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Abstract

A robust and highly accurate positioning system is required to transition to fully
autonomous vehicles in society. This thesis investigates the potential for lidar sen-
sors to be a part of a localization system, adding redundancy in case of an outage
in a global navigation satellite system (gnss). Point cloud data is recorded on a
busy road to experimentally study lidar odometry with dynamic objects present.
By matching point clouds with the well-established iterative closest point (icp) al-
gorithm, odometry estimates in 6 degrees of freedom are obtained. In this thesis,
three icp variants, point-to-point, point-to-plane and plane-to-plane, are eval-
uated along with preprocessing and data segmentation techniques to improve
accuracy and computational speed.

High-end lidar sensors are known to produce a large amount of data. To achieve
real-time performance for the odometry, the point clouds are downsampled using
a 3D voxel grid filter to reduce the amount of data by 86% on average. Experi-
ments show that downsampling with a properly tuned voxel grid filter reduces
the total process time without sacrificing the accuracy of the estimates.

icp algorithms assume the environment to be static. Therefore dynamic objects
can introduce errors in the odometry estimates. Methods to counteract these er-
rors are evaluated. One approach to address this issue, suggested in the literature,
is to segment the point cloud into different objects and remove objects smaller
than a given threshold. However, experiments on the recorded data set indicate
that this method removes too much point cloud data in certain sections, result-
ing in inaccurate odometry estimates. This problem is especially salient when
the environment lacks larger static structures.

However, outlier rejection methods show promising results for suppressing er-
rors caused by dynamic objects. In scan matching, outlier rejection methods can
be used to identify and remove individual data point pair associations whose
shared distance deviates from the majority in the point clouds. Removing the
outliers strengthens the estimates against errors caused by dynamic objects and
improves robustness against measurement noise. Experiments in this thesis show
that outlier rejection methods can improve translation accuracy with as much as
39% and rotation accuracy with 57% compared to not using any outlier rejection.

To improve the accuracy of the estimates, this thesis proposes an approach to
divide the lidar point clouds into two subsets, ground points and non-ground
points. The scan matching can then be applied to the two subsets separately,
enhancing the most relevant information in each subset. Compared to the tradi-
tional way of using the entire point clouds in one estimate, experiments show that
using the best performing icp variant, a linearized point-to-plane, in combina-
tion with this proposed method improves translation accuracy by 10%, rotation
accuracy by 27%, and computational speed by 23%.

The results in this thesis indicate that a lidar odometry solution can be accurate
and computationally efficient enough to strengthen a localization system during
shorter gnss outages.
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Sammanfattning

Ett robust och exakt positioneringssystem är ett krav för övergången till helt au-
tonoma fordon i samhället. Detta examensarbete undersöker om lidarsensorer
kan användas som en del av ett lokaliseringssystem, för att skapa redundans för
avbrott i globala navigationssatellitsystemet (gnss). Punktmolndata spelas in på
en trafikerad allmän väg för att experimentellt studera lidarodometri med dy-
namiska objekt närvarande. Genom att matcha punktmoln med den väletablera-
de iterativt närmsta punkt (icp) algoritmen, erhålls odometri i 6 frihetsgrader. I
denna uppsats utvärderas tre icp-varianter, punkt-till-punkt, punkt-till-plan och
plan-till-plan, tillsammans med förbearbetnings- och segmenteringstekniker för
att förbättra noggrannhet och beräkningshastighet.

Avancerade lidarsensorer är kända för att producera en stor mängd data. För att
uppnå realtidsprestanda nedsamplas datan med ett 3D-voxel-rutnätsfilter för att
minska mängden data med 86% i genomsnitt. Experiment visar att nedsampling
av punktmolnen med ett korrekt inställt voxelgridfilter minskar den totala beräk-
ningstiden utan att försämra uppskattningarnas noggrannhet.

Dynamiska objekt kan introducera fel i odometriska uppskattningar då icp al-
goritmer antar att miljön är statisk. Därför utvärderas metoder för att motverka
dessa fel. Ett tillvägagångssätt som föreslås i litteraturen är att segmentera punkt-
molnet i olika objekt och ta bort objekt som är mindre än ett givet tröskelvärde.
Experimenten på den inspelade datan indikerar att denna metod tar bort en för
stor del av punktmolnsdatan i vissa sektioner, vilket resulterar i felaktiga odomet-
riska uppskattningar. Detta problem är särskilt framträdande när miljön saknar
större statiska objekt.

Metoder för att avvisa extremvärden visar dock lovande resultat för att dämpa
fel orsakade av dynamiska objekt. Vid skanmatchning används extremvärdsavis-
ning för att identifiera och radera individuella punktpar vars transformation av-
viker från majoriteten i punktmolnen, vilket stärker uppskattningarna mot fel or-
sakade av dynamiska objekt och förbättrar robustheten mot mätbrus. Experiment
visar att avvisning av dessa extremvärden kan förbättra translationsnoggrannhe-
ten med så mycket som 39% och rotationsnoggrannheten med 57% jämfört med
att inte använda någon extremavvisning.

För att förbättra uppskattningarnas noggrannhet föreslår denna uppsats att de-
la upp lidarpunktmolnen i två delmängder, icke-markpunkter och markpunkter.
Skanmatchningen kan då appliceras på de två delmängderna separat, vilket gör
att den mest relevanta informationen i varje delmängd kan användas. Jämfört
med det traditionella sättet att använda hela punktmolnen, visar experiment att
användning av den bästa icp-varianten, en linjäriserad punkt-till-plan, i kombi-
nation med denna föreslagna metod förbättrar translationsnoggrannheten med
10%, rotationsnoggrannheten med 27% och beräkningshastighet med 23%.

Resultaten i denna uppsats indikerar att en lidarodometrilösning kan utvecklas
som uppskattar position tillräckligt noggrant och beräkningseffektivt för att stöt-
ta ett lokaliseringssystem under kortare gnss-avbrott.
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1
Introduction

This introductory chapter gives an overview of the localization problem for au-
tonomous vehicles and outlines the thesis’s purpose, scope and contributions.

1.1 Background and motivation

The automotive industry is heading towards a paradigm shift, where vehicles are
progressing rapidly towards a high level of autonomy. The International Soci-
ety of Automotive Engineers (sae) have defined a standard (J3016) [12] for au-
tonomous vehicles (avs). The standard formulates six levels (0-5) of autonomy:

• Level 0 - No Driving Automation
No automation. A human handles all driving-related duties.

• Level 1 - Driver Assistance
Under certain conditions, the car controls the vehicle’s speed or steering.

• Level 2 - Partial Driving Automation
The vehicle can maneuver in certain circumstances, but the driver must
remain engaged and monitor the environment.

• Level 3 - Conditional Driving Automation
The vehicle can manage most aspects of driving in the right conditions and
even monitors the environment. The driver will have to intervene when the
vehicle encounters a scenario where it can not navigate itself.

• Level 4 - High Driving Automation
No human input or oversight is required except under special conditions,
and the pedals and steering wheel remain in the driver seat.

1



2 1 Introduction

• Level 5 - Full Driving Automation
The vehicle can operate autonomously in any condition a human could.

Automobile manufacturers are producing cars qualifying as level 3 vehicles, and
some vehicles are today being evaluated for a level 4 status [23]. Even though le-
gal obstacles are present to make higher-level cars ubiquitous in society, technol-
ogy is maturing at a rapid pace. A robust and highly accurate positioning system
is required to transition to level 5 vehicles. If an av’s localization system were
to malfunction, it could endanger people and property near the vehicle. A typ-
ical positioning system incorporates a global navigation satellite system (gnss)
to measure the absolute positions of the av. The positioning system is therefore
vulnerable to a malfunction in the gnss and to gnss-denied environments, such
as tunnels or when surrounded by larger buildings in urban areas.

A laser imaging, detection and ranging (lidar) sensor scans the environment and
compiles measured ranges into a point cloud [51]. Lidar sensors are mounted
and used for object detection among other purposes in some av’s [4]. Suppose
the data generated by the lidar can be used for relative positioning. In that case,
the localization system can get greater robustness against shorter gnss-outages
without adding additional sensors to the av.

Estimating positional change over time-based on lidar data is called lidar odome-
try. The estimations can be derived by calculating a transformation that matches
two point clouds generated by consecutive scans, commonly referred to as scan
matching. The calculated transformation corresponds to the movement of the
lidar between the lidar scans. A well established scan matching framework for
point clouds is the iterative closest point (icp) algorithm [18].

The thesis is conducted in cooperation with a company that works with av’s. For
confidentiality, the company shall remain anonymous and be referred to as the
partner company throughout the thesis. The partner company is utilizing lidar
sensors on their av’s for other purposes than localization, hence the choice of
investigating the lidars for odometry rather than other sensors. The partner com-
pany has provided data from lidars and their current positioning system to be
used as ground truth. The lidar odometry solutions will therefore be evaluated
experimentally using this data set. Results presented in this thesis are scaled with
a confidential factor to not reveal sensitive data concerning the partner company.

1.2 Problem Statement

The majority of research relating to lidar odometry is based on data captured near
university campuses, as in [40], or indoors, as in [9], or the KITTI data set [19],
as in [55]. The icp algorithm assumes the environment to be static. Therefore
dynamic can introduce errors in odometry estimates [54]. Data collected near
campuses or indoors does not contain many, if any, larger dynamic objects. The
residential part of the KITTI data set has not been captured during rush hour.
Therefore, large dynamic objects in the data set are not frequent enough to cause
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significant performance decreases.

Literature focusing on mitigating errors caused by dynamic objects often utilize
deep learning approaches as in [54]. However, training a neural network requires
a well-labeled data set which might not be available for all environments. More-
over, deep learning approaches have a black box nature [39]. It can therefore
be hard to guarantee the reliability of such solutions. Other papers that focus
on dynamic objects in lidar odometry fuse the lidar with external sensors that
can measure the radial speed of objects, e.g. a millimeter-wave (mmw) radar in
[13]. Adding more sensors to a vehicle also adds more points of failure for the
system and increases the cost. In [40] a lidar-based approach of filtering dynamic
objects based on their size is utilized. However, an urban data set is used, and
the performance of this method needs further study in a setting with fewer large
structures.

Most of the literature conducts experiments with point cloud data recorded using
older and cheaper lidar sensors. They capture fewer range measurements per
scan than modern high-end lidar sensors. For example, the popular KITTI data
set is recorded using a single Velodyne lidar with 64 channels operating at 10 Hz
[19]. Others such as [46] and [9] use 16 channel lidars. Since the scan matching
algorithms are computationally expensive, point clouds with lower density do
not need to be preprocessed to the same extent as the point clouds with higher
density to achieve real-time performance.

In scan matching, outlier rejection methods identify and discard individual data
point pair associations whose transformation deviates from the majority in the
point clouds. In [35], outlier rejection techniques are compared for the purpose
of enhancing the scan matching estimates. Furthermore, they are evaluated on
2D point cloud data indoors. However, there is a lack of comparisons between
various outlier rejection techniques for dense 3D point cloud data in a dynamic
outdoor environment.

1.3 Thesis scope

Figure 1.1 gives a system overview for the lidar odometry system to be investi-
gated. The possibility of integrating a lidar odometry solution with a localization
system is investigated as it is an important aspect [50]. However, implementing
a filter is outside the scope of this thesis.

In [44], three main categories of icp variants are formulated:

• Point-to-point

• Point-to-plane

• Plane-to-plane

In this thesis, the three icp variants are compared and evaluated using ground
truth data provided by the partner company. The best performing icp variant
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Figure 1.1: System overview of the icp based odometry solution

is then used for in-depth evaluation of the preprocessing, outlier rejection tech-
niques and dynamic object error mitigation strategies.

1.4 Thesis aim and research questions

The aim of the thesis is first to investigate how a lidar odometry module for a
localization system can be constructed with the icp framework and the methods
found in the literature. Second, how well such a module strengthens a localiza-
tion system during gnss outages with regard to accuracy and process time.

The aim, together with the challenges and scope stated above, leads to the follow-
ing five research questions:

• Which icp variant performs the best in an industrial suburban environ-
ment?

• How does preprocessing of dense point cloud data affect the scan match-
ing in regards to process time and accuracy?

• What outlier rejection technique offers the most significant performance
gain in a real-world setting?

• On busy roads, how can dynamic objects be accounted for and errors re-
duced without using auxiliary sensors or machine learning models?

• Is it reasonable to assume that a well-tuned lidar odometry solution can
be used as input to a localization system to add redundancy in the event
of a gnss outage?
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1.5 Delimitations

The integration of the odometry solution to a filter-based localization system is
outside the scope of this thesis due to time constraints.

