
An Adaptive Strategy For
Short-Term Stock Trading Using

Reinforcement Learning

MSc. in Applied Financial Mathematics

Author: Lloyd Kizito

Examinor: Daniel Axehill, Linköping University
Technical supervisor: Farnaz Adib Yaghmaie, Linköping University

Supervisor: Jakob Åslund, Linköping University
External supervisor: Claes Antonsson, Celerus Capital

Department of Electrical Engineering
Division of Automatic Control Linköping University

Spring semester, 2022

Abstract

Reinforcement learning is a powerful tool for tackling sequential decision making problems. These
sorts of problems require that at each point in time, you choose between a set of actions, that is
to say, make a decision. Each action/decision leads to a new state from which you have to make
a new decision again and the process goes on. Reinforcement learning solves these problems in
a way that optimal actions/decisions are made throughout the process as we progress. In this
thesis, the problem of intraday or short-term equity trading is formulated as a sequential decision
making problem and solved using reinforcement learning.

A model which executes trades based on the signals generated by a reinforcement learning
algorithm is implemented in Python. The market movements in the model are simulated from
historical ERICSSON B stock prices via feature engineered approaches developed for this thesis.
Portfolio returns in the form of profits made in each episode simulation are calculated and used
to asses model performance. Validation is later carried out on the trained model using out-of
sample data to further assess model generalization capabilities to unseen data.

The results allow for three conclusions, firstly, when implementing reinforcement learning
agents, well assessed datasets with statistically significant empirical information are vital for
the agent (reinforcement learning algorithm) to learn an optimal policy. The use of technical
indicators for example in this thesis yielded no good results but instead, led to over-fitting.
Better results were yielded by using best buy and sell prices data with their respective volumes.
Secondly, reinforcement learning agents can find a good policy with good rates of return, but
much work must be put into formulating a good reward function and rewarding system. Rewards
awarded at wrong time intervals can easily lead to local optimums and over-fitting. A poorly
formulated reward function also creates peculiar behavior that leads to difficulty in learning
the optimal policy. Lastly, agent performance evaluation under training is difficult, therefore, a
well defined Markov decision process should be implemented so as to keep track of performance
during training and validation, since these processes take a lot of time to simulate. Evaluating
performance after training or validation can turn out to be a time consuming endeavor.

1

Acknowledgements

Firstly, I would like to thank my external supervisor, Claes Antonsson, for the opportunity to
write my thesis under his supervision at Celerus Capital and for the insights about trading on
the Nordic equity and derivative markets as well as continuously supporting me throughout the
study. Without your support, insights and resources, this thesis would not have seen the light
of the day. Secondly, I would like to express my gratitude to my two university supervisors,
Farnaz Adib Yaghmaie and Jakob Åslund, for your valuable insights and expertise. Your advise
and feedback ensured the quality of this thesis. To Farnaz, thanks for your insights on the
reinforcement learning theory.

2

Contents

1 Introduction 5
1.1 Purpose . 6
1.2 Delimitations . 6
1.3 Collaboration . 6

2 Related work 7

3 Theoretical background 8
3.1 Reinforcement Learning . 8

3.1.1 Motivation . 8
3.1.2 Markov Process and Markov Decision Processes (MDP) 9
3.1.3 Return, Policy and Value function . 10

3.2 Optimal Value Function and Optimal Policy . 12
3.2.1 The Gated Deep Q Network . 13

4 Method 18
4.1 Prediction and control . 18
4.2 Data collection and preprocessing . 18
4.3 Problem formulation . 19

4.3.1 Stock market modelling . 19
4.3.2 Trading signals and reward function . 20

4.4 Recurrent neural networks . 20
4.4.1 Bridging the Gap between RL and Trading 21

4.5 Training, validation and testing . 21
4.6 System interpretation of signals . 23
4.7 State input . 23
4.8 Optimization . 25

5 Results and Analysis 26
5.1 Profits and losses analysis . 26
5.2 Performance analysis . 30
5.3 Validation for out-of-sample data . 32

6 Discussion 34
6.1 Evaluation and Applicability of Results . 34
6.2 Suggestions for Future Improvements . 35
6.3 Ethical Aspects . 35

3

Nomenclature

ANN Artificial Neural Network

DP Dynamic Programming

DQN Deep Q Learning

GRU Gated Recurrent Unit

LOB Limit Order Book

LSTM Long Short Term Memory

MDP Markov Decesion Process

MLP Multi Layer Perceptron

NN Neural Network

P/L Profit and Loss

RL Reinforcement Learning

RNN Recurrent Neural Network

ROI Return On Investment

SEK Swedish Krona

SGD Stochastic Gradient Descent

TD Temporal Defference

4

1 Introduction

The stock market has evolved over the years, orders are now executed at very fast speeds by
sophisticated computer hardware and software systems with almost no human intervention. The
complexity of the stock market is enormous and in order to thrive in such harsh market condi-
tions, practitioners need systems that can adapt to the ever-evolving complexity of stock market
conditions.

Large sets of asset data are generated every day from trading systems, quantitative trading
aims at extracting different signals from these historical time series data-sets and traded volumes
to aid in trading decision making. This is normally done via statistical data analysis methods
that aim at capturing different dependencies in markets to try and predict future market move-
ments. The process of generating signals and executing trading decisions in a complex dynamic
environment can be described as an online decision making problem due to the fluctuations of
stock prices [1]. Reinforcement learning methods can be modelled as adaptive control methods
of uncertain nonlinear systems. Financial time-series forecasting for short-term trading, is a very
challenging task for both researchers and practitioners, the challenges mostly arise from the fact
that short-term financial time-series data is complex, noisy(mostly stochastic), nonlinear and
non-stationary [1]. Reinforcement learning involves an agent interacting with an environment,
the stock market in this study, which provides a numeric reward, profit in this study. The goal
of the agent is to learn how to take actions in order to maximize the reward [2].

Prior to an agent selecting an action, it must have a good representation of the environment
from which the agent chooses actions to take[3]. Therefore, perception is one of the core problems
to be tackled before the agent can decide to choose on optimal action. In some reinforcement
learning tasks, usually an expert in the field provides some hand-crafted features of the environ-
ment based on his knowledge of the task at hand. Nonetheless, for some real-world problems
with high dimensional sensory input, such as asset trading, pattern recognition, computer vision,
etc, hand-crafting these environments becomes an abysmal task. Learning good representations
of high dimensional state and action spaces is a major challenge in reinforcement learning [3].
There are however different ways to overcome this challenge. In this project, we incorporate
artificial neural networks with reinforcement learning where we use artificial neural networks for
function approximation of the environment. Previous research has shown that artificial neural
networks can be integrated into reinforcement learning methods. This is due to the fact that
ANN have shown potential in extracting abstract and sophisticated features from different cat-
egories of raw data, such as raw pixels of an image used in tasks as computer vision, time series
data for depicting stock market fluctuations [1], etc.

