
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Computer Science

2022 | LIU-IDA/LITH-EX-A--22/087--SE

LSTM Feature EngineeringThrough Time Series SimilarityEmbedding
Aspektkonstruktion för LSTM-nätverk genom inbäddning av
tidsserielikheter

Sebastian Bångerius

Supervisor : Jalal MalekiExaminer : Rita Kovordanyi

External supervisor : Anton Silfver

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Sebastian Bångerius

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

Time series prediction has many applications. In cases with simultaneous series (like
measurements of weather from multiple stations, or multiple stocks on the stock market)
it is not unlikely that these series from different measurement origins behave similarly,
or respond to the same contextual signals. Training input to a prediction model could be
constructed from all simultaneous measurements to try and capture the relations between
the measurement origins. A generalized approach is to train a prediction model on samples
from any individual measurement origin. The data mass is the same in both cases, but in
the first case fewer samples of a larger width are used, while the second option uses a
higher number of smaller samples. The first, high-width option, risks over-fitting as a
result of fewer training samples per input variable. The second, general option, would
have no way to learn relations between the measurement origins. Amending the general
model with contextual information would allow keeping a high samples-per-variable ratio
without losing the ability to take the origin of the measurements into account.

This thesis presents a vector embedding method for measurement origins in an envi-
ronment with shared response to contextual signals. The embeddings are based on multi-
variate time series from the origins. The embedding method is inspired by co-occurrence
matrices commonly used in Natural Language Processing. The similarity measures used
between the series are Dynamic Time Warping (DTW), Step-wise Euclidean Distance and
Pearson Correlation. The dimensionality of the resulting embeddings is reduced by Princi-
pal Component Analysis (PCA) to increase information density, and effectively preserves
variance in the similarity space.

The created embedding system allows contextualization of samples, akin to the human
intuition that comes from knowing where measurements were taken from, like knowing
what sort of company a stock ticker represents, or what environment a weather station
is located in. In the embedded space, embeddings of series from fundamentally similar
measurement origins are closely located, so that information regarding the behavior of one
can be generalized to its neighbors. The resulting embeddings from this work resonate well
with existing clustering methods in a weather dataset, and partially in a financial dataset,
and do provide performance improvement for an LSTM network acting on said financial
dataset. The similarity embeddings also outperform an embedding layer trained together
with the LSTM.

Acknowledgments

I am thankful for the support and feedback from my supervisor, Jalal Maleki, and my co-
supervisor and examiner Rita Kovordanyi. I would like to gratefully thank my local super-
visor Anton Silfver, who has supported me throughout the project with feedback and inte-
gration with existing hardware and software. I am also thankful for the feedback from my
opponent, Elise Lång, which helped shape the final form of this report.

Lastly, I want to thank my family and friends for their support and encouragement during
my years of engineering studies. I would like to give a special thanks to my fiancee Felicia
Šehalić Glad for supporting me in leaving employment and going back into academia, to
finish the last courses as well as this thesis.

Sebastian Bångerius
Linköping, 2022

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables viii

List of Algorithms ix

Glossary 1

Acronyms 2

1 Introduction 3
1.1 Aim . 5
1.2 Research Questions . 5
1.3 Delimitation . 5

2 Background 6
2.1 Similarity Measurements . 6
2.2 Embedding . 9
2.3 Dimensionality Reduction . 10
2.4 Neural Networks . 12

3 Related work 15
3.1 Time Series . 15
3.2 Multi-origin Time Series Prediction . 15
3.3 Embeddings For LSTM . 16
3.4 DTW Applications . 16
3.5 DTW Efficiency Improvements . 16

4 Method 17
4.1 Problem Background . 17
4.2 Hardware Resources . 18
4.3 Finding Datasets . 18
4.4 System Outline . 18
4.5 Implementation . 18
4.6 Evaluation . 22

5 Results 24
5.1 Dataset Evaluation . 24

v

5.2 Efficiency . 26
5.3 Performance . 27

6 Discussion 33
6.1 Embeddings . 33
6.2 Prediction . 34
6.3 Efficiency . 35
6.4 Method . 35
6.5 Tuning . 36
6.6 Answers to Research Questions . 36

7 Conclusion 39
7.1 Future Work . 39

Bibliography 41

A Extra plots, figures and tables 46

vi

List of Figures

2.1 Warping path (W) through distance matrix (D) for the normalized price of two
stocks over one day. 9

2.2 RNN structure . 12
2.3 RNN input-output structures . 13
2.4 LSTM memory cell . 13

4.1 System outline . 18
4.2 Multi-threading architecture . 19

5.1 Difference in min-max scaled measurements between two stations 30km apart . . 24
5.2 Time spent and memory usage needed across code parts (2-day series) 26
5.3 Time spent and memory usage needed across code parts (29-day series) 27
5.4 30-day weather series similarity matrix histogram 28
5.5 30-day stock series similarity matrix histogram . 28
5.6 1-day weather series similarity matrix histogram . 28
5.7 1-day stock series similarity matrix histogram . 29
5.8 Amount of variance preserved in the weather similarity vectors embeddings per

rank . 29
5.9 Amount of variance preserved in the financial similarity vectors embeddings per

rank . 29
5.10 Weather data embeddings (30-day), colored by geographical region 30
5.11 Financial data embeddings (30-day), colored by sector ETF 30

6.1 averaged 30-day embedding space with GOOGL, GOOG, FOX, and FOXA anno-
tated . 34

A.1 Weather data embeddings (30-day) colored by geographical region (Euclidean) . . 46
A.2 Weather data embeddings (30-day) colored by geographical region (Pearson cor-

relation) . 47
A.3 Financial data embeddings (30-day) colored by sector ETF (Euclidean) 47
A.4 Financial data embeddings (30-day) colored by sector ETF (Pearson correlation) . . 48
A.5 Weather data embeddings (1-day) colored by geographical region (Euclidean) . . . 48
A.6 Weather data embeddings (1-day) colored by geographical region (Pearson corre-

lation) . 49
A.7 Weather data embeddings (1-day) colored by geographical region (DTW) 49
A.8 Financial data embeddings (1-day) colored by sector ETF (Euclidean) 50
A.9 Financial data embeddings (1-day) colored by sector ETF (Pearson correlation) . . 50
A.10 Financial data embeddings (1-day) colored by sector ETF (DTW) 51
A.11 Financial data embeddings (30-day) over time (DTW) 51

vii

List of Tables

1.1 Wide input weather data, (20 features x 24 rows) . 3
1.2 Narrow input weather data (2 features x 240 rows) 4

2.1 Example document vectors . 9
2.2 Example similarity matrix . 10
2.3 A distance matrix converted to a similarity matrix 10

4.1 LSTM cell input vector xt for different embedding setups (single time step) 23
4.2 Trained embedding network (single time step) . 23

5.1 Prediction results by metric . 31
5.2 Prediction results by rank . 31
5.3 Prediction results by series length . 32

6.1 Proposed cluster separation viewpoints . 33

A.1 Prediction results, compared to baseline . 52

viii

List of Algorithms

1 Simplified Embedding Program . 21

ix

Glossary

embedding A vector representation of a complex object. iii, v, vii, 4–6, 10, 15–20, 22–40,
46–51

environment An environment in which a set of time series’ affect each other, or are affected
in different ways by contextual signals. For weather this could be a country or region.
For traffic this could be a city or road network. In a financial setting this could be a
stock exchange. iii, 4, 5, 22, 33, 37, 39

measurement origin A measurement origin in a time series dataset. For weather, this would
be a weather station. For financial data this could be a stock or an exchange-traded
fund. For traffic flows in a city this could be a road or intersection, etc. iii, 3–5, 10, 15,
17–20, 22, 23, 25, 27, 31–33, 35–37, 39

ticker Short name for a traded asset on the stock market, like NFLX for the Netflix stock. iii,
18, 23, 25, 30, 33, 34

time series A multivariate1 time series such as hourly measurements of temperature and
humidity from a single measurement origin. iii, 4–6, 10, 15, 19, 20, 22, 30, 32, 35–37, 39

1In this thesis, unless otherwise stated.

1

Acronyms

ANN Artificial Neural Network. 4, 6, 12, 13, 16, 17, 36, 40

API Application Programming Interface. 16, 22

BPTT Backpropagation Through Time. 12

CPU Central Processing Unit. 22, 26

DTW Dynamic Time Warping. iii, vii, 5–9, 15, 16, 18–20, 23, 26–28, 31, 32, 34–37, 39, 40, 49,
51

ETF Exchange Traded Fund. vii, 22, 30, 47, 48, 50, 51

GPU Graphics Processing Unit. 18, 22, 31

LSTM Long Short-Term Memory. iii, v, vii, viii, 3–6, 12–18, 22–24, 27, 28, 32, 33, 37, 39, 40

NaN Not a Number. 19, 27

NLP Natural Language Processing. iii, 3, 9, 12, 17

PCA Principal Component Analysis. iii, 9–11, 20, 22, 23, 25, 28, 33–37, 40

RNN Recurrent Neural Network. vii, 6, 12, 13, 16

SVD Singular Value Decomposition. 10, 11, 23, 28

tanh Hyperbolic Tangent. 14

2

1 Introduction

Time series prediction includes tasks like forecasting weather [1], prediction of stock prices
[2], assessment of road conditions [3], but also series that are not as strictly related to time like
Natural Language Processing (NLP)[4]. Long Short-Term Memory networks are powerful
prediction tools for many tasks, but to optimize their ability to learn it is important to select
good input features [5]. Furthermore, to reduce the risk of over-fitting, the number of samples
compared to the number of weights is needed to be kept high [6]. In some systems, there is a
natural way to group simultaneous series based on their measurement origin.

This could be shown with an example; let’s take a look at a small portion of a weather
dataset (hourly measurements of temperature and humidity, 1 day, 10 stations)1. Table 1.1
shows the original data with one column for each feature and station (measurement origin).
With this structure, it’s possible to create a model predicting the weather in any fixed number
of locations, based on measurements from all. To predict the weather in S1, there would be
24 hours of data to create training samples from.

Table 1.1: Wide input weather data, (20 features x 24 rows)

Sample ID hour S1_prcp S1_temp S2_prcp S2_temp ... S9_prcp S9_temp S10_prcp S10_temp

0 0:00 0.0 15.8 0.0 17.2 ... 0.0 10.0 0.0 9.4
1 1:00 0.0 15.2 0.0 17.0 ... 0.0 10.6 0.0 8.6
2 2:00 0.0 12.4 0.0 17.0 ... 0.0 8.9 0.0 9.2
3 3:00 0.0 12.7 0.0 16.9 ... 0.0 8.9 0.0 9.4
...
20 20:00 0.0 24.0 0.0 18.1 ... 0.0 21.0 0.0 20.8
21 21:00 0.0 23.1 0.0 17.3 ... 0.0 20.2 0.0 18.9
22 22:00 0.0 21.3 0.0 17.3 ... 0.0 19.0 0.0 17.4
23 23:00 0.0 19.7 0.0 17.1 ... 0.0 17.6 0.0 15.2

If a particular pattern (like heavy rainfall) is not in this training data for S1, the model
would not know how to interpret such a pattern in the future. Let’s pretend for a second that
predicting the weather in one location is much more dependent on its past measurements
than those from other locations. We could then train a model that takes any station history
and predicts the future for that single station. The model would see input samples from any

1This is an extremely downsized example, for clarity. For any sort of prediction to work we’d likely need hun-
dreds of stations, data from several years, and more features like barometric pressure, etc.

3

individual measurement origin, but would not know which one. Table 1.2 shows how the
data can be restructured for the new setup.

Table 1.2: Narrow input weather data (2 features x 240 rows)

Sample ID hour station prcp temp

0 0:00 S1 0.0 15.8
1 1:00 S1 0.0 15.2
2 2:00 S1 0.0 12.4
3 3:00 S1 0.0 12.7
...
236 20:00 S10 0.0 20.8
237 21:00 S10 0.0 18.9
238 22:00 S10 0.0 17.4
239 23:00 S10 0.0 15.2

If in the future, S1 sees heavy rainfall, and the training data for S4 has samples with that
pattern, the model has been exposed to such a pattern and would be more likely to produce
a better prediction of S1s future. The generalization has allowed behavior from one origin
to affect predictions on another, but if the stations are in widely different climates this could
over-generalize the predictions for uniquely behaving stations. All information regarding the
relationship between stations is also lost. The ideal setup depends on the domain. In some
cases there may be lots of interaction between the measurement origins, in others it may be
important to have a lot of training history to predict the future.

This example shows that in an environment with multiple measurement origins, the
samples-per-variable ratio can be greatly increased by training a model with input from only
one origin at a time. In such a case, when an LSTM is trained to predict the future for any gen-
eral measurement origin in an environment (any weather station in a country, any stock on an
exchange, or any road in a road network), it might benefit from knowing characteristics of the
measurement origin where the current sample is from (where is the weather station located,
what business does the company conduct, what capacity does the road have, etc.). Character-
istics for different types of measurement origins could be learned by the LSTM if time series
from all origins are contained in each training sample, but on top of greatly increasing the
size of the input and thus increasing the risk of over-fitting, this does constrain the trends of
the relationships to lengths up to the input sequence length. A solution might be to evaluate
the relationships between measurement origins beforehand and input a dense representation
of them into the network. This would correspond to replacing the station column in table
1.2 with a set of features characterizing the station, for instance its latitude, longitude, and
altitude (on the assumption that geographically close stations behave similarly). Ideally, this
representation does not rely on human intuition but is somehow constructed from the data it-
self. This thesis aims to construct such a method that is agnostic to the domain of the dataset;
it should work for any parallel time series data.

