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On Integrating POMDP and Scenario MPC for Planning under
Uncertainty – with Applications to Highway Driving

Carl Hynén Ulfsjöö1 and Daniel Axehill1

Abstract— Motion planning and decision-making while con-
sidering uncertainty is critical for an autonomous vehicle to
safely and efficiently drive on a highway. This paper presents
a new combined two-step approach for this problem, where a
partially observable Markov decision process (POMDP) is tightly
coupled with a scenario model predictive control (SCMPC) step.
To generate the scenarios in the SCMPC step, the solution to
the POMDP is used together with a novel scenario-reduction
procedure, which selects a small representative subset of all
scenarios considered in the POMDP. The resulting planner is
evaluated in a simulation study where the impact of the two-step
approach and the scenario-reduction method is shown.

I. INTRODUCTION

The development of advanced driver assistance systems
and autonomous vehicles has received much interest over
the past decade from industry and academia alike. As the
technology develops it has the potential of revolutionizing
the transportation sector. However, there are still many
technological hurdles to cross before fully autonomous
vehicles on public roads will be commonplace. One such
hurdle is the autonomous system’s ability to reason about
the uncertainty in its environment and choose an appropriate
action, that considers the uncertainty without becoming overly
conservative. Related to this is the decision makers ability to
reason about how traffic participants cooperate with each other
and with the autonomous vehicle, as this can drastically reduce
the uncertainty. This is especially important for heavy vehicles
as their slow longitudinal dynamics and large size make it
hard to efficiently maneuver if the surrounding vehicles are
not cooperative. Investigating this for highway driving such
as the situation depicted in Fig. 1, is the main focus of this
work.

A. Related work

Many methods have been proposed to solve this planning
problem. The more traditional approach is to decompose
the problem into separate prediction, behavior planning and
trajectory planning stages that operate in a hierarchical fashion
[1], [2]. This greatly simplifies the problem and allows the
subproblems to be tackled independently, but e.g. makes it
hard to explicitly model interactions between the ego and the
environment, which can lead to reduced performance [3], [4].

Another common approach is to jointly plan and predict,
which means that the planned ego motion is considered while
the surrounding agents are predicted. The tightness of the
coupling between planning and prediction varies for different
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Fig. 1: The investigated driving situation, where the ego
vehicle has to overtake a vehicle with faster, high density
traffic in the passing lane.

methods. One approach typical for partially observable
Markov decision process (POMDP) based planning methods
[5]–[8] is to predict the surrounding vehicles in closed loop
within one planning cycle. An alternative way of coupling the
planner and predictor is taken by e.g. [3], where the predictor
and planner are separate but the planned ego trajectory is
used as an input to the predictor. The largest advantage of the
coupled approach is that interactions can be directly included
in the plan. The drawback of this is that performing the
prediction within one planing cycle, limits which planning
and prediction methods that can be used, as it increases the
dimension of the configuration space and typically requires
lightweight prediction algorithms.

Existing planning methods handle prediction and estimation
uncertainty in various ways. The established technique is
to only plan while considering one deterministic trajectory
for each of the surrounding vehicles, and let feedback and
replanning handle disturbances. This can be very effective
and is used by many of the early autonomous vehicles [2].
This method is, however, purely reactive as it does not
adjust its plan until after a disturbance has affected the
system in a measurable way. A more proactive approach is to
take the uncertainty into account while predicting and plan
while considering that the state of the surrounding vehicles
is distributed according to some probability distribution or
belongs to some set. This approach is taken by e.g. [3], [9],
[10], which use different flavors of model predictive control
(MPC) to handle the stochastic prediction. Still, these types
of planners do not anticipate that the system will receive
more information about the environment in the future, which
could lead to conservative behavior. There are many proposed
methods to account for future measurements in the plan. In
[11] a robust scenario-based approach is taken, where the
prediction is represented by multiple possible sets, which
have to be avoided. From the time that the sets become
disjoint, they are seen as different and are allowed to use
different plans. In [12] a similar technique is used, but instead
of a robust prediction they use a probabilistic prediction
together with stochastic MPC and assume that two modes are
distinguishable when the β-confidence ellipsoids are disjoint.



Finally, there are many existing planners that anticipate future
measurements by formulating the problem as a POMDP [5]–
[8], [13].

