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Abstract

The goal of this thesis is to create an optimization model to optimize the routing
of trains within railway stations. This problem is known as the train platform-
ing problem, and the model we present is an integer programming model. By
this model we aim to optimize factors such as walking distance, switch usage or
platform usage.

We validate the model by implementing the model for Linköping station, which
is a typical mid size station in the Swedish railway network. This implementa-
tion is done for different time horizons, ranging from 2 hours to one day, which
corresponds to train sets ranging from 27 to 265 trains.

In the conclusion we see that the model is efficient for optimizing the train
platforming problem for the implemented station and timetables, and that the
model has a possibility to optimize the four objectives tested. Furthermore we
see that optimizing certain objectives gives solutions that are also good with
regards to other objective functions.
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Sammanfattning

Målet med den här uppsatsen är att skapa en optimeringsmodell för att op-
timera valet av vägar för tåg genom tågstationer. Modellen vi presenterar är
en heltalsmodell, där syftet är att minimera bland annat gångavstånd, använd-
ningen av tågväxlar eller användningen av perronger.

För att testa modellen presenterar vi en implementation av modellen för statio-
nen i Linköping, vilken är en typisk mellanstor station i det svenska tågnätet.
Impplementeringen är gjord för olika tidslängder, från 2 timmar till ett dygn
vilket motsvarar dataset från 27 till 265 tåg.

Vi drar slutsatsen att modellen på ett effektivt sätt kan lösa valet av tågvägar
genom stationen, för de fyra tidtabeller och den station vi har implementerat.
Vidare ser vi att modellen har potential att optimera de fyra målfunktioner vi
testat och att optimering av några av målfunktionerna ger lösningar som är bra
även med hänsyn till de andra målfunktionerna.
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Optimering, Heltalsprogrammering, Tåg, Järnväg, Schemaläggning
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Nomenclature

Notation

T The set of all trains
P The set of all platforms
R The set of all routes

τat Arrival time of train t
τdt Departure time of train t
dat Arrival direction of train t
ddt Departure direction of train t

Abbreviations

TTP Train Timetabeling Problem
TPP Train Platforming Problem
ILP Integer Linear Programming
MILP Mixed Integer Linear Programming
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Chapter 1

Introduction

There are multiple different reasons for improving the railway. Travel by rail-
way needs to become more attractive to meet the future’s demands for more
energy efficient transport. This motivates both the development of new and
more efficient technologies and infrastructure, but also optimizing the current
railway to make it more attractive to customers. There are also economic mo-
tivations. According to the Swedish transport administration the maintenance
of the Swedish railway costs 6 billion Swedish crowns annually [21]. Also the
production of new railway is much more expensive compared to the costs to
produce new roads. It is therefore of interest to make optimal use of the infras-
tructure that is already in use.

One way to improve the railway is the way track owners work with train schedul-
ing. Scheduling of trains primarily consists of setting time tables, choosing
which routes the train takes and which platforms it will stop at, and finally the
scheduling of stock and personnel. These phases can be seen as independent
from one another, or be treated simultaneously. Traditionally train scheduling
has been performed manually by train planners based on some simple rules and
experience, which made it a time consuming and difficult task.

In train scheduling, the stations play a critical role. According to calculations
made by the Swedish transport administration, passengers value time in tran-
sit between two methods of transportation 2.5 times as much as time spent in
vehicle [20]. Due to the layout of most train stations, changing from one train
to another can be difficult for those who are movement impaired. Hence we can
optimize train routing for minimal walking distance between train changes to
improve the passenger experience.

Calderon, 2022. 1



2 Chapter 1. Introduction

The routing of trains, especially inside stations, is a very complex problem.
This is since the routing of one train highly affects the options for how we can
route other trains. This is due to that each train needs a section of track ahead
reserved, and during this reservation no other trains can occupy this section of
track. Because of this, the delay of one train will affect the routing of other
trains and create delay propagation.

The problem of assigning trains to routes and platforms inside a train station
is known as the train platforming problem. Usually this is done in two phases.
Firstly when the time table is set to assure that there is a fesable assignment
of trains to routes. Secondarily the train platforming problem arises when one
or more trains is delayed which creates a need to redo some or all platforming
until all trains are running on time again.

There are many ways to model and optimize the train platforming problem
(for more on the previous research see Chapter 3), in this thesis i will primarily
use Integer Linear Programming.

1.1 Problem description

The primary objective of this thesis is to develop a mathematical model that
can create practically possible assignments of trains to routes, and that can op-
timize the assignments for several different objectives. Such objectives include
to minimize the number of platforms used, minimizing walking distance or as-
signing trains to platforms as close to the station entrance as possible.

Secondarily we want to compare the results when optimizing for the differ-
ent objectives, and investigate how the different objectives are affected when
optimizing for other objectives. The purpose of this is to see what properties
can be optimized and to see at what expense.

For the sake of validation we present the results from an implementation of
four different timetables for Linköping station, which is a quite typical mid-size
railway station.
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1.2 Approach and Method
To solve the train platforming problem we will use mathematical optimization,
which is motivated by the large amount of previous research on similar problems
that use optimization.

It turns out that the problem can be conveniently formulated as an integer
linear program. The model will be implemented in AMPL and solved using the
CPLEX solver

1.3 Delimitations
To restrict the problem to a feasible scope for the project a certain number of
delimitations are needed. We will assume that we only control the train traffic
inside the station, that is that we have a given direction of arrival and departure
for each train that can not be changed. We will furthermore assume that the
timetable is fixed and can’t be changed, and that each train arrives and departs
on time.

The goal is to develop a model that can work for any train station. To prove that
the model works we will provide an implementation of the model at Linköping
Central station. Furthermore, we will not consider shunting1 decisions in the
model, or in which order the trains are stored on the storage tracks.

1.4 Structure of the thesis
Chapter 2 contains a few preliminaries that are needed to understand the rest of
the thesis. In chapter 3 we present a survey of some previous research on train
platforming and other similar problems. The main contribution on the report
is presented in Chapter 4, where the optimization model is presented, and an
implementation for Linköping is presented in chapter 5. Chapter 6 contains the
results of the implementation and finally the Conclusion and discussion is in
chapter 7, along with suggestions for further research.

1Shunting is the process where rolling stock is sorted into complete trains





Chapter 2

Preliminaries

The purpose of this chapter is to give the necessary prerequisites to understand
the results and to introduce the notations and conventions used in the rest of
this thesis.

2.1 Optimization
The results of this thesis relies on the subject of mathematical optimization. For
a more complete introduction to the subject, see the books Holmberg (2018) [11]
or Lundgren et al. (2010)[16]. The following sections aims to introduce the no-
tation that will be used in the rest of this thesis, and some results that are of
special interest for the result.

Definition (Integer Linear Programming problem)

min z = cTx (2.1)

Ax ≤ b

xi ∈ N
The optimal value for the ILP is denoted as z∗IP . If we replace the variables
with xi ∈ {0, 1} we call the problem a binary integer problem.

Definition (LP Relaxation)

The LP relaxation of the integer problem in equation 2.1 is the problem

min z = cTx (2.2)

Calderon, 2022. 5



6 Chapter 2. Preliminaries

Ax ≤ b

xi ≥ 0

The optimal value for the LP-relaxation is denoted as z∗LP .

Definition (Totally unimodular matrix) A matrix is said to be totally uni-
modular if and only if all the determinants of all its square submatrices are ±1
or 0.

Definition (The integrality property) An IP-problem is said to have the in-
tegrality property if the optimal solution to the LP-relaxation is also a valid in
the original IP-problem. In other words that is if z∗IP = z∗LP . A IP-problem has
the integrality property if the matrix A is totally unimodular.

Defnition (Canonical linearisation). Given two binary variables x1 and x2,
then we can transform the term x1x2 to a linear term by introducing a new
variable w = x1x2. To make sure that w takes the right value based on x1 and
x2 we introduce the constraints x1 ≥ w, x2 ≥ w, and x1 + x2 − 1 ≤ w.



Chapter 3

Literature review

Multiple different research teams have worked on some version of the train plat-
forming problem. However, each team have worked on quite different variants
of the problem and have used different methods. The literature will be pre-
sented in three sections. The main focus is the first section which presents
previous research on ILP and MILP models. Section 2 contains examples of
other approaches for the TPP, and the third section is about research on similar
problems to the TPP.

3.1 ILP and MILP methods

In three papers by Zwaneveld et al. from 1996, 1997 and 2001 ([24], [13] and
[25]) the authors present a model to maximize the number of trains from a given
timetable that can be assigned to a route through the station. Each platform
and train combination is given a weight ρt,p to model certain preferences for
trains to stop at particular platforms.

The authors assume that each arrival and departure time, and the directions of
arrival and departure are known a priori. The model used in the papers assume
a cyclic timetable with length 60 minutes.

In the paper [24] the authors examine the computational complexity of the
model, and conclude that if each train has more than three routes to choose
from then the TPP is NP-complete. Furthermore Zwaneveld et. al. concluded
that if each train has at most two routes to choose from, then the problem can
be solved in O(|T |2), where T is the set of trains.

Calderon, 2022. 7



8 Chapter 3. Literature review

Finally in the paper [25] the authors show that their version of the TPP can be
viewed as a weighted node packing problem. Each route and train combination
is given a vertex and each vertex pair that correspond to the same train is an
edge in the graph. Also each pair of incompatible assignments of trains to routes
corresponds to an edge.

The authors introduce some preprocessing procedures and an algorithm for solv-
ing the weighted node packing problem, based on a branch and cut approach.

The model treated by Carprara et al. in [4] is a very general model with many
things taken into consideration. Each train is only given an ideal arrival and
departure time, and is allowed to shift from the ideal times by some set limit.

Furthermore a set of dummy platforms are introduced to handle potential trains
over the capacity of the station. Each platform is associated with a cost, where
the cost of the dummy platforms are significantly bigger than the costs of the
ordinary platforms.

Each train is given a priority and a cost based on the priority of the train
and how much the time is shifted from the ideal time given an assignment to
a particular route.The model contains two types of incompatibilities between
routes. There are those who are considered hard incompatibilities which are
handled in the constrains of the model. There are also soft incompatibilities
between routes, that can be violated at a certain cost.

To handle the costs of the soft incompatibilities Carprara et. al. get a square
term in the objective function. In contrast to some other papers, the authors
of [4] refrain from using the canonical linearisation, claiming that the resulting
LP-relaxation would be too weak. Instead they make use of a set of clique in-
equalities from the graph of incompatible routes. This yields more constraints,
but a tighter bound for the LP-relaxation.

The objective function used is a weighted sum of the costs of platforms, the
costs associated with the used routes and the soft incompatibilities. The result-
ing model is too complex to solve explicitly, so the authors solve by branch and
cut. The authors conclude that their model is able to improve the capacity of
the three stations considered.

Petering et al [18] studied a combined timetabling and platforming problem.
The objective was to create an cyclic timetable with as minimal cycle time, and
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to minimize journey times for each train. After implementing various prepro-
cessing steps to reduce constraints and to make the model as efficient as possible,
the authors present the results for several data sets with between 3 and 6 train
lines.

Yet another approach is taken by Chakroborty and Vikram in [7]. They base
their model around the assumption that arrival times of trains is only known
one hour in advance. Furthermore the model takes into account that trains may
need to be halted outside the station if all tracks happen to be occupied at the
same time.

The authors formulate their model as a MILP-model with the objective to min-
imize trains that need to wait outside the station and maximizing assignments
to preferred platforms. The authors conclude that for data sets up to 110 trains
that the model has a short solve time.