In this thesis, we propose an intelligent strategy that extracts stock market movement signals
and executes trading orders based on these extracted signals using recurrent neural networks
combined with Reinforcement Learning techniques, quite similar to the one which is proposed in
the work of [1]. We use different delimitations, different data-sets and different markets. Different
techniques to preprocess historical data are also used. We use a historical data-set from Nasdaq
Nordic called TotalView-ITCH, and from the data-set, we extract parameters in the form of a
limit order book. The recurrent neural networks is used for this project to extract informative
features from the data-set thus function estimating our trading environment. Market data is
highly complex, contains stochastic noise, is nonlinear and non stationary which makes it difficult
to regress over time even for neural networks [1], to combat this limitation, we use technical
indicators to summarize different market conditions. Technical indicators are mathematical
calculations based on price, volume and other stock data attributes. We use reinforcement

5

learning, to make the trading decisions. Specifically, we use the Q-learning algorithm. Q-learning
uses an off-policy control that separates the deferral policy from the learning policy and updates
the action selection using the Bellman optimality equations and the e-greedy policy [4].

1.1 Purpose

The purpose of this thesis is to implement an adaptive reinforcement learning based strategy for
stock trading, the strategy should be able to produce positive rates of return on investments.

1.2 Delimitations

In this thesis, the following delimitations have been made

- only one asset at a time will be simulated, with time, generalisation testing will be carried
out on a different asset,
- we will assume no slippage between our system and the brokerage firm,
- we will work with market orders, which means that every order sent to the brokerage firm
will be executed,
- all positions will be liquidated at the end of every training episode in order to assess
performance.

1.3 Collaboration

This thesis is written in collaboration with Celerus Capital AB which develops trading platforms
for in-house equity trading on European and Swedish stock exchange markets. The company is
owned and ran by Claes Antonsson, who is as well the external supervisor for this project.

6

2 Related work

In this literature review, we look at some research work that apply RL based methods to asset/stock
trading. The key difference between the work we review here and this thesis is that the reviewed
work applied RL methods to long term asset/stock trading, others to optimal asset allocation
while this thesis applies RL methods to short term asset/stock trading.

Research on practical reinforcement learning applied to real time stock trading is scarce.
Novel approaches have been studied in various research studies and they’ve shown exceptional
results when bench-marked with traditionally used methods. One of the major drawbacks of
reinforcement learning methods is the amount of data needed for training, and the hardware
to train the reinforcement learning models. Mody [5] studied the application of reinforcement
learning to trading systems and portfolios. In the study, the original Q learning algorithm was
used as the reinforcement method on the SP 500 stock data index for the 25 years between
1970 and 1994, the reinforcement trader achieved a simulated out-of-sample profit of over 4000%
for that period, outperforming the buy and hold strategy of about 1300% by Mody and Saffell
(ibid). Hirsa et al studied a deep reinforcement learning system on a multi-asset environment for
trading [6]. In their work, they realized that the DQN algorithm is prone to over-fitting if not
done carefully. The main factor cause is noted to be limited amount of training data compared to
the size of the neural network parameters. Nevmyvaka et al conducted an empirical application
of reinforcement learning to optimized trade execution [7], using a high frequency(millisecond
time) LOB data-set on NASDAQ stocks. The RL algorithm used Q-learning and dynamic
programming to exploit dependencies between market variables. In their study, they show that
the execution policies learned by RL can improve relative performance by as much as 50%. In
1995, Ralph studied optimal Asset Allocation using Adaptive Dynamic Programming on the
German stock market [8]. Here, asset allocation is formalized as a Markovian decision problem,
optimized by dynamic programming or reinforcement learning based algorithms. In the paper,
neural networks are used as function approximators. The method obtains an asset allocation
strategy that is superior when bench-marked with a heuristic policy. This work is a further
example which demonstrates the applicability of neural network based reinforcement learning
algorithms to a problem setting with a high dimensional state space. Conegundes [9] used a Deep
Deterministic Policy Gradient (DDPG) algorithm to solve a series of asset allocation problems
for day trading operations on the Brazilian Stock Exchange for the period 2017 until 2019. The
results were bench-marked with various Brazilian indexes. The proposed method outperformed
the benchmarks by a significant margin. Results obtained by the algorithm had a cumulative
percentage return of 311% in three years, with an annual average maximum draw-down around
19%

7

3 Theoretical background

This chapter describes the theoretical background for this project. The theory serves as the starting
point for the implementation and a mathematical basis for which the study is conducted. We start
off with the mathematical theory of reinforcement learning and recurrent neural networks, and
build the theory up to replicate our problem parameters. We then describe the mathematical
formulations of the technical indicators to be used and describe their economical significance. We
then describe the trading rules to be applied and the reward function to be used. We finish off by
describing the intended algorithm in the form of pseudo code.

3.1 Reinforcement Learning

3.1.1 Motivation

All learning control methods face a dilemma. They seek to learn action values conditional on
subsequent optimal behavior, but they need to behave non-optimally in order to explore all
actions (to find optimal actions). How can they learn about the optimal policy (a policy is a
description of how a decision maker behaves given his current state and goal) while behaving
according to an exploratory policy? One approach is called on-policy, this approach learns
action values not for the optimal policy, but for a near-optimal policy that still explores. A more
straightforward approach is to use two policies, one that is learned about and that becomes the
optimal policy, and one that is more exploratory and is used to generate behavior. The policy
being learned about is called the target policy, and the policy used to generate behavior is called
the behavior policy. In this case we say that learning is from data ”off” the target policy, and
the overall process is termed off-policy learning. In this work we consider off-policy methods [10,
ch. 5].

Reinforcement learning (RL) is a general approach of solving reward-based problems. RL tries
to mimic the way that a human learns new things, not from a teacher but through interaction with
the environment [11]. Q-learning is a form of model free reinforcement learning [4]. It provides
agents with the capability of learning to act optimally in Markovian domains by experiencing
the consequences of actions, without requiring them to build maps of the domains. Learning for
the implementation proceeds using methods of temporal differences (TD), where an agent tries
an action at a particular state, and evaluates its consequences in terms of the immediate reward
or penalty it receives and its estimate of the value of the state to which it is taken [4].

Q-learning uses an off-policy control that separates the deferral policy from the learning policy
and updates the action selection using the Bellman optimality equation and the e-greedy policy
[12].

Q-learning utilizes Q-functions to store actions into Q-tables, however, as the number of
actions increases, the available storage space becomes insufficient, precluding the solution of the
problem [12]. In other words, for complex learning problems with large state-action environments,
it is difficult to achieve effective learning. Researchers have proposed different ways to solve this
dilemma, the method we choose to use in this thesis is Deep Q-learning. Here, the Deep part
is a recurrent neural network with two gated recurrent neural network layers described more in
chapter 4.4.

Deep Q-learning combines neural networks with Q-learning where the neural network ap-
proximates the value function for every state. Furthermore, Deep Q-learning combines two more
methods aside from value approximation. One is experience replay and the other is the target Q
technique. The value approximation using a neural network is unstable, and the target network
stabilizes this. The target Q technique prepares the target network and the Q network separately.

8

It obtains the target value using the target network and causes the Q network to learn based on
the target value [12].

In the experience replay approach, all states, actions and rewards are affected by the previous
states, i.e. there exist correlations between states, and thus, the approximation function cannot
learn in a stable manner. The experience replay stores the experience in a memory buffer and
randomly samples the learning data, which eliminates correlations [12].

The mathematical theory below of Markov Decision Processes (MDP), that is, from sections
3.1.2 to 3.2 is derived from the books [13], [10].