A POMDP is a very natural way of modeling this planning
problem as estimation uncertainty, prediction uncertainty
and future measurements are all included in the model.
POMDPs are generally very hard to solve, however advances
in computational power as well as improved online POMDP
solvers [14]–[17] have increased their popularity. Despite
these developments, large problems are still hard to solve,
especially for problems with long planning horizons and
large action spaces. For this reason POMDPs typically use
a small set of actions and coarse time discretization [7],
[8]. However, this can limit the richness of solutions that
the solver can find and can make the solution unpleasant to
execute. Alternatively, in [5], [6], this is instead alleviated
by planning over handcrafted policies and in [18] by using
reinforcement learned policies to guide the solver through a
larger action space.

B. Contributions

In this work a novel two-step approach to this problem
is investigated, where an initial solution to the POMDP is
improved by a subsequent scenario MPC (SCMPC) step. The
main contributions of this work are:

• A combined two-step POMDP and SCMPC-based plan-
ner that uses the solution from the POMDP directly
in the SCMPC formulation to tightly couple the two
methods.

• A scenario-reduction method that transfers the most
important scenarios from the POMDP to the SCMPC.

• An extensive simulation study where the proposed plan-
ner is evaluated in a complex highway driving situation,
where the advantages of the combined approach and the
scenario-reduction method are shown.

II. PROBLEM FORMULATION

A. Overview

The proposed planning approach consists of two separate
steps algorithmic. In the first step a POMDP is solved. In
a typical online POMDP solver [16] sampled scenarios are
used to represent the uncertainty, and the output from the
solver is sequences of optimal action-observation pairs for
each scenario. The solution can be represented by a belief tree
drawn in Fig. 2, where the optimal solution is highlighted.
In the investigated driving situation, the different colored
scenarios could e.g. represent uncertainty realizations where
an overtake is possible and not possible. Notice that the solver
can only choose which action to perform, while the resulting
observation is dependent on the realization of the stochastic
process, which means that the optimal solution must include
all possible observations for a selected action.

The POMDP is able to plan a discrete sequence of actions
that considers the uncertainty in the problem, however there
are several weak points of this method. Since state-of-the-
art online POMDP solvers use particles to represent the
uncertainty, a large number of particles can be needed to
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Fig. 2: An example of a belief tree that a tree-search based
POMDP solver outputs. The solution is highlighted in black
and the colored dots represent different scenarios.

model the uncertainty sufficiently well. As the planner has
to consider each particle during planning, the computational
requirements are therefore typically high. This leads to a low
planning rate in common POMDP-based planners [7], [13].
Another related problem is that if the action space is large
and planning horizon is long, then the belief tree will be
large and computationally demanding to fully explore. As the
typical way of avoiding this is by simply discretizing time
and the control signals coarsely, this leads to a solution that
will also be coarse.

To remedy this problem, a second planning step is proposed
in this work that uses SCMPC to improve the solution.
The SCMPC problem can use continuous control variables
and a finer time discretization than the POMDP, which can
improve the rough POMDP solution, while at the same
time including beneficial information from it. The SCMPC
integrates naturally with the POMDP on three fronts:

• The sampled scenarios from the POMDP can directly be
transferred to the MPC problem and information from
the POMDP solution can be used to judiciously select
the important scenarios.

• The SCMPC problem can be initialized with the solution
to the POMDP, which can improve performance and
guarantees that the initial solution is feasible.

• Information about which moment in time an uncertainty
is known can be transferred from the POMDP, and be
modeled using so-called nonanticipatory constraints in
the SCMPC. This can be seen in Fig. 2, where certain
scenarios are grouped together and are forced to perform
the same action.

B. Partially Observable Markov Decision Process

A POMDP is defined by the tuple ⟨X ,A,O, T, Z,R, b0, γ⟩.
The state of the world x belongs to the state space X . At
each time-step the ego vehicle can perform an action a from
A, and will then receive an observation o from O together
with a reward R(x,a). The transition function T (x′,x,a) =
p(x′|x,a) describes the probability of ending up in the state
x′, and the observation function Z(x′,a,o) = p(o|x′,a)
then gives the probability of receiving the observation o after
executing the action a in the state x. Finally, b0 represents
the initial belief p(x(t0)), and γ ∈ [0, 1) is a discount factor



that balances how much short-term rewards should be favored
relative future ones.