In the paper by Akyol et. al. [1] the authors show that the TPP can be viewed
as a parallel machine scheduling problem, and can be model using binary inte-
ger models used for the machine scheduling problem. Doing this lets the trains
deviate from the original timetable, and the objective becomes to minimize this
deviation. In a similar manner Zeng et. al [23] formulated the problem as a Job
shop scheduling problem.

3.2 Other approaches

3.2.1 Graph theoretical approaches

One of the earliest studies of the train platforming problem was in a paper from
1998 by De Luca Cardillo and Mione [8] where they study the k L-list τ colour-
ings of graphs. The main objective of the paper was to present an effective
heuristic for finding a L-List τ colouring for a given k.

They do however present a representation of the train platforming problem
that can be viewed as k L-list τ colouring of a graph. If we let the vertex set
be the set of trains, and introduce some parameter Imin, corresponding to the
minimum time between trains at a platform, then we can define the edges such
that (t1, t2) ∈ E if the arrival times differ by less than Imin.

By letting the set of colours equal the set of platforms and τ the set of in-
compatible assignments the problem can be viewed as a k L-list τ colouring.
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Note that in this instance of the problem choosing a platform is the same as
choosing a route. In other words, if we know where the train enters the station,
where it exits the station, and which platform it stops at, then we also know
the route of the train through the station. Furthermore the authors test the
implementation of the heuristic for six scenarios, ranging from 41 to 242 trains,
and from 5 to 21 tracks.

3.2.2 Heuristic approaches

Another variant of the problem was treated in a paper from 2003 by Carey and
Carville [5].

One property that is unique for this model is that some platforms can be split
into subplatforms where multiple trains can stop, one at each subplatform. This
adds a lot of complexity in how assignment of a train to a given platform affects
what other assignments are valid.

In contrast to most other papers, the goal of the authors in [5] is not to solve the
train platforming problem using an optimization model, but instead to present
an heuristic algorithm to solve the problem. The goal for the algorithm was not
in the first place to solve the problem optimally, but instead to create a feasible
solution, similar to those assignment created by train planners.

3.2.3 Real Time Dispatching

Most other papers considers solving the TPP in a planning context, long before
the trains are supposed to run. Another situation where there is a need to route
trains through stations is the real time situation. Since one delayed train affect
the possible routings of other trains and might create further delays, dispatchers
need to assign new departure times and routes in real time. This is known as
the real time dispatching problem.

Such a situation is treated by Lamorgese and Mannino in [14]. The authors
does not restrict the model to one line or one station, but instead formulate
a model for the whole network. They proceed to present a model where the
problem for the whole network can be decomposed into a problem for each sta-
tion and one for each line. This model is solved similarly to how a Benders
decomposition works, where the line problem acts as the master problem and
the station acts as the slave problem.
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3.2.4 Non-linear models and Max-plus automatas

In the paper [22] by Wang and Yue, the authors treat the platforming problem
as a multi objective mixed integer non-linear problem, where the constraints are
linear but one of the objective functions are not linear. Each train is given a
preferred platform and the first objective is to maximmize the number of trains
assigned to preferred platforms. The second objective function is to have a bal-
anced use of the tracks. These objective functions are then weighted together.
The authors found that for a timespan of three hours for a busy station the
model was efficient at creating optimal assignments.

One of the later contributions on the topic of train platforming is the research
presented by Besinovic and Goverde in [2]. In this paper the authors goal is
to optimize for stability and minimize delay propagation. In contrast to many
other recent papers the authors does not solve the optimization problem using
integer problem programming, but instead uses a Max-plus automata.

3.3 Related research

3.3.1 Gate assignment at airports

A similar problem to the train platforming problem is the assignment of airplane
to gates at an airport. One difference is that if need be not every plane needs to
be assigned to a gate, instead planes can be assigned to load and unload passen-
gers outside at the tarmac. Another difference to the TPP is that assignment
of a plane to a given gate does not affect the possibility to assign other planes
to other gates.

One of many examples where this problem has been studied is in the paper
[10] by Ding et al, where the authors model the problem as a quadratic integer
problem. In this model the authors use a multi objective optimization approach
with two objective functions. The primary goal is to maximize the number of
planes that are assigned to gates, and the secondary objective is to minimize
the walking distance within the gates.

3.3.2 Allocation at bus stops

Another problem that is the somewhat similar is the allocation of bus lines at
transit terminals. In contrast to the train platforming problem, the problem is
to allocate whole lines (i.e. "all buses from Norrköping to Finspång arrive and
depart from stop B2"). The constraints for the problem is very similar to the
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TPP, with each line has to be assigned to one stop, we can’t have two or more
buses at the same stop at the same time.

One example of a paper that studies this type of problem is Lindberg et. al.
in [15]. The authors present an integer linear optimization model to minimize
the walking distance. To handle simultaneous assignments the authors use the
canonical linearisation. Furthermore the authors compare their optimization
model with random assignments and with assignment based on non transferring
passengers. The conclusion presented in [15] is that the optimization model
presented can on average improve the walking distances by 13 %, compared to
random assignments.

3.4 Summary and conclusion of literature review
In conclusion there have been many variants of the platforming problem stud-
ied, many more than the sample above. There are multiple different approaches
to create valid assignments such as integer programming, graph colourings, au-
tomatas or certain algorithms.

Furthermore, most of the papers considered puts the objective as improving
capacity of stations, or minimizing error propagation. The passenger perspec-
tive such as walking distance or optimizing for cross platform transits is rarely
considered. We also see that the train platforming problems is very complex
and gets difficult to solve quickly if the numbers of possible routes gets large.
Most papers resort to heuristical approaches.



Chapter 4

Optimization model

In this chapter we propose an optimization model for the train platforming
problem.

4.1 Properties of the station and parameters

For a given railway station we have some set of platforms P, which are sections
of track where trains can stop and passengers can board and alight the train.
We also have a set D of directions, which can be tracks in and out from the
station, or storage tracks where trains not in use are stored. The directions can
also be tracks towards a shunting area of the station.

For example, see the fictitious train station in figure 4.1. We have that P =
{P1, P2, P3, P4}, and set of directions are D = {D1, D2, D3, D4, D5, U1, U2}.

Due to some platforms being shorter than some of the longer trains there are
restrictions on which train can stop at which platform. To model this compati-
bility we create the parameter cp,t, where cp,t = 1 if train t can stop at platform
p, and cp,t = 0 otherwise.

For each pair of a platform p ∈ P and a direction d ∈ D there is a set of
possible routes Rp,d linking the two. We denote the set of all routes at the
station as R. We will assume that all routes are known in advance, either by
generated by manual calculation or by implementation of some route generating
algorithm. An example of such an algorithm can be found in [17].

Calderon, 2022. 13



14 Chapter 4. Optimization model

Figure 4.1: The layout of the tracks at a fictitious train station.

When a train arrives at the station a route is reserved from from the arrival
point to the platform. During this time no other trains can use any section
of track in this route. When the train has passed a section of track the sec-
tion becomes no longer reserved. Similarly when a train leaves the platform a
route is reserved from the platform to the point where the train exits the station.

In the model however the whole route is reserved for the train from the point
it enters the station, until it stops at the platform, and then the whole outward
route is reserved from when the train leaves the platform until the train has left
the station.

Two routes is said to overlap if there is some section of tracks used by both
routes. During the time that a route is reserved no other routes which over-
lap with the route can be used. To keep track of which routes overlap we let
ar,r′ = 1 if the routes r and r′ overlap, otherwise ar,r′ = 0. Take for example
the routes r1 from D5 to P1 and r2 from U1 to P2. Since these two routes
share a section of track we have ar1,r2 = 1

During the allotted time window we are to assign a set of trains T to plat-
forms and routes. Each train t ∈ T has a given arrival time τat and a given
departure time τdt , which are the times that the train arrives to or departs from
the platform. Furthermore we have an arrival direction dat ∈ D and a departure
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direction ddt ∈ D for each train. The trains also has a number of passengers nt

that are to board or alight the train.

Π is the headway between trains at a given platforms, i.e. the time window
required between two trains at the same platform for safety reasons. Ξ is the
time it takes for the train to leave the station after leaving the platform, or
the time it takes for the train from entering the station until it stops at the
platform. In reality this depends on the route, the type of trains etc, but in
the model we will assume the same headway for all train and route combinations.

We need to keep track of which trains are at the platforms simultaneously,
to model the fact that each platform only can accommodate for one train at the
time. To do this we introduce the set Ex ⊆ T ×T , which consists of all pairs of
trains that are at a platform during the same time.

In more detail we say that (t1, t2) ∈ Ex if (τat1 −Π/2, τdt1 +Π/2)∩(τat2 −Π/2, τdt2 +
Π/2) ̸= ∅. This is equivalent to the arrival and departure times satisfying the
inequality (τdt1 − τat2 +Π)(τdt2 − τat1 +Π) < 0. An example can be seen in figure
4.2.

Figure 4.2: Three examples of how two time windows can relate to each other. In
A the time windows does not overlap and hence (τdt2 −τat1 +Π)(τdt2 −τat1 +Π) < 0.
In B we have a partial overlap and in C a total overlap. In both B and C we
have that (τdt2 − τat1 +Π)(τdt2 − τat1 +Π) ≥ 0. In B and C we have that the pair
(t1, t2) belongs to Ex, but this is not the case in A.
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In a similar way we need to model incompatible assignments of routes for de-
parture and arrival. This yields three cases, two arriving trains, two departing
trains, and an arriving and a departing train.

The first two cases can be modelled in the same manner as the platform as-
signments. We create the sets Ey ⊆ T × T and Ez ⊆ T × T , where (t1, t2) ∈ Ey
or (t1, t2) ∈ Ez if (t1, t2) satisfy 4.1 respectively 4.2.

(τat1 − Ξ, τat1) ∩ (τat2 − Ξ, τat2) ̸= ∅ (4.1)

(τdt1 , τ
d
t1 + Ξ) ∩ (τdt2 , τ

d
t2 + Ξ) ̸= ∅ (4.2)

The conditions 4.1 and 4.2 are equivalent to (t1, t2) satisfying the inequalities
4.3 respectively 4.4.

(τat2 − τat1 + Ξ)(τat1 − τat2 + Ξ) < 0 (4.3)

(τdt2 − τdt1 + Ξ)(τdt1 − τdt2 + Ξ) < 0 (4.4)

To model the third case we need the set Eyz ⊆ T ×T . In the contrast to the other
cases the order of the pair is important, that is that (t1, t2) ∈ Eyz equivalent to
(t2, t1) ∈ Eyz. A pair of trains (t1, t2) is in Eyz if (τat1−Ξ, τat1)∩(τ

d
t2 , τ

d
t2+Ξ) ̸= ∅. In

other words t1 is the arriving train and t2 is the departing train. This condition
is equivalent to the times satisfying the inequality (τat1 − τdt2)(τ

d
t2− τat1 +2Ξ) < 0.