Already in the 1950s linguist John Rupert Firth coined the phrase "You shall know a word
by the company it keeps" [7]; entailing co-occurrence matrices are suitable constructions from
which to draw word embeddings. This idea has since been generalized to "You shall know
an object by the company it keeps", and successfully adapted into other fields, like representing
real-world objects by their surrounding context in photographs [8]. Time series data could
potentially benefit from the same treatment, i.e. a measurement origin could be defined by
how time series from other measurement origins are relating to its own. Basing a repre-
sentation on the measurements themselves allows bypassing the need for human intuition
to define important aspects identifying the series. Furthermore, these similarities could be
calculated for long sequences, much longer than the training samples, to allow an Artificial
Neural Network (ANN) to take longer trends into account when making predictions, with-

4

1.1. Aim

out inflating input too much. This thesis will specifically examine series similarities based on
Pearson Correlation, Dynamic Time Warping, and simple Step-wise Euclidean Distance.

1.1 Aim

The work presented in this thesis aims to create a system that can embed a set of time series
measurement origins based on their similarities with each other, and utilize these embed-
dings to improve the predictive performance of an LSTM network. This is done to create a
middle way between training a separate model for each measurement origin, and training a
single network with all available measurement origins in the environment as input in each
sample.

1.2 Research Questions

1. How can a system that creates embeddings from time series similarity be designed?

2. Are embeddings based on time series similarity useful tools in feature engineering for
an LSTM?

3. What similarity measures are suitable for such a system?

4. How can features from the time series (to base the embeddings on) be efficiently se-
lected?

1.3 Delimitation

This thesis will only evaluate a single LSTM’s performance change from receiving extra em-
bedding information together with the input series. It will not regard optimization to said
LSTM.

5

2 Background

This chapter presents the relevant theoretical background for the project. Section 2.1 covers
similarity measurements. Embedding is covered in section 2.2. Section 2.3 covers dimen-
sionality reduction. Relevant Artificial Neural Network architectures are briefly covered in
section 2.4, first by presenting the general Recurrent Neural Network (2.4.1), then Long Short-
Term Memory specifically (2.4.2), focusing on its input and output as they constitute the most
relevant aspects for this project.

2.1 Similarity Measurements

This section will explain the basics of Time Series Similarity in section 2.1.1, then present
similarity measurements; first the simple Step-wise Euclidean Distance similarity in 2.1.2,
then Pearson Correlation in 2.1.3, and finally Dynamic Time Warping in section 2.1.4.

2.1.1 Time Series Similarity

Naturally, there are several ways to define similarity in time series data. In some cases, a
similar response to an external input may lag between measurement points (called a lead-lag
relationship), where one signal seems to follow the other [9]. In the case of weather data, we
might observe this in the temperature variable for stations with an east-west offset since the
sun will rise over the eastern station before the western. A distance or similarity measure
could account for such a lag and allow these signals to be intuitively scored as more similar
if the domain calls for it [10]. Another form of adjustment is stretching; scaling one series in
time to make its shape more like another [9]. In the case of weather, a heat wave may show its
effects faster on a station in a dry location than one close to a body of water, since the water
can act as a temperature damper. To properly correlate these signals, and identify the heat
wave, a similarity measure needs to take stretching into account.

6

2.1. Similarity Measurements

2.1.2 Step-wise Euclidean Distance Similarity

A simple way to compare two series would be to measure the difference between them in
each time step, and sum that as the result, i.e. as shown in equation 2.1 [11].

X = (x1, x2, ..., xn)

Y = (y1, y2, ..., yn)

disteucl(X, Y) =

g

f

f

e

n
ÿ

i=1

∥xi ´ yi∥2 (2.1)

If there is some idea of the maximum expected distance dmax, a similarity measurement could
then be constructed from the distance through equation 2.2.

simeucl(X, Y) = 1 ´
disteucl(X, Y)

dmax
(2.2)

A shortcoming of this method is that it assumes both series to be of equal length, which
may not always be the case. DTW (explained in section 2.1.4) allows similarity measurement
of series of unequal lengths.

2.1.3 Pearson Correlation

Correlation (formally referred to as "Pearson Correlation", after its development by Karl Pear-
son [12]) is the quantification of linear dependence between two continuous variables X and
Y. Correlation is based on the standard deviation of X and Y (denoted σX and σY respec-
tively), as well as their covariance, according to the formula presented in equation 2.3. [13]

ρX,Y =
cov(X, Y)

σXσY
(2.3)

With X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn), the correlation can be expressed in an
expanded form as shown in equation 2.4.

ρX,Y =
n
řn

i=1 xiyi ´
řn

i=1 xi
řn

i=1 yi
b

n
řn

i=1 x2
i ´ (

řn
i=1 xi)

2
b

n
řn

i=1 y2
i ´ (

řn
i=1 yi)

2
(2.4)

We can conclude that just like Step-wise Euclidean Distance, Correlation requires series
of equal lengths, and does not account for lag or stretch. An advantage of Correlation is that
it detects inverse linear dependence between X and Y, in the form of a negative value. The
Pearson Correlation output will always be in the range (´1, 1). [13]

2.1.4 Dynamic Time Warping

Dynamic Time Warping takes two series and warps one against the other to minimize
their difference, then returns the difference for the warped series pair. With series X =
(x1, x2, ..., xn) and Y = (y1, y2, ..., ym), an n-by-m matrix D is constructed, where the squared
distance1 dist(xi, yj) = (xi, yj)

2 defines each (ith, jth) element di,j [10]. It is also possible to use
another ground metric than the euclidean distance, tailored for a specific domain [14]. When
the matrix has been constructed, a minimal cost warping path W(bound by the constraints in
equation 2.5) is created from d1,1 to dn,m.

W = (w1, w2, ..., wK) max(n, m) ď K ă n + m ´ 1 (2.5)

1To avoid the square root seen in 2.1.

7

2.1. Similarity Measurements

To be considered a valid warping path, W needs to conform to a set of conditions. These are
the Boundary conditions (2.6), the Continuity condition (2.7), and the Monotonic condition (2.8)
[10].

w1 = (1, 1) wK = (n, m) (2.6)

@wk P (w1, .., wK´1), (wk = (ik, jk)) : max(|ik+1 ´ ik|, |jk+1 ´ jk|) = 1 (2.7)

@wk P (w1, .., wK´1), (wk = (ik, jk)) : min(ik+1 ´ ik, jk+1 ´ jk) = 0 (2.8)

Intuitively the boundary condition (2.6) can be interpreted as requiring the comparison to
start at the beginning of both series, and stop at the end of both series. The continuity condi-
tion (2.7) states that each step w P W must be adjacent to the previous one. The monotonic
condition (2.8) assures that no step goes backward in time.

Further conditions are sometimes also used. Two examples are the Slope constraint condi-
tion and the Adjustment window condition. The slope constraint condition concerns the slope
of the alignment path, avoiding too long sequences of one series to be compared to too short
ones in the other series. The Adjustment window constraint (2.9) can be seen as putting a
band along the diagonal, and only allowing paths going through this band. The parameter
C controls the width of the band. The result of the band is a restriction of how far apart the
compared series points can be in time. [10]

@(i, j) P W : max(|i ¨
n
m

´ j|, |j ¨
m
n

´ i|) ď C (2.9)

With optimal path W2, equation 2.10 shows the final DTW calculation. In contrast to Step-
wise Euclidean Distance (2.1), DTW does evidently not require inputs of equal lengths, but
for the comparison to make sense each series should represent comparable horizons. A series
could for instance be daily weather measurements every 10 minutes, and another every 20
minutes. One series would contain twice as many steps as the other, but they span the same
length of time.

DTW(X, Y) =
d

ÿ

(i,j)PW

∥xi ´ yj∥2 (2.10)

Figure 2.1 shows the DTW matrix and the optimized path for two series (in this case normal-
ized volume weighted price for two stocks, over one day). The color represents the value
in the DTW matrix, i.e. the distance between (xi, yj), ranging from dark blue (low) to yel-
low (high). Plot 2.1a shows the DTW path and 2.1b what the Step-wise Euclidean Distance
comparison would correspond to. Note that the vertical axis has its positive direction up-
ward, unlike how two-dimensional matrices are usually displayed, so that d1,1 is located at
the bottom left corner.

2I.e. minimal cost path through distance matrix D

8

2.2. Embedding

(a) DTW path (b) Step-wise Euclidean Distance path

Figure 2.1: Warping path (W) through distance matrix (D) for the normalized price of two
stocks over one day.

2.2 Embedding

In information technology, vector embedding is the act of representing a set of complex ob-
jects by continuous vectors in a vector space. This can be done to allow similar objects to have
similar representations (instead of for example representing cities by their name, we can rep-
resent them by their latitude, longitude, and altitude). An early example of this practice is
the embedding of text documents for faster information retrieval and more relevant compar-
isons between objects. In this case, a document vector Di = (di1, di2, ..., din) would represent
the frequency (or another suitable measure) of some fixed indexing terms (t1, t2, ..., tn) in the
document [15]. A scaled-down example of such potential document vectors is shown in table
2.1, where each row would make up the document vector D for that document.

Table 2.1: Example document vectors

Term

love heat dinner warranty button

Document
Diary 0.8 0.1 0.3 0 0.1

Cookbook 0.2 0.5 0.6 0 0
Oven Manual 0 0.7 0.1 0.5 0.5

In NLP, co-occurrence has been used as a base for word embedding, where each word
is represented by how often it appears together with a set of vocabulary words. Compared
to the document embedding, the dimensions do not correspond to search terms, but rather
a subset of the entire vocabulary. Since the vocabulary can be very large, the vectors will be
long from the start. It is common to reduce the length of the vectors by some means. One such
method (PCA) will be presented in section 2.3.2. For example a space with a vocabulary size
of 5000 was reduced to 50-dimensional vectors by Maas, Daly, Pham, Huang, Ng, and Potts
[16]. Other modern techniques can efficiently embed words in million-term vocabularies
down to 50-100 dimensions [17].

2.2.1 Similarity Matrices

With two series of objects x = (x1, x2, ..., xn) and y = (y1, y2, ..., ym), a similarity matrix C :
Rnˆm is created where each cell Ci,j, 1 ď i ď n, 1 ď j ď m represents the similarity between
xi and yj (in the interval (0, 1)). If x = y this means the matrix is symmetric, and that all
elements along its diagonal will be ones (@ci,i P C : ci,i = 1), since any object will be identical
to itself, and the (binary) similarity relation is commutative. [18]

Table 2.2 shows an example of such a self-similarity similarity matrix; in this case the
similarities of weather stations, for one day.

9

2.3. Dimensionality Reduction

Table 2.2: Example similarity matrix

A021 A203 A313 A409 A537 A538 A738 A813 A831 A925

A021 1.00 0.64 0.65 0.64 0.63 0.66 0.46 0.64 0.63 0.63
A203 0.64 1.00 0.65 0.64 0.67 0.67 0.49 0.64 0.61 0.66
A313 0.65 0.65 1.00 0.64 0.57 0.67 0.37 0.59 0.58 0.55
A409 0.64 0.64 0.64 1.00 0.62 0.65 0.43 0.61 0.62 0.58
A537 0.63 0.67 0.57 0.62 1.00 0.74 0.50 0.72 0.65 0.69
A538 0.66 0.67 0.67 0.65 0.74 1.00 0.46 0.69 0.63 0.66
A738 0.46 0.49 0.37 0.43 0.50 0.46 1.00 0.52 0.50 0.50
A813 0.64 0.64 0.59 0.61 0.72 0.69 0.52 1.00 0.72 0.67
A831 0.63 0.61 0.58 0.62 0.65 0.63 0.50 0.72 1.00 0.64
A925 0.63 0.66 0.55 0.58 0.69 0.66 0.50 0.67 0.64 1.00

Each row in the similarity matrix can now be used as an embedding of the time series from
the measurement origin specified on that row. Since such a matrix is made up of similarities,
its columns should be far from linearly independent. It is thus possible to extract a more
compact representation, and the technique for this is explained in section 2.3.
If a distance or dissimilarity metric is used in place of a similarity measure, the resulting
matrix D can easily be converted into a similarity matrix S according to equation 2.11. Just as
in equation 2.2, this formula does depend on an expected maximum value and will scale the
similarities to end up between 0 and 1. If the denominator is changed it will however only
affect the lower bound, so the self similarities along the diagonal will still be 1.

Sij = 1 ´
Dij

max(D)
(2.11)

An example of a distance to similarity conversion according to equation 2.11 is shown in
table 2.3.

Table 2.3: A distance matrix converted to a similarity matrix

A B C D

A 0.00 16.00 20.00 12.00
B 16.00 0.00 5.00 4.00
C 20.00 5.00 0.00 9.00
D 12.00 4.00 9.00 0.00

ñ

A B C D

A 1.00 0.20 0.00 0.40
B 0.20 1.00 0.75 0.80
C 0.00 0.75 1.00 0.55
D 0.40 0.80 0.55 1.00

2.3 Dimensionality Reduction

This section will present two tools to achieve effective dimensionality (also known as rank)
reduction. Singular Value Decomposition (SVD) will be explained in section 2.3.1, and its
extension to Principal Component Analysis (PCA) is covered in section 2.3.2.