The solution to a POMDP is a policy π : b → a that
maximizes the expected discounted reward Vπ(b) of executing
that policy from the belief b over an infinite horizon.

π∗(b0) = argmax
π

E

[
∞∑
t=0

γtR(x(t), π(b(t))) |b(0) = b0

]
︸ ︷︷ ︸

Vπ(b0)

, (1)

In the following sections the different parts of the POMDP
model are described.

1) State representation: To include interaction effects in
the planning, the states of the nearby vehicles are included in
the state representation. The full state vector is then described
as

x =
[
xT
e xT

1 . . . xT
M

]T
, (2)

where xe is the state of the ego vehicle, xj , j ∈ {1, . . . ,M}
is the state of the j:th surrounding vehicle and M is the
number of surrounding vehicles considered during planning.
The state of the ego vehicle is in turn modeled as

xe =
[
xe ye ψe ve re

]T
, (3)

where x, y, and ψ represent the pose of the vehicle, v the
longitudinal velocity, and r ∈ Z is the lane that the vehicle
tracks (zero at the rightmost lane and increasing to the left).
Each surrounding vehicle is modeled similarly

xj =
[
xj yj ψj vj rj θT

j

]T
, (4)

where the parameter vector θ has been added, which contains
the model parameters of that specific vehicle.

2) Action representation: To efficiently solve the POMDP
problem the action space must be discrete and its size should
be as small as possible to avoid unnecessary branching. The
actions are modeled as separate longitudinal actions (alon ∈
Alon) and lateral lane-change actions (alat ∈ Alat). Finally, the
full action space is defined as A = Alon ×Alat. The lateral
actions are defined as discrete lane-changing decisions, Alat =
{−1, 0, 1}, which represent lane change right (LCR), lane
keep (LK) and lane change left (LCL) actions respectively.
The longitudinal actions are then defined as low-level desired
accelerations, Alon = {−2m/s2, 0m/s2, 0.5m/s2}, which
represent braking, cruising and accelerating. To further limit
the action space only valid lane changes are permitted and
lane-change actions can only be combined with the cruising
action.

3) Transition function: The vehicles are modeled using a
bicycle model in which the dynamics are defined as

ẋ = v cos(ψ) (5a)
ẏ = v sin(ψ) (5b)

ψ̇ = vκ (5c)
v̇ = alon, (5d)

where κ is the signed curvature and alon is the longitudinal
acceleration. The curvature is calculated by assuming that the

TABLE I: Description and values of all parameters in the
prediction model.

Parameter Description Value

IDM
v0 desired speed [22, 28]
T minimum safe time ahead [1.5, 3.00]
s0 minimum distance ahead 5
a maximum acceleration 1.25
b comfortable deceleration 2
δ acceleration exponent 4

MOBIL
p politeness factor [0, 1]
bsafe maximum safe deceleration 4
athr threshold to consider lane change preferable 0.2
abias bias to the rightmost lane 0.25

Yield classifier
αlc threshold of lane-change classifier [0.2, 1]

vehicle tries to follow the center of its current lane using pure
pursuit [19]. Additionally, the dynamics of the route state r
are defined as r(t+1) = r(t)+alat, where alat represents the
discrete lane-change decision. To include the bicycle model
in the POMDP it is solved numerically using a Runge-Kutta
method.

The dynamical behavior is the same for both the ego and
the surrounding vehicles, what differs between them is how
alon and alat are selected. For the ego vehicle they are selected
from the action set in Section II-B.2 during the tree search
of the POMDP solver, while for the other vehicles they are
selected by prediction models.

Prediction of surrounding vehicles: For simplicity, two
typical traffic simulation models are used for the prediction
of the surrounding traffic participants, namely the intelligent
driver model (IDM) [20] for the longitudinal prediction and
MOBIL [21] for prediction of lane changes. In addition to
these, a simple lane-changing classifier is used to determine
if a vehicle will actively yield to a merging vehicle. The
parameters of these three models are described in Table I,
where the assumed value or range of possible values are also
shown. For the ranges it is assumed that the true parameter
value is uniformly distributed between the bounds.