4.2 Model
Based on the data given above we formulate the following model

min f(x, y, z, w) (4.5)∑
p∈P

ct,pxt,p = 1 t ∈ T (4.6)

∑
r∈Rp,dat

yt,r = xt,p p ∈ P, t ∈ T (4.7)

∑
r∈R

p,ddt

zt,r = xt,p p ∈ P, t ∈ T (4.8)

xt1,p + xt2,p ≤ 1 p ∈ P (t1, t2) ∈ Ex (4.9)

ar1,r2yt1,r1 + ar1,r2yt2,r2 ≤ 1 r1, r2 ∈ R (t1, t2) ∈ Ey (4.10)
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ar1,r2zt1,r1 + ar1,r2zt2,r2 ≤ 1 r1, r2 ∈ R (t1, t2) ∈ Ez (4.11)

ar1,r2yt1,r1 + ar1,r2zt2,r2 ≤ 1 r1, r2 ∈ R (t1, t2) ∈ Eyz (4.12)

xt,p ∈ {0, 1} yt,r ∈ {0, 1}, zt,r ∈ {0, 1} (4.13)

The model contains three sets of variables: xt,p which indicates if train t is as-
signed to platform p, yt,r indicating if train t is assigned to route r as an arrival
route, and zt,r indicating if train t is assigned to route r as a departure route.

No particular objective function is specified here since the model is compati-
ble with many different objective functions, more on that in the next section.

Constraint 4.6 assures that each train is assigned to one and only one com-
patible platform, while constraints 4.7 and 4.8 makes sure that if a train is
assigned to a platform it is also assigned to a route to that platform.

Constraint 4.9 assures that if two trains can not be assigned to the same plat-
form if their time windows overlap. Similarly the constraints 4.10 4.11, and 4.12
ensures that if two overlapping routes are used, then the time windows for when
the routes are used does not overlap.

4.3 Objective functions

The model described above can be combined with numerous different objective
functions. For the purpose of this thesis we want to compare objective functions
that somehow relate to the passenger experience with objectives that improve
different aspects of the railway operation. We have chosen four different objec-
tive functions that seek to minimize walking distance to station, total walking
distance, switch usage and numbers of platforms in use.

Denoting δp as the walking distance from the platform p to the station en-
trance and exit, and nt the number of passengers that are to board or alight on
the train t, then we can minimize the total walking distance for passengers that
are leaving or entering the station. This gives the objective function f1 seen in
equation 4.14.

f1(x) =
∑
p∈P

∑
t∈T

ntδpxt,p (4.14)

We can also take into account the number of passengers that are changing from
one train to another. If we know the walking distances between platforms δp,p′ ,
and the number of passengers nt,t′ switching from train t to t′, then we can
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minimize the total walking distance as the objective function

However to do this we need the capacity to model the simultaneous assignment
of trains xt,pxt′,p′ . To preserve the linearity of the problem we make use of
the cannonical linearization and introduce the variable wt,t′,p,p′ = xt,pxt′,p′ and
constraints 4.15, 4.16 and 4.17. This lets us model the total walking distance
with the function 4.18, which is the same objective function as in [15].

wt,t′,p,p′ ≤ xt,p p, p′ ∈ P, t, t′ ∈ T (4.15)

wt,t′,p,p′ ≤ xt′,p′ p, p′ ∈ P, t, t′ ∈ T (4.16)

wt,t′,p,p′ ≥ xt,p + xt′,p′ − 1 p, p′ ∈ P, t, t′ ∈ T (4.17)

f2(x,w) =
∑
t∈T

∑
t′∈T

∑
p∈P

∑
p′∈P

δp,p′nt,t′wt,t′,p,p′ +
∑
p∈P

∑
t∈T

ntδpxt,p (4.18)

One of the more sensitive elements of the railway are the switches where dif-
ferent tracks meet. Switches sometimes break and require money and time for
upkeep. It would therefore be of interest to minimize switch usage.

If we denote the number of switches in a given route as sr, then we can formu-
late the objective function to be the number of switches passed in total, which
give the objective function

f3(y, z) =
∑
t∈T

∑
r∈R

sr(yt,r + zt,r). (4.19)

There might also be interest to minimize the numbers of platforms that are
in use. If a platform could be removed, we could also remove several switches
and sections of track, which would in turn mean less money spent on upkeep.
A station with fewer platforms might also be less confusing from a passenger
perspective.

To implement such an objective function we need a few additional variables
and constraints. If we define a binary variable hp to indicate if platform p
is used or not, and add the constraint xt,p ≤ hp, then we can formulate the
objective function as

f4(h) =
∑
p∈P

hp. (4.20)
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Implementation

5.1 Implementation at Linköping Station

To test our model we have implemented the model for Linköping central station.
This is a mid-size station, typical for the Swedish railway network. Various types
of traffic pass through the station, including commuter trains, cargo trains and
long distance trains. Adjacent to the railway station there is a bus station for
both local and regional bus traffic. Note that no cargo trains stop at the station,
but there are several that pass through the station, and that this is modelled
as the cargo trains having the same arrival- and departure time.

The layout for the station can be seen in figure 5.1. This is only an approxima-
tion, but it is this layout that will be used for the implementation. In reality
passengers can exit the station at both sides, but in the model we will assume
that the passengers exit and enter at the side which is closest to P1.

Calderon, 2022. 19
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Figure 5.1: The layout of the tracks at Linköping central station

The station has three physical platforms, between P5 and P4, between P3 and
P2, and adjacent to P1. Platforms 1-3 is long enough to accommodate all
trains, where platforms 4 and 5 only are compatible with the shorter commuter
trains. For detailed information regarding the platform compatibility in the
implementation see appendix B.

The directions D1, D2, D3, D4 are the southern main line (Södra stambanan)
and the direction D5 is the line towards Kalmar and Västervik (Stångådals-
banan/ Tjustbanan). Besides the main directions we have four storage tracks
for trains U1, U2, U3, and U4.

The possible routes for the station R were calculated by hand. This yielded
43 routes in total. On average each possible platform and direction combina-
tion has one possible route, with some combinations having more than one route.
On the other hand, for example the combination D2 and P1 had no possible
routes, since trains are not allowed to go backwards. The complete list of routes
can be found in linköping.dat in appendix A.
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5.2 Data

5.2.1 Timetables

The model is implemented for four different timetables denoted as by A-D. The
timetables were based on the real timetable from April 1st 2021, which is a
day with quite typical traffic. The real timetables can be found at [12] for the
passenger trains and at [19] for the cargo trains.

A summary of the timetables can be found in table 5.1, and the full timeta-
bles can be found in Appendix B. The timetable D consists of all trains in a
day, which is the longest time horizon that is interesting to optimize. This is due
to that are very few or no trains that pass through the station during the night,
which in turn leads to that platforming for one day have little to no impact on
the platforming the next day.

Timetable Start Stop |T |
A 11:00 13:00 27
B 07:00 09:00 32
C 07:00 13:00 83
D 00:00 23:59 265

Table 5.1: A summary of the timetables used in the implementation.

For trains that arrive and depart the station we assume the convention of left
hand traffic, and therefore trains arrive at D2 and D4, and depart at D1 and
D3. Since Stångådalsbanan and Tjustbanan share a single track for the first
part from Linköping trains both depart towards and arrive from D5.

No data was given about the departure direction and times of the trains that
terminate at Linköping. Similarly no data of arrival time and directions was
available for the trains that start at Linköping station. For those trains data
was generated in the following manner.

• If a train terminates at Linköping and within 15 minutes a new train of
the same type starts from Linköping then these two trains are assumed to
be the same train.

• Otherwise we assume that the train stays five minutes at the station and
departs to/arrives from some storage track. This storage track was arbi-
trarily chosen, with the same storage track for each train on the same line.
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The arrival and departure directions of each train is included in appendix
B. The capacity for each storage track is not considered, it is only assumed
to be sufficient.

5.2.2 Passengers

The number of passengers where estimated in proportion to be half of the maxi-
mum number of passengers on each train type. Maximum number of passengers
for each train can be found along with the timetables in Appendix B.

When optimizing for the objective function f2 in equation 4.18, we need to
know how many passengers will change from one train to another. This data
was estimated as follows: if two trains depart more than one hour apart we
assume that no passengers changes between these two trains.

Furthermore we assume that passengers are unlikely to change from one train
to another of a similar type, that is for example changing from one commuter
train on the line Linköping to Motala to another train on the same line. Besides
these two restrictions we assume that passengers changes between all possible
trains.

In the case for f2 we assume that 40% of the maximum of passengers does not
change trains, but instead arrive or depart from the station entrance. Further-
more we assume that 10% of max passengers changes to another train, equally
distributed to all the available trains to change to.

The ratio between switching and non switching passengers were difficult to mea-
sure due to the ongoing coronavirus pandemic, and no data about travel before
the pandemic was available to us. The ratio suggested above is a very rough
estimate and we will compare different values later in a sensitivity analysis in
section 6.5.

5.2.3 Linköping station

The walking distance between platforms are measured in a number of tracks
needed to cross to get from the station entrance to the platform. Hence δ1 = 0,
δ2 = δ3 = 1 and δ4 = δ5 = 2. By similar reasoning the values for δp,p′ was
approximated, the values can be found in Table 4.2.
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δp,p′ P1 P2 P3 P4 P5
P1 0 1 1 1 1
P2 0 0 1 1
P3 0 1 1
P4 0 0
P5 0

Table 5.2: The distances between platforms at Linköping station

In the implementation we assume that Π = 1 min and Ξ = 1 min.





Chapter 6

Results

The purpose of this chapter is to present the results of the implementation at
Linköping which was presented in chapter 4. We will also investigate which is
the maximal headway for which a valid solution exists.

The implementation was done in AMPL using the CPLEX solver, the code
for which can be found in Appendix A. The code was run on a laptop with an
1.8 Ghz processor and 8 GB of internal memory. The AMPL presolve setting
was enabled, which eliminated some variables and constraints for the purpose
of reducing solve time.

6.1 Timetable A
The timetable A is based on a time window from 11:00 to 13:00, which is a
period with relatively low traffic. The running times for optimizing for the four
different objective functions, can be found in table 6.1. In this table Variables
and Constraints denote the numbers before the presolve, while Variables* and
Constraints* are after the presolve. All data in table 6.1 refer to the IP problem.

Time Variables Constraints Variables* Constraints*
f∗
1 0.343s 2187 2815 553 2760
f∗
2 5.812s 20412 57490 14710 44763
f∗
3 0.047s 2187 2815 2148 2760
f∗
4 0.031s 2192 2950 557 2852

Table 6.1: Running times, variables and constraints.
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Most notably is how f2 is much more complex due to the added canonical
linearisation. We are interested in how optimizing for one objective function
affects the value of the other objective functions. A comparison of the values
can be found in table 6.2. Comparisons between the LP and IP optimum can
be found in table 6.3

f∗
1 f∗

2 f∗
3 f∗

4

f1 969.589 1050.6 1169.91 3148.05
f2 1468.96 1404.62 1516.87 3490.22
f3 212 193 152 324
f4 5 4 4 3

Table 6.2: Comparison of values for the objective functions.

f∗
1 f∗

2 f∗
3 f∗

4

LP optimum 969.589 1371.69 152 1.5
IP optimum 969.589 1404.62 152 3

Table 6.3: Comparison of values between the original problem and its LP relax-
ation.

Notably we see that LP optimum and IP optimum is the same for f1 and f3.

6.2 Timetable B

Timetable B is the trains between 07:00 and 09:00, which is a more traffic intense
period than the one of timetable A.

Time Variables Constraints Variables* Constraints*
f∗
1 0.125s 2592 7786 684 6995
f∗
2 13.376s 28192 84586 14820 48263
f∗
3 0.141s 2592 7786 2469 6995
f∗
4 0.063s 2597 7946 688 7092

Table 6.4: Running times, variables and constraints.
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f∗
1 f∗

2 f∗
3 f∗

4

f1 1388.65 1464.01 1523.2 3187.59
f2 2085.93 2034.77 2096.37 3797.96
f3 232 237 189 318
f4 5 4 4 3

Table 6.5: Comparison of values for the objective functions.

f∗
1 f∗

2 f∗
3 f∗

4

LP optimum 1388.65 1987.3 186 2
IP optimum 1388.65 2034.77 189 3

Table 6.6: Comparison of values between the original problem and its LP relax-
ation.