3.1.2 Markov Process and Markov Decision Processes (MDP)

MDPs are a classical formalization of sequential decision making, where actions influence not just
immediate rewards, but also subsequent situations, or states, and through those future rewards
[10, ch. 3]. A sequence of random variables X0, X1, ... with values in a countable set S is a
Markov chain if at any time t, the future states (or values) Xt+1, Xt+2, ... depend on the history
X0, ..., Xt only through the present state Xt [13, ch. 1]. A sequence of states is said to fulfill the
Markov property if and only if the probability of moving to the next state St+1 depends only on
the present state St and not the previous states S1, S2, S3,, St−1. Mathematically, we write
for all t,

P [St+1|St] = P [St+1|S1, S2, S3, ..., St] (1)

In RL, we always consider time-homogeneous Markov chains, that’s to say, transitions from
one state to another are time (t) independent:

P [St+1 = s′|St = s] = P [St = s′|St−1 = s]. (2)

Definition 1: A Markov process/chain is a tuple (S, P), where S is a (finite) set of states and
P is a transition probability matrix. We assume the environment is a finite MDP. That is, we
assume that its state, action, and reward sets, S,A and R, are finite. MDPs can be applied to
problems with continuous state and action spaces, we focus on the finite state and action spaces
for this thesis.

Definition 2: A Markov decision process is a tuple (S,A, P, γ,R) where

• S is a finite set of states

• A is a finite set of actions

• P is the state transition probability matrix

• γ ∈ [0, 1] is called the discount factor

• R is a reward function from the state-action space.

The Markov decision processes (MDP) is used to model the environment in reinforcement
learning. In the MDP, the transition to the next state St+1 depends not only on the current
state St, but also on the action At taken at the current state. Furthermore, each state-action
pair is attached to a reward function. The dynamics of a MDP can be described as follows, we
start in some state s0, and choose an action a0 ∈ A. As a result of our action choice, the state of

9

the MDP randomly transits to some successor state s1, drawn from P a1s1,s2 . We proceed to take
the next action, and so forth. The figure below depicts the reinforcement learning states, actions
and rewards forming an MDP:

Figure 1: The RL environment.

3.1.3 Return, Policy and Value function

In RL, the purpose or goal of the agent (the learner or decision maker) is formalized in the terms
of a special signal, called the reward, passing from the environment to the agent. At each time
step, the reward is a simple number, Rt ∈ R. The agent’s goal is to maximize the total amount
of rewards it receives. This means maximizing not the immediate reward, but the cumulative
reward in the long run, this is achieved by choosing the optimal policy in every time step. If the
sequence of rewards received after time step t is denoted Rt+1, Rt+2, Rt+3 + ..., then what we
seek to maximize is the expected return, where the return, denoted Gt, is defined as some specific
function of the reward sequence. In the simplest case, the return is the sum of the rewards:

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (3)

where T is the final time step. The return formulation in eq. 3 is problematic for tasks that
continue on for long periods (continuing tasks) because the final time step would be T =∞, and
the return, which we are trying to maximize, could itself easily be infinite. Thus, we need an
additional concept of discounting. According to this approach, the agent tries to select actions
so that the sum of the discounted rewards it receives over the future is maximized.

We define return and policy as follows. Gt is the total discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + γkRt+3 + ... =

∞∑
k=0

γkRt+k+1. (4)

The discounted future rewards can be interpreted as the current value of future rewards. The
discount rate γ determines the present value of future rewards, a reward received k time steps
in the future is worth only γk−1 times what it would be worth if it were received immediately. γ
close to zero leads to myopic (short-sighted) evaluation while γ close to one leads to far-sighted
evaluation. There are several reasons why a discount factor γ, is introduced. The most intuitive
one is that animal/human behavior shows preference for immediate rewards compared to delayed

10

rewards. In our project, since the reward is financial, immediate rewards earn more interest than
delayed rewards.

A policy π is time independent and is defined as a distribution over actions given states.

π(a|s) = P [At = a|St = s]. (5)

A policy guides the choice of action at a given state. We introduce two value functions, i.e,
state-value function and action-value function that are used to find the optimal policy. The state-
value function vπ of an MDP is the expected return starting from state s, and then following the
policy π

vπ(s) = Eπ[Gt|St = s]. (6)

The state-value function vπ(s) gives the long-term value of state s while following the policy
π. The state-value function can be decomposed into two parts, i.e, the reward Rt+1 and the
discounted value of successor state γvπ(St+1).

vπ(s) =Eπ[Gt|St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]

= Eπ[Rt+1 + γ(Rt+2 + γRt+3 + ...)|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s]

= Eπ[Rt+1|St = s]︸ ︷︷ ︸
immediate reward

+ Eπ[γvπ(St+1)|St = s]︸ ︷︷ ︸
discounted value of successor state

(7)

The action-value function qπ(s, a) is the expected return starting from state s, taking action a,
and then following policy π

qπ(s, a) = Eπ[Gt|St = s,At = a] (8)

Similarly, the action-value function can be decomposed in the following way

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a]. (9)

Without loss of generality, we define Ras = E[Rt+1|St = s,At = a]. Define the following relation-
ships between vπ(s) and qπ(s, a) where

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (10)

qπ(s, a) = Ras + γ
∑
s′∈S

P ass′vπ(s′). (11)

Expressing qπ(s, a) in terms of vπ(s) in the expression for vπ(s), we get the Bellman equation
for vπ

vπ(s) =
∑
a∈A

π(a|s)

(
Ras + γ

∑
s′∈S

P ass′vπ(s′)

)
(12)

11

The Bellman equation relates state-value function of one state to that of other states. In a similar
manner, we get the Bellman equation for qπ(s, a) as follows:

qπ(s, a) = Ras + γ
∑
s′∈S

P ass′
∑
a′∈A

π(a′|s′)qπ(s′, a′). (13)

Transitioning from one state to another, taking actions, collecting rewards and computing optimal
policies with the Bellman equation leads to a system of nonlinear equations that are solved
efficiently using dynamic programming.

3.2 Optimal Value Function and Optimal Policy

For an MDP, we are interested in finding the optimal value function and the optimal policy. The
optimal state-value function v∗(s) is the maximum value function over all policies.

v∗(s) = max
π

vπ(s) (14)

The optimal value function gives the optimal performance in the MDP. We say an MDP has
converged when we know the optimal state value function.

q∗(s, a) = max
π

qπ(s, a). (15)

Before proceeding to optimal policies, we define the following notation:

π ≥ π′ if vπ(s) ≥ vπ′(s) ∀s. (16)

The optimal policy π∗ is better than or equal to other policies, π∗ ≥ π, for all π where ≥ is the
partial ordering in equation 16. Theorem 1 below guarantees that such optimal policies exist.
Theorem 1. For any Markov decision process,

• There exists an optimal policy π∗ that is better than or equal to other policies, π∗ ≥ π, ∀π

• All optimal policies achieve the optimal value function, vπ∗(s) = v∗(s)

• All optimal policies achieve the optimal action-value function, qπ∗(s, a) = q∗(s, a).

From the theorem, the optimal policy is found by maximizing q∗(s, a) over all actions

π∗(a|s) =

{
1 if a = argmax q∗(s, a),

0 otherwise.
.