IDM is a commonly used traffic simulation model that
predicts the longitudinal acceleration of a vehicle by assuming
that the vehicle tries to balance driving at its desired velocity
and keeping a, according to its own parameters, reasonable
distance to the vehicle ahead. With ∆s defined as the distance
and ∆v as the speed difference between the predicted vehicle
and the vehicle ahead of it, the desired distance to the vehicle
ahead is defined as

s∗ = s0 + vT +
v∆v

2
√
ab
.

The predicted acceleration is then given by

aIDM = a

(
1−

(
v

v0

)δ

−
(
s∗

∆s

)2
)
.

MOBIL is traffic simulation model that predicts if a
vehicle will perform a lane change. It does this by weighting



the egotistical improvement of a lane change against the
slowdown it will cause the rest of the traffic. If this is greater
than a threshold and the lane change is safe, it will perform the
maneuver. This can be defined by denoting the predicted and
following vehicles xp and xf , respectively. The acceleration
of a vehicle is denoted aidm(·) if the lane change does not
take place, and a′idm(·) if it does. A lane change is considered
preferable for a vehicle if the following conditions are true

a′idm(xf ) ≤ bsafe (6a)

∆xp
− p∆xf

≥ athr −

{
abias if r(t+ 1) = 0,

0 otherwise,
(6b)

where ∆xp = a′idm(xp)−aidm(xp) is the increase in accelera-
tion of the predicted vehicle and ∆xf

= aidm(xf )− a′idm(xf )
is the decrease in acceleration for the following vehicle.

To model if a vehicle will yield or not, a lane-change
classifier is used that predicts the probability that a vehicle
is changing lanes to another vehicle’s current lane, called
P̂ (LC|z), where z is a vector that consists of the current pose
and velocity of all vehicles.The classifier uses a logistic model
trained on the NGSIM I-80 and US-101 freeway driving
datasets using the following features: signed lateral distance to
the lane center, signed lateral velocity relative the lane center
and difference in longitudinal velocity aw well as distance to
the vehicle ahead and the two closest vehicles in the adjacent
merging lane. Note that this ignores possible usage of turn
signals, but they could be added in the classifier. Every vehicle
is then assumed to do its best to avoid a collision, which is
done by always selecting the vehicle in front of the predicted
vehicle as the target vehicle in the IDM. What differentiates
different drivers from each other is how they treat potential
merging vehicles during the merging procedure. Each driver
estimates the probability that a candidate vehicle will merge,
and if this probability is above the driver-specific threshold,
that is P̂ (LC|z) > αlc, then that vehicle is classified as
an additional target vehicle that the IDM should yield for.
Depending on the value of this threshold the cautiousness of
the driver will vary from the extremes of yielding for every
adjacent vehicle at αlc = 0, to only yielding for vehicles
directly in front of the predicted vehicle at αlc = 1.

4) Observation function: The key part of the POMDP is
the partial observability, i.e., that we have to plan without
exactly knowing the state of the system, while at the same
time knowing that more information about the state might
be available in the future. This information is available in
the form of a noisy partial observation of the state. In the
POMDP formulation it is modeled as

o =
[
oT
1 . . . oT

M

]T
oj =

[
xj yj vj

]T
+ ej

ej ∼ N (0, Rj).

That is, we only directly measure the position and velocity of
the vehicles, and the distribution of the remaining state vector
has to be inferred from these noisy measurements. Note that
only the nearest M vehicles, within 200m, are included in
the state and observation vector.

TABLE II: The weights used by the cost function.

wvel wacc wbrake wjerk wlc wabort wrisk wbias wcrash winvalid

5 4 50 25 25 250 2500 5 106 106

TABLE III: The parameter values used in the RSS model for
the ego and the surrounding vehicles.

Reaction time amax bmin bmax

Ego 1.00 0.5 4.0 8.0
Other 1.25 2.0 6.0 8.0

5) Reward function: The reward function in the POMDP
is modeled using four main parts, one to reward progress
toward the goal, one to penalize non-smooth behavior, one
to penalize risky situations and finally one to model hard
constraints. These parts are defined as costs, i.e. the goal is
to minimize them. Because of this, their signs are flipped in
the reward function. The individual parts are defined as

Jvel = wvel|ve − v∗| (7a)

Jsmooth = wacca
2
lon︸ ︷︷ ︸

Jacc

+wbrakea
−
lon︸ ︷︷ ︸

Jbrake

+wjerkȧ
2
lon︸ ︷︷ ︸

Jjerk

+Jlc (7b)