2.3.1 Singular Value Decomposition

Singular Value Decomposition is a common tool in linear algebra. In essence, it is a way to
express a matrix X P Rnˆm in the form of three other matrices U P Rnˆn, Σ P Rnˆm, and
V P Rmˆm, according to equation 2.12 [19].

X = UΣVT (2.12)

U and V are unitary matrices with orthonormal columns, and Σ is a diagonal matrix (with
extra rows of zeroes, if n ‰ m) with descending non-negative values (the singular values) along
its diagonal, i.e. they satisfy the constraints listed in equation 2.13

10

2.3. Dimensionality Reduction

UUT = UTU = 1

VVT = VTV = 1

@
␣

σi,j P Σ|i ‰ j
(

: σi,j = 0

@
␣

σi,i, σi+1,i+1 P Σ
(

: σi,i ě σi+1,i+1 ě 0 (2.13)

The decomposition in 2.12 is guaranteed to exist uniquely (apart from being able to simul-
taneously change signs of both U and V).

Possibly the most typical usage of SVD in statistical data science is dimensionality ("rank")
reduction. According to the Eckart-Young theorem the optimal rank-r approximation to X, in
the least squares sense, is given by the rank-r SVD truncation X̃ [20]. This truncation is defined
according to equation 2.14

argmin
X̃,s.t.rank(X̃)=r

∥X ´ X̃∥F = ŨΣ̃ṼT (2.14)

Ũ and Ṽ are defined as the first r leading columns of U and V, respectively. Σ̃ is made up
of the leading r ˆ r sub-block of Σ. Since Σ is diagonal (and therefore Σ̃), X̃ can be written as
the so-called dyadic summation, shown in equation 2.15.

X̃r =
r
ÿ

k=1

σkukvT
k = σ1u1vT

1 + σ2u2vT
2 + ... + σrurvT

r (2.15)

From this notation, it is evident that each term k only depends on columns k from U and
V, and one value from Σ. Since the Eckart-Young theorem holds for any reduced dimension-
ality r˚, the sum can be cut after r˚ terms to achieve the optimal reduced representation X̃r˚ .
[19]

The amount of the original variance (0 to 1) captured by the new representation X̃r can be
calculated by equation 2.16, where 0 means all information from the original data is lost, and
1 means no loss of information. [19]

var(X̃r) =

řr
k=1 σk
ř

Σ
(2.16)

2.3.2 Principal Component Analysis

PCA builds on the concept of SVD to efficiently translate data vectors into a new space of
lower dimensionality. The transformed data will keep as much of the variance from the origi-
nal data as possible. With the results from SVD, the data matrix X P Rnˆm can be transformed
into its reduced space representation T P Rnˆr (i.e. of rank r) by multiplication with Ṽr, ac-
cording to equation 2.17. [19]

Tr = ŨrΣ̃r = XṼr (2.17)

To efficiently preserve as much of the original data’s shape, X is shifted to be centered
around the origin before the SVD is computed. In practice, PCA is trained by giving it a set of
training samples as X to calculate the SVD for. Then any new samples X˚ are reduced to rank
r by applying the same shift to the center and then the formula that is shown in equation 2.17,
which should efficiently preserve the variance of the original data if X and X˚ have similar
distributions.

11

2.4. Neural Networks

2.4 Neural Networks

This section will briefly present the relevant neural network architectures; first the general
RNN in section 2.4.1, then LSTM in section 2.4.2. In the following sections, the reader is
assumed to have a basic understanding of Artificial Neural Networks, such as knowing the
concepts of the perceptron, back-propagation, and gradient descent.

2.4.1 Recurrent Neural Networks

A Recurrent Neural Network is an ANN tailored for working with sequential data where
each position in the sequence should be treated equally. The data could for instance be a time
series or a sequence of text. RNN achieves this position agnosticism by storing a hidden state
to represent the past steps in the sequence, updating it with new information for each new
input data step. In contrast to fixed-window models, the weights are shared between every
time step. As an example, if a fixed window language model has seen the word "Christmas",
but never in the first position of a sample, it will not be able to handle a sample starting
with that word properly. An RNN treats all positions equally, and it would thus suffice to
have learned the characteristics of the word at any position. The weights are updated for
an entire input sequence of some length t, and backpropagation is done via a specialized
function called Backpropagation Through Time (BPTT), to account for the bound weights.
It’s possible to "Unroll" the RNN, resulting in a sequence of duplicated blocks, one for every
step in the sequence. This is shown in figure 2.2. [21]

Figure 2.2: RNN structure

As seen in the unrolled network, there are several ways to construct the input X and the
output Y, since the back-propagation works with 1 to t outputs, and 1 to t inputs.

1. One to One (2.3a): The classic ANN setup where the network takes a single input and
produces a single output, i.e. no time steps. Does not utilize the specific functionality
of the RNN in any way.

2. One to Many (2.3b): Also known as a decoder, takes a single input and outputs a se-
quence. An example of usage is captioning, where the input would be an image and
the output sequence is the caption text.

3. Many to One (2.3c): Also known as an encoder, takes a sequence as input and outputs a
single prediction. An example from NLP is sentiment analysis, where the input would
be the words in the sentence, and the single output would be the positive or negative
sentiment.

4. Many to Many (2.3d): Full RNN, all inputs and outputs used, also known as transcoder.
Could for example be used to label frames in video sequences. Compared to running
single One to One (1) prediction for each frame, the hidden state of the RNN provides
temporal memory of past input.

12

2.4. Neural Networks

5. Offset Many to Many (2.3e): Takes a sequence as input and outputs a delayed sequence
prediction. Can be used in machine translation of natural language, where the order of
words is not necessarily the same.

(a) One to One (b) One to Many (c) Many to One

(d) Many to Many (e) Offset Many to Many

Figure 2.3: RNN input-output structures

Backpropagation updates weights in the ANN based on their contribution to the loss,
according to the derivative of each weight on the loss. Since the derivative of weights in the
first layers depend on derivatives in the second layer, and so on, the gradients tend to vanish
from the last to the first layer. Even when the weights are increased to account for the low
derivative, the effect of the last layers being much more affected by the loss than the early
layers persists, and thus training of deep networks becomes very difficult. [22] In the next
section, LSTM will be shown, and how it can mitigate this issue.

2.4.2 Long Short-Term Memory

This section briefly explains the Long Short-Term Memory ANN structure. Since the project’s
scope only concerns the input and output of the network, the details of the internal layers will
not be covered. LSTM is a Recurrent Neural Network (RNN) model which was created to re-
duce the back-propagation error without negatively affecting training times [23]. A straight-
forward way to visualize an LSTM is to show each recurrent step as a memory cell consisting
of three gates3; this basic concept is shown in figure 2.4.

Figure 2.4: LSTM memory cell

3Some sources count this as four gates by considering the new memory gate as two; an input, and an input
modulation gate

13

2.4. Neural Networks

1. The first gate in the memory cell is the Forget gate, which appends the input xt to
the previous hidden state (also known as working memory) ht´1. This vector is then
passed through a sigmoid-activated layer and element-wise multiplied with the previ-
ous long-term memory state Ct´1. The first gate is thus trained to suppress unnecessary
information in the long-term memory (also known as cell state).

2. The second gate is the New memory gate which feeds the same combination of xt and
ht´1 into two layers; one sigmoid-activated and one tanh-activated. The output of these
two layers is element-wise multiplied and then added to the output from the forget gate
to form the new long-term memory state ct. This gate is thus responsible for moving
short-term memory and new input information to the long-term memory.

3. The last gate, the Output gate again takes the xt and ht´1 combined vector and feeds it
into a sigmoid-activated layer. The long-term memory vector Ct from the New Memory
gate is put through a tanh activation. The results from these two are then element-wise
multiplied to form the new hidden state. The tanh activation can thus be seen as having
the role of interpreting the long-term memory, while the sigmoid-layer is responsible for
discriminating the output from the long-term memory based on the input data and the
previous hidden state. [21]

In some encoding cases, there is a final linear layer that takes the last hidden state and outputs
the network prediction (such as a classification or regression). Note that this is not included
in the memory cell in figure 2.4 since it does not take place in the general recurrent step. The
options for feature input to the LSTM are, therefore:

• xt: The input vector in each step.

• h0: The initial hidden state

• C0: The initial long-term memory

LSTM mitigates the vanishing gradient issue commonly found in deep neural networks
by letting the c-line (top part of the cell in figure 2.4) pass its data through the entire cell
without activation functions, thus staying unaffected by the vanishing gradient.

14

3 Related work

This section presents other related studies. The topics include general time series studies (3.1),
time series studies with multiple measurement origins (3.2), embeddings for LSTM networks
(3.3), DTW applications (3.4), and DTW efficiency improvements (3.5).

3.1 Time Series

Various time series similarity measures were examined in a survey by Gunopulos and Das
[24]. Some examples are Edit Distance with Real Penalty (ERP) [25] Longest Common Sub-
sequence (LCSS) [26] and Edit Distance on Real Sequence (EDR) [27]. They also explored
reduction techniques, but on the time dimension of the series to allow efficient indexing. This
study also looked into sub-sequence indexing.

The computational complexity of similarity measures based on dynamic programming
(like DTW) was recognized by Morse and Patel [11]. They proposed a new, more efficient way
to carry out similarity calculations called Fast Time Series Evaluation (FTSE). The technique
enhances threshold-based similarity measures by avoiding evaluation of the entire compari-
son space (like the one shown in figure 2.1a). Their scoring model called Swale was about 2-3
times faster than regular DTW with a Sakoe-Chiba Band, and produced more accurate results
on their tested datasets.

Wang and Megalooikonomou [28] also looked into the possibility of efficiently compress-
ing time series for indexing, search, and clustering. Their technique relies on resolution re-
duction of the input series by representing a series of length n by a set of w (w ! n) indexes
to common sub-sequences in a shared codebook.

3.2 Multi-origin Time Series Prediction

In the weather domain, the importance of handling parallel data is stressed by Eames, Ker-
shaw, and Coley [29]. They explore weather data synthesis in the UK, using an interpolated
grid structure based on geographical location to create weather predictions for building sites.
Although this can be done in the weather domain (where the latitude and longitude form a
decent embedding vector), in the general case the grid would be hard to construct without
such obvious basis features for the embedding space.

15

3.3. Embeddings For LSTM

A study by Han, Ang, Malkawi, and Samuelson [30] found RNN to outperform traditional
feed-forward ANN in the case of ANN weather prediction, although their study featured one
model per origin. They also included a beacon signal in their models, in the form of weather
data from the closest airport.

3.3 Embeddings For LSTM

A very interesting study by Xie, Liu, Wu, Zhong, and Li [31] looked at cross-modal embed-
dings of recipes and images of food. In an unsupervised manner, they mapped the recipes
and the food images into a shared embedding space, so that matching recipes and images
could be efficiently found through proximity. Their recipe embedding was based on a bag-
of-words model, then adjusted for the cross-modal setup in training. Although this thesis
project does not include cross-modal embedding, it does use pre-calculated embeddings in
an LSTM context.

A study by Ma, Xing, Chen, Chen, Qu, and Li [32] utilized word and character embed-
dings as LSTM input (in the temporal x-vector) to effectively distinguish between APIs dis-
cussed in programming forum posts. They did so with transfer learning; using pre-trained
word embeddings, which were adapted to their domain by training modifications to them
within the ANN.

In a study by Shen, Jin, Hua, and Huang [33] the idea of embedding input into an LSTM
was examined in a road network context. They did so through a complex joint network with
several embeddings, among them a dense representation of the road network graph. The
goal was to produce more generalized and accurate travel time predictions.

3.4 DTW Applications

Many studies have utilized Dynamic Time Warping to mine time series data. DTW is a simi-
larity measure for time series data that handles both phase shifts and warping that more naïve
correlation measures such as pure Step-wise Euclidean Distance may otherwise struggle with.
It was mainly adopted in the speech recognition field, but in 1994 Berndt and Clifford [34]
presented it in a more general time series pattern application.

One of the datasets used in this thesis is financial, and previous studies have proved DTW
to be a good choice for comparing time series of that nature [35]. Recent studies have also
efficiently been using DTW as a base for time series clustering [36][2][37]. Since clustering of-
ten involves mapping objects to some high dimensional space and then calculating distances
between points, it is closely related to the embedding applied in this thesis.

3.5 DTW Efficiency Improvements

A challenge for Dynamic time warping has been its computational expense. Lots of research
has been devoted to making the calculations more efficient. A 2000 study abstracted the algo-
rithm, reducing demands by one or two orders of magnitude [38]. In 2009 another variation
was proposed, which greatly reduced the memory demands of the algorithm [39]. In the
same year, another study found an efficient way to update the DTW calculation when new
points are added to the series, or the window is sliding [40]. A recent study (2021) has also
greatly improved the efficiency of optimizing the DTW window parameter, which allows
much larger time series datasets to be analyzed efficiently [41].