Again we see that the LP and IP solutions coincide for f1, but in contrast to
A, the solutions are not the same for f3. Also from table 6.2 we see that the
values are the same for f4 as the corresponding values in A.

6.3 Timetable C

Timetable C is longer than the previous two, and encompasses both timetable
A, B and more trains.

Time Variables Constraints Variables* Constraints*
f∗
1 0.14s 6723 12831 1555 11580
f∗
2 153.125s 178948 529506 93220 279591
f∗
3 0.219s 6723 12831 6422 11580
f∗
4 0.25s 6728 13246 1559 11822

Table 6.7: Running times, variables and constraints.
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f∗
1 f∗

2 f∗
3 f∗

4

f1 4463.48 4676.78 4854.09 9295.75
f2 6123.39 5976.67 6230.95 10824.9
f3 623 581 490 783
f4 5 4 4 3

Table 6.8: Comparison of values for the objective functions.

f∗
1 f∗

2 f∗
3 f∗

4

LP optimum 4463.48 5927.8 487 2
IP optimum 4463.48 5976.67 490 3

Table 6.9: Comparison of values between the original problem and its LP relax-
ation.

Figure 6.1: Each graph compares the value of one of the objective functions 1-3
(The blue staples) with the numbers of platforms used (f4, the orange lines).
Each staple represents optimizing for that objective function.
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As we see in figure 6.1 the solutions we get from optimizing for f1-f3 are some-
what similar, while optimizing for f4 gives much worse solutions in terms of
f1-f3. Once again the solution for the LP relaxed problem is integer for f1.
We note that even for this larger dataset that the gap between the LP and IP
solution seems to be quite small for all objective functions. If this is always the
case, the LP solution can be used as a good upper bound on the IP objective
function.

6.4 Timetable D

Timetable D takes the whole day into account, starting from midnight. As pre-
viously mentioned this is the longest time horizon that is interesting to optimize
for due to the train traffic being sparse during the night.

Time Variables Constraints Variables* Constraints*
f∗
1 0.266s 21303 39029 5644 36079
f∗
2 5439s 1750530 5226700 953296 2818750
f∗
3 0.312s 21303 39029 20421 36079
f∗
4 0.156s 21308 40344 5648 36843

Table 6.10: Running times, variables and constraints.

f∗
1 f∗

2 f∗
3 f∗

4

f1 13762.2 13945.4 14750.6 24410.3
f2 18596 18274 18653.3 29251.6
f3 1911 1752 1503 2386
f4 5 4 4 4

Table 6.11: Comparison of values for the objective functions.

f∗
1 f∗

2 f∗
3 f∗

4

LP optimum 13762.2 18066.7 1503 2
IP optimum 13762.2 18274 1503 4

Table 6.12: Comparison of values between the original problem and its LP
relaxation.
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Again we note that f1 and f3 is integral. It is also noteworthy that large number
of variables when optimizing for f2, which yielded the very long solve time.

6.5 Sensitivity analysis
We have this far seen that when optimizing for minimal walking distance that
we get very similar results as when optimizing for proximity to station entrance
and exit. This might be due to the fact that the fraction of passengers that
switch from one train to another is not big enough to affect the assignments.

To study this we study five different scenarios, where 5%, 10%, 15%, 20% and
25% of maximum passengers are switching between train. Just as in the results
above, the trains are assumed to always run at half of maximal passenger ca-
pacity. All these five scenarios are implemented for timetable C. The results
can be found in table 6.13 and seen in figure 6.2. We see that the solutions

f∗
1 f∗

2

5%
f1 5274.49 5381.14
f2 6104.45 6031.09
10%
f1 4463.48 4676.78
f2 6123.39 5976.67
15%
f1 3652.47 3972.42
f2 6142.34 5922.26

f∗
1 f∗

2

20%
f1 2841.46 3268.06
f2 6161.28 5867.84
25%
f1 2030.45 2764.88
f2 6180.23 5795.4

Table 6.13: The comparison of objective functions f1 and f2 for different levels
of passengers that are switching from one train to another.

become less similar when the number of transiting passengers increases, but in
general remain somewhat close (note that the axis in figure 6.2 does not start
on 0).

6.6 Discussion
For the four timetables we implemented and for Linköping station there where
some patterns and tendencies in the optimal solutions, and values for the ob-
jective functions.



6.6. Discussion 31

Figure 6.2: The walking distance for the five different scenarios. The blue staples
when optimizing for distance to station, the orange staples when optimizing for
walking distance.

Firstly we note that f∗
1LP

= f∗
1IP for all of the four runs. It is not however

the case that the constraint matrix is unimodular since the constraint matrix
is the same for f3, where f∗

3LP
̸= f∗

3IP . These four results are not sufficient to
show that the LP-relaxation is always integral, it might be the case four some
other timetable or station that f∗

1LP
̸= f∗

1IP .

From the sensitivity analysis in section 6.5 we note that the solutions for f∗
1

and f∗
2 were quite similar, even if a large fraction passengers switch trains. Un-

der the assumption that most passengers does not switch trains, then we can
use the objective function f1, which is faster than f2 to optimize for.

We see that the introduction of the canonical linearisation to model the function
f2 increases the complexity of the problem, and hence the solve time. This was
most notable for the larger data sets.

In an earlier phase of the thesis a fifth objective function was considered. The
quantity we sought to model was the number of crossing paths. By introduction
of the three canonical linearisations λt,r,t′,r′ = yt,ryt′,r′ , µt,r,t′,r′ = zt,rzt′,r′ and
νt,r,t′,r′ = yt,rzt′,r′ , along with each new variables we introduced three sets of
constraints similar to 4.15, 4.16 and 4.17. This gave the objective function
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f5(λ, µ, ν) =
∑
t∈T

∑
t′∈T

∑
r∈R

∑
r′∈R

ar,r′

(
λt,r,t′,r′

|τat − τat′ |
+

µt,r,t′,r′

|τdt − τdt′ |
+

νt,r,t′,r′

|τat − τdt′ |

)
. (6.1)

This however proved immensely impractical. Solving for the optimal value of f5
for the small timetable A resulted in around 1.8 million variables, and 5 million
constraints after the presolve. The objective value could not be found after
running the program for around 10 hours.

In conclusion we see that the introduction of one canonical linearisation is doable
but significantly increases the number of variables and constraints, and therefore
the running time. Using more than that in this context results in a program
that is impossible to solve in a reasonable time frame, even for timetables that
span a short timespan.

We also note that when optimizing for f3 we got quite similar solutions as
to those that optimize for f2 and f1. This is probably a result of the sta-
tion layout at Linköping station. The routes through the stations that passes
through the fewest switches is also the routes that stops closest to the station
exit. Implementation for a station with different layout might not have this
similarity.
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Conclusion

In this thesis we have presented an ILP-model to model viable assignments of
trains to platforms and routes through a railway station. The model is shown
to be compatible with at least four different objective functions to model for
example walking distance or the number of platforms used.

To validate the model we presented an implementation for Linköping station
for four different timetables. The running times for all these implementations
was quick enough to be feasible to use, with exception for f2 for the largest
timetable. The solutions when optimizing for f3 was quite close to the solution
when optimizing for f1 or f2, which is probably due to the tracks closest to
the station exit also being the tracks that passes through the least number of
switches. This property is not universal, for example Norrköping central station
does not have this property.

Before an optimization model similar to the one presented in this paper is used
for train platforming there are several aspects that needs to be added to the
model, but these results indicate that this type of model could be used to effi-
ciently solve the TPP for at least small to medium sized stations.

It’s possible that this model would work for larger stations, although this is
not investigated in this thesis.

There seems to be a trade-off between the first three objective functions and
number of platforms used. This might be due to the layout of Linköping station,
to investigate this further implementation for other stations is needed.

Calderon, 2022. 33



34 Chapter 7. Conclusion

The objective function f2 had the longest running time, but we have seen that
optimizing for f1 gives a similar solution, assuming that most passengers doesn’t
switch to another train. Under the right conditions we could optimize for f1
and get a solutions with good total walking distance.

7.1 Further research
In it’s current form the model does not take into account trains that only pass
through the station. This can be implemented as a train that arrives and de-
parts at the same time from the platforms, but since these trains does not need
to slow down they will reserve the track longer than necessary.

There is also need for more testing to validate the model. The model needs
to be tested on larger stations to see if the running times are feasible. Fur-
thermore the model also needs to be tested on stations with different features
than Linköping, such as platforms that lie one after another on a single track,
or tracks that terminate.

Depending on the results of the testing on different stations it could be in-
teresting to modify the model to work at all stations. Little considerations were
made when designing the model for computational efficiency, and it’s not im-
probable that there are possible improvements in that regard.

Furthermore we have seen that in some instances that the LP-relaxation of
the problem produces solutions that are very close to the IP solution. It would
therefore be of interest to see if the model could be modified so that the LP
optimal is always the IP optimal. If such a modification could be made, then
it might be possible to save a some computation time, especially in the case
of f2 where the time difference for solving the LP and IP was significant. For
reference the solve time for f2 and timetable D was 5439s and the corresponding
LP problem could be solved in 39s.

An approach that would be interesting to investigate is multi objective opti-
mization, or weighted sums of objective functions. In reality we are almost
never interested in minimizing just one property, but are instead interested in
solutions that are "good" in all or most regards.



Appendix A

AMPL Code

A.1 Run file

#-----------------------------------------------------------------
# SOLVER OPTIONS
#-----------------------------------------------------------------

reset; # Resets everything
option solver ’./cplex’; # Choice of solver,
option display_eps 1e-6;
#-----------------------------------------------------------------

#-----------------------------------------------------------------
# FILES
#-----------------------------------------------------------------

model TPP2.mod;

data TidtabellA.dat;
data Linkoping_ext.dat;

#-----------------------------------------------------------------
# Generating passenger data
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#-----------------------------------------------------------------

#Param A is used in the sensitivity analysis,
otherwise fixed at 10 percent
param A:=0.10;

for {t1 in TRAINS, t2 in TRAINS} {

if t1=t2 then{
let Changeing[t1,t2]:=0;
}

else if MaxPassengers[t1]=1 then{
let Changeing[t1,t2]:=0;
}

else if MaxPassengers[t2]=1 then{
let Changeing[t1,t2]:=0;
}

else if abs(dTime[t1]-dTime[t2])<60 then{

if MaxPassengers[t1] <> MaxPassengers[t2] then{

let Changeing[t1,t2]:=1;
}

else let Changeing[t1,t2]:=0;
}
else let Changeing[t1,t2]:=0;

};

for{t1 in TRAINS}{

let n[t1]:=sum{t2 in TRAINS: t1<>t2}Changeing[t1,t2];
};
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for{t1 in TRAINS, t2 in TRAINS} {

if Changeing[t1,t2]=0 then{

let PassengersT2T[t1,t2]:=0

}

else

let PassengersT2T[t1,t2]:=0.05*Changeing[t1,t2]*
(MaxPassengers[t1]/n[t1]+MaxPassengers[t2]/n[t2]);
};

for{t1 in TRAINS} {

let Passengers[t1]:=0.5*MaxPassengers[t1]
-sum{t2 in TRAINS:t1<>t2}PassengersT2T[t1,t2];
};
#-----------------------------------------------------------------
# Generating edge sets EDGES_X, EDGES_Y, EDGES_Z and E_YZ
#-----------------------------------------------------------------

let EDGES_X:={};
let EDGES_Y:={};
let EDGES_Z:={};
let EDGES_YZ:={};

for {t1 in TRAINS, t2 in TRAINS: t1<>t2} {

if (dTime[t2]-aTime[t1]+Headway_p)*(dTime[t1]-aTime[t2]+Headway_p)
>0 then{

let EDGES_X:= EDGES_X union {(t1 , t2)};