As the odometry estimates are evaluated from the perspective of usage in automo-
tive localization, where loop closing is rare for longer routes, mapping is excluded
from this thesis. The focus is instead to optimize the odometry estimates between
each full scan, i.e. a frame-to-frame methodology.

The sections relating to dynamic objects will exclusively focus on lidar-based ap-
proaches and do not use other sensors for filtering purposes. Due to a lack of
labeled data, machine learning methods are not evaluated in this thesis.

1.6 Scientific approach

To answer the research questions, the following approach is taken. First, a thor-
ough review of the literature relating to lidar icp methods is conducted. From
the literature review, three prominent icp variants are selected that use the ge-
ometric information in the lidar data to different degrees. From the literature,
preprocessing methods, outlier rejection techniques, and dynamic object error
mitigation strategies are also selected for evaluation.

Data is collected using the partner company’s test vehicle during rush hour to ob-
tain the sought-after data set, which contains many dynamic objects and sections
with and without many large structures.

The three selected icp methods are compared. The best performing icp variant
is then used for in-depth comparisons of the preprocessing settings, outlier re-
jection techniques and dynamic object error mitigation strategies. Only using
one of the icp variants for the other evaluations is done to keep the number of
experiments reasonable. Finally, the results from the different evaluations are
combined, and the results are used to answer the research question.

1.7 Contributions

The thesis contributions are:

• An evaluation of how voxel grid filtering and ground separation affect dense
point cloud data, and the following icp estimates can be found in chapter 4.
An alternative way of using the ground plane based on the research in [46]
is presented that increases the odometry accuracy.

• An evaluation of the three icp variants based on accuracy and computa-
tional speed on a novel data set can be found in chapter 5. Outlier rejection
methods are evaluated similar to [35] but using a data set recorded in a real-
world environment and with high-end modern 3D lidars rather than a 2D
lidar in an indoor environment.
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• This thesis adds to the literature with an evaluation of lidar-based, non-
machine learning strategies for minimizing the effects of dynamic objects
in icp estimates. This can be found in chapter 6

• An evaluation of the best performing icp variant as a localization module
can be found in chapter 7. The evaluation is based on accuracy, processing
time and distribution of errors.

Overall this thesis adds to the lidar odometry literature with several assessments
of important subsystems from a perspective of lidar localization as a module in a
more extensive localization system.

1.8 Division of labor

The labor has been divided between the two authors in the following way.

Hedén has developed and had the primary responsibility for the sections relating
to the point-to-point icp and the point-to-plane icp. He has also led the efforts
with the implementation of outlier rejection methods.

Granström has led the efforts with the implementation of the plane-to-plane
gicp. He also developed the code relating to segmentation and wrote the chap-
ters relating to kd-trees and range images. Granström has also developed the
proposed ground separation approach to estimate the transformations twice and
had responsibility for the preprocessing implementation.

There has, however, been a large amount of collaboration during the thesis, where
one author has built on existing work from the other. For example, after Granström
implemented the segmentation function, Hedén optimized the tuning. Hedén
wrote the base code for evaluating the results, and afterward, Granström de-
bugged it. The remaining work not mentioned above has been done in collab-
oration.

1.9 Thesis overview

This thesis is organized as follows:

• Chapter 1 gives an overview of the thesis problem, defines the purpose and
scope, outlines this thesis’s content, and provides a system overview for the
odometry solution.

• Chapter 2 presents background theory.

• Chapter 3 describes the hardware and software used to experimentally im-
plement and evaluate the algorithms. The data set and the data collection
is described as well as a detailed description of the evaluation metric.

• Chapter 4 outlines the sequential preprocessing steps and motivates the
tuning parameters.
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• Chapter 5 describes the implementation of the icp variants and compares
them. The measures are taken to improve performance, such as outlier
rejection.

• Chapter 6 elaborates on the odometry errors introduced by dynamic objects
and evaluates strategies to minimize them.

• Chapter 7 presents the performance of the implemented odometry solution
as a module of a localization system.

• Chapter 8 summarizes the findings from this thesis and gives suggestions
for future work.





2
Theory

This chapter is intended to describe the most common methods and algorithms
found in the literature on lidar-based odometry. The most common way to obtain
relative localization with lidar sensors is to utilize point cloud scan matching.
The methodology is to find the transformation that minimizes the difference be-
tween two subsequent point clouds.

2.1 Lidars and point clouds

The main function of a lidar sensor is to measure ranges by emitting laser pulses
and analyzing the time it takes for the pulses to return. The resulting ranges
can be compiled into a point cloud where each point represents a distance to the
surrounding area from the lidar. A point cloud at time step i is defined as

Pi = {pi1, p
i
2, . . . p

i
N }, (2.1)

where N equals the total number of points in the point cloud. In addition to
the ranges, the intensity of the returning light and/or Doppler shift [1] can be
measured, which extends the dimensions of a point cloud in 3D to 4D, often
referred to as a 4D lidar [2].

Lidar sensors can be categorized as solid state or rotating. Solid state lidars create
the point cloud from an instant snapshot, while the rotating lidar creates the
point cloud by compiling multiple smaller scans taken during a sweep of the lidar
diodes [37]. The rotating lidar can get a wider field of view than the solid state
lidar but can introduce motion distortion to the data. Motion distortion occurs if
the lidar or observed objects move during a sweep. Motion distortion results in an
offset for every point in the point cloud that does not belong to the first recorded

9
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part of every sweep. Since different parts of the point cloud are captured from
different locations, the point cloud does not represent the environment accurately
[52].

An advantage of using a lidar sensor compared to a regular camera is that the
lidar functions well during both day and night and gives three-dimensional in-
formation [31]. The lidar sensor normally produces less data than a camera but
still enough to cause issues with on-board storage for vehicles, and real-time pro-
cessing [27]. A modern commercial lidar sensor can capture 2,621,440 points per
second [34]. The lidar sensors are also more expensive than a camera.

2.2 Scan matching

There exists several scan matching algorithms, e.g. normal distribution trans-
form (ndt) [26]. This thesis will only focus on the icp framework and its variants
[6]. The goal of scan matching is to find the rigid transformation consisting of the
rotation matrix R and the translation vector t, to match the source point cloud Pj
to the target point cloud Pi , such that Pi = RPj + t [30]. This assumes identical
point clouds Pj and Pi that might be misaligned. R can in three dimensions be
defined as

R = Rz(α)Ry(β)Rx(γ)

=

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


 cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)


1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

 . (2.2)

whose Euler angles are α, β and γ , respectively. The Euler angle describes the
rotation of one coordinate system to another one. Commonly a body-fixed coor-
dinate frame to a global coordinate frame [21]. In this thesis, the Euler angles
are calculated as the rotation defined from the previous point cloud. If the body-
fixed coordinate frame XYZ is initially aligned with another coordinate frame
xyz before an intrinsic rotation represented by Euler angles, the successive orien-
tation during this three elemental operation may be denoted as

• x-y-z (initial orientation).

• x′-y′-z′ (after the first rotation).

• x′′-y′′-z′′ (after the second rotation).

• X-Y -Z (final orientation, after the third rotation).

There are 12 meaningful ordered sequences of intrinsic Euler angle conventions
denoted from the body axes. An example is the ZYX order which is illustrated
in figure 2.1 and implies that

• α represents a rotation around the z-axis. Often referred to as yaw.

• β represents a rotation around the y′-axis. Often referred to as pitch.
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• γ represents a rotation around the x′′-axis. Often referred to as roll.

Figure 2.1: Illustration of sequential intrinsic Euler angle rotations in the
ZYX order.

For point clouds in three dimensions, the translation vector t is defined as

t =
[
tx ty tz

]T
, (2.3)

where the translation vector is the minimizing distance after a rotation have been
applied.

Most scan matching algorithms consist of the following iterative steps:

1. Initial guess of the transformation.

2. Point association.

3. Remove outliers.

4. Calculate transformation.

5. Check convergence criteria. If not converged, repeat from step 2.

Figure 2.2 shows an overview of the typical scan matching steps.

2.3 Preprocessing of point cloud data

Most scan matching algorithms in the literature are computationally heavy, sug-
gesting that a large amount of data will result in poor real-time performance.
Therefore, the point clouds can be reduced to ease processing.

2.3.1 Distance-based removal of points

A trivial way of preprocessing the point cloud is to remove points close to and
far away from the lidar [9]. First, the lidar mount and parts of the vehicle can
obstruct the vision and therefore be represented as a part of the point cloud at
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Figure 2.2: Overview of the scan matching steps.

every scan. Hence, the points close to the lidar can be removed without losing
information relevant for estimating odometry. Second, lidars have a maximum
range specified by the manufacturers. Measurements beyond this range are unre-
liable and can therefore be considered noise. The unreliability is due to the laser
beam radius widening with distance which decreases the photon density per area
unit. The photon density will be below the photoreceptor’s detection limit at a
certain range. Atmospheric disturbances will also have an increased effect as the
range increases. Removing points far from the lidar ensures a higher average
quality point cloud.

2.3.2 Downsampling

A simple method to reduce the data set would be to remove points semi-randomly,
i.e. remove every nth point in the point cloud. However, a more sophisticated
method that retains more information is to apply a 3D voxel grid filter [22]. The
3D voxel grid filter divides the point cloud into a 3D grid consisting of voxels.
The most common grid structure for a 3D space is a cubic grid. However, spheri-
cal and cylindrical grids can also be used to better utilize the inherent structure
of lidar measurement data [3].

The points in each voxel are reduced to one point, either as the mean of the points
enclosed in the voxel or as the geometric center of that voxel [22]. The former is
naturally slower than the latter but better represents the distribution of points in
that voxel.

An illustration of a 2D voxel grid filter is shown in Figure 2.3. The voxel grid
filter introduces the design parameter grid resolution ν. A coarse grid resolution
(larger ν) removes more points from the point cloud resulting in a lower amount
of data to process. In contrast, a finer grid resolution (smaller ν) retains more in-
formation from the original point cloud and more data to process. Consequently,
choosing the right grid resolution can be difficult and data set specific. In [9], the
point cloud data is preprocessed lightly to keep approximately 10,000 points in
each cloud on average with a grid resolution of 0.25 m.
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Figure 2.3: Simplified visualisation of a voxel grid filter in 2D. The square to
the left illustrates 11 measured points. The square gets divided into 4 voxels
where the mean of the points in every voxel is represented as black dots.
The square to the right illustrates the resulting points after applying the 2D
voxel grid filter. 11 points have been reduced to 3.

2.4 Spatial data structures

As elaborated in section 2.5, a nearest neighbor search is performed to assign
point pairs in the scan matching. A brute force nearest neighbor search has a
O(nm) time complexity in the size of the point clouds, as all points in the first
point cloud of size n, must be compared with all points in the other point cloud
of size m. The time complexity can be simplified to O(n2) for point clouds of
equal size. This order of complexity can be improved by utilizing suitable data
structures. This section introduces two popular spatial data structures for point
cloud data.

2.4.1 kd-tree

A kd-tree is a binary search tree, sorting points spatially using k-dimensions,
where k corresponds to the point dimensions. The root node represents a point in
space, preferably as close to the median as possible in all dimensions for a more
balanced search tree. First, every node in the tree splits the space in one dimen-
sion. Second, the discriminating dimension in which the space is split is altered
at each depth level [14]. The time complexity of building a kd-tree is O(n log(n))
where n is the number of points. Additionally, in [7] they show that a nearest
neighbor search using the kd-tree is close to O(log(n)). Figure 2.4 illustrates a
kd-tree for a set of points in 2 dimensions.

2.4.2 Range images

Another method of bringing structure to point clouds is to project the points
onto a range image. The range image is 2D, where each row corresponds to an
elevation angle, each column corresponds to an azimuth angle, and each pixel
corresponds to the distance measured by the lidar. Subsequently, transforming
the 3D data into a grayscale 2D image. First, making the data easier to visualize
in 2D and second, facilitating processing since the point cloud can be traversed
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Figure 2.4: Illustration of a kd-tree with k = 2 to the left, sorting the two
dimensional points of Pi in the confined space to the right.

column-wise and row-wise when processing the data. This method is used by
[46], [45], [56], [8] to facilitate segmentation of point clouds. Figure 2.6 shows a
range image of the point cloud in Figure 2.5.

Figure 2.5: A typical point cloud. The color of the points indicates the
height.
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Figure 2.6: Range image where the points in Figure 2.5 have been projected.
The color indicates a range where black is close and white is far away. The
perspective of the range image is from the center of the vehicle’s wheel axle.