16

4 Method

This chapter will present the project structure. The project was divided into three steps. The
first step was a pre-study, which included understanding the customer needs (4.1), finding
relevant literature, finding datasets (4.3), and outlining the system (4.4). The second step was
the implementation step (4.5), which included system design (4.5.1), pre-processing of data
(4.5.2), and actual system implementation (which in itself was split into the similarity embed-
ding program (4.5.3), and the creation of the LSTM (4.5.3). The last step, evaluation (4.6), was
performed by analyzing the predictive performance of the LSTM with and without various
versions of the vector embeddings included in its input. This was done for all considered
datasets. Some key metrics from states within the program were also considered in this step,
to assure the soundness of the method.

4.1 Problem Background

The project customer, Kikashi, is a small consulting company based in Linköping, Sweden.
Their work focuses on Artificial Intelligence and Machine Learning. The company wanted to
explore new feature engineering techniques for their prediction models. Some of the exist-
ing datasets were of the kind explained in the introduction (1) with parallel (simultaneous)
series from different measurement origins. To better handle new measurement origins in the
systems, and create a robust setup that can deal with missing values, perform well on mea-
surement origins with little historical data, and be used in many domains, the narrow dataset
structure shown in table 1.2 has sometimes been used. In those cases, the characteristics of
each measurement origin get lost, and that is where the idea to embed the measurement ori-
gin feature came from. To use a similarity-based embedding method was an idea originating
from my recent studies in NLP and Text Mining, where co-occurrence matrices (or variations
thereof) are common constructions from which to draw word embeddings. Pre-calculating
the embeddings instead of training them within an ANN is also a strategy that’s been em-
ployed by one of the most popular and ground-breaking word vectorization studies; word2vec
[17]. They found that the simpler methods which could be greatly scaled up outperformed
much slower in-network solutions, and this same idea has now been brought over to the
context of this thesis.

17

4.2. Hardware Resources

4.2 Hardware Resources

Quite generous resources were provided to complete the task. Access was granted to multiple
development servers. Although the exact specifications between the machines varied a bit,
Modern Nvidia GPUs were available, a few of the machines had 100+ hyper-threaded CPU
cores (i.e. 200+ threads), and at least one machine had around 1 TB of RAM. This meant that
large-scale DTW calculation, which has O(n2)1 time and memory complexity, was possible.
The code could also be widely paralleled, and several embedding programs or LSTM training
runs could be executed simultaneously on different machines.

4.3 Finding Datasets

One dataset with financial data was provided by the customer. A second dataset with
weather data was found through Kaggle2. Both sets featured hundreds of measurement ori-
gins (tickers and weather stations, respectively) and spanned several years of recording. They
also had at least twenty features from all of the measurement origins.

4.4 System Outline

The system was outlined as a simple graph, here shown in figure 4.1. The figure shows
how batched (daily) data is transformed through a sequence of steps to produce the simi-
larity embeddings, and how the system will be evaluated against a baseline. This is a very
rough oversight, and any parameters to the system have been omitted. Normalization of the
batched data has been left out of the figure but was done by a min-max scaler in the em-
bedding reprocessing step, and by a standard normalizer before each of the LSTM prediction
steps.

Figure 4.1: System outline

4.5 Implementation

This section begins with presenting the System Design in section 4.5.1, then Data Pre-
processing in section 4.5.2, and finally System Implementation in section 4.5.3.

4.5.1 System Design

Python was chosen for the implementation based on the availability of good software li-
braries, and its simple syntax. There was for example a suitable library for time series data,
with Dynamic Time Warping readily available [14]. NumPy was used for most of the heavy
calculations in the project since its pre-compiled C-code operates much faster on arrays than
native Python [42]. To efficiently utilize the hardware, a multi-threaded design was adopted

1Assuming all series are length n. In this work, the series should always be roughly the same length.
2https://www.kaggle.com/datasets/PROPPG-PPG/hourly-weather-surface-brazil-southeast-region

18

4.5. Implementation

Figure 4.2: Multi-threading architecture

when the basic functionality had been established. The data was structured as daily matri-
ces where the columns correspond to the input features, one being the measurement origin.
This allowed parallel processing of each day, or longer periods of several days (’batch’, in the
general case). The similarity calculations could also be executed in parallel since each pair-
wise similarity was independent of any other pairs. Parameter choices could affect where the
parallel processing would improve the efficiency the most (sample pre-processing, versus
similarity calculation), so a double-pooled design as shown in figure 4.2 was chosen. With
series of n days considered, the outer pool would create one process per set of n consecutive
days. These processes would then read the series from all the measurement origins for that n-
day period, filter and merge the batches, then create an inner pool with processes that would
calculate the similarity between each possible pair of time series from measurement origins
and the fixed set of base measurement origins in the period. Detail of this can be found in
algorithm 1.

4.5.2 Data Pre-processing

Since the time series (in both datasets) were sometimes missing measurements, or in some
cases entirely omitted from a single day, some caution had to be taken to not let such errors
propagate through to the embeddings. The datasets were also not structured in the same
format. A script was written, which would load all the weather data and filter out missing
values, converting them to proper NaN-format, and storing the data as daily data matri-
ces where the station code was contained in one column, and all other features in the other
columns.

After the daily matrices were complete, a separate pre-processing step was added to the
actual embedder. In this step, any missing values would be interpolated, if the gap was not
too large 3. This pre-processor also reduced the resolution of the time series when many days
were combined. The financial data had the highest resolution, and with periods longer than
5 days, resolution reduction was needed to keep DTW execution times acceptable, despite
the optimizations, fast C-accelerated similarity calculation, and the competent hardware pro-
vided.

4.5.3 System Implementation

The system implementation was split into two separate programs; the embedder (4.5.3) and
the predictor (4.5.3), each corresponding to one of the rows in figure 4.1. These will be ex-
plained in the following sub-sections.

3this could be set through a parameter, but was kept between 1-3

19

4.5. Implementation

Embedding System

The embedding system was written to accept any time series dataset, as long as it is structured
as batched (daily, in this project) matrices ("data frames") with columns as described in section
4.5.1, and is provided with measurement origin column name, the aggregation function for
each variable, and some other dataset specific constants like start and end date. As seen in the
figure, the system first reads the daily data, then pre-processes it, then calculates similarities
between measurement origin, then runs a convolution (in this case a sliding mean) to the
matrices to smooth out the similarities over time and increase robustness regarding missing
values. Finally, the program consumes one convolution period’s worth of similarity data
from the beginning of the dataset to fit a dimensionality reduction model. This is done with
PCA, and running the remaining part of the dataset through the reduction forms the final
embeddings, one per measurement origin per input batch (day). The following parameters
were included to control the output of the system:

• dataset: The name of the dataset to use. Controls where samples are read from and how
features are aggregated during resolution reduction.

• metric: The similarity measure to use between time series, DTW by default.

• feats: List of features to be considered in the similarity measurement.

• base_locs: The measurement origins to be used as the base set (columns in the similarity
matrices). Ideally, these should have measurements available throughout the entire
dataset so that NaN-values are avoided and the PCA is kept stable. If a chosen station
has low availability the program will however detect that, and discard it from the base
set (and consequently the PCA). The width of the similarity matrix (the number of base
origins used) is reported by the program during execution.

• s_len: The length (number of batches) of the series on which the similarities will be
calculated.

• n_dims: The rank of the output embedding vectors.

• w_len: The window length (as number of batches) for the sliding average (the convo-
lution).

• overlap: If this is set, and sample_lengthą 1, overlapping series will be considered4.

• normalize_series: If set, the samples will be min-max scaled (each feature separately)
before the similarity measure is calculated. This is set by default.5

• normalize_vars: If set, the variables in each batch will be min-max scaled (each feature
separately) during filtering, i.e. not pair-wise before every similarity calculation.6 If
normalize_series is set, normalize_vars has no effect apart from longer execution time. It
was included to have the option of preserving static difference between series.

Pseudo code of the embedding program is shown in Algorithm 1. The program has been
simplified for clarity and lacks some of the above-mentioned parameters. All profiling, asser-
tions, and most of the data cleanup have also been omitted.

4i.e. both January 15th-25th and 16th-26th would be considered in the case of 10 day windows
5The univariate series S1 = 1, 2, 3 and S2 = 4, 5, 6 would in this case turn into S1˚ = S2˚ = 0, 0.5, 1 before

comparison.
6Univariate series S1 = 1, 2, 3 and S2 = 4, 5, 6 would in this case turn into S1˚ = 0, 0.2, 0.4 and S2˚ = 0.6, 0.8, 1

before comparison.

20

4.5. Implementation

Algorithm 1 Simplified Embedding Program

1: procedure CREATE EMBEDDINGS(n_dims, s_len, w_len, dataset)
2: batch_ f iles Ð scan_batch_dir(dataset) Ź Sorted chronologically
3: sim_matrices Ð []
4: for i P range(0, len(batch_ f iles)) do Ź Asynchronous call, outer pool
5: batches Ð read_all(batch_ f iles[i : min(i + s_len, len(batch_ f iles))])
6: sim_mx Ð HANDLE BATCH(batches)
7: sim_matrices.append(sim_mx)
8: sim_matrices Ð standardize(sim_matrices) Ź Same index, remove rare origins
9: conv_matrices Ð []

10: for i P range(0, len(sim_matrices) do Ź Apply sliding mean
11: conv_matrices.append(mean(sim_matrices[max(0, i ´ w_len) : i]))
12: pca Ð f it_PCA(conv_matrices[w_len], n_dims)
13: for all sim_mx P conv_matrices[w_len :] do
14: store pca(sim_mx)

15: procedure HANDLE BATCH(batch_matrices : list ă matrix ą)
16: comb_mx Ð vertical_stack(batch_matrices)
17: batch_len Ð time_steps_per_origin(comb_mx)
18: if batch_len ą max_series_length then Ź Reduce resolution
19: origins Ð unique_origins(comb_mx)
20: new_rows Ð []
21: rt Ð batch_len/max_series_length
22: for all org P origins do
23: l_series Ð comb_mx(1origin1 == org)
24: l_stop Ð len(l_series) ´ rt + 1
25: r_stop Ð len(l_series) + 1
26: for all l, r P zip(range(0, l_stop, rt), range(rt, r_stop, rt)) do
27: new_rows.append(reduce(l_series[l : r])) Ź Handle per feature
28: comb_mx Ð vertical_stack(new_rows)
29: if normalize_vars then
30: normalize(comb_mx)
31: t_set : Set Ð []
32: for all org P origins do
33: for all b_org P base_origin do
34: if org ‰ b_org then Ź Self-similarity is trivial
35: t_set.append(Set(b_org, org)) Ź Similarity is commutative
36: sim : Dict Ð tu

37: for all s_pair P t_set do Ź Asynchronous call, inner pool
38: s1 Ð comb_mx(1origin1 == s_pair[0])
39: s2 Ð comb_mx(1origin1 == s_pair[1])
40: sim[s_pair] Ð metric(s1, s2)
41: sim_matrix Ð []
42: for all org P origins do
43: row Ð []
44: for all b_org P base_origin do
45: if org == b_org then
46: row.append(0.0)
47: else
48: row.append(sim[Set(b_org, org)])
49: sim_matrix.append(row)

return sim_matrix

21

4.6. Evaluation

Prediction System

The prediction system was quite straightforward conceptually. It was a rather out-of-the-box
LSTM implementation that had its input extended by the embeddings (for the previous day,
to avoid forward-looking). The embeddings were input as a feature in each time step (xt
in the LSTM-cell, figure 2.4). Since the embeddings were static for each daily time series in
the project setup, intra-day LSTM windows get the same embedding input in every time step
(i.e. duplicated information). Even though this could be sub-optimal, it was considered out of
scope for this project, and if embeddings were created continuously somehow (by for instance
finer granularity or interpolation) no changes would be needed to the prediction system to
feed the model with the new embeddings. The input feature vector Xt was also extended
with a single feature from each measurement origin in a static set of predefined measurement
origins. The set was constructed based on existing clustering methods; financial sector ETF
for the financial dataset, and geographical region for the weather dataset. These additional
features were supposed to be seen as a form of beacon signals from the environment and were
included both in the baseline and the tests with the embeddings. One intuitive description of
their role is to see the beacon signals as a map, and the embeddings as a compass, hopefully
able to achieve more performance gain together than on their own.

The training was conducted on the GPUs mentioned in section 4.2 through the Keras
library [43], which is a high-level API for the TensorFlow machine learning library [44].

4.5.4 Tooling

To visually examine the embedding space over time, a program was created which would
render the PCA space of 2-dimensional embeddings over time. The output consisted of an
mp4 video with frames like the one shown in figure 6.1. Clusters were optional, but mainly
a k-means clustering before the dimensionality reduction, and popular conventional clusters
(business sector for the financial dataset and geographical region for the weather dataset)
were examined. Annotations for each point were also an added feature (as seen in the pre-
viously mentioned figure), but with all points annotated the rendering was very slow and
the output cluttered and hard to read. The animation tool greatly helped in understanding
the characteristics of the datasets and the embeddings. Sample output from the visualizer is
shown in figure A.11.

4.6 Evaluation

This section presents the evaluation method for the project. The efficiency evaluation method
is presented in section 4.6.1. Section 4.6.2 contains the performance evaluation methodology.