}

if (aTime[t1]-aTime[t2]+Headway_r)*(aTime[t2]-aTime[t1]+Headway_r)
>0 then{

let EDGES_Y:= EDGES_Y union {(t1, t2)};
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}

if (dTime[t1]-dTime[t2]+Headway_r)*(dTime[t2]-dTime[t1]+Headway_r)
>0 then{

let EDGES_Z:= EDGES_Z union {(t1,t2)};

}

if (aTime[t1]-dTime[t2])*(dTime[t2]-aTime[t1]+2*Headway_r)
>0 then{

let EDGES_YZ:= EDGES_YZ union {(t1,t2)};

}

};

#----------------------------------
# TP_comp
#----------------------------------

for{t in TRAINS}{

if MaxPassengers = 309 then{

let TP_comp[t,1]:=1;
let TP_comp[t,2]:=1;
let TP_comp[t,3]:=1;
let TP_comp[t,4]:=0;
let TP_comp[t,5]:=0;

}

else

let TP_comp[t,1]:=1;
let TP_comp[t,2]:=1;
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let TP_comp[t,3]:=1;
let TP_comp[t,4]:=1;
let TP_comp[t,5]:=1;

};
#-----------------------------------------------------------------
# PROBLEM DEFINITIONS
#-----------------------------------------------------------------

#----------------------------------
# Distance to station
#----------------------------------
problem Dist2Station: distance_to_station, x, y, z,
One_platform, xy_arrival, xz_departures,
platform_comp, route_comp_inin, route_comp_outout, route_comp_inout;
# Objective
# Constraints
# Variables

option relax_integrality 0;
option presolve 1;
#----------------------------------
# Walking distance
#----------------------------------
problem Total_Walking_Distance: walking_distance, x, y, z, w,
One_platform, xy_arrival, xz_departures,
platform_comp, route_comp_inin, route_comp_outout, route_comp_inout,
xw_relation_1, xw_relation_2, xw_relation_3;
# Objective
# Constraints
# Variables

option relax_integrality 0;
option presolve 1;
#----------------------------------
# Switch usage
#----------------------------------
problem Switches_usage: Switch_use, x, y, z,
One_platform, xy_arrival, xz_departures,
platform_comp, route_comp_inin, route_comp_outout, route_comp_inout;
# Objective
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# Constraints
# Variables

option relax_integrality 0;
option presolve 1;
#----------------------------------
# Platform usage
#----------------------------------
problem Platform_usage: Platform_use, x, y, z, h, lambda, mu, nu,
One_platform, xy_arrival, xz_departures,
platform_comp, route_comp_inin, route_comp_outout, route_comp_inout,
xh_relation;
# Objective
# Constraints
# Variables

option relax_integrality 0;
option presolve 1;
#----------------------------------
# Crossing paths
#----------------------------------
problem CrossingPaths: Crossing_paths, x, y, z, lambda, mu, nu,
One_platform, xy_arrival, xz_departures,
platform_comp, route_comp_inin, route_comp_outout, route_comp_inout,
ylambda_relation_1, ylambda_relation_2, ylambda_relation_3,
zmu_relation_1, zmu_relation_2, zmu_relation_3,
yznu_relation_1, yznu_relation_2, yznu_relation_3;
# Objective
# Constraints
# Variables

option relax_integrality 0;
option presolve 1;
#----------------------------------

#presolve_inteps >= 6.25e-06;

display card(TRAINS); #Displays the number of trains
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solve Platform_usage;

display _objname, _obj;
display _objname, _obj>TPP.res;

display Switch_use >ALT.res;

display distance_to_station>ALT.res;

for{t1 in TRAINS, t2 in TRAINS, p1 in PLATFORMS, p2 in PLATFORMS} {

let w[t1,p1,t2,p2]:= x[t1,p1]*x[t2,p2];

}

display walking_distance> ALT.res;

for{t1 in TRAINS, t2 in TRAINS, r1 in ROUTES, r2 in ROUTES} {

let lambda[t1,r1,t2,r2] := y[t1,r1]*y[t1,r2];
let mu[t1,r1,t2,r2] := z[t1,r1]*z[t1,r2];
let nu[t1,r1,t2,r2] := y[t1,r1]*z[t1,r2];
}

display Crossing_paths ;

display {j in 1.._nvars: _var[j] > 0}
# Display only non-zero variables
(_varname[j], _var[j])>TPP.res;

display (_ampl_elapsed_time ) >Prop.res;
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display (_total_solve_elapsed_time) >Prop.res;

display (_nvars) >Prop.res;
display (_snvars)>Prop.res;
display (_ncons)>Prop.res;
display (_sncons)>Prop.res;

display card(TRAINS) >Prop.res;
display card(PLATFORMS) >Prop.res;
display card(ROUTES) >Prop.res;

display card(EDGES_X) >Prop.res;
display card(EDGES_Y) >Prop.res;
display card(EDGES_Z) >Prop.res;
display card(EDGES_YZ) >Prop.res;
display EDGES_X > kanter.res;
display EDGES_Y > kanter.res;
display EDGES_Z > kanter.res;
display EDGES_YZ > kanter.res;

display PassengersT2T > byte.res;
display n > byte.res;

A.2 Mod file

#-------------------------------------------------------------
# MODEL FILE : Train platforming problem (TPP)
#-------------------------------------------------------------

#-------------------------------------------------------------
# From Station data file
#-------------------------------------------------------------
set PLATFORMS;
set DIRECTIONS;
set ROUTES;
set SUB_ROUTES{PLATFORMS, DIRECTIONS};

param Distance{PLATFORMS};
param DistanceP2P{PLATFORMS, PLATFORMS};
param Overlap{ROUTES, ROUTES};
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param Switches{ROUTES};

#------------------------------------------------------------
# From timetable data file
#-------------------------------------------------------------

set TRAINS;

param aTime{TRAINS};
param dTime{TRAINS};
param aDir{TRAINS};
param dDir{TRAINS};
param MaxPassengers{TRAINS};

#-------------------------------------------------------------
# Generated in Run File
#-------------------------------------------------------------

set EDGES_X within {t1 in TRAINS, t2 in TRAINS: t1<>t2};
set EDGES_Y within {t1 in TRAINS, t2 in TRAINS: t1<>t2};
set EDGES_Z within {t1 in TRAINS, t2 in TRAINS: t1<>t2};
set EDGES_YZ within {t1 in TRAINS, t2 in TRAINS: t1<>t2};

param n{TRAINS};
param Changeing{TRAINS, TRAINS};
param PassengersT2T{TRAINS, TRAINS};
param Passengers{TRAINS};
param TP_comp{TRAINS, PLATFORMS};
#-------------------------------------------------------------
# Parameters
#-------------------------------------------------------------
param Headway_p := 1;
param Headway_r :=1;

#-------------------------------------------------------------
# Variables
#-------------------------------------------------------------

var x{TRAINS, PLATFORMS} binary;
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var y{TRAINS, ROUTES} binary;
var z{TRAINS, ROUTES} binary;

var w{TRAINS, PLATFORMS, TRAINS, PLATFORMS} binary;

var h{PLATFORMS} binary;

var lambda{TRAINS, ROUTES, TRAINS, ROUTES} binary;
var mu{TRAINS, ROUTES, TRAINS, ROUTES} binary;
var nu{TRAINS, ROUTES, TRAINS, ROUTES} binary;

#-------------------------------------------------------------
# Objective functions
#-------------------------------------------------------------

minimize distance_to_station: sum{t in TRAINS, p in PLATFORMS}
Distance[p]*Passengers[t]*x[t,p];

minimize walking_distance:
sum{t in TRAINS, p in PLATFORMS, t2 in TRAINS, p2 in PLATFORMS}
DistanceP2P[p,p2]*PassengersT2T[t,t2]*w[t,p,t2,p2]
+sum{t in TRAINS, p in PLATFORMS}Distance[p]*Passengers[t]*x[t,p];

minimize Switch_use:
sum{t in TRAINS, r in ROUTES}Switches[r]*(y[t,r]+z[t,r]);

minimize Platform_use:
sum{p in PLATFORMS}h[p];

minimize Crossing_paths:
sum{t in TRAINS, r in ROUTES, t2 in TRAINS, r2 in ROUTES:t<>t2
and aTime[t]<>aTime[t2] and dTime[t]<>dTime[t2] and aTime[t]<>dTime[t2]}
Overlap[r,r2]*(lambda[t,r,t2,r2]/(abs(aTime[t]-aTime[t2]))
+mu[t,r,t2,r2]/(abs(dTime[t]-dTime[t2]))
+nu[t,r,t2,r2]/(abs(aTime[t]-dTime[t2])));

#-------------------------------------------------------------
# Constraints
#-------------------------------------------------------------
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#xw relations

subject to xw_relation_1{t1 in TRAINS, t2 in TRAINS, p1 in PLATFORMS,
p2 in PLATFORMS}: w[t1,p1,t2,p2]<=x[t1,p1];

subject to xw_relation_2{t1 in TRAINS, t2 in TRAINS, p1 in PLATFORMS,
p2 in PLATFORMS}: w[t1,p1,t2,p2]<=x[t2,p2];

subject to xw_relation_3{t1 in TRAINS, t2 in TRAINS, p1 in PLATFORMS,
p2 in PLATFORMS}: w[t1,p1,t2,p2]>=x[t1,p1]+x[t2,p2]-1;

#Each train is assigned to one and only one platform

subject to One_platform{t in TRAINS}:
sum{p in PLATFORMS}TP_comp[t,p]*x[t,p]=1;

# Relations between y, z and x

subject to xy_arrival{t in TRAINS, p in PLATFORMS}:
sum{r in SUB_ROUTES[p,aDir[t]]}y[t,r]=x[t,p];

subject to xz_departures{t in TRAINS, p in PLATFORMS}:
sum{r in SUB_ROUTES[p,dDir[t]]}z[t,r]=x[t,p];

# Platform compatibilty
subject to platform_comp{(t1,t2) in EDGES_X, p in PLATFORMS}:
x[t1,p]+x[t2,p]<=1;

# Route compatibility

subject to route_comp_inin{(t1,t2) in EDGES_Y, r1 in ROUTES,
r2 in ROUTES: Overlap[r1,r2]=1}: y[t1,r1]+y[t2,r2]<=1;

subject to route_comp_outout{(t1,t2) in EDGES_Z, r1 in ROUTES,
r2 in ROUTES: Overlap[r1,r2]=1}:z[t1,r1]+z[t2,r2]<=1;

subject to route_comp_inout{(t1,t2) in EDGES_YZ, r1 in ROUTES,
r2 in ROUTES: Overlap[r1,r2]=1}: y[t1,r1]+z[t2,r2]<=1;
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# Variables h

subject to xh_relation{p in PLATFORMS, t in TRAINS}:
x[t,p] <= h[p];