2.5 Iterative Closest Point (ICP)

The iterative closest point (icp) algorithm is the most common technique for scan
matching. The algorithm aligns the source point cloud Pj with a target point
cloud Pi iteratively, using two key steps [6]. First, point association is performed
to select which pairs of points are to be evaluated in a goal function to be mini-
mized. Second, the rotation matrix R and translations vector t that minimize that
goal function is computed and applied to Pj . The process is repeated until a set
of stop critera is met.

Examples of stop criteria are the convergence of estimates with smaller and smaller
transformations, the value of the goal function compared to a threshold or if a
maximum number of iterations are reached. Furthermore, some minor modifica-
tions of the icp are presented in [41] based on:

• Altering the association method.

• Rejecting associated point pairs, described in detail in Section 2.7.

• Weighing point pairs differently in the goal function.

More significant modifications are also presented, such as:

• Changing the goal function.

• Changing how to minimize the goal function.

There are three main categories of icp variants based on these modifications,
point-to-point, point-to-plane, and plane-to-plane. The biggest differences be-
tween the variants are the goal functions that are to be minimized. The goal func-
tions for each variant are presented in sections 2.5.1, 2.5.2, and 2.6.2 respectively.
The steps of the icp algorithm are illustrated in Figure 2.2.

2.5.1 Point-to-Point

For the point-to-point variant, the goal function that is to be minimized each iter-
ation is the sum of the distance between every point in Pj and its corresponding
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point in Pi ,

R, t = arg min
R,t

N∑
n=1

∥Rp
j
n + t − pin∥2. (2.4)

N is the number of points matched in the association step, not the total number
of points. The associations are commonly found by a nearest neighbor search in
a kd-tree constructed for Pi . Pi and Pj are sorted according to this association,

i.e., index n for the point p
j
n in Pj corresponds to its associated point pin in Pi .

According to [5], the arguments R and t in the goal function (2.4) can be found
using a nonlinear solver or by applying singular value decomposition of the cross-
covariance matrix C defined by

C =
N∑
n=1

(pin − pi)T (pjn − pj ), (2.5)

where pi and pj denotes the center of mass for the point clouds Pi and Pj . By
singular value decomposition, find

SVD(C) = USVT , (2.6)

where U,V are unitary, and S is a diagonal matrix consisting of the three singular
values σ1 ≥ σ2 ≥ σ3 of C. The optimal solution for the rotation is

R = UVT . (2.7)

In [28] they prove that if the rank of C is equal to 3, the translation vector t can
be calculated by subtracting the mean of Pi with the rotated mean of Pj as

t = pi − Rpj (2.8)

where the pi denotes the mean of all associated points in Pi and pj the mean of
all associated points in Pj . The point-to-point icp procedure is described step by
step in Algorithm 1.
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Algorithm 1 ICP - Point-to-point

1: R← R0, t ← t0,
2: Pj ← RPj + t
3: kdtree← createKDTree(Pi)
4: while not converged do
5: P ′j , P

′
i ← association(kdtree, Pj )

6: R, t ← calculateTransform(P ′j , P
′
i ) ▷ Equations (2.5)-(2.8)

7: Pj = R ∗ Pj + T
8: converged ← checkConvergence(t,R)
9: end while

2.5.2 Point-to-Plane

The main difference in point-to-plane icp compared to point-to-point icp is the
adjusted goal function

R, t = arg min
R,t

N∑
n=1

∥(Rp
j
n + t − pin) ·wi

n∥2, (2.9)

where wi
n denotes the normal vector for the point pin. To estimate the normal

vector, a plane can be estimated for a point, and its k nearest neighbors [24]. A
well-established methodology is to take advantage of principal component anal-
ysis (pca) to analyze the neighborhood covariance and deduce the direction of
the smallest variation of points [25]. The covariance matrix for the neighboring
points can be calculated by

C =
1
k

k∑
i=1

(pi − p)(pi − p)T , (2.10)

where k is the number of neighboring points and p represents the mean of the
neighboring points. It follows that

Cvj = λjvj , j ∈ {0, 1, 2}, (2.11)

where λj is the j-th eigenvalue of the covariance matrix, and vj the j-th eigenvec-
tor. The cross-product of the two eigenvectors with the largest eigenvalue is the
estimated normal vector as

v0 × v1 = w. (2.12)
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The goal function (2.9) is a least-squares optimization problem where the rotation
matrix R is nonlinear. A linear approximation is necessary to take advantage
of linear least-square methods [32]. The linearization assumes that the rotation
angles are small θ ≈ 0 and therefor sin(θ) ≈ θ and cos(θ) ≈ 1. Thus the nonlinear
rotation matrix R in (2.2) is approximated to a linear matrix

R̂ =

 1 −α β
α 1 −γ
−β γ 1

 . (2.13)

Now substituting R̂ for R in (2.9), the problem can be formulated as

R̂, t = arg min
R̂,t

N∑
n=1

∥(R̂p
j
n + t − pin) ·wi

n∥2, (2.14)

which can be identified as

x = arg min
x
∥(Ax − b)∥2. (2.15)

The matrix A and the vectors b and x are defined as

A =
[
(pj × wi)T (wi)T

]
,

b = (pj − pi) ·wi ,

x =
[
γ β α tx ty tz

]T
.

(2.16)

The optimal x can now be calculated by taking the pseudo-inverse of A as [32]

xopt = A+b. (2.17)

The pseudo-inverse of A is defined as the matrix A+ = VΣ+UT ,where Σ+ is the
matrix created by taking the inverse of the non-zero elements of Σ and leaving
the zero elements unchanged. An important remark is that R̂ is optimal only for
the linearized problem. Therefore, the linear approximated matrix R̂ might not
be a valid rigid rotation matrix. A solution is to use the nonlinear rotation matrix
R with αopt , βopt , and γopt as defined in xopt instead of R̂. Algorithm 2 describes
the point-to-plane algorithm.
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Algorithm 2 ICP - Point-to-plane

1: R← R0, t ← t0,
2: Pj ← RPj + t
3: kdtree← createKDTree(Pi)
4: Wi ← calculateNormals(Pi) ▷ Equations (2.10)-(2.12)
5: while not converged do
6: P ′j , P

′
i , W

′
i ← association(kdtree, Pj )

7: R, t ← calculateTransform(P ′j , P
′
i , W

′
i ) ▷ Equations (2.16) & (2.17)

8: Pj = RP ′j + T
9: converged ← checkConvergence(t,R)

10: end while

2.6 Generalized ICP (GICP)

Generalized iterative closest point (gicp) is a unifying framework introduced in
[44]. A probabilistic model is applied to the goal function where the points are
considered stochastic variables.

2.6.1 Probabilistic model

The existence of two underlying sets of points is assumed, P̂i = {p̂in} and P̂j = {p̂jn},

that generates Pi and Pj through pin ∼ N (p̂in, C
i
n) and p

j
n ∼ N (p̂jn, C

j
n). The optimal

transformation between two point clouds should result in p̂in = Rp̂
j
n + t for every

associated point. The distance depends on the transformation, which is defined
as

d
(R,t)
n = Rp

j
n + t − pin. (2.18)

The points pin and p
j
n are assumed to be generated by independent Gaussian dis-

tributions. Hence,

d
(R,t)
n ∼ N (p̂in − (Rp̂

j
n + t),Ci

n + RCj
nRT )

= N (0,Ci
n + RCj

nRT ).
(2.19)

Maximum likelihood estimation can be applied in each iteration to calculate the
translation vector t and rotation matrix R by letting

R, t = argmax
R,t

N∏
n=1

p(d(R,t)
n ) = argmax

R,t

N∑
n=1

log(p(d(R,t))
n ). (2.20)
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The maximum likelihood estimation can be simplified to

R, t = argmin
R,t

N∑
n=1

(d(R,t)
n )T (Ci

n + RCj
nRT )−1d

(R,t)
n . (2.21)

This probabilistic model allows for point-to-point and point-to-plane versions of
gicp depending on how the covariance matrices are defined. Point-to-point gicp
is achieved by letting

Ci
n = I ,

Cj
n = 0.

(2.22)

The point-to-plane gicp can be achieved by letting

Ci
n = P−1

n ,

Cj
n = 0,

(2.23)

where Pn is defined as the orthogonal projection matrix onto the normal vector
for a point pin. Strictly, Pn is not invertible since it is rank deficient. If Pn is
approximated with an invertible matrix Qn, the gicp framework approaches a
point-to-plane methodology as Qn limits towards Pn. The limit can be interpreted
as constraining pin to the normal vector plane [44].

2.6.2 Plane-to-plane

Plane-to-plane gicp was proposed by [44] and can be formulated by assuming
that the uncertainty of a point’s position is lower in the direction of its normal
vector. Utilizing this assumption in both point clouds, the planar geometry of
both point clouds can be considered, unlike the point-to-plane variation where
the planar geometry of only one point cloud can be used. If e1 is the direction
of the surface normal and ϵ denotes a small constant, the covariance matrix for a
point on that surface will be

C0 =

ϵ 0 0
0 1 0
0 0 1

 . (2.24)

Using a small constant for ϵ results in a large certainty that the point is located on
the plane surface. In order to transform the covariance matrix to the correct coor-
dinate frame, a rotation matrix Rxi is used to align e1 with w, where w represents
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the normal direction for point i. The normal vectors are calculated as described
in section 2.5.2. According to [44], if µ denotes a normal vector in point cloud Pi ,
and ν denotes a normal vector in Pj , the covariance matrices are

Ci
n = RµnC0,

Cj
n = RνnC0.

(2.25)

Algorithm 2 can be used to describe the plane-to-plane algorithm where the co-
variance matrices are calculated using (2.25) instead of the normal vectors in line
4.

2.7 Outlier rejection in ICP

Given that the source point cloud Pj and target point cloud Pi are not identical,
every point in Pj will not necessarily have a correct match in Pi . If such points
are matched, the resulting point pair can be regarded as an outlier [53]. Different
techniques for outlier rejection are evaluated in [35] and can be categorized as:

• Fixed: Setting a fixed maximum distance dmax between a point and its near-
est neighbor. All associated points with a distance greater than dmax are
rejected.

• Gaussian: Proposed in [17] which sets d = µ + σ , where µ and σ are the
mean and standard deviation of the associated distances. A Gaussian dis-
tribution of distances is assumed, which is a bold assumption in dynamic
environments [35].

• Adaptive Gaussian: Adapting the threshold dmax as

d =


µ + 3σ, if 0 < µ < η

µ + 2σ, if η < µ < 3η
µ + σ, if 3η < µ < 6η
µ1/2, otherwise

, (2.26)

where µ1/2 is the median of the distance between paired points, and η is set
by the user, µ and σ are the mean and standard deviation of the associated
distances. Introduced in [38]

• Median: The median of the distances between point associations deter-
mines the maximum allowed distance, dmax = 3µ1/2, where µ1/2 is the me-
dian, according to [35].

• Trim: Introduced by [11] the trim method rejects points based on

Nconsidered = (1 − ξ)Ntotal , (2.27)

where ξ is set by the user and Ntotal is the total number of associated points.
The points are sorted based on their associated distance, with the idea of
rejecting a percentage of the pair with the largest associated distance.
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• Relative Motion Threshold (rmt): Proposed by [35] and adapts the dis-
tance threshold dt in each iteration based on the previous iterations trans-
lation vectors. If the iterative translation of the point clouds is converging,
the threshold becomes smaller according to

et =

e0, if t < 2
min(et−1, λet−1), otherwise

. (2.28)

The ratio λ determines if the iterative translations are converging by

λ =
∥tt−1∥
∥tt−2∥

. (2.29)

The distance threshold is then calculated as dmax = et + ϵ where ϵ can be
a fixed threshold or based on the statistical variance of the associated dis-
tances and einit is set by the user.

The techniques were evaluated in [35] and results show that RMT outperformed
the other techniques, while the Gaussian, median, and trim approaches beat the
fixed and adaptive Gaussian approach.

2.8 Segmentation

Segmentation is used to classify points as different objects. The objects can then
be used to streamline the matching phase by removing points belonging to ob-
jects that do not meet specified criteria such as position or size. The segmen-
tation algorithms are divided into ground segmentation and non-ground segmen-
tation. Ground segmentation is defined as classifying points to belong to the
ground surface or not. Non-ground segmentation in this thesis refers to meth-
ods that classify points belonging to different non-ground objects such as houses,
cars, lamp posts, et cetera.

