
within the middle of the cerebrum. This is reflected in the result, since the algo-
rithm were unintentionally designed to perform better in this part of the brain.
Furthermore, during implementation, data sets with a high lesion load were used.
This can partly explain the low precision, since the algorithm was designed to de-
tect vague lesions. When the algorithm is applied to a brain with a low lesion
load, it is too sensitive and detects nonpathological tissue.

Lastly, it should be mentioned that the results from this implementation can be
questioned, since the ground truth has been stated by the author of this report.
It is probable that some lesions have been missed, but also possible that healthy
tissue has been misclassified. This could affect the results, either good or badly.
The results could also be biased, since the author has created the algorithm based
on her opinion of lesion appearance. It would have been desirable to have a neu-
roradiologist who performed the manual segmentation.

5.2 Progression Model

Unlike the automatic segmentation algorithm, the progression model is not com-
pared to a binary ground truth and cannot be validated based on the statistical
measures used above. However, the result can be compared to the synthesized
MR images and the tissue maps generated from SyMRI and the theory summa-
rized in 2.1.4 and 2.2.2.

The progression model indicates a fairly good correlation with the quantitative
myelin concentration. Where total myelin degeneration is seen, the progression
model confirms a further progression. When studying the myelin graph in Fig-
ure 4.10, it can be seen that a higher concentration of myelin correlates with a
minor progression value. In this graph it can also be seen that complete myelin
destruction appears for progression values larger than approximately 75.

When studying the CSF graph in Figure 4.10, it can be seen that the CSF con-
centration is linearly increasing for larger progression values, this is also seen in
the CSF images where a further progression correlates with a larger accumula-
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tion of water. This agrees with theory, since high water concentration indicates
a widening of the extracellular space due to tissue destruction. From this graph
it can also be concluded that lesions with a minor progression value does not
contain any water. However, the CSF map represent free water, meaning that
parenchymal water due to inflammation and oedema is excluded. This tissue is
typically classified as NON instead, since this tissue composition does not appear
in a healthy brain. The lesion areas classified as NON, appear to have a decrease
in R2 rate compared with areas with a lower progression values, which indicates
oedema. So even if the CSF concentration is classified as 0 in these areas, they
most likely consist of parenchymal water to some extent.

Lesions classified with a larger progression value are hypointense in the T1W
image, which is a promising result since the black holes are associated with tis-
sue destruction. It can also be seen that pixels classified with a progression value
smaller than approximately 70 are isointense in the T1W image, which indicates
just a small (or no) tissue destruction. This relationship can also be seen in the
T1W graph in Figure 4.10.

Studying the T2W FLAIR weighted images, it can be seen that hypointense areas
correspond to a larger progression value. This is a sign of water accumulation
and severe tissue destruction since the signal is suppressed.

Based on this, it can be concluded that the progression model could be a useful
tool clinically, since it summarizes the information seen in the T1W- and T2W
FLAIR images and the CSF- and myelin maps. A great advantage is that the
model is based on quantitative data, making it possible to study the progression
over time for an individual patient.

It is possible that this type of solution could be used to give an indication of
when to change medication or to better understand the disease progression of
the patient. Furthermore, it is possible that the model could substitute the use of
gadolinium in the diagnostic phase, if it can be proven that lesions with different
progression states could indicate separate attacks.



6
Conclusion

The purpose of this master’s thesis was to develop an automatic segmentation
algorithm and a progression model for white matter MS lesions. The conclusions
from these two aims are presented below.

Create an algorithm that performs an automatic segmentation of possible mul-
tiple sclerosis lesions.

An automatic segmentation algorithm was implemented with the purpose of seg-
menting possible multiple sclerosis lesions. The results indicate a relatively high
sensitivity, detecting approximately 70 − 80% of the cerebrum lesions, but gener-
ally with a low precision. The low precision was especially seen in the combined
cerebellum and cerebrum, where the gray matter has a more complex structure.
The large number of FP lesions occurs mainly due to the large slice thickness of
the data, making shallow brain folds and ventricles to mimic the characteristics
of multiple sclerosis lesions. One major disadvantage was the lack of appropriate
data, the development of the automatic segmentation algorithm was developed
on two data sets with high lesion load, more data would have been desirable.
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Examine whether any characteristics of multiple sclerosis lesions can be found
in the quantitative MR data, and propose a model that classifies these lesions
based on their progression.

It was found that the multiple sclerosis lesions are located in an explicit area
within the R1-R2 space and that both these values are decreased with increased
tissue destruction. The progression model was implemented based on these in-
sights, estimating a third-degree polynomial which mimicked the change in re-
laxation rates. The resulting model was thereafter assigned a progression value
between 0-100 which was evenly distributed over the estimated polynomial.

The progression model showed promising results when compared with synthetic
and quantitative data and could be interesting to develop further. It is possible
that this type of model could be useful when monitoring patients with MS, as-
sisting the neuroradiologist with quantitative information regarding the lesion
states. It is possible that this could ease decisions regarding medication, but also
to eliminate the use of gadolinium during diagnosis, if it can be proven that it
can fulfill the dissemination in time McDonald criteria.
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Future Work

In this chapter are some thoughts and ideas presented of how the two aims could
be developed further in the future.

7.1 Automatic Segmentation Algorithm

First of all, it would be desirable to increase the number of subjects during the
implementation phase, which would increase the possibilities of a more robust
algorithm. It is also possible that a more robust automatic segmentation algo-
rithm could be developed if the algorithm were adapted by lesion location in the
brain. The result of this report showed a better result in the cerebrum, and it
should be possible to adapt the algorithm to perform better in the cerebellum
as well. The segmentation should also preferably be divided in lesion types, so
that the different types of lesions (i.e. juxtacortical, periventricular etc.) can be
treated separately. This would increase the sensitivity of the algorithm. Future
work should also include cortical lesions which can be detected in the double
inversion recovery (DIR) weighting [24].

7.2 Progression Model

The progression model indicates a promising result but could be developed fur-
ther to be more useful clinically. A suggestion is to investigate how the progres-
sion value change over time for each individual lesion. By finding the maximal
progression pace, it is possible that a progression model could fulfill the dissemi-
nation in time criteria during diagnosis. If a patient has both far progressed and
non-far progressed lesions, it could be a sign of two separate attacks. Hence, it
would be possible to get an earlier diagnosis, without the negative effects of the
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gadolinium contrast. Furthermore, it could be investigated how different med-
ications affect the lesion progression, it is possible that this type of tool could
ease the monitoring of the patient. Lastly, it could be interesting to compare the
progression distribution between the different MS types.
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