(17)

Now we are ready to answer the question of how we get the optimal value function. We introduce
the Bellman optimality equation for this endeavor. Taking the relation between the optimal
state-value function and the optimal action-value function [10, ch. 3-4],

x∗(s) = max
a

q∗(s, a) (18)

12

q∗(s, a) = Ras + γ
∑
s′∈S

P ass′v∗(s
′). (19)

And expressing q∗(s, a) in terms of v∗(s), gives the Bellman optimality equation for v∗ and q∗.

v∗(s) = max
a

(
Ras + γ

∑
s′∈S

P ass′v∗(s
′)

)
(20)

and
q∗(s, a) = Ras + γ

∑
s′∈S

P ass′ max
a′

q∗(s
′, a′) (21)

3.2.1 The Gated Deep Q Network

In this section, we give a detailed description to deep Q learning. We then describe how it will
be used in our model, a diagram of the system is presented and pseudo code for the proposed
algorithm is given.

The problem in reinforcement learning is learning from interaction how to achieve a certain
objective [14]. The elements are the learner/decision maker which is called the agent, and the
environment, in which the agent interacts. With discrete time steps t = 1, 2, 3, ..., at time t the
agent receives some representation of the environment’s state, St ∈ S, where S is the set of all
possible states, and uses that to select an action At ∈ A(St) where A(St) is the set of all actions
available in state St. The agent chooses an action based on its policy πt, πt(s) depicts the action
chosen if St = s for a deterministic policy. On the next time step, the agent receives a reward
rt from the action taken At, and information about a new state St+1. The objective is to find a
policy πt that maximizes the cumulative rewards an agent will receive after time step t. Rewards
are discounted with a discount rate γ as a way of quantifying how we value future rewards. The
sum of all discounted rewards Gt is redefined here as follows:

Gt = rt+1 + γrt+1 + γ2rt+3 + ... =

∞∑
k=0

γkrt+k+1, (22)

The relationship between the discounted sum Gt and a policy π starting from state s, taking
action a, is given by the action-value function qπ. The action-value function as described in
equation 8 is the expected return of performing a certain action a in a given state s, and then
following a policy π afterwards. The action value function qπ is redefined as follows:

qπ(s, a) = Eπ[Gt|St = s,At = a]. (23)

The notion behind Q-learning [4] is trying to estimate the action-value function q∗(s, a)
associated with the optimal policy, where the optimal policy is the policy that maximizes the
expected Gt for any state. In so doing, the Bellman optimality equation below is solved:

q∗(s, a) = E(rt + γmax
a′

q∗(St+1,a′)|St = s,At = a), (24)

which when rewritten into an update rule that can be solved iteratively gives the following
equation:

qk+1(s, a) = qk(s, a)(1− α) + α[r + γmax
a′

qk(s′, a′)] (25)

where the transition from state s to the next state s′ and performing the action a gives the
reward r. In the classic implementation, a table with an entry for each state-action pair Q(s, a) ≈

13

q∗(s, a) through equation 25 has been proved to converge to q∗ with probability 1 given a few
simple assumptions [4]. However, this tabular representation of state-action space is insufficient
for complex problems such as asset trading. The state-space for such a system is too large
to be represented into a table and since the action value-function is estimated separately for
each sequence, this modelling would give no generalization power which is essential for asset
trading [14]. Neural networks acting as action-value approximators for the Q-network, have a
reputation for their processing power of both linear and nonlinear relationships and for being
the best available method with generalization capabilities [14]. Combining neural networks with
Q-learning leads to what is termed as Deep Q-learning. A completely connected system of neural
networks that will be used in this project is shown in fig. 2.

Figure 2: The Gated Deep Q network framework.

The proposed algorithm is shown in Fig.2, where we defined Gt as presented in Equation 22
as the sum of all discounted rewards after time t and γ as noted before is a discount factor. We
observe that in Equation 22, the value of Gt only depends on the current state st, which is a
property of a Markov decision process as we noted above in the theory of MDP. From the law of
large numbers [15], we can estimate the expectation of Gt(st) during trading as:

Vπ(s) = E[Gt|St = s] (26)

As before, we derive the Bellman equation by substituting Equation (40) into Equation (41).

v(s) = E[Gt|St = s]

E[rt + γ(rt+1 + γrt+2 + ...)|St = s]

E[rt + γGt+1|St = s] = E[rt + γv(St+1)|St = s]

(27)

From Equation 27, we can see that the value of v(st) is determined by rt and v(St+1). There
are multiple actions that can be selected by the agent in each state, it is therefore better to use

14

Q(s, a) instead of V (s), where Q(s, a) is the expected rewards of the next state s given action a.
To collect as much positive rewards as possible, the proposed algorithm tries to find a strategy
that maximizes Q(s, a) over actions a, which is defined as:

π∗ = argmax qπ(s, a) (28)

There are a variety of actions that can be taken by the agent in each market state, and
each state is different. It is therefore not enough to calculate the action value function since
the optimal strategy needs to be found. Therefore, based on the valuation iteration, the current
Q-value and rewards are used to update the historical Q-value. The process of updating the
Q-value is defined as follows:

Qk(st, at) = Qk(st, at) + α(rt + γmax
at+1

Qk+1(st+1, at+1)−Qk(st, at))

st ←− st+1

(29)

From Equation 29, the agent will choose action at from state st using a policy derived from
Q. Thereafter, the agent will take action at and observe rt and st+1. Instead of adding the
estimated Q-value directly to the new Q-value, it will be approached in a gradual way by the
learning rate α. However, there are a countless amount of states in the stock market, which re-
sults in a countless amount of state-action pairs. It is impossible for the algorithm to navigate all
states and construct an infinite Q-table, which needs infinite memory space. In order to circum-
vent this dilemma, the algorithm adds experience replay memory into the training process. The
experience replay will store each transaction (st, at, rt, st+1) that is produced during the training
process. In addition, the training network samples the random mini-batch empirical data in this
experience replay memory, which can avoid the local optimal problem of the learning algorithm.
As a means of simplifying learning, the experience replay would make the learning process of the
agent similar to supervised learning.

The value function is approximated by transferring the updating problem of the Q-value
matrix to the function fitting problem as follows:

Qπ(s, a) ≈ Q(s, a; θ) (30)

The approximated value function Q(s, a; θ) can be seen as a parameterized function of states
and actions, that updates the network parameters θ. The function approximator in this work is a
neural network (Deep Q learning). The probability of taking random actions should decrease as
you proceed with learning to exploit what the agent has learned. Nonetheless, it has been proved
that the traditional Deep Q Network overestimates the action value function, causing instability
in predictions [1] [14]. The reason for the instability is that one network is used for predicting
and producing labeled data. The errors estimated increase as trading actions increase, and this
makes it troublesome for agents to find optimal strategies. The problem is solved by creating
two neural networks, the Q network and the target network, where the Q network selects the
action at+1, to maximize Q(st+1, at+1,) whereas the target network calculates the action-value
of at+1. This is described in the equation below as the target value:

targetV alue = r + γQtarget(st+1, argmax
a+1

Q(st+1, at+1; θ); θ′) (31)

Selecting actions using argmax is closely related to the weights θ of the Q network, i.e, the
value of the greedy policy is estimated according to the current values defined by θ. The second

15

set of weights θ′ is used to evaluate the value of this policy, which aids in avoiding over-estimating
actions during during training. The loss function used is defined as follows:

L(θ) = E[(targetV alue−Q(s, a; θ))2] (32)

The target network with weights θ′ is equivalent to the online network with one difference, the
target network weights are copied periodically every τ steps from the Q network. The proposed
model structure is shown in Fig 2.