2.8.1 Ground segmentation

A popular preprocessing method is classifying points as belonging to the ground
surface or not and removing the ground points. Ground points make up a large
portion of a typical point cloud and are information sparse with regards to yaw
rotation and translations along the x-and y-axis. If the yaw rotation and trans-
lations along the x-and y-axis are the main interest, the ground points can be
removed without sacrificing accuracy [10]. The ground points do, however, con-
tain valuable information for determining pitch and roll rotations and translation
along the z-axis [46] which means that removing the ground plane can reduce the
accuracy for said estimates.

Segmentation methods are presented in [16], where the authors argue for a voxel
grid based segmentation when dealing with dense point clouds. They suggest
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that ground points can be found by clustering adjacent voxels based on vertical
means and variances, thereby isolating points that are part of the ground plane.
The reason is its simplicity, ease of representation, and scalability by adjusting
the resolution.

The random sample consensus (ransac) algorithm can be used for ground seg-
mentation [36]. The ransac algorithm is an iterative method to estimate param-
eters of a mathematical model from a set of observed data that contains outliers.
In the case of point clouds in a 3D environment, a plane model

ax + by + cz + d = 0, (2.30)

with the normal vector
w =

[
a b c

]T
, (2.31)

can be estimated where ground points are considered inliers, and non-ground
points are treated as outliers. In [36], a new framework for real-time robust es-
timation of a planar surface called adaptive real-time random sample consensus
(arrsac) is presented. In [51] it is noted that there is spacial priori knowledge
of ground points. Utilizing the priori knowledge that ground points are located
in the lower part of the point cloud, they propose a faster converging algorithm
that eliminates some random sampling in ransac. They also argue that a single
plane approach to ground segmentation is insufficient since the ground might
exhibit elevation changes. Their solution is to apply the algorithm in segments
along the local axis of travel. In [49], a generalisation of ransac is formalised
as mlesac. The method adopts the same random sampling as ransac to gener-
ate putative solutions but estimates a solution to maximize the likelihood rather
than just the number of inliers.

When handling sparse point clouds, [16] introduced Gaussian process incremen-
tal sample consensus (gpinsac) to estimate a ground surface where non-ground
objects are present.

2.8.2 Non-ground segmentation

In non-ground segmentation, the point cloud is segmented into different clusters.
The goal is for each cluster to represent a different object. Ground segmentation
is often performed before non-ground segmentation to ease the differentiation of
objects and different clusters.

A point cloud can be segmented into clusters by considering the Euclidean dis-
tance between points and their neighbors, facilitated with a kd-tree. A minimum
distance threshold is set to distinguish between different clusters [42].

A faster algorithm than Euclidean clustering algorithms is presented in [51] where
points are segmented using a two-scan labeling algorithm of a range image. First,
the algorithm traverses the range image row by row and groups points with labels
by comparing its neighbors. Second, the algorithm traverses the labeled groups
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to merge them based on overlap in the range image. This segmentation method
is also used in [46] where the range image is divided into equally large portions,
and features are extracted from the clusters. The space is evenly divided before
extracting features to utilize information in every direction. In [56], a segmen-
tation algorithm is proposed that ensures real-time performance. The segmenta-
tion uses a range image inspired by [8], in combination with an angle threshold
method to avoid under-and-over segmentation.

Graph-based segmentation methods consider the point clouds as a graph. An ex-
ample of a simple model is where each point corresponds to a node, and the edges
connect them to pairs of neighboring points [33]. A graph-based segmentation
strategy is suggested in [29] based on radially bounded nearest neighbor (rbnn)
graph, in contrast to the more common k nearest neighbor search (knn) graph used
by [20]. In the rbnn graph, nodes are connected to other nodes within a prede-
fined radius. Nodes are connected to k neighbors regardless of distance in the
knn graph. The authors of [47] argue that graph-based segmentation algorithms
are robust to noise but lack real-time properties due to high time complexity.
A survey of segmentation methods [33] further strengthens this statement. Ma-
chine learning is a popular tool for object detection in RGB images but has also
grown in popularity in recent years when processing point cloud data. Machine
learning is used for object detection in [54] and segmentation in [47].

2.9 Differentiation of dynamic and static points

Most literature relating to scan matching assumes a static environment. Dynamic
objects can therefore introduce errors in odometry estimates if not considered
and managed. In [13], the research is based on a method proposed in [46], and
extended to account for dynamic environments. mmw radar is fused with the
lidar point clouds to detect dynamic objects. The radar can use the Doppler shift
to measure objects’ radial speed and ease non-static objects’ filtering. The same
technique could be applied if the lidar sensor measures the Doppler shift for each
point. In [15], a lower drift is achieved in the odometry estimation by segmenting
the point cloud and removing objects smaller than a given threshold. However,
this method assumes that dynamic objects are small compared to the static ob-
jects present in the environment. A fully-Convolutional Neural Network (FCNN)
is used in [54] to detect and segment dynamic objects such as cars, pedestrians,
and cyclists.

2.10 Kalman filter

The information in this section is gathered from [21]. Filtering can be contextu-
alized as an extension of estimation to a non-stationary state vector xk governed
by a dynamic model xk+1 = f (xk , uk , vk) where uk is a known input and vk model
errors. The uncertainty of the estimates is expressed as a covariance matrix Pk .
The Kalman filter computes the posterior distribution exactly for linear Gaussian
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systems [21]. The Kalman filters are prominent in odometry estimations since it
finds the best possible unbiased linear filter and can be extended to nonlinear
models.





3
Experimental Setup

The scan matching algorithms are evaluated experimentally with data recorded
from a car driving in an industrial suburban area. This chapter describes the
hardware used to capture and process the data and the software used to evaluate
preprocessing and icp algorithms. A detailed description of the data and the
route used to capture it is also included in this chapter, and a clarification of the
evaluation metric is presented.

3.1 Hardware

The hardware description is divided into the vehicle equipped with sensors used
to capture the data and the hardware used to evaluate the algorithms.

3.1.1 Vehicle

The data is recorded using a modified Lincoln MKZ, equipped with lidars, imu,
and gnss receivers. The sensors of importance for this thesis are the two identical,
revolving 3D lidars mounted on the vehicle’s roof. The lidars have 128 channels
and 270◦ horizontal field of view. The measurements from the remaining 90◦ of
the horizontal field of view are aimed towards the car and are discarded during
the recording. The vertical field of view is 90◦(±45◦). The specifications can be
found in more detail in Table 3.1, while their positioning and orientation on the
vehicle are illustrated in Figure 3.1 and Figure 3.2. The coordinate frame for the
vehicle is defined as a right-hand Cartesian coordinate system with the x-axis in
the vehicle direction and z-axis opposite to the gravity vector, pointing upwards.
The origin of the coordinate system is placed on the rear wheel axle, from now
on referred to as base. The lidars are positioned facing backward in respect to
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the vehicle coordinate frame, resulting in a yaw rotation of 180◦. Moreover, Ta-
ble 3.2 describes the transform variables to align the lidar coordinate frames to
the vehicle coordinate frame, with the base in its origin.

L

R

Figure 3.1: Aerial view of the vehicle used to record data. Red arrows illus-
trate the coordinate frame for the test vehicle. Blue circles represent lidars,
and blue arrows illustrate lidar coordinate frames. Green gradient semi-
circles indicate the horizontal field of view

X

Figure 3.2: Front view of the vehicle used to record data. Red arrows illus-
trate the coordinate frame for the test vehicle. Blue arrows illustrate Lidar
coordinate frames.
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Table 3.1: Specification for the lidar sensor used.

Lidar specifications
Vertical resolution 128 channels

Horizontal Resolution 2048
Maximum Range 50 [m]

Vertical Field of View 90◦(±45◦)
Precision ± 1.5 - 5 [cm]

Rotation Rate 20 [Hz]

Table 3.2: Transforms variables for lidar coordinate frame to vehicle coordi-
nate frame.

Sensor x [m] y [m] z [m] roll [rad] pitch [rad] yaw [rad]
Left lidar 1.552 0.518 1.619 0 0 π

Right lidar 1.553 -0.513 1.618 0 0 π

Calibration

A sensor configuration of this type is sensitive to calibration errors. The lidar
position and orientation calibration is performed by the partner company and
regarded as adequate. The calibration is done with the assistants of a camera
system. If the calibration is inaccurate, it will introduce errors in the odome-
try estimation delivered in the base frame. If the transform to the base has an
incorrect calibration in orientation, it could cause a bias in both the translation
and rotation estimation. Additionally, in the case of multiple lidars, an incorrect
calibration could cause objects to be duplicates of points in the point cloud.

3.1.2 Computer hardware

The computer used on which the algorithms are evaluated is a Dell Inc. XPS 15
9510 equipped with 11th Gen Intel® Core™ i7-11800H CPU with a base clock
frequency of 2.30 GHz and 8 cores (16 threads thanks to hyper-threading). More-
over, the GPU is a Mesa Intel® UHD Graphics (TGL GT1). However, all calcula-
tions are carried out using the CPU.

3.2 Software

MATLAB 2021b is used throughout to implement and evaluate the algorithms.
The data from the lidars is published using Robotic operating system (ROS) to
be conveniently saved as rosbags [48]. The rosbags are imported into the MAT-
LAB environment. For the plane-to-plane version using the GICP framework,
the scan matching is evaluated using the Point cloud library (pcl) in C++ [43].
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The decision to use PCL with C++ is based on the ease of implementation. Con-
sequently, the processing time between plane-to-plane with C++ and the other
variants using MATLAB can not be compared fairly. The accuracy can, however,
be compared more fairly.

3.3 Data collection

This section aims to elaborate on the collected data and the route used. In order
to fill the literature gap of lidar evaluation in a suburban environment with a
high degree of dynamic objects, the data has been recorded during the daytime
when the route road is busy with traffic.

3.3.1 Logging route

The data is recorded at relatively low vehicle speeds, typical for suburban areas.
The route is a 1 102 meter-long loop consisting of three roundabouts with mostly
straights connecting them. The route is illustrated in Figure 3.3, and the entirety
of the route is a public road. The recording is 4 minutes and 48 seconds long. It
starts and ends at approximately the same geographical place. A total of 5777 li-
dar scans are collected. The environment can be classified as industrial suburban
where part of the road is surrounded by buildings and larger structures. How-
ever, some parts of the route have no buildings within the range limit of the lidar.
The data were recorded during the day with a natural traffic flow. The data set
is captured during rush hour. Hence, many moving cars, trucks and pedestrians
are present in parts of the data set.

A data set was also recorded standing still at the beginning of the route. A small
portion of the road is visible for the lidar from the start location, and cars pass
by. However, they pass far away and makeup only a small fraction of the point
cloud. Although the data set contains passing cars and trees affected by the wind,
the environment can be classified as highly static.

3.3.2 Point clouds

The data is saved as timestamped ROS messages, where a message contains all
points from an entire lidar sweep. From each message, an N × 3 matrix can be
extracted with the Cartesian coordinate of every point in the point cloud, where
N equals the number of points. Figure 2.5 shows a typical point cloud.

The timestamp of every message corresponds to the start time of that sweep. How-
ever, there is no information about the exact timestamp for individual points,
and therefore, all points are assumed to have been captured at the start time of
every sweep. Consequently, motion distortion (described in Section 2.1) could be
present and perturbing the data. However, the lidar frequency of 20 Hz is rela-
tively high compared to the vehicle’s maximum speed. Hence, motion distortion
is neglected.
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Maxar, Microsoft

 200 ft 

 50 m C

B

A

Start

Stop

Figure 3.3: Illustration of the route the point cloud data has been recorded.
The vehicle traversed the route counterclockwise. The start and stop position
is marked. The three roundabouts are named A, B, and C.

As previously mentioned in Section 3.1.1, the vehicle is equipped with two rotat-
ing lidar sensors, and the point clouds collected from both lidars are merged, to
form one coherent point cloud at each time step. One of the lidars is regarded
as the reference when merging the point clouds based on timestamps. Since the
data recording starts at the same time and the sweep frequency of the lidars are
identical, point clouds can be merged without a time offset.

3.3.3 Ground truth

The partner company’s existing experimental state estimation is used for ground
truth. The state estimation consists of a Kalman filter variant with measurements
gathered from gnss-rtk receivers and an imu. The values for ground truth are
linearly interpolated for every time step in the evaluation. The state estimation
frequency is much greater than the lidar sweep frequency. Therefore, linearly
interpolating the values for ground truth should not introduce noticeable errors.

3.4 Evaluation metrics

All absolute results are scaled to protect the partner company’s confidential data.
The evaluation metric and plots will therefore lack units.
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3.4.1 Scaled root mean square error (SRMSE)

A standard metric to evaluate accuracy is the root mean square error (rmse). The
error is calculated as e = x̂ − x, where x̂ is the estimate and x the ground truth.
The rmse is computed as

rmse =

√√√
1
n

N∑
n=1

(en)2, (3.1)

where N is the total number of estimated frames.