# Variables lambda, mu and nu

subject to ylambda_relation_1{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}: lambda[t1,r1,t2,r2]<=y[t1,r1];

subject to ylambda_relation_2{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}: lambda[t1,r1,t2,r2]<=y[t2,r2];

subject to ylambda_relation_3{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}: lambda[t1,r1,t2,r2]>=y[t1,r1]+y[t2,r2]-1;

subject to zmu_relation_1{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}: mu[t1,r1,t2,r2]<=z[t1,r1];

subject to zmu_relation_2{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}: mu[t1,r1,t2,r2]<=z[t2,r2];

subject to zmu_relation_3{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}: mu[t1,r1,t2,r2]>=z[t1,r1]+z[t2,r2]-1;

subject to yznu_relation_1{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}:nu[t1,r1,t2,r2]<=y[t1,r1];

subject to yznu_relation_2{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}: nu[t1,r1,t2,r2]<=z[t2,r2];

subject to yznu_relation_3{t1 in TRAINS, t2 in TRAINS,
r1 in ROUTES, r2 in ROUTES}:nu[t1,r1,t2,r2]>=y[t1,r1]+z[t2,r2]-1;
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A.3 Linköping specific data file

#-------------------------------------------------------------
# DATA FILE : Linkoping station
#-------------------------------------------------------------

set PLATFORMS:= P1 P2 P3 P4 P5;

param Distance:=
P1 0
P2 1
P3 1
P4 2
P5 2;

set DIRECTIONS:= 1 ..9;

# 1 - D1 Södra stambanan, utgående tåg söderut
# 2 - D2 Södra stambanan, inkommande tåg söderifrån
# 3 - D3 Södra stambanan,utgående tåg norrut
# 4 - D4 Södra stambanan,inkommande tåg norrifrån

# 5 - D5 Stångådalsbanan/Tjustbanan både inkommande och utgående

# U1,U2,U3,U4 Uppställningplatser

param DistanceP2P
:P1 P2 P3 P4 P5:=
P1 0 1 1 1 1
P2 1 0 0 1 1
P3 1 0 0 1 1
P4 1 1 1 0 0
P5 1 1 1 0 0;

param:
ROUTES: Switches:=
P1D1 2
P1D3 4
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P1D4 3
P1D5 2
P1U1 4
P1U2 3
P2D1 4
P2D2 2
P2D3 3
P2D4 5
P2D5 4
P2U1 6
P2U2 5
P2G 6
P3D1 6
P3D2 4
P3D3 4
P3D4 6
P3D5 5
P3U1 8
P3U2 7
P3U4 4
P4D1 8
P4D2 6
P4D3 5
P4D4 7
P4D5 6
P4U1 10
P4U2 9
P4U4 4
P5D1 9
P5D2 7
P5D3 5
P5D4 7
P5D5 6
P5U1 11
P5U2 10
P5U3 1
P5U4 4;

param Overlap
:P1D1 P1D3 P1D4 P1D5 P1U1 P1U2 P2D1 P2D2 P2D3 P2D4 P2D5 P2U1 P2U2
P3D1 P3D2 P3D3 P3D4 P3D5 P3U1 P3U2 P3U4 P4D1 P4D2 P4D3 P4D4 P4D5 P4U1
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P4U2 P4U4 P5D1 P5D2 P5D3 P5D4 P5D5 P5U1 P5U2 P5U3 P5U4 :=
P1D1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0
0 0 0 1 1 0 0
P1D3 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P1D4 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0
P1D5 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0
P1U1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0
0 0 0 1 1 0 0
P1U2 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0
0 0 0 1 1 0 0
P2D1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
P2D2 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
P2D3 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P2D4 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P2D5 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P2U1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
P2U2 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
P3D1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
P3D2 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
P3D3 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P3D4 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P3D5 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P3U1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
P3U2 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0
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P3U4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 1
P4D1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P4D2 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P4D3 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P4D4 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P4D5 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P4U1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P4U2 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P4U4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 1
P5D1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P5D2 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P5D3 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P5D4 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P5D5 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0
P5U1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P5U2 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0
P5U3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0
P5U4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1;

set SUB_ROUTES[P1,1] := P1D1;
set SUB_ROUTES[P1,2] := ;
set SUB_ROUTES[P1,3] := P1D3;
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set SUB_ROUTES[P1,4] := P1D4;
set SUB_ROUTES[P1,5] := P1D5;
set SUB_ROUTES[P1,6] := P1U1;
set SUB_ROUTES[P1,7] := P1U2;
set SUB_ROUTES[P1,8] := ;
set SUB_ROUTES[P1,9] := ;

set SUB_ROUTES[P2,1] := P2D1;
set SUB_ROUTES[P2,2] := P2D2;
set SUB_ROUTES[P2,3] := P2D3;
set SUB_ROUTES[P2,4] := P2D4;
set SUB_ROUTES[P2,5] := P2D5;
set SUB_ROUTES[P2,6] := P2U1;
set SUB_ROUTES[P2,7] := P2U2;
set SUB_ROUTES[P2,8] := ;
set SUB_ROUTES[P2,9] := ;

set SUB_ROUTES[P3,1] := P3D1;
set SUB_ROUTES[P3,2] := P3D2;
set SUB_ROUTES[P3,3] := P3D3;
set SUB_ROUTES[P3,4] := P3D4;
set SUB_ROUTES[P3,5] := P3D5;
set SUB_ROUTES[P3,6] := P3U1;
set SUB_ROUTES[P3,7] := P3U2;
set SUB_ROUTES[P3,8] := ;
set SUB_ROUTES[P3,9] := P3U4;

set SUB_ROUTES[P4,1] := P4D1;
set SUB_ROUTES[P4,2] := P4D2;
set SUB_ROUTES[P4,3] := P4D3;
set SUB_ROUTES[P4,4] := P4D4;
set SUB_ROUTES[P4,5] := P4D5;
set SUB_ROUTES[P4,6] := P4U1;
set SUB_ROUTES[P4,7] := P4U2;
set SUB_ROUTES[P4,8] := ;
set SUB_ROUTES[P4,9] := P4U4;

set SUB_ROUTES[P5,1] := P5D1;
set SUB_ROUTES[P5,2] := P5D2;
set SUB_ROUTES[P5,3] := P5D3;
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set SUB_ROUTES[P5,4] := P5D4;
set SUB_ROUTES[P5,5] := P5D5;
set SUB_ROUTES[P5,6] := P5U1;
set SUB_ROUTES[P5,7] := P5U2;
set SUB_ROUTES[P5,8] := P5U3;
set SUB_ROUTES[P5,9] := P5U4;
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Timetables

B.1 Timetable A

Train τat τdt dat ddt Passengers ct,1 ct,2 ct,3 ct,4 ct,5
KP8559 78 83 U3 D5 144 1 1 1 1 1
KP8554 38 43 D5 U3 144 1 1 1 1 1
KP8587 62 67 U2 D5 144 1 1 1 1 1
KP8584 51 56 D5 U2 144 1 1 1 1 1
OT8727 15 16 D3 D2 240 1 1 1 1 1
OT8729 45 46 D3 D2 240 1 1 1 1 1
OT8731 75 76 D3 D2 240 1 1 1 1 1
OT8733 105 106 D3 D2 240 1 1 1 1 1
OT8726 14 15 D1 D4 240 1 1 1 1 1
OT8728 44 45 D1 D4 240 1 1 1 1 1
OT8730 74 75 D1 D4 240 1 1 1 1 1
OT8732 104 105 D1 D4 240 1 1 1 1 1
SJ527 1 2 D3 D2 309 1 1 1 0 0
ST3941 33 34 D3 D2 309 1 1 1 0 0
SJ529 57 58 D3 D2 309 1 1 1 0 0
SJ530 56 57 D1 D4 309 1 1 1 0 0
ST300 85 86 D1 D4 309 1 1 1 0 0
SJ532 112 113 D1 D4 309 1 1 1 0 0
IC10295 94 96 D3 D4 309 1 1 1 0 0
SJ2119 49 59 D3 D4 309 1 1 1 0 0
SJ2123 109 129 D3 D4 309 1 1 1 0 0

Calderon, 2022. 53
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GT47795 4 4 D4 D1 0 1 1 1 1 1
GT42784 24 24 D4 D1 0 1 1 1 1 1
GT66248 28 28 D2 D3 0 1 1 1 1 1
GT4421 62 62 D4 D1 0 1 1 1 1 1
GT27783 70 70 D4 D1 0 1 1 1 1 1
GT44969 99 99 D4 D1 0 1 1 1 1 1

Timetable, based on the real timetable from April 1 2021, from 11:00 to
13:00. In the table, arrival and departure times are given in minutes after
11:00.

B.2 Timetable B

Train τat τdt dat ddt Passengers ct,1 ct,2 ct,3 ct,4 ct,5
KP8555 76 81 U3 D5 144 1 1 1 1 1
KP8550 20 25 D5 U3 144 1 1 1 1 1
KP8552 102 107 D5 U3 144 1 1 1 1 1
KP8583 53 58 U3 D5 144 1 1 1 1 1
KP8580 27 32 D5 U3 144 1 1 1 1 1
OT8811 3 4 D4 D1 240 1 1 1 1 1
OT8711 15 16 D4 D1 240 1 1 1 1 1
OT8813 30 31 D4 D1 240 1 1 1 1 1
OT8713 45 46 D4 D1 240 1 1 1 1 1
OT8815 64 65 D4 D1 240 1 1 1 1 1
OT8715 75 76 D4 D1 240 1 1 1 1 1
OT8817 90 91 D4 D1 240 1 1 1 1 1
OT8717 105 106 D4 D1 240 1 1 1 1 1
OT8710 14 15 D2 D3 240 1 1 1 1 1
OT8712 29 30 D2 D3 240 1 1 1 1 1
OT8814 54 55 D2 U1 240 1 1 1 1 1
OT8800 64 65 D2 D3 240 1 1 1 1 1
OT8714 74 75 D2 D3 240 1 1 1 1 1
OT8816 94 95 D2 D3 240 1 1 1 1 1
OT8716 104 105 D2 D3 240 1 1 1 1 1
SJR2103 49 54 D4 U1 309 1 1 1 0 0
SJS521 56 58 D4 D1 309 1 1 1 0 0
SJS523 117 119 D4 D1 309 1 1 1 0 0
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SJR2107 109 114 D4 U2 309 1 1 1 0 0
SJR2116 0 5 U1 D3 309 1 1 1 0 0
SJS522 57 59 D2 D3 309 1 1 1 0 0
SJR2120 64 69 U2 D3 309 1 1 1 0 0
GT66222 7 7 D2 D3 0 1 1 1 1 1
GT61993 22 22 D4 D1 0 1 1 1 1 1
GT4431 36 36 D4 D1 0 1 1 1 1 1
GT40290 86 86 D2 D3 0 1 1 1 1 1
GT60174 113 113 D2 D3 0 1 1 1 1 1