16

The pseudo code for the proposed Gated Deep Q Network algorithm is shown below:

Input: stock environment St, Q network and its weights θ, Qtarget network and its weights θ′

Output: weights θ for Q networks
Initialize the St
Initialize the memory replay repository D to capacity N
Initialize the Q network with random weights θ, and set the target Qtarget network with θ′ = θ

for episode = 1,M do

for t = 1,T do
Fetch stock environment from D and form input St

With probability ε: select a random action at
otherwise: select rational action argmax

a+1
Q(st+1, at+1; θ); θ′) according to St

Decrease ε
Execute action at, observe reward rt and calculate St+1

Store the transition (St, at, rt, St+1) in D
Sample minibatch (St, at, rt, St+1) randomly from D
Set (eq. 31) targetV alue = r + γQtarget(st+1, argmax

a+1
Q(st+1, at+1; θ); θ′)

Train the Q network with loss function (eq. 32) L(θ) = E[(targetV alue−Q(s, a; θ))2]
Reset the Qtarget network by setting Qtarget = Q every τ steps

Endfor
Endfor

Return weights θ for the Q network

17

4 Method

This chapter represents the method used to implement the algorithm. The chapter presents a
brief description of the vital parts in the implementation and their respective contribution to the
study. In particular, the following will be discussed more in details:

• Prediction and control

• Data collection and manipulation

• Recurrent neural network (GRU)

• Deep Q network

• Trading rules and the reward function

• Training and validation

• Testing

4.1 Prediction and control

The algorithm described in this thesis falls under two categories, prediction and control. The
prediction algorithms presented in this thesis estimate quantities that depend on how features of
an agent’s environment are expected to unfold over the future. We specifically focus on estimating
how much reward an agent is expected to accumulate as it interacts with the environment. Here,
prediction algorithms are policy evaluations made during interaction. The (optimal) control
comes in the form of finding the best policy given an environment [10]. Solving the control
problem when using value-based methods involves both estimating the value of being in a certain
state (i.e. solving the prediction problem), and adjusting the policy to make higher choices based
on these estimates [16].

4.2 Data collection and preprocessing

Limit order book (LOB) data for 1 large cap stock from Nasdaq Nordic will be used. A limit order
book is a computer file that contains all the orders sent to the market, with their characteristics,
such as sign of the order (buy or sell), the price, quantity, the timestamp the order was recorded
and often, other market-dependent information [17]. Here we will specifically use one level of
the LOB, using prices and volumes from both buy and sell side of the LOB. We will further feed
the neural network with technical indicators to robustly extract informative features from the
data. Technical indicators are mathematical heuristics that depict different market movement
patterns [1]. We will use both raw data and preprocessed data to try and find which set gives
better predictions. The technical indicators to be used can be seen in the Table 1

18

Tachnical Indicator Description
MA Moving Average

EMA Exponential Moving Average
BIA Bias

MACB Moving Average Convergence/Divergence
VR Volatility Ratio

OBV On Balance Volume

Table 1: Technical indicators

4.3 Problem formulation

4.3.1 Stock market modelling

One of the hurdles of stock trading is to capture the right trading time according to the current
market conditions and execute the right trading actions. In this project, we apply technical
indicators as listed in 1 to further extract informative features aside from raw data. The theory
below of technical indicators is derived from [18, ch. 2.3].

The moving average is a commonly used indicator and it is defined as follows:

MA = (p0v0 + p1v1 + ...+ ptvt)/t (33)

where pv represents the price and volume data over a given period and t represents the time
span.

The exponential moving average (EMA) is a trend oriented indicator which weighs more on
recent data than distant past data. It is defined as:

EMAt = α ∗ pt + (1− α) ∗ EMAt−1 (34)

where α is a smoothing factor, n is the time period, t is the current time, and pt is the price
data at time t.

The moving average convergence divergence (MACD) is a trend following momentum indi-
cator that defines the difference between a long-term moving average and a short-term moving
average. Apart from retaining the advantages of the moving average, this indicator may signal
an upcominig trend change by showing divergence from price (price continues higher while the
indicator turns lower, or vice versa). It is defined as follows:

MACD = 2 ∗ (DIF −DEA)

DIF = EMA(SHORT)− EMA(LONG)
(35)

where DEA is the arithmetic mean of DIF over the time and span EMA is defined in Equation
(34).

The BIAS measures the deviation of the market share price from the corresponding moving
average during the fluctuation process, which is defined as follows:

BIAS =
p−MA(n, p)

MA(n, p)
∗ 100 (36)

where p is the stock price and MA(n, p) is the average of prices of n time units prior.
The volatility-volume ratio (VR) is a volume based indicator that guides when buying or

selling stocks based on volume. Its is defined as follows:

V R =
S(n, u) + 1/2S(n.v)

S(n, d+ 1/2S(n, v))
∗ 100 (37)

19

where u indicates the volume of the positive line, d indicates the volume of the negative line, v
is the volume of flat day, and S(n, ∗) is the sum of volume within n days.

The on-balance volume (OBV) estimates the trend of stock price by the static volume changes.

OBVt = OBVt−1 + sgn ∗ vt (38)

where t is the current time, sgn is the signum function and v is volume.

4.3.2 Trading signals and reward function

The system will generate signals as follows:

h =

0, hold position

1, open long position

2, open short position.

. (39)

The long position depicts buying of a stock/stocks expecting it to rise in value. The short position
depicts selling of a stock to another investor after borrowing the shares from the investment firm
with a belief that the share price will decrease in value at a later time, thus leveraging the profit
in between. The neutral position is holding on to the positions already taken. We will assume
that 100 shares per trade is executed for every signal sent. The reward function for trading is
usually defined as:

R =
SP −BP

BP
∗ 100% (40)

where BP is the buy price and SP is the sell price. The rate of return is calculated by taking
the percentage increase or decrease in the stock’s price.

4.4 Recurrent neural networks

We use recurrent neural networks for feature extraction in our trading environment. This is to
say, function approximators for our trading actions. In this section, we give a brief description of
recurrent neural networks and the gated recurrent unit. We then specify briefly how it will be used
in our model. The motivation for using recurrent neural networks as our function approximator
is their superiority in capturing long term dependencies in time series data as compared to other
available methods.

Stock market fluctuations can be modelled by price series and technical indicators, but those
alone can not reveal the patterns behind market stochastic dynamics. We use the GRU (a variant
of recurrent neural networks) for this matter. The GRU architecture is shown in Fig 3.

The update gate in the GRU controls how much market environment information from the
previous moment is brought into the current state. The reset gate decides how much previous
information is to be ignored. Larger values of the update gate mean more market environment
information is brought in from the previous moment.

Zt = σ(Wixt + uiht−1 + bi)

xt = [APi, BPi, AVi, ..., V R,OBV]
(41)

Where xt is the input vector at time t, APi is the ask price and index i denotes LOB levels
1, 2, .., 5, if 5 levels were to be used. The rest are the technical indicators to be used. ht−1 is
the output value from the previous time step, W is the input weight matrix, u is the recurrent
weight matrices, and b is a bias vector. The Gated recurrent network architecture for feature
extraction is shown in Fig 3.

20

Figure 3: GRU architecuture for feature extraction.