4.6.1 Efficiency

For the efficiency evaluation, the performance through two bottlenecks was considered. The
first was the aggregation and preparation of the data, which mainly strained the disk, mem-
ory, and CPU from Python code. The second was the similarity measurement calculation,
which mostly strained the CPU through C-accelerated NumPy functions. Memory usage
for processes in the inner and the outer pool (as explained in figure 4.2) was also measured
to evaluate the usefulness of the double pool setup. These two bottlenecks were chosen
since they correspond to the two natural places to adapt parallelism; first running batch-wise
(daily) similarity matrices in parallel, then running pairwise similarity calculations within
each day in parallel.

22

4.6. Evaluation

4.6.2 Measuring Performance

To evaluate performance, first, the quality of the embeddings was assessed, then the pre-
dictive performance of the LSTM with and without the embeddings. Three performance
measures were considered for the embeddings:

• The distribution of the similarities in the form of a histogram over all values in the
similarity matrices.

• The variance captured by PCA calculated on the SVD, defined by equation 2.16.

• Comparison to conventional clusters in the form of 2D embedding plots with conven-
tional clusters colored. The ticker embeddings from the financial dataset were clustered
based on their business sector, and the weather station embeddings were clustered by
their corresponding geographical region.

To evaluate the predictive performance of the LSTM, several setups of input for the net-
work were tested. Embedding vectors of length (i.e. rank) 2 and 5 were tested for each of
the three similarity metrics (Step-wise Euclidean Distance, Pearson Correlation, and DTW).
The baseline used the same input size but had its embedding features masked by zeroes. The
baseline was only fed samples that had defined embeddings. Finally, two additional com-
parison setups were created. The first had an added feature in the form of an integer index
(enumeration) for each measurement origin, to let the network distinguish between samples,
but not receive any information about their relations. The other comparison setup used the
enumeration as input to a Keras Embedding Layer 7 [43], from which the output was concate-
nated with the input features and fed to the remaining part of the network. This last setup
would thus create the embeddings during training, based on the input samples. Google’s
TensorFlow team suggested in Introducing tensorflow feature columns [45] to use the 4th root
of the number of unique classes as a rule-of-thumb for the length of the embedding vectors,
which with around 650 unique measurement origins means a length of 5. Both lengths 5 and
2 were tested for this final setup, just as for the similarity embeddings.

The input vector xt to each LSTM cell in the unrolled network (2.2) would consist of the
input features f , the beacon signals b, the embedding vector e, and finally the id for the
enumerated setup, as seen in table 4.1.

Table 4.1: LSTM cell input vector xt for different embedding setups (single time step)

Setup xt

Baseline f1 f2 .. fn b1 b2 .. bm 0 0 0 0 0
Embedded f1 f2 .. fn b1 b2 .. bm e1 e2 e3 e4 e5
Enumerated f1 f2 .. fn b1 b2 .. bm 0 0 0 0 0 id

For the baseline, similarity embedding, and enumerated setups, the shape of the input
to the entire network and the LSTM was the same. For the trained embedding setup, the
id feature was first passed through an embedding layer, while the rest of the input skipped
by and joined with the embedding layer output to form the actual LSTM input, as shown in
Table 4.2.

Table 4.2: Trained embedding network (single time step)

Trained embedding input breakdown

initial input f1 f2 .. fn b1 b2 .. bm id

Ó Ó Ó Ó Ó Ó Ó Ó

Ó

Keras embedding layer
Ó Ó Ó Ó Ó

LSTM input f1 f2 .. fn b1 b2 .. bm e1 e2 e3 e4 e5

7https://keras.io/api/layers/core_layers/embedding/

23

https://keras.io/api/layers/core_layers/embedding/

5 Results

This chapter will present the results. It will be divided into three parts where section 5.1
contains the results from the filtering and pre-processing of the data, then section 5.2 presents
the efficiency of the system, and section 5.3 lists key features of the embeddings as well as
performance metrics for different embedding configurations through the LSTM. Results have
been separated per dataset.

5.1 Dataset Evaluation

In this section, some relevant discoveries from the datasets will be presented. First from the
weather dataset and then the financial dataset.

5.1.1 Weather Data

Although the weather dataset was not missing many values, it did present some noise-related
challenges. On the assumption that closely located stations should see similar measurements
in most variables, some inconsistencies were found (when geographically close stations were
distant in the embedding space). An example can be seen in figure 5.1 where the difference
(after min-max scaling1) between two closely located stations is shown for several variables
over a single day.

Figure 5.1: Difference in min-max scaled measurements between two stations 30km apart

1per variable, per day, but not per station

24

5.1. Dataset Evaluation

Visible is a big difference in ground radiation and wind direction. Considering the source
data, the wind direction is not unexpected. The compared stations had very low wind for
the day in question, and one was close to zero. The radiation on the other hand looks a bit
suspicious. Most of the stations see more or less flat radiation when the sun is below the
horizon, then an increase until noon, and finally falling measurements until sunset. On this
day one of the two compared stations had a more or less flat radiation curve at an intensity
four times the peak of the other. This causes the two stations to end up very far apart in
the embedding space, even though many other variables have similar measurements (so the
points should be closely located to capture this conceptual similarity between the stations).
Digging deeper into the possible explanations for the difference, the high-radiation station
was found to be located very close to some industrial plants, while the low-radiation station
was located in a residential area.

Another observation in the data was occasional series of constant measurements. Interpo-
lation has been used to fill out missing data points, but only for a couple of points at a time.
Some stations in the dataset would even have exactly the same measurement for certain vari-
ables across an entire day. For example, one station was found to have a relative humidity of
precisely 97% during almost the entire day, when its closest neighbor station had much more
varied humidity throughout.

Not considering the stuck values, the dataset does not seem to be missing many measure-
ments. This means that the similarity measures requiring equal-length sequences are defined
and usable for most of the days. That being said, not all stations were in service throughout
the entire dataset. 250 stations with early introductions were chosen as bases for the embed-
dings.

From just looking at outliers in the embedding space, one station (A302) was identified
as far separated from the rest. Unsurprisingly this is also the most remote station, located
almost 900 kilometers away from the Brazilian mainland and its closes neighbor.

Finally, one station was found to have its reference latitude and longitude mixed, when
looking for more outliers in the provided metadata containing the origins of the stations.

5.1.2 Financial Data

The financial dataset did not present the same challenges as the weather data. Instead of stuck
values, its major challenge came in the form of differences in length between series, as well
as prominent noise. Due to pre- and post-market trading, sharp spikes could occur when
combining several trading days into longer series. Furthermore, not all days were trading
days, in contrast to the weather data where measurements were expected at evenly spaced
intervals from when each measurement origin first went live until it the end of the dataset.
Tickers could also both be added and withdrawn from the batches throughout the dataset.
This presented a challenge in finding suitable base measurement origins. In the end, around
250 high-availability tickers were found. Their availability throughout the dataset was not
100%, but whenever they were missing, their similarities could be interpolated in the convo-
lution step, to avoid invalidating the PCA. The series which had different lengths also ended
up with undefined similarities for Step-wise Euclidean Distance and Pearson Correlation.

In contrast to the weather dataset, there is no obvious periodicity in the data. Finally,
normalization behaved differently. For weather, it might make sense to scale per variable,
per period, but for financial instruments, this makes little sense for features like price and
traded volume since such features depend on the granularity of the underlying asset division
(which can differ between tickers). Thus, all the samples were min-max scaled just before
comparison, which meant that any static difference between them would be disregarded. In
other words, a weather station with a static daily temperature of 10˝C would be different
from one with a static 15˝C temperature, but a stock trading flat at $50 and another trading
flat at $100 would be considered completely similar.

25

5.2. Efficiency

5.2 Efficiency

This section will present the memory and execution time profiling of different setups for the
embedding program. The profiling was done using a subset of the data from the financial
dataset. This dataset was chosen since it has the highest resolution and is thus the most de-
manding for the system. All three metrics were evaluated. The servers mentioned in section
4.2 were used, and each node allocated 40 processes in the outer pool, with 2 internal pro-
cesses in each inner pool, for a total of 80 CPU cores per executor.

The first test was carried out on shorter series of two days. Series of one day can be read
straight from the disk, so two-day series are the shortest ones that would still need merging.
The series are however short enough that resolution reduction is not needed. Results for this
setup are shown in figure 5.2.

Figure 5.2: Time spent and memory usage needed across code parts (2-day series)

The time spent calculating the similarities is much higher for DTW than for Euclidean
Distance and Pearson Correlation. The time spent loading the data frames is similar for all
metrics. So is the time spent cleaning the series (interpolation and normalization). For these
samples that do not need resolution reduction, the cleaning time is greater than the loading
time. For the most advanced similarity measure, DTW, the time spent calculating the similar-
ities is by far the most demanding part, requiring around 70 times as much time to calculate
a full similarity matrix, compared to Euclidean Distance. The peak memory usage for the
outer process is around twice that of the peak memory usage of the inner process, which is
expected since the inner pool contains two workers, each copying the memory from their
parent upon creation.

The second test was carried out on long series of 29 days. Longer series like these hit the
measurement point limit and require resolution reduction. DTW, which has a quadratic time
complexity, struggles with such long series. Results for this setup are shown in figure 5.3.

As expected, the frame loading (which includes the resolution reduction) took a much
longer time for this setup. The calculations also took longer time for all metrics. Peak mem-
ory usage of the outer process was in this case slightly more than twice that of the inner
processes, since the resolution reduction requires more memory than twice the memory used

26

5.3. Performance

Figure 5.3: Time spent and memory usage needed across code parts (29-day series)

by calculations of the metrics on the reduced frames. Typical peak memory usage for the
entire program can be calculated from the number of outer threads and their peak usage:
40 ˚ 1.37 « 55 GB.

5.3 Performance

In this section, the performance of the system will be evaluated. In section 5.3.1 the quality
measures from section 4.6.2 will be used to check output from the embedding program. Then
the effects of including the embeddings in an LSTM will be presented in section 5.3.2.

5.3.1 Embedder

An indication of captured information in the embeddings would be a spread-out distribution
of the pair-wise similarities. Since the distance measures have been converted to similarities
based on equation 2.11, using the maximum distance from the batch as dmax, there will be
at least one similarity of 0 in each batch. Pearson Correlation was also scaled to have the
same bounds. If the distribution is too narrow, the normalization may have been affected
by noise in the data, for instance by producing a too high dmax value. This might lead to
only some low-quality measurement origins producing high dissimilarity across the board
and drown out more subtle, important differences between high-quality origins. Figures 5.4
and 5.5 show how the 30-day similarities throughout the entire datasets2 are distributed for
the three different similarity measures (DTW, Step-wise Euclidean Distance, and Pearson
Correlation). The mean similarity is shown as a vertical line. The bars at exactly 1.0 represent
the self-similarities of the base series (since that’s their definition). Undefined (NaN) values
have been completely disregarded, so the histograms of different similarity measures may
have a different amount of samples in case such values have been present in the similarity
matrices.

2the weather data and the stock market data

27

5.3. Performance

Figure 5.4: 30-day weather series similarity matrix histogram

Figure 5.5: 30-day stock series similarity matrix histogram

The distributions of the 1-day similarities are more spread-out compared to the 30-day
ones, as observed in figures 5.6 and 5.7 which show the weather and financial data respec-
tively. The mean has also been reduced for all setups, indicating that there’s less overall
alignment of the series for shorter periods than longer ones.

Figure 5.6: 1-day weather series similarity matrix histogram

Another quality measure of the embeddings is the amount of variance preserved by the
PCA depending on the rank of the reduced representation. This score can be found by con-
ducting an SVD and then plotting the diagonal from the Σ matrix. Such a plot is shown for
the weather dataset in figure 5.8 and the financial data in 5.9. The Pearson Correlation stands
out as being well-expressed with a lower rank than the other two measures, for both datasets.

The last performance measure of the embeddings before evaluating the predictive per-
formance of the LSTM is the comparison with existing clusters for the data. Clusters for
30-day DTW embeddings are presented here, plots for the other similarity measurements
and shorter lengths are available in Appendix A. The weather embeddings were compared
to clusters based on the geographical region of the measurement station since nearby stations
are expected to behave similarly. Five such regions were specified in the dataset (N, NE, CO,
S, SE). The comparison is shown in figure 5.10. As observed, the regional clusters are fairly

28

5.3. Performance

Figure 5.7: 1-day stock series similarity matrix histogram

Figure 5.8: Amount of variance preserved in the weather similarity vectors embeddings per
rank

Figure 5.9: Amount of variance preserved in the financial similarity vectors embeddings per
rank

distinguished from one another. The outlier in the NE cluster is the previously mentioned
A302 located far out into the Atlantic Ocean.

29

5.3. Performance

Figure 5.10: Weather data embeddings (30-day), colored by geographical region

The financial dataset time series were grouped based what sector Exchange Traded Fund
(ETF) they belong to, i.e. what business sector the company represented by the ticker is
active in. This is shown in figure 5.11 More overlap is seen compared to the weather dataset.
The XLU cluster, which represents the tickers in the utilities sector, is however quite well-
separated from the rest. No obvious explanation for the outlier in this cluster was found.

