
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2022

2D Orientation Estimation
Using Machine Learning
With Multiple 5G Base
Stations

Nikil Johny Kunnappallil and Jianxin Qu

Master of Science Thesis in Electrical Engineering

2D Orientation Estimation Using Machine Learning With Multiple 5G Base
Stations

Nikil Johny Kunnappallil and Jianxin Qu

LiTH-ISY-EX–22/5527—SE

Supervisor: Isaac Skog, Chuan Huang
isy, Linköpings universitet

Deep Shrestha and Yuxin Zhao
Ericsson Research, Linköping

Examiner: Fredrik Gustafsson
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2022 Nikil Johny Kunnappallil and Jianxin Qu

Abstract

Localization of mobile devices has implications on a multitude of use cases such
as estimating the location of the user originating an emergency call, localiza-
tion of devices to enable autonomous operation required by industrial Internet
of Things (IoT) use cases, etc. In futuristic use cases such as Augmented Real-
ity (AR), Virtual Reality (VR), Extended Reality (XR), autonomous navigation of
Unmanned Aerial Vehicles (UAVs), we will require the capability of estimating
orientation in addition to position of such devices for efficient and effective pro-
visioning of these services to the end-users.

One way to handle the problem of finding the orientation of devices is to rely
on the measurements from different sensors like the magnetometer, accelerome-
ter and gyroscope but the limitation of this method is the dependency on these
sensors, and thus cannot be used for some devices which does not have these sen-
sors. Hence these limitations can be overcome by using data-driven approaches
like Machine Learning (ML) algorithms on received signal features, where a train-
ing dataset with orientation measurements are used to train the ML model that
can transform the received signal measurements to orientation estimates.

The data for the work is generated by using simulator that can simulate the
environment with multiple base stations and receivers. The measurements or
features that are generated from the simulator are the Received Signal Received
Power (RSRP), Time of Arrival (ToA), Line of Sight (LoS) condition, etc. In-order
to find the relationship between the received signal features and orientation, two
nonlinear ML algorithms namely K Nearest Neighbors (KNN) and Random For-
est (RF) are used. The received measurements were investigated and RSRP was
identified as the feature for the ML models.

The ML algorithms are able to estimate the orientation of the User Equipment
(UE) by using KNN and RF, where different features likes RSRP and the informa-
tion about LoS and Non Line of Sight (NLoS). These features were used alone
and also combined to evaluate the performance. The results also shows how in-
terference of radio signals affects the performance of the model. Adding to that,
different combination of received signal features were also used to compare the
performance of the model. Further tests were also done on the trained model to
identify how well it can estimate orientation when a new UE with new position
is introduced.

iii

Acknowledgments

This thesis concludes our master’s studies and these two years studying at Linköping
University. The journey in Sweden started with a lot of differences as we were
both from different cultures and backgrounds.

Thanks to the Ericsson Research Linköping, LINLAB for allowing us to work
on the interesting thesis topic. Special thanks to the supervisors at Ericsson, Deep
Shrestha, and Yuxin Zhao, it would have been impossible to complete the thesis
without their input throughout the thesis, answering all the questions that we
had and giving us directions.

We would also like to thank our supervisors Isaac Skog and Chuan Huang,
and our examiner Fredrik Gustafsson, for providing guidance and new ideas.
The inputs from Deep, Yuxin, Chuan, and Isaac helped us to create the thesis
report.

We would also like to use this opportunity to thank all the teachers, friends,
and colleagues we had during the whole two-year master’s program. All of them
taught us a lot in both academics and social life, and together made beautiful and
memorable moments in life. They were always with us when we were in need and
helped us to grow.

Family is the reason why we are here, their support through these times espe-
cially when you are far away from home was valuable and helped us to complete
our studies on time. We are grateful for their unconditional love and care.

Nikil would like to thank Abin, Agnes, Akshay and Amal for support in dif-
ferent ways during my studies and thesis project so that I was able to complete
the journey of my master’s thesis on time. Finally, thanking God for everything.

Jianxin would like to thank Ahmad, for all his love and support. And the
encouragement and company from family and friends.