4.4.1 Bridging the Gap between RL and Trading

To be profitable when trading does not mean profiting from every trade made. A good strategy
is one which profits from the majority of the trades executed. The objective of the algorithm is
to maximize the return on investments by interacting with the stock market environment and
selecting state-of-art actions that capitalize on the prevailing marketing conditions. For a trading
period t = [1,, T], the proposed algorithm will generate a set of transactions with rewards
[r1, r2,, rT] with r defined in Equation 40. The states are the historical prices, asset volumes
and the technical indicators. The actions taken are long, hold and short. Learning performance
is measured in the form of profit earned from each episode of trading, which is later used to
calculate the return on investment from the capital invested. Return on investment is calculated
as

roi = ((margin− capital)/capital) ∗ 100 (42)

where capital is the capital invested at the start of a trading session and margin is the capital
invested plus profits accumulated at the end of a trading session. Rewards are modelled by
Equation 40.

4.5 Training, validation and testing

We split the dataset into a training set and a validation set. The training set is used to build
the strategy with multiple parameter settings [19]. The validation dataset contains data from a
period of time immediately following the training dataset and is meant to assess model ability
to generalize to out-of-sample data. In the final step, the optimal model was selected but was
never tested in real time due to time limitations.

We use Python, Tensorflow, Numpy, Pandas and cuDNN library to build the algorithm.
The algorithm is trained on an ASUS laptop with AMD Ryzen processor, 16GB Ram, NVIDIA
GeForce RTX 3060 GPU. We use Sklearn to normalize the data-set in the range [−1, 1]. We
use an eight months dataset with 10 second returns of buy and sell prices, best buy and sell
volumes. 60% of the dataset is used for training and 40% is used for validation. Training tests
with technical indicators were rigorously performed and did not yield any good results, but just

21

made results worse, therefore technical indicators were excluded from the final results. The
reason behind why technical indicators didn’t yield good results was not really understood. One
theory we had in mind was that technical indicators have a look back window were they use past
information to predict the future, whereas the Markov property we build the theory on suggests
that future predictions are dependent on only the current value.

Price prediction features are sets of state signals, but there’s also a few mechanical inputs.
We relay to the system that makes decisions if it has a position open or not, and the value
of that position based on the last action taken. We also relay to the system the unrealized
percentage profit from every action. This unrealized percentage profit is further used as a cri-
terion to either exit or hold on to a position. This mechanism helped in improving learning speed.

The system is built in such a way that it can only invest a single asset size at a time. Profits
generated from investments are reinvested.

22

4.6 System interpretation of signals

Table 2 below shows an interpretation of trading sgnals for all possible states.

Signal Current position Action
0 Long Hold
0 None Nothing
0 Short Hold
1 Long Hold
1 None Open long
1 Short Close
2 Long Close long
2 None Open short
2 short Hold

Table 2: Signals and actions.

4.7 State input

The state input signals were further modified compared to previously anticipated input methods,
this was because raw input data was difficult to learn for the neural network. Normalizing the
data as well didn’t give satisfactory results either. The input variables used were transformed to
have the following characteristics. Readers who would like to get a detailed description can read
[20, ch. 1]:

• Uncorrelated input variables

• Input variables of the same range

• Input variables with an average over the training dataset close to zero for each input
variable.

Figure 4: 614000 10 sec ticks. Data is for ERICSSON B obtained from NASDAQ Nordic

Figure 4 shows an ERICSSON B dataset with 614000 timesteps with a 10 second window
each, the exact dataset with its respective best buy and sell volumes, plus the above mentioned

23

technical indicators were first feed into the neural network, this yielded no better results and
the dataset was further transoformed as shown in Fig. 6. Here, the dataset was divided into
windows of 180 ticks as described below.

Figure 5: Features extracted from 614000 10 sec ticks divided into 180-tick windows. Data is for
ERICSSON B obtained from NASDAQ Nordic

Figure 6: Features extracted from 614000 10 sec ticks divided into 180-tick windows. Same as
in Fig 5 but after further modification.

Figure 4 shows a dataset with 614000 with a 10 seconds window on every timestep. This
dataset turned out to be too large to train for the neural network so the dataset was instead
divided into windows, with each window containing 180 ticks (this value can be adjusted to
meet user needs of trading horizon). From each window, we extracted the standard deviation,
maximum, minimum, mean values and volatility from both best sell prices, best buy prices and
their respective volumes. These are simple descriptive statistics features. Fig. 6 shows the
new dataset for the best buy prices. Buy and sell prices are perfectly correlated, so to ensure
uncorrelated input data, we replace sell prices with Si = Si−Si−1 where Si is the sell price at time
step i. The price distribution is strongly non-statinary and as mentioned in an earlier chapter,
there is a slow-varying underlying bias value at which prices fluctuate. For this reason, the mean,
maximum and minimum buy prices from a given window are strongly correlated between them
and the values from the windows thereafter as illustrated in Figure 5. This behavior makes
learning cumbersome. The solution taken is to subtract from these features an estimate of the

24

underlying bias, which is the value of the current tick Bi. Figure 6 shows the resulting dataset.
After running statistical tests on the new dataset, the minimum values were removed since they
showed perfect correlatin with the maximum values. To remove outliers from the data, we applied
a quantile filter on bounds 0.01 and 0.99.

Hyper-parameter Value

memory buffer 100000
gamma 0.99
epsilon 1.0

epsilon min 0.001
epsilon decay 0.995
learning rate 0.0015

batch size 32
Update target 250

initial account-size sellPrice0*100
GRU units 2

MLP 3

Table 3: Hyper-parameters for the simulated trading system.

4.8 Optimization

The desired and actual output of the target-network are optimized over the mean squared error
as shown below:

Θ =
1

N
ΣN
i=1(Yi − Ŷi)2 (43)

Here, Equation 43 is equivalent to Equation 32
For the optimization, the Adam (Adaptive Moment Generation) optimizer is used. Adam

optimiser is an extension of the stochastic gradient descent (SGD) iterative method. A standard
gradient descent method performs the following iterations:

w := w − γ∇Θ(w) = w − γ

N

N∑
i=1

∇Θi(w) (44)

where γ is the learning rate and Equation 31 is the mean squared error to be optimized.

25

5 Results and Analysis

The following chapter presents and analyzes the results obtained from the implemented model
described in chapter 4. The results are analyzed with respect to the purpose of this study.

Some key things to note about the simulation environment is that positions held at the
end of a trading session (where a trading session is equivalent to iterating through an entire
train/validation dataset) are executed at market prices, that is, we accept any prices from the
opposing book to liquidate all positions, no matter how poor the prices, since we have run out
of time and have no choice. In real world applications, this is actually a very big limitation
since positions can be held until they gain more value, in case closing market prices are not good
enough for the investment strategy.

5.1 Profits and losses analysis

Figure 7: Profits from one training epoch simulation

An epoch for this project is equivalent to the algorithm visiting all data points in the training
data-set (an epoch is equivalent to a trading session) as shown on the right hand side of Figure 8.
In the same figure, we see that the profits graph over the trades made has a positive growth. It
can also be seen that both figures have a jump point where prices/profits go up drastically. For
the prices data-set, that point corresponds to a quarterly report of Ericsson AB. What we see is
that the algorithm was able to predict this scenario and took appropriate actions to capitalize
on stocks upward jump.

26

Figure 8: Profits from one validation epoch simulation

Figure 8 shows an epoch of a validation set carried out on the trained algorithm shown in
Figure 7. It can as well be observed here that the validation data-set has a big dip, this dip is
a result of the extremity observed in stock prices during the first wave of the corona pandemic.
The algorithm captures the trend well and manages to make profits on the falling prices, then
later stabilizes a bit as the valuation period elapses.