Figure 5.11: Financial data embeddings (30-day), colored by sector ETF

30

5.3. Performance

5.3.2 Predictions

The network was run as a classifier, predicting change up or change down. The predictive
performance of the network is presented as the change in accuracy over random guess, com-
pared to a baseline (accuracy was measured on validation data). For reference, this calcula-
tion is shown in equation 5.1. For both datasets, only the binary case was examined. For the
financial dataset, the price change (up or down) was predicted, and for the weather dataset,
relative humidity change (up or down) was predicted. As with the embedder, the normal-
ization of samples was handled differently between the datasets (as mentioned in section
5.1.2). The Financial data had its features normalized, while the weather data features were
not normalized (since they were softly bounded by their nature).

accuracy_change(x) =
nclasses ¨ accx ´ 1

nclasses ¨ accbase ´ 1
´ 1 (5.1)

Results from 2 runs3 per configuration (dataset, metric, series length, and embedding rank)
were generated. This was chosen after a higher number of repeated runs for a single config-
uration only showed little variance. Completing a single run required up to 3 hours, which
made the GPU hours a limiting factor4. Table A.1 in Appendix A shows the average results
for each of the configurations. The results listed are the average accuracy changes compared
to the baseline for each setup, over both its runs. Breakdowns over metric, rank, and series
length are shown in tables 5.1, 5.2, and 5.3.

Table 5.1: Prediction results by metric

Dataset Similarity metric Accuracy change

Stock Euclidean 5.22%
Stock Correlation 3.13%
Weather Euclidean 0.11%
Stock Enumerated 0.01%
Weather Enumerated -0.06%
Stock Trained -0.94%
Weather Correlation -1.02%
Weather DTW -1.42%
Weather Trained -1.56%
Stock DTW -4.54%

Table 5.1 shows that DTW under-performs the much simpler Step-wise Euclidean Dis-
tance measure. It also shows better performance on the financial dataset than the weather
dataset. It’s also evident that the enumeration of measurement origins has negligible effect,
and the trained embedding layer reduces the performance on both datasets.

Table 5.2: Prediction results by rank

Dataset Rank Accuracy change

Stock 5 2.02%
Stock 2 0.52%
Weather 2 0.36%
Weather 5 -1.92%

Table 5.2 shows how higher embedding rank (i.e. longer embedding vector) affects the
datasets differently.

3Maximum 50 epochs per run, early stopping after 3 epochs without improvement.
43 GPU-hours/run x 36 setups x 2 runs/setup = 9 GPU-days, only to generate the final results.

31

5.3. Performance

Table 5.3: Prediction results by series length

Dataset Series length avg accuracy change

Stock 30 4.62%
Weather 1 -0.54%
Weather 30 -1.02%
Stock 1 -2.08%

Table 5.3 shows how embeddings based on similarities of longer series help increase the
accuracy of the LSTM more than those based on similarities of shorter series.

To sum the results up, there is an indication that the stock data is positively affected by
the addition of similarity embeddings if they are based on longer time series. The weather
data is slightly negatively affected, which gets worse when the embeddings have a higher
rank. It is also clear that the simpler similarity measures performed better than DTW. The
financial dataset had a much higher number of samples compared to the weather dataset,
as a result of it having higher resolution and a higher number of measurement origins with
defined embeddings. As a result, the network trained longer on the financial dataset, and it
converged slower.

32

6 Discussion

This chapter contains a discussion of the results and the method. Section 6.1 presents the
discussion about the characteristics of the embeddings themselves, section 6.2 discusses the
prediction results of the LSTM, and section 6.3 concerns the efficiency of the embedding pro-
gram. The method is then discussed in section 6.4. A brief discussion on tuning is included
in section 6.5. Lastly, all of the research questions listed in section 1.2 are answered in section
6.6.

6.1 Embeddings

Starting by looking at the dataset evaluation from section 5.1 we find that the embedding pro-
gram can use quantitative methods to capture aspects of the environment not obvious from
the individual features. The radiation spikes mentioned in 5.1 from the weather data can be
found solely through the ground radiation feature, but figure 5.10 shows that the embeddings
can synthesize a rough geographic map, without knowing the coordinates of any station. It
can also detect outliers like the single far-off-shore station A302. Furthermore, if input vari-
ables were not normalized per series, but only per variable, the first PCA component turned
out to predict the altitude of the stations quite well (most likely from static differences in at-
mospheric pressure). In the more noisy financial dataset, the embeddings do not comply as
well with all the sector clusters, but this may not necessarily be an indicator of malfunction.
Table 6.1 shows how separated versus overlapping clusters can be seen with an optimistic
versus a pessimistic outlook. This thesis cannot decide the quality of created embeddings
with absolute certainty based on their comparison with existing clustering methods, but the
table is included to shine a light on what stances one could take when interpreting the plots.

Table 6.1: Proposed cluster separation viewpoints

Separated clusters Overlapping clusters

Optimistic Embedding makes sense Embedding found novel information
Pessimistic Embedding provides no new information Embedding is noise

One feature that is desired in the financial domain is the closeness of embedded series for
tickers based on the same underlying assets. Two such pairs exist as measurement origins in
the dataset. The first pair is made up of GOOGL and GOOG, which represent the A and C-

33

6.2. Prediction

class stocks of the Alphabet company respectively. The other pair consists of the tickers FOX
and FOXA, representing the B and A-class stocks of the Fox Corporation. Averaging the 30-
day similarities of the entire dataset and fitting a 2-dimensional PCA places both the Alphabet
and the Fox ticker embeddings pairwise close to each other (see figure 6.1), indicating similar
behavior of same-asset series. An early hypothesis from the customer was that the COVID-
19 pandemic effects on the stock market would be visible in the embedding space, and that
turned out to be correct. With output from the animation tool described in section 4.5.4, it was
clear that around early spring of 2020 (depending on the length of series and the length of the
averaging period) the entire space started to shrink, and embedded points ended up closer
together. This can be seen in the last panel of figure A.11. The variance reduction is in-line
with how the stock market was suddenly more affected by a global trend than the individual
performance of underlying assets.

Figure 6.1: averaged 30-day embedding space with GOOGL, GOOG, FOX, and FOXA an-
notated

The assumption that similarity matrix columns are to a high extent correlated is also con-
firmed in figures 5.8 and 5.9, and shows how PCA is a fitting tool to reduce the length of the
similarity vectors.

6.2 Prediction

The results seem to indicate that for the tested network and prediction task, embeddings
based on longer series are the better choice. Comparing cluster plots for long versus short
series (like 5.11 and A.8) shows longer series producing more spread-out embeddings, which
can be related to this. Patterns based on shorter series could also potentially be learned from
the training samples themselves, especially since the previously mentioned beacon signals
are included. DTW embeddings perform particularly bad, surprisingly, since it was the met-
ric leading to the most resemblance with conventional clustering of tickers from the financial
dataset. A possible explanation is that due to resolution reduction the warping window is
quite large in comparison to the prediction window. For the financial 30-day series the warp-
ing window is around 16 trading hours, which happens to be around twice the time the stock
exchange is open per day. Reducing the warping window size would in this case unfortu-
nately bring the path very close to the diagonal and effectively turn into Step-wise Euclidean
distance. The weather data is also negatively affected by a warping window on this scale,

34

6.3. Efficiency

which could be because of its periodicity; the change in sunrise between the east and west
parts of mainland Brazil is just a couple of hours.

Another observation is that the weather prediction was negatively affected by longer em-
bedding vectors. This could very well be due to over-fitting. As previously mentioned, the
weather data has fewer samples than the stock data, but the network is unchanged, meaning
there is a lower ratio between samples and weights. On the contrary, the stock price predic-
tion seems to benefit from the increased dimensionality of the embeddings. Comparing the
captured amount of variance by PCA between the two datasets (figures 5.8 versus 5.9) could
hint at why this is, although further analysis is needed to accurately determine if such is the
case.

It is also interesting to see that the trained embedding layer does not manage to increase
accuracy for either of the datasets. This hints toward useful information in the financial
dataset that the longer series similarity embeddings are able to capture, but the in-model
embedding layer is unable to find efficiently. While the trained embeddings’ performance
impact on the financial dataset is negligible, the weather dataset gets slightly worse results.
This could again be related to increased complexity, leading to over-fitting.

6.3 Efficiency

Even though lots of optimizations were done throughout the project (cutting the calculation
time from the initial draft to the final program by over 99.5%), the similarity calculation of
DTW for longer series was time-consuming, and since similarities needed to be calculated
for all pairs of series, even more time is spent at this step. Parallel processing was an option,
but resolution reduction of longer series was still required to achieve results in a reasonable
amount of time. The simpler metrics (Step-wise Euclidean Distance and Pearson Correlation)
were much more feasible to apply at the original series resolution, and fortunately, these
were the better-performing ones on the tested datasets. If the method is proposed for another
domain, the effects of resolution reduction need to be considered, to not end up having to
choose between extreme time consumption and loss of important high-granularity patterns.

6.4 Method

The presented embedding program does achieve performance benefits for some setups, but
the requirements put on the data limit its usability. Missing values propagate; a single miss-
ing value in the start or end of a time series causes it to have unexpected length, and all
similarities except self-similarity become undefined in the case of Step-wise Euclidean Dis-
tance and Correlation for that sample (day). If this is repeated for the entire part of the data
used to train the dimensionality reduction, the measurement origin will be exempt from PCA
calculation, and its characteristics will not affect the rank reduction. If this happens to a base
origin, the width of the similarity matrix is reduced. Likewise, if any of the base series is
incomparable to the other series throughout an entire averaging window, it will invalidate
the PCA for that window altogether, since all the rows would contain at least one undefined
value. These facts have caused lots of issues during the project, and a constant battle against
the missing values has been fought. Putting too high demands on the data quality leads to
only a small fraction making it through to the final embedding space, and too loose demands
on quality require watering down the data with naive interpolations for missing values, pos-
sibly diluting important information in the data. If the data is well cleaned beforehand, the
embedding program still consumes a lot of computational resources. Fortunately, a lot of
the information can be cached and shared between runs. If new data (in the chronological
sense) is to be added, only data as far back as the specified series length needs to be consid-
ered when constructing the new similarity matrices. The PCA does not require re-training,
and thus all embeddings for older samples remain constant. Adding historical data for new

35

6.5. Tuning

measurement origins is another story; then only similarity measurements between existing
series can be kept, the PCA will need retraining, and therefore all of the embeddings will
need to be recalculated. In the case of new data, an existing ANN could still be used on the
new samples, but if more measurement origins were to be added, the entire network would
need to be retrained with the new set of embeddings. Possible mitigation of this is to simply
not retrain the PCA and not include any of the new measurement origins as columns in the
similarity matrices. For relatively few added measurement origins this may be feasible.

The double-pool setup of the embedding program does not seem to be needed. The inner
pool sees the most benefit when there are few batches and each one take a lot of time to
calculate. The outer pool is beneficial when the single-threaded combination and resolution
reduction takes a lot of time. With every optimization done, there has been less and less
strain on the memory as well, thus only keeping the outer pool seems like a good reduction
in complexity which would not affect execution times unless the dataset is very short.

6.5 Tuning

Some program parameters were not examined thoroughly. This was mainly due to the diffi-
culty of assessing their effects on the entire setup in a timely manner. Changing a parameter
in the similarity metric (like DTW warping window size) would require recalculation of all
similarities (which could take a couple of days for an entire dataset in the case of DTW), then
the creation of samples and various tasks regarding the preparation of the training setup, and
finally training and evaluation of accuracy over several runs. Although it would be interest-
ing to examine these, there was simply not enough time to do so in this thesis project.

The values chosen for the embedding program parameters not tested all the way through
prediction were:

• Averaging window size: Was set to 30 days for 1-day similarities, and 120 days for
30-day similarities.

• Series features: All available non-static features (i.e. not features like latitude and lon-
gitude of weather stations) were included.

• Rate of base origin presence: For a measurement origin to be dropped from the simi-
larity matrix columns it needed to be missing in 20% of the samples, otherwise it was
assumed to be covered by the sliding window averaging. After some casual testing,
this seemed like a decent trade-off between getting too few columns and having too
frequent missing values in the similarity matrices.

• batches reserved for PCA training: One averaging window length was chosen as a
decent balance between spending too much data and getting a poorly trained dimen-
sionality reduction. This was casually found by visualizing the embeddings based on
different amounts of reserved PCA data with the visualization tool mentioned in section
4.5.4.

6.6 Answers to Research Questions

Here each of the research questions will be answered, in order.

6.6.1 Research Question 1

The first research question was "How can a system that creates embeddings from time se-
ries similarity be designed?". This is answered by the implementation of the embedding
program described in section 4.5, and by algorithm 1 specifically.

36

6.6. Answers to Research Questions

6.6.2 Research Question 2

The second research question was "Are embeddings based on time series similarity use-
ful tools in feature engineering for an LSTM?". This is a bit more difficult to answer, but
the results suggest that in certain domains the similarity embeddings can provide increased
accuracy of an LSTM. The well-performing embeddings are also fortunately based on a less
computationally demanding metric, which makes them easier to use. As stated in section 1.3,
only a single Long Short-Term Memory (LSTM) was tested in this study, and no further op-
timization was done to it. It is thus possible that other networks may see other performance
improvements. The method is useful in cases where a single network could not feasibly be
fed input series from all measurement origins in the environment simultaneously, and at the
same time, a single network per measurement origin is expected to perform worse if trained
on only samples from that origin, without being exposed to samples from other similar ori-
gins. The method also allows dense representations of relations between measurement ori-
gins on a larger scale than the training samples to be provided to the network, which seems
to have been beneficial to the tested network in at least the financial environment.