B.3 Timetable C

Train τat τdt dat ddt Passengers ct,1 ct,2 ct,3 ct,4 ct,5
KP8555 76 81 U3 D5 144 1 1 1 1 1
KP8557 199 204 U3 D5 144 1 1 1 1 1
KP8559 317 323 U3 D5 144 1 1 1 1 1
KP8550 20 25 D5 U3 144 1 1 1 1 1
KP8552 102 107 D5 U3 144 1 1 1 1 1
KP8554 278 289 D5 U3 144 1 1 1 1 1
KP8583 53 58 U3 D5 144 1 1 1 1 1
KP8585 182 187 U3 D5 144 1 1 1 1 1
KP8587 302 307 U3 D5 144 1 1 1 1 1
KP8580 27 32 D5 U3 144 1 1 1 1 1
KP8582 140 145 D5 U3 144 1 1 1 1 1
KP8584 291 296 D5 U3 144 1 1 1 1 1
OT8811 3 4 D4 D1 240 1 1 1 1 1
OT8711 15 16 D4 D1 240 1 1 1 1 1
OT8813 30 31 D4 D1 240 1 1 1 1 1
OT8713 45 46 D4 D1 240 1 1 1 1 1
OT8815 64 65 D4 D1 240 1 1 1 1 1
OT8715 75 76 D4 D1 240 1 1 1 1 1
OT8817 90 91 D4 D1 240 1 1 1 1 1
OT8717 105 106 D4 D1 240 1 1 1 1 1
OT8719 135 136 D4 D1 240 1 1 1 1 1
OT8721 165 166 D4 D1 240 1 1 1 1 1
OT8723 195 196 D4 D1 240 1 1 1 1 1
OT8725 225 226 D4 D1 240 1 1 1 1 1
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OT8727 255 256 D4 D1 240 1 1 1 1 1
OT8729 285 286 D4 D1 240 1 1 1 1 1
OT8731 315 316 D4 D1 240 1 1 1 1 1
OT8733 345 346 D4 D1 240 1 1 1 1 1
OT8710 14 15 D2 D3 240 1 1 1 1 1
OT8712 29 30 D2 D3 240 1 1 1 1 1
OT8814 54 55 D2 U1 240 1 1 1 1 1
OT8800 64 65 D2 D3 240 1 1 1 1 1
OT8714 74 75 D2 D3 240 1 1 1 1 1
OT8816 94 95 D2 D3 240 1 1 1 1 1
OT8716 104 105 D2 D3 240 1 1 1 1 1
OT8718 134 135 D2 D3 240 1 1 1 1 1
OT8720 164 165 D2 D3 240 1 1 1 1 1
OT8722 194 195 D2 D3 240 1 1 1 1 1
OT8724 224 225 D2 D3 240 1 1 1 1 1
OT8726 254 255 D2 D3 240 1 1 1 1 1
OT8728 284 285 D2 D3 240 1 1 1 1 1
OT8730 314 315 D2 D3 240 1 1 1 1 1
OT8732 344 345 D2 D3 240 1 1 1 1 1
SJR2103 49 54 D4 U1 309 1 1 1 0 0
SJS521 56 58 D4 D1 309 1 1 1 0 0
SJS523 117 119 D4 D1 309 1 1 1 0 0
SJR2107 109 114 D4 U2 309 1 1 1 0 0
SJR2116 0 5 U1 D3 309 1 1 1 0 0
SJS522 57 59 D2 D3 309 1 1 1 0 0
SJR2120 64 69 U2 D3 309 1 1 1 0 0
SJS525 175 178 D4 D1 309 1 1 1 0 0
SJS527 239 242 D4 D1 309 1 1 1 0 0
ST3941 271 274 D4 D1 309 1 1 1 0 0
SJS529 295 298 D4 D1 309 1 1 1 0 0
SJS524 114 117 D2 D3 309 1 1 1 0 0
SJS526 174 177 D2 D3 309 1 1 1 0 0
SJS528 232 235 D2 D3 309 1 1 1 0 0
SJS530 294 297 D2 D3 309 1 1 1 0 0
ST3940 323 326 D2 D3 309 1 1 1 0 0
SJS532 350 353 D2 D3 309 1 1 1 0 0
SJR2111 169 172 D4 U4 309 1 1 1 0 0
SJR2115 229 232 D4 U4 309 1 1 1 0 0
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SJR2119 289 292 D4 U4 309 1 1 1 0 0
SJR2123 349 352 D4 U4 309 1 1 1 0 0
SJR2124 126 129 U4 D3 309 1 1 1 0 0
SJR2128 186 189 U4 D3 309 1 1 1 0 0
SJR2132 246 249 U4 D3 309 1 1 1 0 0
SJR2136 306 309 U4 D3 309 1 1 1 0 0
GT66222 7 7 D2 D3 0 1 1 1 1 1
GT61993 22 22 D4 D1 0 1 1 1 1 1
GT4431 36 36 D4 D1 0 1 1 1 1 1
GT40290 86 86 D2 D3 0 1 1 1 1 1
GT60174 113 113 D2 D3 0 1 1 1 1 1
GT47866 143 143 D4 D1 0 1 1 1 1 1
GT47867 145 145 D4 D1 0 1 1 1 1 1
GT48967 203 203 D4 D1 0 1 1 1 1 1
GT66239 218 218 D4 D1 0 1 1 1 1 1
GT47795 244 244 D4 D1 0 1 1 1 1 1
GT42783 264 264 D4 D1 0 1 1 1 1 1
GT66248 268 268 D2 D3 0 1 1 1 1 1
GT4421 302 302 D4 D1 0 1 1 1 1 1
GT27783 310 310 D4 D1 0 1 1 1 1 1
GT44969 339 339 D4 D1 0 1 1 1 1 1

B.4 Timetable D

Train τat τdt dat ddt Passengers ct,1 ct,2 ct,3 ct,4 ct,5
KP8581 335 340 U3 D5 144 1 1 1 1 1
KP8583 473 478 U3 D5 144 1 1 1 1 1
KP8585 602 607 U3 D5 144 1 1 1 1 1
KP8587 722 727 U3 D5 144 1 1 1 1 1
KP8589 841 846 U3 D5 144 1 1 1 1 1
KP8591 962 967 U3 D5 144 1 1 1 1 1
KP8593 1087 1092 U3 D5 144 1 1 1 1 1
KP8595 1204 1209 U3 D5 144 1 1 1 1 1
KP8580 447 452 D5 U3 144 1 1 1 1 1
KP8582 560 565 D5 U3 144 1 1 1 1 1
KP8584 711 716 D5 U3 144 1 1 1 1 1
KP8586 831 836 D5 U3 144 1 1 1 1 1
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KP8588 951 956 D5 U3 144 1 1 1 1 1
KP8590 1071 1076 D5 U3 144 1 1 1 1 1
KP8592 1191 1196 D5 U3 144 1 1 1 1 1
KP8594 1311 1316 D5 U3 144 1 1 1 1 1
KP8553 322 327 U3 D5 144 1 1 1 1 1
KP8555 496 501 U3 D5 144 1 1 1 1 1
KP8557 619 624 U3 D5 144 1 1 1 1 1
KP8559 718 723 U3 D5 144 1 1 1 1 1
KP8561 861 866 U3 D5 144 1 1 1 1 1
KP8563 980 985 U3 D5 144 1 1 1 1 1
KP8565 1101 1106 U3 D5 144 1 1 1 1 1
KP8567 1216 1221 U3 D5 144 1 1 1 1 1
KP8550 440 445 D5 U3 144 1 1 1 1 1
KP8552 522 527 D5 U3 144 1 1 1 1 1
KP8554 698 673 D5 U3 144 1 1 1 1 1
KP8556 818 823 D5 U3 144 1 1 1 1 1
KP8558 938 943 D5 U3 144 1 1 1 1 1
KP8560 1060 1065 D5 U3 144 1 1 1 1 1
KP8562 1180 1185 D5 U3 144 1 1 1 1 1
KP8564 1298 1303 D5 U3 144 1 1 1 1 1
OT8703 315 316 D4 D1 240 1 1 1 1 1
OT8705 345 346 D4 D1 240 1 1 1 1 1
OT8707 375 376 D4 D1 240 1 1 1 1 1
OT8809 387 388 D4 D1 240 1 1 1 1 1
OT8709 405 406 D4 D1 240 1 1 1 1 1
OT8811 423 424 D4 D1 240 1 1 1 1 1
OT8711 435 436 D4 D1 240 1 1 1 1 1
OT8813 450 451 D4 D1 240 1 1 1 1 1
OT8713 465 466 D4 D1 240 1 1 1 1 1
OT8815 484 485 D4 D1 240 1 1 1 1 1
OT8715 495 496 D4 D1 240 1 1 1 1 1
OT8817 510 511 D4 D1 240 1 1 1 1 1
OT8717 525 526 D4 D1 240 1 1 1 1 1
OT8719 555 556 D4 D1 240 1 1 1 1 1
OT8721 585 586 D4 D1 240 1 1 1 1 1
OT8723 615 616 D4 D1 240 1 1 1 1 1
OT8725 645 646 D4 D1 240 1 1 1 1 1
OT8727 675 676 D4 D1 240 1 1 1 1 1
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OT8729 705 706 D4 D1 240 1 1 1 1 1
OT8731 735 736 D4 D1 240 1 1 1 1 1
OT8733 765 766 D4 D1 240 1 1 1 1 1
OT8735 795 796 D4 D1 240 1 1 1 1 1
OT8737 825 826 D4 D1 240 1 1 1 1 1
OT8739 855 856 D4 D1 240 1 1 1 1 1
OT8741 885 886 D4 D1 240 1 1 1 1 1
OT8743 915 916 D4 D1 240 1 1 1 1 1
OT8845 930 931 D4 D1 240 1 1 1 1 1
OT8745 945 946 D4 D1 240 1 1 1 1 1
OT8847 965 966 D4 D1 240 1 1 1 1 1
OT8747 975 976 D4 D1 240 1 1 1 1 1
OT8849 990 991 D4 D1 240 1 1 1 1 1
OT8749 1005 1006 D4 D1 240 1 1 1 1 1
OT8851 1028 1029 D4 D1 240 1 1 1 1 1
OT8751 1035 1036 D4 D1 240 1 1 1 1 1
OT8853 1050 1051 D4 D1 240 1 1 1 1 1
OT8753 1065 1066 D4 D1 240 1 1 1 1 1
OT8855 1083 1084 D4 D1 240 1 1 1 1 1
OT8755 1098 1099 D4 D1 240 1 1 1 1 1
OT8757 1128 1129 D4 D1 240 1 1 1 1 1
OT8759 1155 1156 D4 D1 240 1 1 1 1 1
OT8761 1185 1186 D4 D1 240 1 1 1 1 1
OT8863 1215 1216 D4 D1 240 1 1 1 1 1
OT8765 1245 1246 D4 D1 240 1 1 1 1 1
OT8867 1275 1276 D4 D1 240 1 1 1 1 1
OT8769 1305 1306 D4 D1 240 1 1 1 1 1
OT8871 1335 1336 D4 D1 240 1 1 1 1 1
OT8773 1365 1366 D4 D1 240 1 1 1 1 1
OT8775 1395 1396 D4 D1 240 1 1 1 1 1
OT8777 1425 1426 D4 D1 240 1 1 1 1 1
OT8702 314 315 D2 D3 240 1 1 1 1 1
OT8704 344 345 D2 D3 240 1 1 1 1 1
OT8706 374 375 D2 D3 240 1 1 1 1 1
OT8808 389 390 D2 D3 240 1 1 1 1 1
OT8708 404 405 D2 D3 240 1 1 1 1 1
OT8710 434 435 D2 D3 240 1 1 1 1 1
OT8812 449 450 D2 D3 240 1 1 1 1 1