27

Figure 9: Profits and losses from one training episode

Figure 9 depicts how volatile trades could look like in a training epoch. It can be seen that
trades include spikes in both directions, with extreme spikes coinciding with extreme peaks as
well. What can be concluded here is that the algorithm sometimes predicts wrong directions
resulting in opposite actions which lead to losses, or profits made being wiped out by the loses
incurred. Since rewards are given after profits or losses are realized, the bad and good actions
after a trade are not punished right away but rather in the subsequent time step/s depending
on which signal/s is generated thereafter. This behavior has proven to confuse the algorithm in
case wrong decisions are not punished accordingly in the next few times leading to inconsistent
and unstable behavior throughout the entire epoch. Different reward methods were tried, such
as rewarding or punishing the algorithm for decisions made before profits/losses were realized.
This reward system seemed to lead the algorithm into local optimums and over-fitting, where
the algorithm at times generated only one specific action throughout an entire training epoch.

28

Figure 10: Profits and losses validation

Figure 10 is a validation example depicting the same scenario as observed on the train set in
Figure 9. From the figure, it can be observed that profits and loses nearly wipe out each other
as the algorithm goes through the data-set. It should however be noted that the overall trend
goes upward, that is, positive results still outnumber negative results. It can as well been seen
that the saturation point is around zero.

Figure 11: Long and short positions

Figure 11 depicts the time points for buy and sell signals, the interpretation is that an open
long signal closes the last open short position and vice versa. Figure 13 below is a zoomed
in version of figure 12. What can be seen as denoted by red and green dots in Figure 12 is

29

that the algorithm is good at predicting peaks in the time series data. Orders are executed
immediately before or after a peak period which is the ideal strategy for a short-term speculator,
since the idea is to capitalize on the short-term prices movements in all directions. Analysis
showed that sometimes the algorithm has a tendency of predicting wrong directions, that is,
producing actions for an upward trend yet it’s a downward trend underway. Various things have
been tried to correct this flaw. A crucial point that seemed to affect model performance was
the reward function, how it is formulated and when rewards are awarded. Modifying the reward
function compared to the one given in Equation 40 during training produced different results.
Some results were bad others promising but we decided to keep the reward function defined in
Equation 40 for this thesis. Another aspect that affected signals prediction or model performance
in general was when the reward was awarded. For this thesis, rewards were awarded after profits
or losses from made decisions have been realized. But different approaches can be taken here as
well. We left the algorithm to be punished for the poor decisions after profits or losses have been
realized.

Figure 12: Orders made at right interval peaks

5.2 Performance analysis

Policy performance is measured from the failure and success rate from an epoch of trading.
Profit is defined by subtracting execution prices achieved during buy and sell decisions from
each other. The spread between them is multiplied by the traded number of shares and then
subtracting the transaction costs. It should be noted that the 12 epochs from Section 5.2 should
not be interpreted as a form of performance for the network. The higher rate of return after 12
episodes could be more attributed to randomness.

profit = (buyPrice− sellPrice− transactionsCosts) ∗ numberOfShares

The transaction costs accumulated from one back to back execution is defined as follows:

transactionsCosts = (sellPrice+ buyPrice) ∗ brokerageRate

where brokerage rate is set to 0.001.

We run separate tests of 12, 61, 100, 120 and 200 episodes and get the following results:

30

• After 12 epochs of training, 6 wins and 6 losses

• After 61 epochs of training, 32 wins and 29 losses

• After 100 epochs of training, 52 wins and 48 losses.

• After 120 epochs of training, 61 wins and 59 losses.

• After 200 epochs of training, 96 wins and 104 losses.

Calculating profits and losses from respective episodes gave the following resluts:

• After 12 epochs of training: P/L = 16899.104 SEK

• After 61 epochs of training: P/L = 0.3869 SEK

• After 100 epochs of training: P/L = 21694.135 SEK

• After 120 epochs of training: P/L= 23734.886 SEK

• After 200 epochs of training: P/L= 44426.32 SEK

Further, rates of returns on investments (roi) as described by equation 42 from the aforemen-
tioned episodes of training were calculated from an initial invested capital of 8458 (the first buy
price in the studied data set multiplied by 100 shares) SEK

• After 12 epochs of training, average rate of return on investment: 16.568%

• After 61 epochs of training, average rate of return on investment: 0.000746%

• After 100 epochs of training, average rate of return on investment: 2.55%

• After 120 epochs of training, average rate of return on investment: 2.53%

• After 200 epochs of training, average rate of return on investment: 2.61%

Figure 13: Max, min, mean and median values of studied episodes

From the box plot Figure 13, it can be seen that for the first few episodes, the profits are
quite high and average (orange line) above zero. The maximum is over 4000 which is over 50%

31

of the start capital and the minimum values are just slightly below zero. After 61 episodes, the
profits fall down on an average around zero, with maximum and minimum values also around
around the same number. For episode of over 100, a slight shift in the maximum range can be
detected as profits move to more positive values. After 200 episodes, it can be seen that profits
increase up slightly to a bit more positive values, but with a return on investment below 3%.
The rise of profits as training episodes increase despite having more losses could be explained as
the agent punishing negative results (draw-down) more and thus discouraging them yet positive
results are more rewarded and encouraged. So the conclusion is that the algorithm is fairly good
at punishing negative deviations since losses are not so extreme. In Figure 13, the minimum
values are just a few SEK below zero as compared to the maximum values.

5.3 Validation for out-of-sample data

During validation of the trained network, two results are presented here for a 200 episode trained
network. The return on investment was a bit higher during validation than for the training data
. The total profits made in the successful sessions are slightly higher than the total losses during
the unsuccessful ones. We choose not to present validation results using the network that are
trained with less than 200 epochs, partly because they are less trained and as such are of less
interest, and partly because of lack of time. For example, a network trained on only 12 epochs
generated only hold positions for the entire validation dataset, implying the network hard not
learned a good strategy after 12 epochs.

Figure 14: Ericsson B sell prices data

32

Figure 15: Max, min, mean and median values of validated episodes

For the 40 epochs, the realized average rate of return on investment is 8, 454%. Profits and
loses (P/L) for 40 epochs is 28600.41 SEK. It should however be noted that the dataset in
Figure 14 has a quite big dip, this might be easy for the neural network to predict and produce
profitable trades compared to if the dataset was somewhat more even, with less extreme dips.