Jrisk = wrisk

(
(dsafe,f − df)

+

dsafe,f
+

(dsafe,r − dr)
+

dsafe,r

)
(7c)

Jconst = wcrash1Xobs(xe) + winvalid1Ainvalid(a), (7d)

where v∗ is the desired speed, (·)−, (·)+ denote the negative
and positive part, dsafe,f, dsafe,r are the safe front and rear
distances, df , dr are the distances to the vehicle ahead and
behind, finally 1A(x) is an indicator function, which is 1 if
x ∈ A and otherwise 0. The sets Xobs and Ainvalid represent the
states occupied with obstacles and the invalid actions defined
in Section II-B.2, respectively. Jlc penalizes the solution with
wlc when the LCR or LCL action is taken, and with wabort if
a lane change is aborted. In addition to these parts, an extra
cost of wbias is added when not driving in the rightmost lane
to enforce driving norms. The weights of the cost function
are presented in Table II and have been selected to roughly
rank the importance of the different parts of the cost function.

The safety distances are defined using the Responsibility-
Sensitive Safety (RSS) model [22] using the parameters in
Table III. The parameters are different for the ego and the
surrounding vehicles, which is done to model the fact that
the autonomous ego vehicle has a faster minimum reaction
time than a human driver. However, as ego is a heavy vehicle,
while the surrounding vehicles are assumed to be passenger
cars, it has slower longitudinal dynamics. In RSS a vehicle
is not responsible for keeping a safe distance to the vehicle
behind it, dsafe,r is therefore only used to model the risk
introduced by a lane change and is otherwise set to 0. These
distances should not be seen as the true RSS distances that
we have to enforce to guarantee safety, but as comfortable
safety distances for nominal driving. If the true RSS distance
is violated the proper response defined by [22] should still
be followed, but this is assumed to be enforced by a separate
safety system.



C. Scenario Model Predictive Control

Scenario model predictive control uses the typical MPC
technique where a finite-horizon optimal control problem
(FHOCP) is solved in each sample, and then only the first
portion of the solution is executed. It uses multiple scenarios
to represent the uncertainty in the system and jointly solves
the FHOCPs for the different scenarios, with the initial part
of the control signal common for all scenarios.

To reduce the computational complexity of the SCMPC
step only the longitudinal state is improved, while the lateral
action from the POMDP is assumed to be fixed. In addition
to this, the states of the surrounding vehicles are not included
in the state space. Instead, they are seen as fixed predictions
taken from the solution to the POMDP, and not affected by
the ego vehicle’s deviation from the POMDP solution. The
SCMPC problem is formulated as

min
x̃,u

K∑
i=1

pi

(
Φ(x̃iN , p

i
N ) +

N−1∑
k=0

l(x̃ik, u
i
k, p

i
k)

)
(8a)

s.t. x̃ik+1 = f(x̃ik, u
i
k) (8b)

x̃ik+1 ∈ Xfree(p
i
k+1) (8c)

umin ≤ uik ≤ umax (8d)

u̇min ≤ u̇ik ≤ u̇max (8e)

uil = ujl , l = 0, . . . , ni,j (8f)

x̃i0 = x̃0, (8g)

where (8b) to (8g) should hold for the whole time horizon N
(k ∈ {0, . . . N − 1}) and all K scenarios (i, j ∈ {1, . . .K}).
Subscripts are used to index time and superscripts are
used to index the different scenarios. The controlled state
for scenario i with the time index k is defined as x̃ik =[
xik yik ψi

k vik
]T

, the corresponding control signal, uik,
is defined as the longitudinal acceleration and pik is the state
of the surrounding vehicles, which is seen as a parameter
predicted by the POMDP. The probability of a scenario is
described by pi, where