If similarity embeddings from the proposed program are to be used, some requirements
on the dataset must be fulfilled:

• An environment with measurement origins behaving similarly to one another to dif-
ferent extents. The relationship between each measurement origin and the set of basis
measurement origins should not change too much over time, as that could reduce the
effectiveness of the dimensionality reduction.

• Enough data. If there isn’t room to learn valuable relations between measurement ori-
gins (on a scale much longer than the input sequence), which can be exploited in future
predictions, there is no benefit of the proposed method. Another constraint on the data
is the ability to spend some of it for dimensionality reduction. If that data is not dis-
carded, the system is forward-looking.

• Fairly stable set of measurement origins. At least a set of base measurement origins
needs to be available throughout the dataset. If any of these base origins lack measure-
ments they render the PCA undefined for all series during that period.

• Low rate of missing values. Missing values propagate through the system and have
been a constant issue in this project. Unless new countermeasures like bootstrapping of
missing values are employed, the dataset must not have too many missing values.

Provided the above requirements are met, it is possible that the accuracy of an LSTM
acting on the data can be improved by adding similarity embeddings to its input, even when
a trained embedding layer is unable to do so.

6.6.3 Research Question 3

The third research question was "What similarity measures are suitable for such a system?".
The results, especially the breakdown in table 5.1, indicate that DTW was a poor fit for both
of the tested datasets; at least with a relatively large warping window. Simple Step-wise
Euclidean distance proved a much better option, but significant improvement was only seen
for the financial dataset, and long series length was needed. Embeddings based on Pearson
Correlation did also produce a slight positive improvement, but again, only for the financial
dataset, and inversely only for shorter series lengths.

6.6.4 Research Question 4

The last research question was "How can features from the time series (to base the embed-
dings on) be efficiently selected?". This question unfortunately remains partly unanswered,

37

6.6. Answers to Research Questions

as discussed in section 6.5. The time needed to thoroughly examine the impact of each fea-
ture on the quality of the embeddings was simply too much for this project. Section 5.1 does
however point out a poor choice of input feature, detected through anomalies found by the
quality measurement on the embeddings in the weather dataset: wind direction. Generally,
input features with high noise seem undesirable, as expected.

38

7 Conclusion

This thesis has presented a method to embed measurement origins based on similarities be-
tween the multivariate time series captured from them. It is applicable when the same fea-
tures are measured simultaneously at several measurement origins in a shared environment,
and the origins are expected to behave differently according to some intrinsic, individual
characteristics (which may change slightly over time). The embeddings have been added as
an extra input feature to an LSTM network trained to classify upward or downward move-
ment in one feature for any given measurement origin. It was done for both a weather dataset
and a financial dataset. For the financial dataset, embeddings based on step-wise Euclidean
Distance Similarity of 30-day series provided the best results; an 18.47% increase of accu-
racy over random guess, compared to a baseline without embedding data. The weather data
saw no improvement, but rather seemed to over-fit from any added input. Generally, sim-
pler distance measures on longer series produced the best performing embeddings, which
outperform trained embedding layers in front of the LSTM.

The more advanced DTW similarity measure produced embedding more in-line with con-
ventional clustering methods like the business sector of a stock, or the geographical location
of a weather station, compared to those from the simpler measures, but reduced the perfor-
mance of the LSTM.

7.1 Future Work

Upon finishing the project a few ideas on improvement, further study, and alternative meth-
ods have come to mind. They are listed below.

Continuity Modification

In this project, the embeddings were calculated only once per batch in the input data. For
series longer than one batch (i.e. longer than one day in this case), this meant repeating pre-
processing calculations when merging for instance batches 10 to 40 for one series, and then
batches 11 to 41 for the next. With some work, the performance benefits of only needing to
load series_length worth of input batches for each output batch of embeddings could be kept,
while avoiding the repeated calculations. Furthermore, if time series’ were treated as streams
throughout the entire dataset, some of the similarity metrics could be calculated on-line, for

39

7.1. Future Work

instance by applying the DTW incremental optimizations presented by Assent, Wichterich,
Krieger, Kremer, and Seidl [40]. This would make the system output embeddings every time
step, instead of every batch, thus making it quasi-continuous. In this project, all training
samples to the LSTM were drawn intra-day (i.e. intra-batch), and therefore all time steps in
the sample contained the same embedding. Continually updating the embeddings would
allow the network to capture movements in the embedding space.

Solving Issues With Missing Values

The (few cases) of missing values and different-length series served as obstacles in this the-
sis, most of all when they ended up in the training matrix for the PCA. This issue could
potentially be combated by employing another rank-reducing method like Robust Principal
Component Analysis (RPCA) [46].

Exploring Additional Similarity Measures

In this thesis, the choice of DTW was made after the pre-study, since it seemed promising to
capture the lead-lag and stretch relations between series from the two datasets. The results
show that other, much simpler methods, perform better. It is possible that other similarity
measures could perform better. These could include similarity measures like Edit Distance
with Real Penalty (ERP) [25], Longest Common Subsequence (LCSS) [26], and Edit Distance
on Real Sequence (EDR) [27].

Allow Embeddings Modification Within the ANN

Running the enumeration column through an initial embedding layer (as described in section
4.6.2) and passing its output along with the rest of the input features into the LSTM did not
perform well in the examined cases. A middle ground might be to create the embedding layer
but use pre-calculated similarity embeddings from this thesis to initialize the weights of the
layer (a bit like how embedding modification was done in the related study by Shen, Jin, Hua,
and Huang [33]). This would allow the network to learn and modify the embeddings during
training, and possibly improve performance.

40

Bibliography

[1] Luís Sanhudo, João Rodrigues, and Ênio Vasconcelos Filho. “Multivariate time series
clustering and forecasting for building energy analysis: Application to weather data
quality control”. In: Journal of Building Engineering 35 (2021), p. 101996. ISSN: 2352-7102.
DOI: https://doi.org/10.1016/j.jobe.2020.101996. URL: https://www.
sciencedirect.com/science/article/pii/S2352710220336287.

[2] Kei Nakagawa, Mitsuyoshi Imamura, and Kenichi Yoshida. “Stock price prediction
using k-medoids clustering with indexing dynamic time warping”. In: Electronics and
Communications in Japan 102.2 (2019), pp. 3–8. DOI: https://doi.org/10.1002/
ecj.12140. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
ecj.12140. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
ecj.12140.

[3] Zengwei Zheng, Mingxuan Zhou, Yuanyi Chen, Meimei Huo, Lin Sun, Sha Zhao, and
Dan Chen. “A Fused Method of Machine Learning and Dynamic Time Warping for
Road Anomalies Detection”. In: Trans. Intell. Transport. Sys. 23.2 (Feb. 2022), pp. 827–
839. ISSN: 1524-9050. DOI: 10.1109/TITS.2020.3016288. URL: https://doi.
org/10.1109/TITS.2020.3016288.

[4] Kosmas Kosmidis, Alkiviadis Kalampokis, and Panos Argyrakis. “Language time
series analysis”. In: Physica A: Statistical Mechanics and its Applications 370.2 (2006),
pp. 808–816. ISSN: 0378-4371. DOI: https://doi.org/10.1016/j.physa.2006.
02.042. URL: https://www.sciencedirect.com/science/article/pii/
S0378437106002408.

[5] Javier González-Enrique, Juan Jesús Ruiz-Aguilar, José Antonio Moscoso-López,
Daniel Urda, Lipika Deka, and Ignacio J. Turias. “Artificial Neural Networks, Sequence-
to-Sequence LSTMs, and Exogenous Variables as Analytical Tools for NO2 (Air Pollu-
tion) Forecasting: A Case Study in the Bay of Algeciras (Spain)”. In: Sensors 21.5 (2021).
ISSN: 1424-8220. DOI: 10.3390/s21051770. URL: https://www.mdpi.com/1424-
8220/21/5/1770.

[6] Haider Khalaf Jabbar and Rafiqul Zaman Khan. “Methods to Avoid Over-Fitting and
Under-Fitting in Supervised Machine Learning (Comparative Study)”. In: (2014). DOI:
10.3850/978-981-09-5247-1_017. URL: https://doi.org/10.3850/978-
981-09-5247-1_017.

41

https://doi.org/https://doi.org/10.1016/j.jobe.2020.101996
https://www.sciencedirect.com/science/article/pii/S2352710220336287
https://www.sciencedirect.com/science/article/pii/S2352710220336287
https://doi.org/https://doi.org/10.1002/ecj.12140
https://doi.org/https://doi.org/10.1002/ecj.12140
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecj.12140
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecj.12140
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecj.12140
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecj.12140
https://doi.org/10.1109/TITS.2020.3016288
https://doi.org/10.1109/TITS.2020.3016288
https://doi.org/10.1109/TITS.2020.3016288
https://doi.org/https://doi.org/10.1016/j.physa.2006.02.042
https://doi.org/https://doi.org/10.1016/j.physa.2006.02.042
https://www.sciencedirect.com/science/article/pii/S0378437106002408
https://www.sciencedirect.com/science/article/pii/S0378437106002408
https://doi.org/10.3390/s21051770
https://www.mdpi.com/1424-8220/21/5/1770
https://www.mdpi.com/1424-8220/21/5/1770
https://doi.org/10.3850/978-981-09-5247-1_017
https://doi.org/10.3850/978-981-09-5247-1_017
https://doi.org/10.3850/978-981-09-5247-1_017

Bibliography

[7] John Firth. “R. 1957. A synopsis of Linguistic Theory, 1930-1955”. In: Studies in linguistic
analysis (1968), pp. 1–32.

[8] Zahra Sadeghi, James L. McClelland, and Paul Hoffman. “You shall know an object
by the company it keeps: An investigation of semantic representations derived from
object co-occurrence in visual scenes”. In: Neuropsychologia 76 (2015). Special Issue: Se-
mantic Cognition, pp. 52–61. ISSN: 0028-3932. DOI: https://doi.org/10.1016/j.
neuropsychologia.2014.08.031. URL: https://www.sciencedirect.com/
science/article/pii/S0028393214002942.

[9] Sune Söderkvist. “Tidskontinuerliga Signaler & System”. In: Tryckeriet E. Larsson AB
(1994).

[10] Chotirat Ann Ratanamahatana and Eamonn Keogh. “Making Time-series Classifica-
tion More Accurate Using Learned Constraints”. In: Proceedings of the 2004 SIAM
International Conference on Data Mining (SDM), pp. 11–22. DOI: 10 . 1137 / 1 .
9781611972740.2. eprint: https://epubs.siam.org/doi/pdf/10.1137/
1.9781611972740.2. URL: https://epubs.siam.org/doi/abs/10.1137/1.
9781611972740.2.

[11] Michael D. Morse and Jignesh M. Patel. “An Efficient and Accurate Method for Eval-
uating Time Series Similarity”. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’07. Beijing, China: Association for Com-
puting Machinery, 2007, pp. 569–580. ISBN: 9781595936868. DOI: 10.1145/1247480.
1247544. URL: https://doi.org/10.1145/1247480.1247544.

[12] Karl Pearson and Francis Galton. “VII. Note on regression and inheritance in
the case of two parents”. In: Proceedings of the Royal Society of London 58.347-352
(1895), pp. 240–242. DOI: 10 . 1098 / rspl . 1895 . 0041. eprint: https : / /
royalsocietypublishing.org/doi/pdf/10.1098/rspl.1895.0041. URL:
https://royalsocietypublishing.org/doi/abs/10.1098/rspl.1895.
0041.

[13] James E. Helmreich. “Statistics: An Introduction UsingiR/i(2nd Edition)”. In: Journal of
Statistical Software 67.Book Review 5 (2015). DOI: 10.18637/jss.v067.b05. URL:
https://doi.org/10.18637/jss.v067.b05.

[14] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz,
Chester Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, and Eli
Woods. “Tslearn, A Machine Learning Toolkit for Time Series Data”. In: Journal of Ma-
chine Learning Research 21.118 (2020), pp. 1–6. URL: http://jmlr.org/papers/v21/
20-091.html.

[15] G. Salton, A. Wong, and C. S. Yang. “A Vector Space Model for Automatic Indexing”.
In: Commun. ACM 18.11 (Nov. 1975), pp. 613–620. ISSN: 0001-0782. DOI: 10.1145/
361219.361220. URL: https://doi.org/10.1145/361219.361220.

[16] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. “Learning word vectors for sentiment analysis”. In: Proceedings of
the 49th annual meeting of the association for computational linguistics: Human language tech-
nologies. 2011, pp. 142–150.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word
Representations in Vector Space. 2013. DOI: 10 . 48550 / ARXIV . 1301 . 3781. URL:
https://arxiv.org/abs/1301.3781.

[18] George Marsaglia and Ingram Olkin. “Generating Correlation Matrices”. In: SIAM
Journal on Scientific and Statistical Computing 5.2 (1984), pp. 470–475. DOI: 10.1137/
0905034. eprint: https://doi.org/10.1137/0905034. URL: https://doi.
org/10.1137/0905034.