The existing localization system used by the partner company has an estimated
accuracy for the translation. This accuracy is confidential and is used to scale all
the results presented in this thesis. Hence, the srmse is calculated as

srmse =
rmse

s
, (3.2)

where s is the scaling factor. When using the srmse for evaluations, a scaled
value of less than one is within the confidence of the ground truth. The part-
ner company has not provided any estimated accuracy regarding the vehicle’s
orientation. Therefore, the rmse for rotational estimates is scaled with the same
factor as for the translation estimates. The lack of precise rotation accuracy for
the ground truth complicates the evaluation of the rotation estimates but is, as
stated, necessary to not reveal sensitive data.

3.4.2 Scaled units

All plots presented in this thesis will also be scaled to protect the accuracy of the
provided ground truth. Therefore the unit scaled distance (sd) and scaled angle
(sa) is introduced to clarify when results are scaled.



4
Data preprocessing

This chapter describes the sequential preprocessing steps and presents results
regarding the voxel grid filter and the ground separation methodology. The pre-
processing steps are applied as Figure 4.1 illustrates. First, points captured on
the vehicle and noisy measurements far away disrupt the scan matching accuracy.
The points close and far away from the lidars are therefore removed.

Second, reducing the point cloud data naturally leads to a faster scan matching
process but how the voxel grid filter affects the accuracy of the scan matching is
not as intuitive. To evaluate the effects of the voxel grid filter, transformations
are estimated via scan matching for the entirety of the data set, using varying
settings for the voxel grid filter’s grid resolution and plotting the srmse against
the average processing time. The plots help in analyzing the relationship between
processing time and accuracy for different grid resolutions and are presented in
section 4.2.

Third, points in the point clouds contain different geometrical information de-
pending on where they are located in the environment. E.g. points that belong
to the ground plane are not useful when estimating the translation along the x-
and y-axis or yaw rotation. They can, however, be effectively used to estimate the
roll and pitch rotations and z-translation. The same experiment as the voxel grid
filter is conducted to evaluate how the ground plane affects the scan matching.
This time the scan matching is performed using the entirety of the point clouds,
only the non-ground points of the point cloud, and a proposed method of using
the ground points and non-ground points separately.

The examples demonstrating the effect of the preprocessing steps are conducted
using a typical point cloud from the data set. The introduced design parameters
and their default values can be found in Table 4.1. The motivation of the default
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values is elaborated on in corresponding sections.

Distance based
removal of points

Lidar point
cloud

3D voxel
grid filter

Ground plane
separation

Non-ground
points

Ground
points

Figure 4.1: Overview of the preprocessing steps

Table 4.1: Preprocessing design parameters

Parameter Default value
Threshold far away [m] ∥x∥ < 50, ∥y∥ < 50, −5 < z < 20

Threshold close [m] −1.5 < x < 4, ∥y∥ < 2, ∥z∥ < 2 [m]
Ground separation True [-]

Ground removal (angular threshold) 5 [deg]
Ground removal (inlier threshold) 0.2 [m]

Voxel grid resolution 0.3 [m]

4.1 Removal based on distance

First, points with a high probability of being of low quality are removed. This
includes points that are further away than the specified maximum range of the
lidar, 50 meters in the x-and y-direction are removed. Points 5 meters below
and 20 meters above the base are removed as the location of base is known, and
these points can be assumed to be noise with high confidence. Figure 4.2 shows a
raw point cloud sweep where the lidars register points well outside their reliable
range of 50 meters and even well below the ground surface.

Second, the points close to the lidar are removed. The removal is due to the lidar
registering many points on the vehicle itself, which are non-informative for the
odometry calculations since they move with the vehicle at every frame. The test
vehicle is assumed to be a 5.5 × 4 × 2 meter cuboid. Furthermore, if no visible
objects are present in a given lidar elevation and azimuth angle, the lidar will not
register any range measurement for that angle. These no-return measurements
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are registered as zero range and located in origo. Hence, removing points close
to the lidars also removes the no-return measurements. Figure 4.3 shows the
same point cloud as in Figure 4.2 with the described preprocessing based on the
distance applied. The number of points is reduced from 37 854 in the raw point
cloud to 35 645, a reduction of 5.83%.

Figure 4.2: Unprocessed point cloud.

Figure 4.3: The point cloud in figure 4.2 after removing points far away as
well as the points close to the lidars, as outlined in section 4.1. Note that the
point cloud is much more zoomed in due to the removed outlier points.
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4.2 3D Voxel grid filter

A 3D voxel grid filter is applied to reduce the number of points while allowing
the remaining points to represent the environment adequately. Figure 4.4 shows
the voxelized point cloud with the grid resolution ν set to 0.3 m. The number of
points is now reduced to 5 339 from the original 37 854, a reduction of 85.90%
from the raw point cloud. This is a large reduction, but since it is done systemati-
cally, points can be removed without sacrificing too much information about the
environment. When comparing Figure 4.3 to Figure 4.4, the overall look of the
point cloud is similar, and consequently, the filtered point cloud retains informa-
tion about the environment well.

Figure 4.4: The figure illustrates the point cloud from Figure 4.3 with a voxel
filter added. The grid resolution is set to 0.3 [m]

Figure 4.5 visualizes the effect of grid resolutions for the point-to-plane icp. The
figure shows that the total accuracy of scan matching increases with a smaller
ν until around 0.3 m for the translation and 0.4 m for the rotation. Hence, the
default value for the grid resolution is set to 0.3 m. Figure 4.5 only displays the
point-to-plane variant but the same behavior was present for all evaluated icp
variants. The decrease in accuracy for finer grid resolutions might be due to
the average movement per frame in the recorded data set. As elaborated in sec-
tion 2.2, the icp algorithm associates point pairs based on the nearest neighbor of
a source point in the target points cloud. If the grid resolution is too small com-
pared to movement per frame, the points in the voxel grid filtered points clouds
will overlap more, increasing the probability that the icp algorithm finds a local
minimum rather than a global optimum for the goal function. A smaller ν also
results in a longer processing time. Moreover, the gain in accuracy between 0.3 m
resolution and 0.4 m resolution is small compared to the processing time gained.
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Run time vs accuracy for various grid resolutions
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Figure 4.5: Plots showing the average run time and scaled rmse for the
recorded data set using the point-to-plane icp with different grid resolu-
tions. The ideal solution is located in the bottom left corner. The grid reso-
lutions are indicated in parentheses. The rmse is scaled using the estimated
translation accuracy of the ground truth. A scaled rmse below 1 is within
the ground truth accuracy for translation estimates. Since the rmse is scaled
with the same value for rotation estimates, the quality of the rotation esti-
mates can not be stated.

4.3 Ground separation

An mlesac algorithm is used to find a plane of points representing the physical
ground surface. The algorithm is described in Section 2.8.1 and is implemented
as a plane fitting function in the MATLAB standard library called pcfitplane().
A priori knowledge of the ground plane’s normal vector is used where the normal
vector (defined in (2.31)) must be parallel with the gravity vector within a thresh-
old of 5 degrees. An inlier threshold of 0.2 m is then used to classify points as
ground or not, depending on the point’s distance to the estimated plane model.
When separating the ground plane, the angular and inlier threshold is based on
reasonable assumptions and proved robust for the data set. However, no granu-
lar experiments were conducted to assure optimal values since no major perfor-
mance increases were expected.

The point cloud with a removed ground plane can be seen in Figure 4.6. The
number of points is now reduced to 3 353, a total reduction of 91.14% from the
raw point cloud. When comparing Figure 4.4 with Figure 4.6 the point clouds
now look quite different. However, since the ground plane is removed, not much
useful information for the relative position along the x-and y-axis is lost.

Figure 4.8 shows that performing scan matching on the entirety of the point
clouds gives better overall translation accuracy than with the ground points re-
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Figure 4.6: The figure illustrates the point cloud from Figure 4.4 with the
ground plane removed from the point cloud as outlined in section 4.3

moved. The better accuracy is due to the better performance in z-translation
while translation along the x-axis suffers. The same can be concluded in Fig-
ure 4.9 for the rotation estimates, where the scan matching on the whole point
clouds results in better pitch and roll rotations and worse yaw rotation.

To improve the accuracy of the estimates, this thesis proposes an approach in-
spired by [46] to divide the lidar point clouds into two subsets, ground points
and non-ground points. The scan matching can then be applied to the two sub-
sets separately, enhancing the most relevant information in each subset. First,
the non-ground points are used to estimate yaw rotation and x-and y-translation.
The ground points are then aligned using the derived transformation and then
used to estimate z-translation and pitch and roll rotations. A flow chart of the
method can be seen in Figure 4.7. This method’s processing time is longer than
only using the non-ground points but faster than using the whole of the point
cloud. The accuracy for translation estimates is improved by 8%, and the accu-
racy for rotation estimates is improved by 22%, compared to using the entirety
of the point cloud.

If the odometry is intended for 2D localization and only the estimates of yaw
rotation and x-and y-translation are of interest, only the non-ground points are
of use since the ground points do not improve x,y, or yaw estimations.
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Preprocessed
non-ground

points

icp estimation
of x, y, and γ Transform

Preprocessed
ground
points

icp estimation
of z, α, and β Transform

Figure 4.7: Overview of the proposed method where the transformations are
estimated in two steps.
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Figure 4.8: Plots showing the average run time and translation accuracy for
the point-to-plane icp with different grid resolutions. The ideal solution is
located in the bottom left corner. The grid resolution is indicated in paren-
thesis. Grid resolutions with longer process time and worse accuracy are
not of interest and not shown in the plots. The rmse values are scaled as de-
scribed in 3.4.1. The Euler angles are defined from the previous point clouds
coordinate frame
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Run time vs rotation accuracy for various grid resolutions
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Figure 4.9: Plot showing the average run time and rotation accuracy for the
point-to-plane icp with different grid resolutions. The ideal solution is lo-
cated in the bottom left corner. The grid resolution is indicated in parenthe-
sis. Grid resolutions with longer process time and worse accuracy are not of
interest and not shown in the plots. The rmse values are scaled as described
in 3.4.1.The Euler angles are defined from the previous point clouds coordi-
nate frame



5
Scan matching

This chapter describes the implementation of the icp scan matching, evaluates
tuning parameters and compares the icp variants. First, the sensitivity of the
icp to the initial alignments of the point clouds is investigated. Second, outlier
rejection techniques for improving the icp estimates are evaluated and discussed.
Finally, the icp variants are compared. Table 5.1 show the tuning parameters
and their default values. Motivation for each parameter value is found in the
corresponding sections. More detailed theoretical aspects of the algorithms are
found in section 2.5.1, 2.5.2 and 2.6.2.

Table 5.1: Parameters of the icp algorithm and their default values.

Parameter Default value
Convergence translation threshold 1 [mm]

Maximum number of iterations 50 [-]
Number of neighbors used to calculate normal vectors 10 [-]

5.1 Initial guess of the transform

Scan matching algorithms and the icp framework, in particular, are characterized
as sensitive to the initial alignment of the point clouds to be matched. Since
the algorithm lacks optimality, the algorithm can converge to a local minima.
Therefore, an initial guess of the transform can be applied to the source point
cloud before the scan matching is initiated. This initial guess could take the form
of the previously estimated transform since they should be roughly equivalent,
given a high frequency of the estimations. However, to make the scan matching

41



42 5 Scan matching

algorithms robust and independent of previous estimates, an initial guess of no
movement between the scans is provided as default.

To investigate the sensitivity to the initial alignment, a near-perfect initial guess
based on the corresponding ground truth transform is provided for every frame
and compared to the default case with no movement between the frames as an
initial guess. The srmse for the x-translation when no movement is assumed be-
tween the scans is 0.35839, and the srmse is marginally better at 0.35625 when
the ground truth is used, an increase of 0.59%. Consequently, since ground truth
can be considered a near-perfect initial guess, the point-to-plane icp algorithm
would not benefit substantially by providing initial guesses via other motion sen-
sors or previous estimates. Figure 5.1 shows the frame-to-frame estimations for
x-translations. Only the estimations in x-translations are shown, but the same
effect is true for the other five degrees of freedom.

(a) icp estimations for the recorded data with no movement as an initial guess.

(b) icp estimations for the recorded data with the ground truth as the initial guess.

Figure 5.1: Comparison of the frame-to-frame estimations with a) no move-
ment as the initial guess and b) ground truth as the initial guess. Yellow sec-
tions indicate the three roundabouts. The outlier rejection uses 15% trim.