33

6 Discussion

In this thesis a model in the form of an algorithm has been developed to find a short term
strategy to invest in stocks. The model’s objective was to capitalize on the small or big price
fluctuations by taking long and short positions, maximizing profit returns as well as minimizing
losses or risk. In this chapter an evaluation and application of results, ethical aspects and further
suggestions for better performance are discussed

6.1 Evaluation and Applicability of Results

The implemented algorithm takes long and short positions by sending limit orders through a
simulated stock market environment. The form of trading done is short term and algorithm per-
formance is mainly focused on the winning ratio from every simulated episodes of trading. More
like a game where the one with most wins after an episode wins. Furthermore, to achieve some-
what better results, different input parameters and hyper-parameters have been tested, some
quite diverging from the previously anticipated approaches, one of those has been excluding
technical indicators from the final results. Testing with them caused a lot of over-fitting and the
results were mostly negative. As mentioned earlier, by the end of a trading session, we close all
positions at the current market prices regardless of whether these prices are bad or good. This
has been a big limitation to asses model performance, since as mentioned in the theory chapter,
the parameter gamma decides how the agent values immediate rewards from far distant future
rewards, a gamma close to one seemed to give better performance for this implementation, yet
gamma values close to one signify that much emphasis is put on far distant future rewards. This,
for our application means that the algorithm makes decisions with a long term perspective quite
contrary to the ideal strategies of a short term trader/speculator. In practical applications, this
hurdle could be overcome by creating thresholds for the profits and losses, entering and exiting
positions if these thresholds are met despite the signals generated by the algorithm. Further-
more, the limitation of closing positions at the end of a data-set during simulations could also
be overcome by finding a way of conveying this information to the agent so it keeps tract of the
time remaining during every episode of trading. In practical applications, this is overcome by
holding positions until they bounce back to reasonable prices, but some assets may never regain
their original values so at some point, a trade-off must be made between the amount of money
an investor is willing to lose on an asset and for how long he’s willing to hold on to a position.

Another factor that created peculiar behavior during training and validation was wrong trend
prediction by the neural network. Different architectures have been tried, from a shallow network
to deep networks. A shallow network showed better performance in training but fared bad during
validations. Models trained on shallow networks ran into over-fitting during validation where
they generated only one action during the entire validation session. At times, analysis of the
predictions seemed more or less random. A deep network created a better balance between
training and validation, with results falling off a bit in validation, which is usually the case.
Prediction as well seemed better after analysing the prediction points. However, wrong signals
were sometimes produced, this produced losses that ate up most of the accumulated profits.
Signal performance could be boosted by implementing prioritized experience replay method
based on importance sampling instead of the ordinary experience replay implemented for these
results, where we are currently sampling from all past experiences.

34

6.2 Suggestions for Future Improvements

As mentioned in the previous section, the reward function plays a vital roll in enhancing model
performance. It is therefore important that a well crafted reward function is formulated and that
rewards are awarded at appropriate time intervals. For future improvements, one can therefore
improve the reward function formulation and rewarding system. This could for example be by
rewarding the agent future discounted rewards before profits/losses are realized.

We used L1 and L2 regularization, where L1 tries to estimate the median of the data and L2
tries to estimate the mean of the data in order to try and tune the network to avoid over-fitting.
The hyper-parameters used during regularization were not rigorously researched to stress their
empirical impacts, yet their application gave somewhat better results. This could be something
to dig deeper into. The dropout regularization technique though not used for this work could as
well be experimented to try and find more performance.

As mentioned earlier, prioritized experience replay method based on importance sampling
could also be implemented since literature in the field suggests that it boosts performance.

Testing was left out since it was realized that testing should be carried out in real time and
such an implementation needed more resources in the form of time.

6.3 Ethical Aspects

Aspects here are more for making the system as effective as possible but could as well be viewed
as ethical aspects

Applying the current results to an automated trading system would produce fatal results.
Success performance must be improved to a minimum of at least 60%, correct trend prediction
followed by right signal generation must always be controlled even after performance is increased
to higher levels, this is due to the fact that there are no perfect models. The results of this study
should always be seen as heuristics of a real world phenomena and should thus not be left to
entirely make trading decisions independently. This could be fatal for both the investor using
the algorithm and other investors on the other side of the spectrum who are all speculating in
markets. Since this algorithm is susceptible to falling into local optimums, signals must always
be over-watched by an expert to avoid malicious decisions that can both wipe out the bank
account balance and manipulate stock markets.

35

References

[1] X. Wu and et al., “Adaptive stock trading strategies with deep reinforcement learning
methods,” ScienceDirect, pp. 2–5, 2020.

[2] J. J. Fei-Fei Li and S. Yeung. (2017) Lecture 14. reinforcement learning. [Online].
Available: http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture14.pdf?msclkid=
b5372739c6e911ec8f511b8e2f026604

[3] S. S. Mousavi and et al, “Deep reinforcement learning: An overview,” arXiv:1701.07274,
pp. 9–23, 2018.

[4] C. Watkins and P. Dayan, “Q-learning,” Computer Science Machine Learning, pp. 1–13.

[5] J. Moody and M. Saffell, “Reinforcement learning for trading systems and portfolios,” Ma-
chine learning, pp. 280–283, 1998.

[6] A. Hirsa and et al, “Deep reinforcement learning on a multi-asset environmet for trading,”
arXiv:2106.0843, pp. 7–10, 2021.

[7] Y. Nevmyvaka and et al, “Reinforcement learning for optimized trade execution,” Machine
learning, pp. 3–4, 2016.

[8] R. Neuneier, “Optimal asset allocation using adaptive dynamic programming,” Neural In-
formation Processing, p. 1, 1995.

[9] L. Conegundes and et al, “Beating the stock market with a deep reinforcement learning day
trading system,” journal of machine learning, p. 10, 2020.

[10] R. Sutton and et al, Reinforcement Learning: An Introduction. The MIT Press Cambridge,
Massachusetts London, 2014,2015, vol. 2, ch. 3,4,6.

[11] X. Han, “A mathematical introduction to reinforcement learning,” Semantic Scholar, pp.
1–4.

[12] B. JANG and et al, “Q-learning algorithms: A comprehensive classification and applica-
tions,” IEEE Acess, pp. 3–4.

[13] R. Serfozo, Basics of Applied Stochastic Processes, Probability and its Applications.
Springer-Verlag Berlin Heidelberg, 2019.

[14] J. Carapuco and et al, “Reinforcement learning applied to forex trading,” Applied Soft
Computing Journal 73 783–794, pp. 4–7, 2018.

[15] K. Sedor, The Law of Large Numbers and its Applications, ch. 3, pp. 7–9.

[16] M. Littman and et al, “On the complexity of solving markov decision problems,”
arXiv:1302.4971, pp. 395–400, 2013.

[17] F. Abergel and et al, Limit Order Books. Cambridge University Press, 2016, ch. 2.

[18] R. J.Bauer, Technical Market Indicators: Analysis and Performance, 1998, vol. 1, ch. 2.3.

[19] Y. X. . R. Goodacre, “On splitting training and validation set: A comparative study of cross-
validation, bootstrap and systematic sampling for estimating the generalization performance
of supervised learning,” Journal of Analysis and Testing, pp. 3–6.

36

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf?msclkid=b5372739c6e911ec8f511b8e2f026604
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf?msclkid=b5372739c6e911ec8f511b8e2f026604

[20] G. MontavonGeneviève and O.-R. Müller, Neural Networks: Tricks of the Trade, 2012, ch.
1.4, pp. 4–8.

37

	Introduction
	Purpose
	Delimitations
	Collaboration

	Related work
	Theoretical background
	Reinforcement Learning
	Motivation
	Markov Process and Markov Decision Processes (MDP)
	Return, Policy and Value function

	Optimal Value Function and Optimal Policy
	The Gated Deep Q Network

	Method
	Prediction and control
	Data collection and preprocessing
	Problem formulation
	Stock market modelling
	Trading signals and reward function

	Recurrent neural networks
	Bridging the Gap between RL and Trading

	Training, validation and testing
	System interpretation of signals
	State input
	Optimization

	Results and Analysis
	Profits and losses analysis
	Performance analysis
	Validation for out-of-sample data

	Discussion
	Evaluation and Applicability of Results
	Suggestions for Future Improvements
	Ethical Aspects