∑K
i=1 pi = 1. The cost function

l(x̃ik, u
i
k, p

i
k) is formulated to be equivalent with the reward

function in the POMDP, described in Section II-B.5. However,
as the SCMPC only performs longitudinal planning and does
not have to enforce constraints with the cost function, it
is defined to only include Jvel, Jacc, Jbrake, Jjerk and Jrisk.
The terminal cost Φ(x̃iN , p

i
N ) is defined similarly but only

includes Jjerk and Jrisk. The system dynamics (8b) are defined
by numerically simulating the bicycle model defined in
Section II-B.3 using a Runge-Kutta method. Xfree(p

i
k+1) is

the obstacle-free set and is described by a convex polytope.
This polytope is estimated by iteratively performing a line
search to expand an object-oriented bounding box of the
ego vehicle, see [23] for details. The bounds on the control
signal are set to umin = −2m/s, umax = 0.5m/s and
u̇max = −u̇min = 1m/s2. Finally, x0 is the initial state of the
ego vehicle and (8f) defines the nonanticipatory constraints,
where ni,j is a parameter predicted by the POMDP and
denotes the time-step after which scenario i and j are
distinguishable.

D. Scenario reduction

The size of the SCMPC problem grows as more scenarios
are included. One method of keeping the solution time
manageable would be to use a distributed algorithm to
solve the problem [24]. Another approach, which is taken
in this work and can be combined with the former method,
is to instead select a smaller representative subset of all
the scenarios. This is called scenario reduction and is an
important technique to simplify stochastic programs [25],
[26]. In this work, it is applied in a novel way, where the
large number of scenarios in the sampling-based POMDP
solver is reduced to a small user-defined number of scenarios
in the SCMPC formulation. The SCMPC formulation differs
from the typical problems where scenario reduction is used,
which tend to be stochastic linear programs. In addition to
this, more information is associated with a scenario from the
solution to the POMDP than a traditional scenario. For these
reasons, this work focuses more on the practical side of these
algorithms.

Let J =
[
ξ1 . . . ξM

]
denote the set of all scenarios, where a

scenario can be seen as a sequence of states x. The scenario-
reduction algorithm should then find a subset I with K
elements that best represents the set. This can be formulated
as

min
I

∑
ξ1∈J\I

p(ξ1) min
ξ2∈I

d(ξ1, ξ2) (9a)

s.t. I ⊂ J, |I| = K, (9b)

where p(ξ1) is the probability of scenario ξ1 and d(·, ·) is
a function, which gives the distance between two scenarios.
This is a combinatorial problem and instead of directly solving
it, a forward heuristic is used that greedily adds scenarios
from J to the set I that maximizes the reduction of the
distance between the sets. For more information, see [25].

To determine the distance between scenarios a probability
distribution is associated with each scenario, which represents
the estimated distribution of the surrounding vehicles if the
scenario were to take place. The distribution is estimated
using a particle filter with the scenario as the observation.
The distance between two scenarios is then defined as the
distance between the associated probability distributions,
which is calculated using a symmetrized Kullback-Leibler
(KL) divergence. To simplify calculations the probability
distributions are approximated as Gaussian distributions, for
which the KL divergence admits a closed-form solution. The
result of using KL divergence to measure the distance is that
two scenarios will be considered more distant if they are
different in a state where there is a low level of uncertainty
than in a state with large level of uncertainty. For highway
driving this means that variation in lateral position is penalized
much more than variation in longitudinal position, as the latter
is typically more certain.

III. SIMULATIONS

The proposed two-step planner is evaluated in the highway
driving scenario shown in Fig. 1, where there is a slow vehicle



TABLE IV: The parameters of the POMDP-SCMPC planner.

Parameter Value

Planning frequency 1Hz
Tracked vehicles (filter) 10
Filter rate 20Hz

POMDP
Number of scenarios 30
Maximum run time 900ms
Search depth 15
Time discretization 1 s
Discount factor 0.95
Predicted vehicles 4

SCMPC
Maximum run time 100ms
Time discretization 0.33 s
Time horizon 7 s

ahead of the ego vehicle with a speed of 60 km/h. The rest
of the traffic is traveling at the speed defined in Table I, i.e.
an average of 90 km/h, which is also the desired ego vehicle
speed. The parameters are randomized for each simulation
and the initial position of each vehicle is also randomized
but with a constant traffic density of 15 vehicles per km. The
simulation environment is based on CARLA and SUMMIT
[27], [28].