5.2 Point pair association

Point pair association is facilitated by constructing a kd-tree (described in sec-
tion 2.4.1) of the target point cloud. The kd-tree is then used to find the nearest
neighbor in the target point cloud for each point in the source point cloud. Mul-
tiple points from the source point cloud may be associated with the same point
in the target point cloud. Nonetheless, only the pairs with the shortest shared
distance are considered, and the rest are disregarded.
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5.3 Outlier rejection

If the point pairs in the icp framework are weighted equally, noisy points and
points captured on dynamic objects can perturb the estimates. Hence, point pairs
with an abnormal distance can be considered outliers. Outlier rejection is one
way to discard the point pair outliers and improve the accuracy of icp estimates.
The procedure in this section differs from [35] in that the evaluations are done
using 3D point cloud data collected in a dynamic outdoor environment instead
of 2D data in an indoor environment. As presented in Table 5.2, all tested outlier
rejection techniques can improve performance when tuned. The whole data set
described in section 3.3.1 is used for the evaluation.

Table 5.2: The best performing versions of the outliers rejection methods
from Table 5.3, 5.4, and 5.5 gathered in one table.The first column indicates
the method, the second column displays the setting, and the third to fifth
column shows the performance change as a percentage. The percentages are
calculated as % = Outlier

NoOutlier . The best values in each column are highlighted
with bold text.

Method Setting
srmse

Time
ttot Rtot

Median dmax 2 µ1/2 62.82% 43.03% 96.71%
rmt e1 / ϵ 1 m / 3σ 60.98% 42.73% 106.6%
Trim ξ 15 % 62.70% 43.76% 97.02%

5.3.1 Fixed

The fixed distance threshold outlier removal method is the easiest to implement
since the only required information is the distance between each point pair, which
is calculated in the nearest neighbor search per default. It uses one tuning vari-
able, the maximum allowed distance (dmax) between two points in a pair. The
fixed distance method performs the worst of all the evaluated methods, as seen
in Table 5.3.

At moderate high values of the fixed distance threshold of dmax ∈ [3, 12] m (for
this data set), the fixed method is relatively insensitive, giving a modest one to
three percent performance change per meter. If dmax is set too low compared to
the grid resolution of the voxel grid filter, most point pairs are initially too far
away and are rejected. For this data set, dmax ≤ 0.1 m rejects too many points.

Setting the threshold dmax to a higher value is more robust and increases per-
formance compared to no outlier rejection since the most extreme outliers are
rejected.
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Table 5.3: The table contains results for different settings for the fixed outlier
rejection method The first column is the variant used. The second column is
the settings. Columns three to five shows performance change as a percent-
age relative to not using any outlier rejection technique. The results are for
total translation srmse, total rotation srmse, and average process time per
frame. Percentages are calculated as % = Outlier

No outlier .

Setting srmse
Method

dmax Ttot Rtot
Time

5 m 87.80% 70.34% 96.19%
1 m 78.70% 52.78% 91.91%

0.4 m 74.48% 47.65% 93.02%
0.2 m 81.95% 43.34% 99.5%Fi

xe
d

0.1 m 279.34% 99.79% 131.14%
1.5 µ1/2 69.44% 44.38% 105.41%
2 µ1/2 62.82% 43.03% 96.71%

M
ed

ia
n

3 µ1/2 71.2% 44.79% 94.56%

5.3.2 Median

A more adaptive way to set the threshold is to use the median method outlined
in section 2.7. This approach considers that the distances between point pairs
change every iteration of the icp. According to [35], dmax should be three times
the median, µ1/2. However, as seen in Table 5.3, the results are improved for this
data set by setting dmax to two times the median. The difference could be because
the original paper used a 2D lidar for indoor use, while the data set used in
this thesis is collected with a high-end 3D lidar that generates more data. With
more data, the outlier rejection method can be more restrictive and still have
enough points to generate good transformation estimates. When tuned well, the
median method performs comparably with the best-performing methods, as seen
in Table 5.2

5.3.3 Relative motion threshold (RMT)

The rmtmethod is an extension of the fixed method. According to the literature
presented in section 2.7 the rmt is one of the best performing outlier rejections
methods. The experimental results indicate major improvements in the accuracy,
as seen in Table 5.4. However, the rmt has a drawback it is the only outlier re-
jection method that consistently increases processing time when properly tuned.
This is because the relative motion error en is iteratively refined and increases
the number of iterations the icp requires for convergence. The rmt with e1 = 1
and ϵ = 2σ needs on average 11.03 iterations to converge compared to the trim
method with ξ = 15% which requires 9.17 iterations on average. The rmt also
has two tuning parameters, which complicates tuning.

The rmt method shares similarities with the fixed method in regards to the tun-
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ing of the maximum distance between point pairs dmax. Tuning ϵ excessively
large will reduce the effectiveness of the rmt as it might let through more out-
liers. However, it will never wholly prevent the icp from converging on a solu-
tion. If the maximum distance is too small, too many point pairs are rejected for
the icp to function accurately. Tuning e1 to a high value does not impact the accu-
racy in any meaningful way but can increase the processing time. This is because
it is refined each iteration. Thus having e1 as a higher value simply increases the
number of iterations needed to find the optimal dmax. Setting e1 to a low value
leads to similar performance degradation as having a too low value of dmax in the
fixed method.

Table 5.4: The table contains results for different settings for the rmt outlier
rejection method. The first column is the method name. The second column
is the settings. Columns three to five shows performance change as a per-
centage relative to not using any outlier rejection technique. The results are
for total translation srmse, total rotation srmse, and average process time
per frame. Percentages are calculated as % = Outlier

No outlier

R
M

T

Setting SRMSE
Time

e1 / ϵ [m] Ttot Rtot
0.8 / 3σ 61.05% 43.10% 110.69%

1 / σ 72.89% 61.10% 141.85%
1 / 2σ 62.88% 47.19% 115.12%
1 / 3σ 60.98% 42.73% 106.60%
1 / 4σ 65.07% 43.05% 106.78%
5 / 3σ 60.95% 43.10% 110.69%

According to [35], the minimum allowed distance ϵ should be tuned based on the
sensor noise. They propose to use one standard deviation off the point pair dis-
tances in a static environment. However, one standard deviation is too restrictive
for this data set and using three standard deviations delivers better results. The
main advantage of using rmt should, in theory, be ϵ being sensor dependant and
not dependent on the environment. Since the results in this thesis are only based
on data from a single environment, this hypothesis cannot be tested.

5.3.4 Trim

The trim method, outlined in section 2.7 removes a percentage of the pairs with
the greatest shared distance and has only one variable to tune, the trim percent-
age ξ. The method is easy to implement, increases performance and is robust
when using smaller values of ξ. Setting ξ too large results in poor performance
as too many points are discarded. A large ξ can also enhance the influence of
dynamic objects in certain cases. If an object moves in the same direction and
at the same speed as the vehicle, the points recorded on the dynamic object will
represent the pairs with the shortest shared distance. Thus non-dynamic points
will instead be removed, and the dynamic points become a more significant share
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of the retained point cloud.

Table 5.5: The table contains results for different settings for the trim outlier
rejection method. The first column is the variant used. The second column is
the settings. Columns three to five shows performance change as a percent-
age relative to not using any outlier rejection technique. The results are for
total translation srmse, total rotation srmse, and average process time per
frame. Percentages are calculated as % = Outlier

No outlier

Method
Setting SRMSE

Time
ξ Ttot Rtot

Tr
im

20% 66.08% 45.03% 100.43%
15% 62.70% 43.76% 97.02%
10% 65.51% 43.98% 94.85%

2S
te

p
Tr

im

ξ1 / ξn Ttot Rtot Time
10% /20% 62.07% 44.88% 97.29%
20% /30% 66.72% 46.25% 102.82%
10% / 30% 62.39% 45.90% 99.25%
10% / 40% 62.97% 47.46% 101.13%

Two-step trim

In order to minimize the shortcomings of the trim method, a two-step trim method
is proposed. By rejecting a set percentage of the pairs with the greatest and small-
est shared distance in the first iteration, the source point cloud is transformed to
better match the majority of the points in the points cloud. The point cloud can
then be trimmed with a more aggressive ξn without allowing dynamic objects
to represent a larger percentage of the point pairs. However, the two-step trim
method has the drawback of introducing an extra parameter to tune in ξ1.

The two-step trim achieves the best accuracy for translation, and the basic trim
method achieves the best accuracy for rotation. Results can be seen in Table 5.5
where the two methods give very similar performance. However, a bigger perfor-
mance difference is exhibited when studying a smaller section of the data set with
more dynamic objects. An example is visualized in Table 5.5 in the roundabout
at 155-175s. The performance of the two-step trim with ξ1 = 10%, ξn = 30%
performs 14% better than a standard trim with ξ = 15%. This section of the data
set was chosen as dynamic objects clearly affect the icp’s estimates during this
roundabout.

5.3.5 Summary of outlier rejection

All of the outlier rejection methods can perform similarly well when adequately
tuned. According to [35], the rmt should only be sensor dependent, which would
make it a more general approach. However, since this data set only uses one type
of sensor, this statement cannot be tested. The rmt is, however, the slowest, so
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if the processing time is a top priority, using the median method would be the
recommendation.

5.4 Calculate Transformation

Depending on the icp variant, the goal functions differ and are also solved dif-
ferently. The point-to-point algorithm uses the singular value decomposition of
the cross-covariance matrix to estimate the rotation, as described in section 2.5.1.
The point-to-plane algorithm solves a linearized goal function through linear re-
gression, as described in section 2.5.2. Neither of these algorithms uses explicit
solvers as their optimization problems can be solved using basic linear algebra.
The normal vectors in point-to-plane are calculated by using MATLAB’s built-in
function pcnormals() with 10 considered neighbors, based on pca.

The plane-to-plane algorithm is based on the gicp framework outlined in sec-
tion 2.6.2, and the minimization of the goal function requires a nonlinear solver.
This is done using pcl in combination with MATLAB. First, all point clouds are
preprocessed in MATLAB and saved as point cloud data files (.pcd). A C++ file
then estimates all transformations using pcl’s GeneralizedIterativeClosestPoint()
class. The transformations are then saved as a CSV file and exported to MATLAB
to uphold visual coherency when displaying results.

5.5 Stop criteria

Two stopping criteria are used in the point-to-point and point-to-plane icp vari-
ants. First, the convergence criteria state that if t does not change more than
a threshold for a consecutive number of iterations, the algorithm is assumed to
have converged. The default threshold is set to less than 1 millimeter in change
for three consecutive iterations, which is well within the confidence of the ground
truth. Second, a maximum number of allowed iterations before the estimation is
halted. The maximum number of allowed iterations is set to 50 as default, same
as [44].

The plane-to-plane variant only requires one iteration below the threshold for
convergence. This difference is due to the use of pre-built programs from pcl.

The stop criteria will affect the processing time and accuracy. The convergence
criteria and the maximum number of iterations are set to strike a good balance
between computational speed and accuracy in experiments.

5.6 Comparison of scan matching algorithms

To establish which variant of the icp framework performs the best, the three ma-
jor categories of icp, point-to-point, point-to-plane and plane-to-plane are com-
pared in Table 5.6. The point-to-point version is slightly faster than the point-to-
plane. However, this comes at the cost of lower accuracy. It is clear that the point-
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to-plane version performs better than both plane-to-plane and point-to-point in
terms of accuracy represented by the srmse.

The plane-to-plane variant is slightly worse than the point-to-plane in terms of
accuracy. This is a surprising result as some of the literature, e.g., [44] would
suggest that the plane-to-plane gicp version is the most accurate algorithm. This
difference could be due to the data set in use being less urban than the data set
used by others. The plane-to-plane variant gives more weight to the environmen-
tal geometry, and surface normals are easier to derive accurately for large planar
surfaces such as facades.

The plane-to-plane variant lacks real-time properties in its current implemen-
tation, with an average process time of 1 141 ms, making it unsuitable for av
localization. When comparing the point-to-point version with the point-to-plane
version, the point-to-plane variant is the superior algorithm overall, considering
the small trade-off in process time and the significant gain in accuracy. Hence the
point-to-plane variant is the proposed variant of choice.