60 Appendix B. Timetables

OT8712 464 465 D2 D3 240 1 1 1 1 1
OT8814 474 475 D2 U1 240 1 1 1 1 1
OT8800 484 485 D2 D3 240 1 1 1 1 1
OT8714 494 495 D2 D3 240 1 1 1 1 1
OT8816 509 510 D2 D3 240 1 1 1 1 1
OT8716 524 525 D2 D3 240 1 1 1 1 1
OT8718 554 555 D2 D3 240 1 1 1 1 1
OT8720 584 585 D2 D3 240 1 1 1 1 1
OT8722 614 615 D2 D3 240 1 1 1 1 1
OT8724 644 645 D2 D3 240 1 1 1 1 1
OT8726 674 675 D2 D3 240 1 1 1 1 1
OT8728 704 705 D2 D3 240 1 1 1 1 1
OT8730 734 735 D2 D3 240 1 1 1 1 1
OT8732 764 765 D2 D3 240 1 1 1 1 1
OT8734 794 795 D2 D3 240 1 1 1 1 1
OT8736 824 825 D2 D3 240 1 1 1 1 1
OT8738 854 855 D2 D3 240 1 1 1 1 1
OT8740 884 885 D2 D3 240 1 1 1 1 1
OT8742 914 915 D2 D3 240 1 1 1 1 1
OT8744 944 945 D2 D3 240 1 1 1 1 1
OT8846 954 955 D2 D3 240 1 1 1 1 1
OT8746 974 975 D2 D3 240 1 1 1 1 1
OT8848 989 990 D2 D3 240 1 1 1 1 1
OT8748 1004 1005 D2 D3 240 1 1 1 1 1
OT8850 1014 1015 D2 D3 240 1 1 1 1 1
OT8750 1034 1035 D2 D3 240 1 1 1 1 1
OT8852 1054 1055 D2 D3 240 1 1 1 1 1
OT8752 1064 1065 D2 D3 240 1 1 1 1 1
OT8754 1094 1095 D2 D3 240 1 1 1 1 1
OT8756 1124 1125 D2 D3 240 1 1 1 1 1
OT8758 1154 1155 D2 D3 240 1 1 1 1 1
OT8760 1184 1185 D2 D3 240 1 1 1 1 1
OT8762 1214 1215 D2 D3 240 1 1 1 1 1
OT8764 1244 1245 D2 D3 240 1 1 1 1 1
OT8766 1274 1275 D2 D3 240 1 1 1 1 1
OT8768 1304 1305 D2 D3 240 1 1 1 1 1
OT8770 1334 1335 D2 D3 240 1 1 1 1 1
OT8772 1364 1365 D2 D3 240 1 1 1 1 1
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OT8774 1394 1395 D2 D3 240 1 1 1 1 1
OT8776 1424 1425 D2 D3 240 1 1 1 1 1
SJS519 415 418 D4 D1 309 1 1 1 0 0
SJS521 475 478 D4 D1 309 1 1 1 0 0
SJS523 536 539 D4 D1 309 1 1 1 0 0
SJS525 596 599 D4 D1 309 1 1 1 0 0
SJS527 659 662 D4 D1 309 1 1 1 0 0
ST3941 691 694 D4 D1 309 1 1 1 0 0
SJS529 715 718 D4 D1 309 1 1 1 0 0
SJS531 779 782 D4 D1 309 1 1 1 0 0
SJS533 835 838 D4 D1 309 1 1 1 0 0
ST3931 858 861 D4 D1 309 1 1 1 0 0
SJS535 899 902 D4 D1 309 1 1 1 0 0
SJS537 955 958 D4 D1 309 1 1 1 0 0
SJIC207 1037 1040 D4 D1 309 1 1 1 0 0
SJS539 1016 1019 D4 D1 309 1 1 1 0 0
SJS541 1073 1076 D4 D1 309 1 1 1 0 0
ST3943 1088 1091 D4 D1 309 1 1 1 0 0
SJS513 1104 1107 D4 D1 309 1 1 1 0 0
SJS543 1136 1139 D4 D1 309 1 1 1 0 0
SJS545 1195 1198 D4 D1 309 1 1 1 0 0
ST3935 1223 1226 D4 D1 309 1 1 1 0 0
SJS547 1259 1262 D4 D1 309 1 1 1 0 0
SJS549 1312 1315 D4 D1 309 1 1 1 0 0
SJS520 411 414 D2 D3 309 1 1 1 0 0
SJS512 454 457 D2 D3 309 1 1 1 0 0
SJS522 477 480 D2 D3 309 1 1 1 0 0
SJS524 537 540 D2 D3 309 1 1 1 0 0
SJS526 597 600 D2 D3 309 1 1 1 0 0
SJS528 655 658 D2 D3 309 1 1 1 0 0
SJS530 717 720 D2 D3 309 1 1 1 0 0
ST3940 746 749 D2 D3 309 1 1 1 0 0
SJS532 773 776 D2 D3 309 1 1 1 0 0
SJS534 837 840 D2 D3 309 1 1 1 0 0
SJS536 893 896 D2 D3 309 1 1 1 0 0
ST3930 935 938 D2 D3 309 1 1 1 0 0
SJS538 957 960 D2 D3 309 1 1 1 0 0
SJS540 1017 1020 D2 D3 309 1 1 1 0 0
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SJS542 1077 1080 D2 D3 309 1 1 1 0 0
SJS544 1137 1140 D2 D3 309 1 1 1 0 0
ST3942 1158 1161 D2 D3 309 1 1 1 0 0
ST3900 1236 1239 D2 D3 309 1 1 1 0 0
SJIC204 1204 1207 D2 D3 309 1 1 1 0 0
SJS546 1197 1200 D2 D3 309 1 1 1 0 0
SJS548 1258 1261 D2 D3 309 1 1 1 0 0
SJS506 1280 1283 D2 D3 309 1 1 1 0 0
ST3934 1295 1298 D2 D3 309 1 1 1 0 0
SJS550 1318 1321 D2 D3 309 1 1 1 0 0
SJS508 1397 1400 D2 D3 309 1 1 1 0 0
SJR2103 469 472 D4 U4 309 1 1 1 0 0
SJR2107 529 532 D4 U4 309 1 1 1 0 0
SJR2111 589 592 D4 U4 309 1 1 1 0 0
SJR2115 649 652 D4 U4 309 1 1 1 0 0
SJR2219 709 712 D4 U4 309 1 1 1 0 0
SJR2123 769 772 D4 U4 309 1 1 1 0 0
SJR2127 829 832 D4 U4 309 1 1 1 0 0
SJR2131 889 892 D4 U4 309 1 1 1 0 0
SJR2135 949 952 D4 U4 309 1 1 1 0 0
SJR2139 1009 1012 D4 U4 309 1 1 1 0 0
SJR2143 1069 1072 D4 U4 309 1 1 1 0 0
SJR2151 1189 1192 D4 U4 309 1 1 1 0 0
SJR2155 1249 1252 D4 U4 309 1 1 1 0 0
SJR2159 1309 1312 D4 U4 309 1 1 1 0 0
SJR2108 306 309 U4 D3 309 1 1 1 0 0
SJR2112 366 369 U4 D3 309 1 1 1 0 0
SJR2116 422 425 U4 D3 309 1 1 1 0 0
SJR2120 486 489 U4 D3 309 1 1 1 0 0
SJR2124 546 549 U4 D3 309 1 1 1 0 0
SJR2128 606 609 U4 D3 309 1 1 1 0 0
SJR2132 666 669 U4 D3 309 1 1 1 0 0
SJR2136 726 729 U4 D3 309 1 1 1 0 0
SJR2140 786 789 U4 D3 309 1 1 1 0 0
SJR2144 839 842 U4 D3 309 1 1 1 0 0
SJR2148 906 909 U4 D3 309 1 1 1 0 0
SJR2152 965 968 U4 D3 309 1 1 1 0 0
SJR2156 1026 1029 U4 D3 309 1 1 1 0 0
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SJR2160 1085 1088 U4 D3 309 1 1 1 0 0
SJR2164 1146 1149 U4 D3 309 1 1 1 0 0
SJR2168 1207 1210 U4 D3 309 1 1 1 0 0
GT15184 10 10 D2 D3 0 1 1 1 1 1
GT42230 66 66 D2 D3 0 1 1 1 1 1
GT4411 71 71 D4 D1 0 1 1 1 1 1
GT42701 109 109 D4 D1 0 1 1 1 1 1
GT15178 161 161 D2 D3 0 1 1 1 1 1
GT40239 188 188 D4 D1 0 1 1 1 1 1
GT9848 225 225 D2 D3 0 1 1 1 1 1
GT15149 235 235 D4 D1 0 1 1 1 1 1
GT42778 253 253 D2 D3 0 1 1 1 1 1
GT15145 256 256 D4 D1 0 1 1 1 1 1
GT15143 278 278 D4 D1 0 1 1 1 1 1
GT62036 300 300 D2 D3 0 1 1 1 1 1
GT44232 308 308 D2 D3 0 1 1 1 1 1
GT48034 335 335 D2 D3 0 1 1 1 1 1
GT44908 354 354 D2 D3 0 1 1 1 1 1
GT45300 367 367 D2 D3 0 1 1 1 1 1
GT62195 412 412 D4 D1 0 1 1 1 1 1
GT66222 427 427 D2 D3 0 1 1 1 1 1
GT61993 442 442 D4 D1 0 1 1 1 1 1
GT4431 456 456 D4 D1 0 1 1 1 1 1
GT40290 506 506 D2 D3 0 1 1 1 1 1
GT60174 533 533 D2 D3 0 1 1 1 1 1
GT47866 563 563 D4 D1 0 1 1 1 1 1
GT47867 565 565 D4 D1 0 1 1 1 1 1
GT48967 623 623 D4 D1 0 1 1 1 1 1
GT66239 638 638 D4 D1 0 1 1 1 1 1
GT47795 664 664 D4 D1 0 1 1 1 1 1
GT42783 684 684 D4 D1 0 1 1 1 1 1
GT66248 688 688 D2 D3 0 1 1 1 1 1
GT4421 722 722 D4 D1 0 1 1 1 1 1
GT27783 730 730 D4 D1 0 1 1 1 1 1
GT44969 759 759 D4 D1 0 1 1 1 1 1
GT15219 802 802 D4 D1 0 1 1 1 1 1
GT42123 811 811 D4 D1 0 1 1 1 1 1
GT66943 815 815 D4 D1 0 1 1 1 1 1
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GT84954 849 849 D2 D3 0 1 1 1 1 1
GT66266 868 868 D2 D3 0 1 1 1 1 1
GT66265 871 871 D2 D3 0 1 1 1 1 1
GT40291 940 940 D4 D1 0 1 1 1 1 1
GT66270 980 980 D2 D3 0 1 1 1 1 1
GT44259 982 972 D2 D3 0 1 1 1 1 1
GT15190 1103 1103 D2 D3 0 1 1 1 1 1
GT44289 1164 1164 D4 D1 0 1 1 1 1 1
GT66423 1202 1202 D4 D1 0 1 1 1 1 1
GT40292 1225 1225 D2 D3 0 1 1 1 1 1
GT27328 1261 1261 D2 D3 0 1 1 1 1 1
GT44968 1262 1262 D2 D3 0 1 1 1 1 1
GT42702 1280 1280 D2 D3 0 1 1 1 1 1
GT44907 1291 1291 D4 D1 0 1 1 1 1 1
GT66258 1325 1325 D2 D3 0 1 1 1 1 1
GT66231 1327 1327 D4 D1 0 1 1 1 1 1
GT61992 1342 1342 D2 D3 0 1 1 1 1 1
GT44977 1344 1344 D4 D1 0 1 1 1 1 1
GT66216 1347 1347 D2 D3 0 1 1 1 1 1
GT44451 1350 1350 D4 D1 0 1 1 1 1 1
GT4342 1370 1370 D2 D3 0 1 1 1 1 1
GT44101 1380 1380 D4 D1 0 1 1 1 1 1
GT66260 1384 1384 D2 D3 0 1 1 1 1 1
GT44228 1415 1415 D2 D3 0 1 1 1 1 1
GT26505 1439 1439 D4 D1 0 1 1 1 1 1
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