The states of the nearest vehicles, within 200m, are tracked
using a marginalized particle filter. DESPOT [16] is used to
solve the POMDP defined in Section II-B using the nearest
vehicles. DESPOT uses an upper and a lower bound to guide
the search. The upper bound is calculated by assuming that
all surrounding vehicles suddenly disappear, and the lower
bound is estimated by performing rollouts using an IDM. To
formulate the SCMPC problem, CasADi [29] is used. It is
then solved using the nonlinear solver IPOPT [30] with the
linear solver MA27. To compensate for the planing delay,
the initial belief is simulated forward with the previous plan.
The parameters of the planner are detailed in Table IV.

Seven different configurations of the planner are evaluated.
To generate a baseline, a configuration without the SCMPC
step is used. Furthermore, five different variations of the
POMDP-SCMPC planner are evaluated with 1, 3, 5, 8 and 30
scenarios selected by the scenario-reduction algorithm. Finally,
to assess the impact of the scenario-reduction algorithm
a version of the POMDP-SCMPC planner is used with 5
randomly sampled scenarios. As the vehicle parameters and
the initial state are randomized, the different planners are
evaluated using simulations with the same initial seed. This
reduces the variation, however, note that the planner-simulator
system is still not deterministic. The planners are each
evaluated on 50 different initial seeds with a simulation time
of 60 s. All configurations apart from the POMDP-SCMPC
with 30 scenarios can run in real time with a maximum of
100ms of the planning time allotted to the SCMPC stage.
With 30 scenarios, on the other hand, the solution time ranges
from 0.5 s to 1 s. For this configuration, the simulation is
therefore slowed down to wait for the SCMPC stage to finish.

The results from this are summarized in Table V, where the

TABLE V: Average cost per second of using the POMDP and
the POMDP-SCMPC with 1, 3, 5, 8 and 30 scenarios. The
POMDP-SCMPC* uses randomly sampled scenarios instead
of the scenario-reduction algorithm.

J Jvel Jacc Jbrake Jjerk Jrisk

POMDP 40.1 31.8 0.34 1.50 1.18 5.24
POMDP-SCMPC (1) 43.4 31.6 0.25 1.68 1.82 8.13
POMDP-SCMPC (3) 40.0 31.4 0.19 0.80 1.01 6.60
POMDP-SCMPC (5) 37.7 31.4 0.17 0.63 0.81 4.47
POMDP-SCMPC (8) 37.5 31.8 0.16 0.50 0.66 4.43
POMDP-SCMPC (30) 37.2 32.4 0.16 0.56 0.77 3.32
POMDP-SCMPC* (5) 40.1 31.7 0.18 0.76 1.02 6.45
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Fig. 3: Difference in cost between the different planner
configurations and the POMDP-SCMPC (30) with 95% con-
fidence intervals. A positive value denotes worse performance
compared to POMDP-SCMPC (30).

average cost per second is presented as well as its different
parts. In Fig. 3 the average difference in cost between the
different planner configurations and the POMDP-SCMPC
using all scenarios is plotted together with its 95% confidence
intervals. For conciseness, only the parts related to the
longitudinal state of the vehicle are presented, as all versions
of the planner are equally successful with merging into the
passing lane (31 successes within 60 s with no crashes). Since
all configurations use the same POMDP formulation and
solver parameters, this is quite natural and indicates that no
version of the SCMPC step negatively affects the POMDP’s
ability to find good lateral actions. In the figures it can be
seen that by using the SCMPC with only one scenario from
the scenario reduction algorithm, the overall performance
degrades compared with the pure POMDP. However, as more
scenarios are added to the SCMPC the performance gradually
improves, and with five scenarios the cost is significantly
lower than with the pure POMDP. The trend continues, and
the lowest cost is achieved by the POMDP-SCMPC with all
scenarios. This shows that the increased fidelity available to
the SCMPC allows it to improve the overall performance,
given that enough scenarios are used. By more carefully
looking at the different parts of the cost function, more
information is revealed. For the POMDP-SCMPC with one
scenario it has a lower Jacc than the POMDP planner, while
Jbrake, Jjerk and Jrisk are significantly larger. One reason for
this is that by only using one scenario, as opposed to the pure
POMDP with its 30 scenarios, it is not aware of how uncertain
the future prediction actually is. This means that it likely has
to use a more reactive approach to handle the uncertainty,
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Fig. 4: The position of the ego vehicle plotted in blue and the surrounding vehicles in orange during a merge into the passing
lane and during the return to the original lane.

leading to more risky situations, which require more braking.
This becomes even more clear when the POMDP-SCMPC
with one scenario is compared with the POMDP-SCMPC
with more scenarios. As more scenarios are added, Jacc, Jbrake,
Jjerk and Jrisk continue to decrease, but after five scenarios
all parts of the cost function apart from Jrisk start to flatten
out. This overall pattern is sensible, by using more scenarios
the SCMPC is more aware of how uncertain the future is and
by being more aware of the uncertainty, it is able to select
a control signal that better anticipates the possible future
scenarios.