Table 5.6: The table shows the performance for the three icp variants. The
grid resolution ν is set to 0.3 m and the outlier rejection is set to a fixed dis-
tance of 1 m for all methods. The rmtmethod allows for better performance,
but the fixed method is used for a more fair comparison to the gicp plane-
to-plane variant. A srmse value below 1 for the total translation is within
the confidence of the ground truth. The Euler angle rotations are defined
from the previous point clouds coordinate frame.

srmse for the icp variants
Parameter Point-to-point Point-to-plane Plane-to-plane

x 4.5777 0.5042 0.6895
y 1.0105 0.3221 0.3334
z 1.2413 0.1124 0.1674

Total translation 5.8320 0.9387 1.1903

γ (Roll) 1.3250 0.9457 1.4707
β (Pitch) 1.6095 0.9721 1.5410
α (Yaw) 3.9751 1.1668 1.3300

Total rotation 6.9095 3.0846 4.3417

Avg time [ms] 35.64 55.83 1141.8



6
Dynamic objects in the environment

This chapter highlights the errors caused by dynamic objects and strategies to
minimize them. The scaled rmse (srmse) is used to evaluate the performance.
The scaling is for the purpose of confidentiality. The data used for the analysis
in this chapter is a subset of the data set described in section 3.3.1. It starts at
the 150-second mark and ends at the 210-second mark. This section is chosen
as there are many errors caused by dynamic objects, which makes it easier to
study the mitigation strategies. The data set contains the last roundabout (C)
and a straight road which is important for the general applicability of the results.
The complete route can be seen in Figure 3.3. When analyzing the effects of the
mitigation strategies, a base case setting of the default point-to-plane icp with
a fixed outlier rejection where dmax = 5 m is used, visualized in Figure 6.1, and
results are presented as a change of performance from the baseline.

The performance change is presented as a percentage which is calculated as % =
Dynamic Mitigation RMSE

Baseline RMSE . Thus lower percentages are desired.

6.1 Display of errors

The first question that needs to be addressed is whether the estimation errors
are due to dynamic objects or something else. In Figure 6.1 during the 185-195
second interval, there is a clear bias toward over-estimations. During this section,
several trucks drive in the oncoming lane towards the vehicle, which is illustrated
in figure 6.3a. When the trucks are manually removed from the point clouds by
deleting all points on the road, the translation accuracy improves, and the results
can be seen in Figure 6.2. This improvement is because the trucks cause the aver-
age relative velocity of the point cloud to be higher than the vehicle speed, which

49
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Figure 6.1: Full point-to-plane icp translation results with no reduction
strategies for dynamic objects. Groundplane is removed, and the ν is set
to 0.3m. Outlier rejection is set to a fixed distance of 5 m. The yellow section
indicates a roundabout being in close proximity.

causes the icp to estimate that the vehicle has moved forward more than it has,
resulting in a higher value for translation estimates than the ground truth. Thus
it can be concluded that dynamic objects indeed introduce errors in estimations.

Another part of the run with an apparent deviation from ground truth is in the
roundabout around the 160-170s interval where cars are driving along with the
test vehicle and hence introducing a bias towards lower value in the x-translation
estimates. An example frame from this can section be seen in Figure 6.3b.

6.2 Road removal

A trivial method to reduce the errors caused by dynamic objects is to remove all
non-ground points that are geometrically positioned on the road based on x- and
y-coordinates since there is a high likelihood of them being dynamic. Vehicles
such as trucks can have a relatively large surface area and therefore make up a
large portion of the point cloud and have a greater influence on the estimates.
The most common dynamic objects outside the road are pedestrians, which have
a much smaller surface area than a vehicle and move much slower. Pedestrians
are therefore not expected to cause as large errors in the estimates.

Distinguishing points positioned on the road is difficult without using a map or
other sensory data. An elementary strategy is to assume that the road is straight
along the vehicle and remains constant in its width. This heuristic, of course,
does not work in all environments or data sets as it will remove non-road points
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Figure 6.2: Full point-to-plane icp translation results with no reduction
strategies for dynamic objects. Groundplane is removed, and the ν is set
to 0.3m. Outlier rejection is set to a fixed distance of 5 m.

when the road curves, e.g., in a roundabout. When implementing this heuristic,
it is assumed that the road is an infinite straight line with a width of seven m to
the left of the car base and three m to the right of the car’s base. This assumption
is incorrect, but for certain environments, the information loss due to incorrect
removal is compensated by filtering dynamic objects. The results for this strategy
on our data set can be seen in Figure 6.4 and compared to the base case in Fig-
ure 6.1, notable gains in the x-translation estimates can be seen after the round-
about at the 180 s mark and comparable within the roundabout. By removing
the road, the srmse for x-translation estimates improves (decreases) by 33.50%
and the total srmse of 9.95%, which corresponds to a total translation srmse of
1.48. However, the rotation estimates worsen, increasing the srmse by 14.96%.
The degradation in rotation estimates is primarily due to a degradation in the
pitch rotation β where estimates get 32.23% worse. The trucks removed around
the 190 s mark introduce errors in x-translation. However, since the trucks are
depicted as large vertical planes, they add relevant information for the roll and
pitch rotations estimations.

6.3 Outlier Rejection and Dynamic Objects

As mentioned in section 5.3, having an effective outlier rejection strategy can
drastically improve the performance of icp estimations. When examining the
translation graphs, e.g. Figure 6.5, it is visible that biases identified as being
caused by dynamic objects in section 6.1, such as the cars in the 163-168s interval
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(a) Illustration of a truck being removed at time 193 s.

(b) Illustration of removing a straight line from the test vehicle in the roundabout at
time 166 s. The two purple clusters closest to origo are cars, and the third cluster is a
fence.

Figure 6.3: The figure illustrates the effect on a point cloud when remov-
ing a straight corridor along the test vehicle. Purple illustrates the removed
points. Green are the remaining points.

and the trucks at the 185-195s interval, are significantly reduced. Hence, outlier
rejection can be a potent strategy for reducing errors caused by dynamic objects.

Dynamic objects cause errors because the distance of the point pairs correspond-
ing to dynamic objects is different compared to the static points, affecting the
average and, conversely, the transformation. If the outlier rejection is tuned to
discard point pairs with a shared distance that diverges from the bulk of the sam-
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Figure 6.4: Translation performance when removing all points in a straight
line with 7 meters to the left and 3 meters to the right of the car base. Yellow
sections indicate the car being in or close to a roundabout.

ple, the point pairs corresponding to dynamic objects are rejected. A drawback
of this approach is that it requires a significant portion of the point cloud to be
static. If this is not the case, for example, if the vehicle is on a rural highway, the
outlier rejection could instead enhance the errors.

Some outlier rejection methods, such as the trim and the fixed methods, will re-
quire different tuning for different environments depending on the vehicle veloc-
ity and how large a percentage of the point cloud is dynamic. Therefore, using the
rmt, where the tuning parameter is sensor-based, is more robust for real-world
applications.

A benefit of using outlier rejection to combat errors from dynamic objects is that
it reduces errors caused by measurement noise and is relatively easy to imple-
ment. Using an rmt with e1 = 1m and ϵ = 3σ gives an srmse of 0.88, a 46.57%
performance increase compared to the base case, visualized in Figure 6.5.

6.4 Geometric filtering

In attempts to account for dynamic environments in the odometry estimation,
the geometric filtering methodology outlined by [15] and described in section 2.9
is evaluated. The method is evaluated because of its simplicity, ease of implemen-
tation, and prevalence in the literature.
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Figure 6.5: Translation estimates for a plane-to-plane icp with default set-
tings. Outlier rejection method rmt is used with e1 = 1 m and ϵ = 3σ m.
The x-axis illustrates the time, and the y-axis illustrates the translation val-
ues. The blue line is the icp estimates, and the ground truth is the red line.
The yellow section indicates roundabout C.

6.4.1 Parameter tuning and implementation

The procedure is to segment the point cloud into clusters and remove clusters
that are geometrically smaller than a threshold. The clustering is performed as an
additional step of the preprocessing. In [40], a geometric threshold of 10×10×4 m
is proposed, and this has been found to work the best for the data set used in this
thesis.

The clusters are distinguished using MATLAB’s pcsegdist(). The function is based
on a principle of minimum Euclidean distance, which is elaborated in section 2.8.2.
The method segments a point cloud based on a minimum distance between clus-
ters and the threshold for the minimum number of points a cluster must consist
of. Through experimentation visualized in Figure 6.6, the optimal settings have
been experimentally found to be 1.8 m as the minimum distance between clusters
and a minimum number of points of 35 for this data set.

Figure 6.7 shows the effect on a point cloud when removing clusters smaller than
10×10×4 m. Note that the cars i.e., dynamic objects are removed. The removal of
smaller objects heuristically can, however, lead to unstable icp estimations in en-
vironments where no large buildings or structures are present. A visualization of
a problematic environment is seen in Figure 6.8 where only a light post remains
after removing small objects.

A quality check and a sanity check have been implemented to counteract these



6.4 Geometric filtering 55

issues. First, if the point cloud only has one cluster after filtering, the point cloud
will be restored to the original non-segmented point cloud. This reduces the risk
of objects being incorrectly matched, e.g., two different light posts being matched
between frames. Second, an extra transformation estimation is performed using
the original point cloud. If the translation from the segmented and filtered esti-
mation differs more than 50% of the max speed from the estimates derived using
the original point cloud, the transformation from the original point cloud is used.
50% of the max speed was deemed large enough to only reject unreasonable esti-
mates.

Plots to determine default settings for Segmentation
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Figure 6.6: Plots showing experimental results deriving the default values
for the segmentation settings. The y-value is the total srmse. The x-axis
is the parameter values. The left plot has a fixed value for the minimum
distance between two clusters set to 1.8 m and gives a optimal value for the
minimum points in a cluster of 35. The right plot has a fixed minimum
amount of point in a cluster set to to 35 and gives an optimal value for the
distance between two clusters of 1.8 m.

6.4.2 Geometric filtering performance

Geometric filtering with a size heuristic works best in urban environments where
there are larger buildings or structures present at all times. Results for our data
set can be seen in Figure 6.9 where it is visible that the segmentation handles
some of the issues caused by dynamic objects by removing the bias seen in the
base case at the 163-168 interval as well as some of the bias in the 185-195 in-
terval. However, the frame-to-frame estimations with the geometric filtering
method are more volatile than those without geometric filtering. This volatility
is due to the remaining number of points in the segmented point cloud. When
the majority of the point cloud is removed, the accuracy deteriorates. This corre-
lation can be seen in Figure 6.10 where significant errors are present when there
are fewer points in the point clouds. The reason is twofold: first, a lower number
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(a) Point cloud after being preprocessed with a 0.3 m voxel filter and having ground
plane removed.

(b) Point cloud in Figure 6.7a segmented
with using Euclidean segmentation and
default settings from section 6.4.1

(c) Point cloud in Figure 6.7b processed
with heuristic described in section 6.4.1.

Figure 6.7: A step-by-step illustration of the geometric filtering of a point
cloud. Euclidean segmentation is applied in b), and smaller objects are re-
moved in c).

of points equals a smaller sample. Second, the loss of spatial information. The
scan matching has better accuracy when using points from all directions. The
accuracy will suffer if the remaining large clusters in the point cloud lie within
a small angular portion of the space. The reason this approach works well for
[40] is most likely because the surroundings where their data is collected contain
many large structures, which are visible in their paper. The accuracy degrada-
tion due to the volatility in our data set is evident in the total translation srmse
of 2.72, 65.57% worse than the baseline case.

When the sanity check of comparing the estimate from the segmented point cloud
to the normally processed point cloud, described in section 6.4.1 is disregarded,
the accuracy of some frames decreases drastically. This is visible in Figure 6.10
where significant errors are present, primarily throughout the roundabout, when
the environment and, conversely, the point cloud lack larger structures. T
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(a) Point cloud after being preprocessed with a 0.3 m voxel filter and having ground
plane removed.

(b) Figure 6.8a segmented with using euclidean
segmentation and default settings from sec-
tion 6.4.1

(c) Figure 6.8b pro-
cessed with heuristic
described in sec-
tion 6.4.1.

Figure 6.8: A step-by-step illustration of the geometric filtering of a point
cloud where only one large object is within the threshold. Euclidean seg-
mentation is applied in b), and smaller objects are removed in c).

Since the sanity check is required in every frame, the estimates must be calculated
twice, once using the geometrically segmented point cloud and once with the
original point cloud to filter the segmented icp when the estimations become
unreliable. The processing time is, therefore, greater than the other strategies
accounting for dynamic objects presented in this thesis. The base case has an
average process time of 43.1 ms per frame. The segmentation algorithm has an
average process time of 91.9 ms per frame, an increase of 111.16%.

Geometric filtering does not perform as well in this data set as the outlier rejec-
tion method. However, it does not make the same assumption that the majority
of the points are static. Therefore, the segmentation method could be the bet-
ter performing strategy if an environment has a majority of dynamic points and
some large static structures.
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Figure 6.9: Results of using segmentation to filter dynamic objects with a
sanity check compared to the baseline case and the ground truth. The yellow
section indicates the proximity of roundabout C.