42

https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2014.08.031
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2014.08.031
https://www.sciencedirect.com/science/article/pii/S0028393214002942
https://www.sciencedirect.com/science/article/pii/S0028393214002942
https://doi.org/10.1137/1.9781611972740.2
https://doi.org/10.1137/1.9781611972740.2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.2
https://doi.org/10.1145/1247480.1247544
https://doi.org/10.1145/1247480.1247544
https://doi.org/10.1145/1247480.1247544
https://doi.org/10.1098/rspl.1895.0041
https://royalsocietypublishing.org/doi/pdf/10.1098/rspl.1895.0041
https://royalsocietypublishing.org/doi/pdf/10.1098/rspl.1895.0041
https://royalsocietypublishing.org/doi/abs/10.1098/rspl.1895.0041
https://royalsocietypublishing.org/doi/abs/10.1098/rspl.1895.0041
https://doi.org/10.18637/jss.v067.b05
https://doi.org/10.18637/jss.v067.b05
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.48550/ARXIV.1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1137/0905034
https://doi.org/10.1137/0905034
https://doi.org/10.1137/0905034
https://doi.org/10.1137/0905034
https://doi.org/10.1137/0905034

Bibliography

[19] Dirk M. Luchtenburg. Data-driven science and engineering: machine learning, dynamical
systems, and control (brunton, steven l. and kutz, j. nathan; 2020) [bookshelf]. Vol. 41. 4. 2021,
pp. 95–102. DOI: 10.1109/MCS.2021.3076544.

[20] Carl Eckart and Gale Young. “The approximation of one matrix by another of lower
rank”. In: Psychometrika 1.3 (Sept. 1936), pp. 211–218. ISSN: 1860-0980. DOI: 10.1007/
BF02288367. URL: https://doi.org/10.1007/BF02288367.

[21] Hitoshi Iba and Nasimul Noman, eds. Deep Neural Evolution. Springer Singapore, 2020.
DOI: 10.1007/978-981-15-3685-4. URL: https://doi.org/10.1007/978-
981-15-3685-4.

[22] Sepp Hochreiter. “Recurrent neural net learning and vanishing gradient”. In: Interna-
tional Journal Of Uncertainity, Fuzziness and Knowledge-Based Systems 6.2 (1998), pp. 107–
116.

[23] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.
1997.9.8.1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/
1735/813796/neco.1997.9.8.1735.pdf. URL: https://doi.org/10.1162/
neco.1997.9.8.1735.

[24] Dimitrios Gunopulos and Gautam Das. “Time Series Similarity Measures and Time Se-
ries Indexing (Abstract Only)”. In: vol. 30. 2. New York, NY, USA: Association for Com-
puting Machinery, May 2001, p. 624. DOI: 10.1145/376284.375808. URL: https:
//doi.org/10.1145/376284.375808.

[25] Lei Chen and Raymond Ng. “On the Marriage of Lp-Norms and Edit Distance”. In:
Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30.
VLDB ’04. Toronto, Canada: VLDB Endowment, 2004, pp. 792–803. ISBN: 0120884690.

[26] M. Vlachos, G. Kollios, and D. Gunopulos. “Discovering similar multidimensional tra-
jectories”. In: Proceedings 18th International Conference on Data Engineering. 2002, pp. 673–
684. DOI: 10.1109/ICDE.2002.994784.

[27] Lei Chen, M. Tamer Özsu, and Vincent Oria. “Robust and Fast Similarity Search for
Moving Object Trajectories”. In: Proceedings of the 2005 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’05. Baltimore, Maryland: Association for Com-
puting Machinery, 2005, pp. 491–502. ISBN: 1595930604. DOI: 10.1145/1066157.
1066213. URL: https://doi.org/10.1145/1066157.1066213.

[28] Qiang Wang and Vasileios Megalooikonomou. “A dimensionality reduction technique
for efficient time series similarity analysis”. In: Information systems 33.1 (2008), pp. 115–
132.

[29] M. Eames, T. Kershaw, and D. Coley. “The appropriate spatial resolution of future
weather files for building simulation”. In: Journal of Building Performance Simulation 5.6
(Nov. 2012), pp. 347–358. DOI: 10.1080/19401493.2011.608133. URL: https:
//doi.org/10.1080/19401493.2011.608133.

[30] Jung Min Han, Yu Qian Ang, Ali Malkawi, and Holly W. Samuelson. “Using recurrent
neural networks for localized weather prediction with combined use of public airport
data and on-site measurements”. In: Building and Environment 192 (2021), p. 107601.
ISSN: 0360-1323. DOI: https : / / doi . org / 10 . 1016 / j . buildenv . 2021 .
107601. URL: https://www.sciencedirect.com/science/article/pii/
S0360132321000160.

[31] Zhongwei Xie, Ling Liu, Yanzhao Wu, Luo Zhong, and Lin Li. “Learning Text-Image
Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering”.
In: ACM Trans. Inf. Syst. 40.4 (Dec. 2021). ISSN: 1046-8188. DOI: 10.1145/3490519.
URL: https://doi-org.e.bibl.liu.se/10.1145/3490519.

43

https://doi.org/10.1109/MCS.2021.3076544
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/978-981-15-3685-4
https://doi.org/10.1007/978-981-15-3685-4
https://doi.org/10.1007/978-981-15-3685-4
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/376284.375808
https://doi.org/10.1145/376284.375808
https://doi.org/10.1145/376284.375808
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1080/19401493.2011.608133
https://doi.org/10.1080/19401493.2011.608133
https://doi.org/10.1080/19401493.2011.608133
https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107601
https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107601
https://www.sciencedirect.com/science/article/pii/S0360132321000160
https://www.sciencedirect.com/science/article/pii/S0360132321000160
https://doi.org/10.1145/3490519
https://doi-org.e.bibl.liu.se/10.1145/3490519

Bibliography

[32] Suyu Ma, Zhenchang Xing, Chunyang Chen, Cheng Chen, Lizhen Qu, and Guoqiang
Li. “Easy-to-Deploy API Extraction by Multi-Level Feature Embedding and Transfer
Learning”. In: IEEE Transactions on Software Engineering 47.10 (2021), pp. 2296–2311. DOI:
10.1109/TSE.2019.2946830.

[33] Yibin Shen, Cheqing Jin, Jiaxun Hua, and Dingjiang Huang. “TTPNet: A Neural Net-
work for Travel Time Prediction Based on Tensor Decomposition and Graph Embed-
ding”. In: IEEE Transactions on Knowledge and Data Engineering 34.9 (2022), pp. 4514–
4526. DOI: 10.1109/TKDE.2020.3038259.

[34] Donald J. Berndt and James Clifford. “Using Dynamic Time Warping to Find Patterns
in Time Series”. In: Proceedings of the 3rd International Conference on Knowledge Discovery
and Data Mining. AAAIWS’94. Seattle, WA: AAAI Press, 1994, pp. 359–370.

[35] Xinxin Yao and Hua-Liang Wei. “Short-term stock price forecasting based on similar
historical patterns extraction”. In: 2017 23rd International Conference on Automation and
Computing (ICAC). 2017, pp. 1–6. DOI: 10.23919/IConAC.2017.8082009.

[36] Ran Zhang, Hongzong Li, and Jun Wang. “Index Tracking Based on Dynamic Time
Warping and Constrained k-medoids Clustering”. In: 2021 11th International Conference
on Intelligent Control and Information Processing (ICICIP). 2021, pp. 352–359. DOI: 10.
1109/ICICIP53388.2021.9642192.

[37] Pratiwi Eka Puspita and Zulkarnain. “A Practical Evaluation of Dynamic Time Warp-
ing in Financial Time Series Clustering”. In: 2020 International Conference on Advanced
Computer Science and Information Systems (ICACSIS). 2020, pp. 61–68. DOI: 10.1109/
ICACSIS51025.2020.9263123.

[38] Eamonn J. Keogh and Michael J. Pazzani. “Scaling up Dynamic Time Warping for
Datamining Applications”. In: Proceedings of the Sixth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD ’00. Boston, Massachusetts, USA:
Association for Computing Machinery, 2000, pp. 285–289. ISBN: 1581132336. DOI: 10.
1145/347090.347153. URL: https://doi.org/10.1145/347090.347153.

[39] Ghazi Al-Naymat, Sanjay Chawla, and Javid Taheri. “SparseDTW: A Novel Approach
to Speed up Dynamic Time Warping”. In: (2012). DOI: 10.48550/ARXIV.1201.2969.
URL: https://arxiv.org/abs/1201.2969.

[40] Ira Assent, Marc Wichterich, Ralph Krieger, Hardy Kremer, and Thomas Seidl. “Antic-
ipatory DTW for Efficient Similarity Search in Time Series Databases”. In: Proc. VLDB
Endow. 2.1 (Aug. 2009), pp. 826–837. ISSN: 2150-8097. DOI: 10 . 14778 / 1687627 .
1687721. URL: https://doi.org/10.14778/1687627.1687721.

[41] Chang Wei Tan, Matthieu Herrmann, and Geoffrey I. Webb. “Ultra fast warping win-
dow optimization for Dynamic Time Warping”. In: 2021 IEEE International Conference
on Data Mining (ICDM). 2021, pp. 589–598. DOI: 10.1109/ICDM51629.2021.00070.

[42] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. “Array programming with NumPy”. In: Na-
ture 585.7825 (Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL:
https://doi.org/10.1038/s41586-020-2649-2.

[43] Francois Chollet et al. Keras. 2015. URL: https://github.com/fchollet/keras.

44

https://doi.org/10.1109/TSE.2019.2946830
https://doi.org/10.1109/TKDE.2020.3038259
https://doi.org/10.23919/IConAC.2017.8082009
https://doi.org/10.1109/ICICIP53388.2021.9642192
https://doi.org/10.1109/ICICIP53388.2021.9642192
https://doi.org/10.1109/ICACSIS51025.2020.9263123
https://doi.org/10.1109/ICACSIS51025.2020.9263123
https://doi.org/10.1145/347090.347153
https://doi.org/10.1145/347090.347153
https://doi.org/10.1145/347090.347153
https://doi.org/10.48550/ARXIV.1201.2969
https://arxiv.org/abs/1201.2969
https://doi.org/10.14778/1687627.1687721
https://doi.org/10.14778/1687627.1687721
https://doi.org/10.14778/1687627.1687721
https://doi.org/10.1109/ICDM51629.2021.00070
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/fchollet/keras

Bibliography

[44] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[45] Introducing tensorflow feature columns. Nov. 2017. URL: https : / / developers .
googleblog.com/2017/11/introducing-tensorflow-feature-columns.
html.

[46] Emmanuel J. Candes, Xiaodong Li, Yi Ma, and John Wright. “Robust Principal Com-
ponent Analysis?” In: (2009). DOI: 10.48550/ARXIV.0912.3599. URL: https:
//arxiv.org/abs/0912.3599.

45

https://www.tensorflow.org/
https://www.tensorflow.org/
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://doi.org/10.48550/ARXIV.0912.3599
https://arxiv.org/abs/0912.3599
https://arxiv.org/abs/0912.3599

A Extra plots, figures and tables

Figure A.1: Weather data embeddings (30-day) colored by geographical region (Euclidean)

46

Figure A.2: Weather data embeddings (30-day) colored by geographical region (Pearson cor-
relation)

Figure A.3: Financial data embeddings (30-day) colored by sector ETF (Euclidean)

47

Figure A.4: Financial data embeddings (30-day) colored by sector ETF (Pearson correlation)

Figure A.5: Weather data embeddings (1-day) colored by geographical region (Euclidean)

48

Figure A.6: Weather data embeddings (1-day) colored by geographical region (Pearson cor-
relation)

Figure A.7: Weather data embeddings (1-day) colored by geographical region (DTW)

49

Figure A.8: Financial data embeddings (1-day) colored by sector ETF (Euclidean)

Figure A.9: Financial data embeddings (1-day) colored by sector ETF (Pearson correlation)

50

Figure A.10: Financial data embeddings (1-day) colored by sector ETF (DTW)

Figure A.11: Financial data embeddings (30-day) over time (DTW)

51

Table A.1: Prediction results, compared to baseline

Dataset Rank Similarity metric Series length accuracy change

Stock 2 DTW 1 -13.75%
30 -3.12%

Euclidean 1 -8.75%
30 16.87%

Correlation 1 9.38%
30 2.50%

Enumerated N/A -1.25%
Trained -1.25%

5 DTW 1 -4.46%
30 3.18%

Euclidean 1 -5.73%
30 18.47%

Correlation 1 10.83%
30 -10.19%

Enumerated N/A 1.27%
Trained -0.64%

Weather 2 DTW 1 0.17%
30 -0.57%

Euclidean 1 -0.54%
30 0.43%

Correlation 1 1.20%
30 1.50%

Enumerated N/A 2.27%
Trained 0.65%

5 DTW 1 -0.48%
30 -4.79%

Euclidean 1 0.77%
30 -0.22%

Correlation 1 -4.34%
30 -2.46%

Enumerated N/A -2.40%
Trained -3.77%

52

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Introduction
	Aim
	Research Questions
	Delimitation

	Background
	Similarity Measurements
	Embedding
	Dimensionality Reduction
	Neural Networks

	Related work
	Time Series
	Multi-origin Time Series Prediction
	embedding For lstm
	DTW Applications
	DTW Efficiency Improvements

	Method
	Problem Background
	Hardware Resources
	Finding Datasets
	System Outline
	Implementation
	Evaluation

	Results
	Dataset Evaluation
	Efficiency
	Performance

	Discussion
	Embeddings
	Prediction
	Efficiency
	Method
	Tuning
	Answers to Research Questions

	Conclusion
	Future Work

	Bibliography
	Extra plots, figures and tables