Finally, comparing the POMDP-SCMPC using the scenario-
reduction algorithm with using the randomly sampled sce-
narios, shows some of its advantages. Using five random
scenarios results in a comparable total cost to just using three
scenarios from the scenario-reduction procedure. Compared
with using five scenarios from the reduction algorithm, it
performs worse in all regards. This is rather logical, with few
random scenarios the solution will vary significantly between
planning cycles, leading to rougher indecisive plans.

An example of a successful overtake maneuver is shown in
Fig. 4, where a POMDP-SCMPC with five scenarios has been
used. In Fig. 5 the ego state for this exact simulation is plotted
together with a simulation using the same seed but with only
the POMDP. This shows some typical characteristics of the
different planners. The POMDP can only use the limited
action set, which gives the control signal its step-like shape
and does not allow it to accelerate during the lane changes.
In contrast to this, the POMDP-SCMPC outputs a smoother
acceleration profile as it has a finer time discretization and
is not limited to three discrete levels of acceleration. Despite
the differences, they share a similar lane action, which mostly
differs because the limited action set leads to a slightly lower
speed.

The effect of using multiple scenarios in the SCMPC for
this exact situation is presented in Fig. 6a, where the ego
state is plotted for all scenarios from the POMDP with the
five most important scenarios highlighted. Note that this does
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Fig. 5: The position, speed, acceleration and lane action
during an overtake for the POMDP and POMDP-SCMPC
with five scenarios.

not show the states of the surrounding vehicles, which are
used to perform the scenario reduction, but only the state
of the ego vehicle. In Fig. 6b the corresponding SCMPC
solutions from just using the first scenario and from using
the first five scenarios are shown. It can be seen that for
the SCMPC with five scenarios, all scenarios have the same
control signal during the first second of the plan. After that
all scenarios but 1 and 3 are considered to be distinguishable
by the POMDP, and are allowed to use different control
signals. Finally, after t = 2 s all scenarios are distinguishable
can use different control signals. This forces the SCMPC to
compromise between the different scenarios and find an initial
control signal that works for all scenarios. When only one
scenario is used the optimal solution is instead to immediately
stop the slight braking and only adapt to the first scenario. If
any of the other scenarios were to happen this would then
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(a) The ego vehicle position and velocity from the POMDP solution
with the five most important scenarios highlighted.
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Fig. 6: The predicted ego state from the POMDP solution
and the acceleration signal from the SCMPC in a lane-change
maneuver.

result in a reactive response during the next planning cycle,
potentially leading to worse performance.

IV. CONCLUSIONS

We proposed a new combined two-step POMDP and
scenario MPC approach to uncertainty-aware planning. It
combines the POMDP’s ability to handle general uncertainty
and ability to find a global solution, with the SCMPC’s
ability to use continuous control actions. The two methods are
coupled together in a novel way, where a scenario-reduction
algorithm extracts the important scenarios from the solution
to the POMDP and transfers them to the SCMPC. This
allows the SCMPC problem to be solved efficiently with a
small number of scenarios. Simulations show that using the
combined approach with the scenario-reduction algorithm
improves the overall performance. Additionally, by including
more scenarios from the POMDP in the SCMPC, it can better
anticipate the uncertainty and reduce the risk.

For future work, the long-term goal is to implement the
planner on a full-scale test vehicle, however before that some
areas need to investigated and improved. Other methods
of performing the scenario reduction could be investigated
to incorporate more domain knowledge into the algorithm.
Additionally, a limitation of the proposed planner is the
large computational requirements, and thus the low running
frequency. This problem could be alleviated by using a parallel
POMDP solver such as HyP-DESPOT [17] and a distributed
approach to the SCMPC [24]. Finally, integrating more data-

driven prediction models in the POMDP is crucial to handle
driving situations where the other traffic participants behave
in a less structural manner.
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