Figure 6.10: The top plot shows the number of points in the point cloud after
the segmentation has been applied with no sanity check. The bottom plot
shows the error of each estimate. The yellow section indicates roundabout
C.

6.5 Combinations

As seen in Table 6.1, using a good outlier rejection method is a great way to
deal with dynamic objects in an industrial suburban environment. It is, however,
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not flawless. Adding the road removal method increases the translation srmse
slightly at the cost of rotation accuracy. Adding a rmt to the segmentation strat-
egy improves its performance but not the other way around.

As mentioned in section 6.4, segmentation increases processing time since one
extra scan matching is needed for the sanity check. When comparing the rmt
method, visualized in Figure 6.5, with rmt and road removal combined, visu-
alized in Figure 6.11, the results are similar with a slight improvement in the
x-translation at around the 160 s mark. In general, combining these different
strategies is not beneficial compared to one well-tuned outlier rejection method
since robustness is lost. Therefore, the rmt alone is the proposed method to in-
hibit the influence of dynamic objects.

Table 6.1: The table shows the performance change of different mitigation
strategies for errors introduced by dynamic objects. X indicates the use of a
method. The percentages indicate the performance change compared to the
baseline case and are calculated as % = Dynamic Mitigation RMSE

Baseline RMSE .

rmt
Road

Removal Segmentation TT ot RT ot
Time

Improvement
X 53.43 % 62.49 % 100.39 %

X 90.05 % 114.96 % 91.11 %
X 165.57 % 224.86 % 211.16 %

X X 50.97 % 66.33 % 83.42 %
X X 112.93 % 160.78 % 200.19 %

X X 185.09 % 236.78 % 196.75 %
X X X 132.17 % 177.87 % 175.95 %
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Figure 6.11: The results for the combination of the road removal strategy
with outlier rejection
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ICP-based odometry results

This chapter presents and discusses the performance of the best odometry solu-
tion. The chapter summarizes the findings in previous chapters and evaluates the
solution when the best tuning parameters and methods are used. All presented
results lack units in the error metric. This is by virtue of a scaling factor to keep
absolute results confidential, as elaborated in section 3.4.1. The setup to achieve
the solution is presented in chapter 3, 4, and 5.

7.1 Performance of the ICP-based odometry

The solution uses a point-to-plane icp variant to match the point clouds. Ground
points and non-ground points are estimated separately. The grid resolution for
the 3D voxel grid filter is set to 0.3 m. An rmt outlier rejection is used with e1 = 1
and ϵ set to three standard deviations of the distance between point pairs in the
static data set. Table 7.1 displays the srmse for all degrees of freedom.

Figure 7.1 visualizes the frame-to-frame estimations compared to the ground
truth. The ground truth exhibits some strange behaviors in short periods but can
be considered reliable overall. An example of strange behavior is the single sig-
nificant deviation in y-translation at around 220 seconds. The single large trans-
lation along the y-axis is an improbable event, given the vehicle used to record
the data and probably an error in the recorded ground truth introduced by faulty
gnss measurements. However, since it is a single value out of 5 777 frames, the
calculated accuracy of the solution should not suffer greatly. The most significant
errors caused by dynamic objects can be seen in the y-translation at the beginning
of roundabout B, where the estimates undershoot the ground truth for about 5
seconds.
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Table 7.1: The table shows the srmse for all degrees of freedom and the
total translation and rotation for the proposed solution. The average time
per frame is 60.42 ms. A value below 1 is within the accuracy of the ground
truth for the translation estimates. The Euler angle rotations are defined
from the previous point clouds coordinate frame

srmse for the frame-to-frame estimates.
Translation Rotation
X 0.3558 γ (Roll) 0.9552
Y 0.2451 β (Pitch) 1.0246
Z 0.1066 α (Yaw) 0.7840

Total 0.7075 Total 2.7638

(a) Translation estimates. The y-axis show the scaled distance.

(b) Rotation estimates. The y-axis show the scaled angle.

Figure 7.1: Comparison of the frame-to-frame estimates to the ground truth.
The grid resolution of the 3D voxel grid filter is set to 0.3 m. The rmt outlier
rejection is applied with e1 = 1 m and ϵ is set to three standard deviations
of the point pair distances for the static data set. Yellow sections indicate
roundabouts. The values are scaled as described in section 3.4.1.
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Figure 7.2 shows the estimates compared to ground truth for the section between
roundabout B and C. A section of the data is shown to visualize the characteristics
of the icp estimates more easily. The section between roundabout B and C is cho-
sen because it is representative of the whole data set. The estimate undershoots
the ground truth in z-translation for the majority of the section. The rest of the
estimations follow the ground truth well. The undershooting for z-translation
seems to correlate somewhat with the sections of higher speeds. Primarily the sec-
tions after the roundabouts. A hypothesis is that the vehicle dynamics at higher
speeds tilt the vehicle, so the icp estimates are altered.

(a) Translation estimates for a portion of the data set. The y-axis shows the scaled
distance.

(b) Rotation estimates for a portion of the data set. The y-axis shows the scaled angle.

Figure 7.2: Comparison of the frame-to-frame estimates to the ground truth.
The grid resolution of the 3D voxel grid filter is set to 0.3 m. The rmt outlier
rejection is applied with e1 = 1 m and ϵ is set to three standard deviations
of the point pair distances for the static data set. The plots show the section
between roundabouts B and C. The values are scaled as described in sec-
tion 3.4.1.
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Figure 7.3 shows a 2D projection of the global estimated path in the x,y-plane
when adding all the frame-to-frame estimates compared to the ground truth. A
significant drift is present. Consequently, the relative positioning solution can
not be used independently but would contribute to a complete positioning sys-
tem with adequate estimates to increase robustness. The drift is primarily due to
errors in the rotation estimates. When adding the relative odometry estimates, a
small error in a rotation estimate will skew the orientation going forward, leading
to a larger drift.

Figure 7.3: Global estimated path for all the frame-to-frame estimations
compared to the ground truth.

7.2 Distribution of errors

In Figure 7.4, it is shown that the frame-to-frame translation errors have a non-
zero mean. This means that the proposed solution will drift if it is used indepen-
dently with no absolute references. However, the frame-to-frame transformation
estimates are intended as input to a more sophisticated localization system, using
a Kalman filter variant in conjunction with measurements from an imu. Fusing
the measurements and adopting a motion model to the odometry will counteract
the drift to a certain extent. However, if a gnss outage period is too long, the
localization system will still experience significant drift. During shorter outages,
the added odometry estimates will provide adequate localization.

When using a Kalman filter, the expected covariance of errors must be provided,
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as the uncertainty of the measurements will dictate its influence on the final es-
timate. Figures 7.4c and 7.4d shows the distribution of errors when applying
the icp algorithm to lidar data where the vehicle is standing still. The distribu-
tions have Gaussian characteristics, which is necessary when implementing the
estimates in a Kalman filter. The static data set is relatively small, and the biases
could be due to the small sample size. It is to be noted that the units are scaled,
effectively meaning that the mean and standard deviation do not have meters or
degrees as units.

The distribution of errors when the vehicle stands still can be compared to the
distributions of errors when driving the route in Figures 7.4a and 7.4b. The dis-
tributions when driving are similar in their bell-curved shape but exhibit more
heavy-tailed characteristics than a Gaussian distribution. When driving, the dis-
tributions of errors for z-translation have the least bell curve shape as it is skewed
and often undershoots the estimations. The translations along the x-and y-axis
have a bell curve shape, but the distributions are more heavy-tailed due to larger
errors, most likely introduced by dynamic objects. If the dynamic object were to
be accounted for better, the distributions would likely be more Gaussian.
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(a) Histogram of translation errors for
the recorded data set when driving.
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(b) Histogram of rotation errors for the
recorded data set when driving.
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(c) Histogram of translation errors for
the static data set.
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Figure 7.4: Histogram of errors for the recorded data set when driving and
standing still. The red line illustrates a Gaussian fit. The values are scaled as
described in section 3.4.1.
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Concluding remarks

To make a positioning system more robust against gnss-denied environments,
icp-based odometry solutions in 6 DoF, using lidar point cloud data and scan
matching, have been evaluated. Dynamic objects can introduce errors in the es-
timates, and mitigation techniques have therefore been evaluated. This chapter
concludes the thesis by answering the five stated research questions. Possible ar-
eas for future work are also highlighted. The rmse values for the accuracy are
scaled to create the srmse metric due to restrictions regarding provided ground
truth data and its confidentiality.

8.1 Conclusions

A linearized point-to-plane variant was the best performing icp algorithm when
using the recorded industrial suburban data set. Compared to the most trivial
point-to-point icp variant, when using the fixed outlier rejection method, the best
version decreased the root mean square error (rmse) of the translation estimates
by 83.90% and rotation estimates by 55.36%.

Using a tuned 3D voxel grid filter increased the accuracy of the scan matching
and drastically improved the computational speed. The voxel grid filter proved
essential to achieving real-time properties when using high-end lidars. For this
data set, a grid resolution of 0.3 m allowed for the best overall accuracy with a
reasonable process time. If a faster solution is desired, the grid resolution could
be increased, with a decrease in accuracy as the trade-off.

Removing the ground plane from the point clouds increases the speed of the scan
matching and improves estimates of the x-translation and yaw rotation. This im-
provement comes at the cost of the accuracy in z-translation and the accuracy
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of pitch and roll rotations. However, by dividing the lidar point clouds into
two subsets, ground points and non-ground points, the scan matching can be
applied to the two subsets separately, enhancing the most relevant information.
The translations along the x-and y-axis and yaw rotation were first estimated
using the non-ground points. The ground points were then aligned using this
transformation, aiding the second estimate for the z-translation and pitch and
roll rotations. This approach provided the best overall accuracy but increased
the computational time compared to only using non-ground points.

For the industrial suburban data set, all outlier rejection techniques improved
the accuracy of the estimates from the icp algorithm. Partly due to low-quality
point pair associations being removed and partly because the outlier rejection
inhibits the influence of dynamic objects in the estimates. The outlier technique
called relative motion threshold (rmt) allowed for the best overall accuracy. Com-
pared to not using any outlier rejection technique, the rmtmethod improved the
translation accuracy by 39.02% and the rotation accuracy by 57.27%. The com-
putational speed was, however, slightly decreased by 6.6%. Outlier rejection is
thus assessed as one of the most important aspects of icp-based scan matching
for accurate results.

Dynamic objects were shown to introduce errors in the scan matching estimates.
Using an rmt reduced the errors from dynamic objects significantly. However,
the rmt method requires the majority of the vehicle’s surroundings to be static.
The translation estimates from the test data were improved by combining an
rmt with heuristically removing road-bound objects. This suggests that all er-
rors caused by dynamic objects could not be resolved by an rmt alone. Filtering
objects based on their geometrical size proved to remove many dynamic objects
and thus reduce their influence on the estimates. For the recorded data set where
some sections lack larger static structures, the method removed too much of the
data, causing the method to be unstable. A rmt can reduce errors from dynamic
objects if most of the environment is static. If the environment is urban, geomet-
ric segmentation can remove biases caused by dynamic objects. If the majority of
the environment is dynamic and lacks large static structures, no suitable strategy
has been found to reduce errors from dynamic objects.

The distribution of errors for the best-performing icp algorithm is close to Gaus-
sian. Therefore, it could be used as input to a localization system utilizing a
Kalman filter variant. The srmse for the best odometry solution was 0.7075 for
the total translation and 2.7638 for the total rotation. An srmse value for trans-
lation estimates below 1 is within the accuracy of the ground truth. Since the
odometry solution is relative and the drift accumulates over time, it will only be
able to fill an auxiliary role to a localization system in shorter gnss outages.

8.2 Future work

In this thesis, we evaluated three different approaches to minimize the errors
caused by dynamic objects. However, there are other approaches that were out-
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side this thesis’s scope. Mainly deep learning solutions and integration of other
sensors such as radar which can measure the radial speed of objects. A detailed
study comparing rmt with these techniques would be of high interest.

Only the spacial information of the points has been used in this thesis. However,
many modern high-end lidars can also measure the intensity of the returning
light. This information could potentially be integrated with the solution to filter
out dynamic objects and thus improve the odometry estimates further.

As mentioned in section 7.2, the Gaussian characteristics of the errors indicate
that it, in theory, should be possible to integrate our proposed solution with a
filter-based localization system. However, as the saying goes, "in theory, theory
and practice are the same. In practice, they are not". Hence, it would be beneficial
to conduct further experiments on the validity of this hypothesis.
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