Linköping, June 2022
Nikil Johny Kunnappallil and Jianxin Qu

v

Contents

List of Abbreviations ix

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 9

1.2.1 Problem Statement . 9
1.3 Related Work . 9
1.4 Why ML? . 10

2 Theoretical Background 11
2.1 Machine Learning . 11

2.1.1 KNN . 11
2.1.2 Random Forest . 14

2.2 Features . 22
2.2.1 RSRP . 22
2.2.2 ToA . 23
2.2.3 LoS Condition . 24

3 Method 27
3.1 Scenario . 27
3.2 Feature Selection . 29
3.3 Pre-processing of Data . 31

3.3.1 Dataset Structure . 33
3.3.2 Imputing the Missing Values 34
3.3.3 Logarithm Transformation 34

3.4 Analysis of Angles . 35
3.4.1 Difference in Angles . 35
3.4.2 Minimum-variance Estimator of Degrees 35

3.5 Performance Metrics . 36
3.5.1 RMSE . 37
3.5.2 CDF . 37

3.6 ML Algorithms Implementation . 37
3.6.1 KNN . 37

vii

viii Contents

3.6.2 Random Forest . 39

4 Results and Performance Evaluation 41
4.1 Dataset Splitting . 41

4.1.1 Random Selection . 41
4.1.2 Consecutive Selection . 41

4.2 KNN . 43
4.2.1 Obstruction Influence . 43
4.2.2 Interference Level . 44
4.2.3 Evaluation of Orientation Estimation in New UE Positions . 46

4.3 Random Forest . 48
4.3.1 Obstruction Influence . 48
4.3.2 Interference Level . 49
4.3.3 Evaluation of Orientation Estimation in New UE Positions 49

4.4 Random Forest With Modification 52
4.5 Comparison Between KNN and RF Estimation Performance 53

5 Discussion and Conclusions 55
5.1 Discussion . 55

5.1.1 KNN . 55
5.1.2 Random Forest . 56

5.2 Conclusions . 57
5.3 Future Work . 58

5.3.1 Deep Learning And Other Techniques 58
5.3.2 More Scenarios . 59
5.3.3 Large/Multi Antenna Panel 59
5.3.4 More Data . 59
5.3.5 6 Dimension (6D) Positioning 59

A Contributions 63

Bibliography 65

ix

x 0 List of Abbreviations

List of Abbreviations

Abbreviation Full Form

ANN Artificial Neural network
AoA Angle of Arrival
AoD Angle of Departure
AR Augmented Reality
BS Base Station
CDF Cumulative Distribution Function
CNN Convolutional Neural Network
3D 3 Dimension
6D 6 Dimension
DL Deep Learning
DNN Deep Neural Network
EXIP Extended Invariance Principle
GPS Global Positioning System
IoT Internet of Things
IMU Inner Measurement Units
KNN K Nearest Neighbors
LiFi Light-Fidelity
LoS Line of Sight
MARG Magnetic-Angular Rate-Gravity
MIMO Multiple-Input Multiple-Output
ML Machine Learning
MLP Multilayer Perceptron
NaN Not-a-Number
NED North-East-Down
NLoS Non Line of Sight
NR New Radio
OFDM Orthogonal Frequency-Division Multiplexing
PRS Positioning Reference Signal
RF Random Forest
RMSE Root Mean Squared Error
RSS Received Signal Strength
RSRP Received Signal Received Power
ToA Time of Arrival
TRP Transmission and Reception Point
UAV Unmanned Aerial Vehicle
UE User Equipment
VLP Visible Light-Based
VR Virtual Reality
WLAN Wireless Local Area Network
XR Extended Reality

1
Introduction

1.1 Background

A User Equipment (UE) can be any device that is used by an end user for com-
munication such as, a mobile device, laptop, etc. A hardware that is installed
on a device that is used to transmit and receive signals during communication is
called the antenna panel. Orientation of a UE can be defined as the angle between
the antenna panel and a reference plane as shown in Figure 1.1. Orientation of
the UE helps to identify the direction to which the UE is heading with respect to
the reference plane. Orientation can be defined in 3 dimensions in terms of yaw,
pitch and roll as represented in Figure 1.1. This work focuses on estimating the
orientation in terms of yaw.

Currently, accurate localization of mobile devices has implications for a mul-
titude of use cases such as estimating the location of the user originating an emer-
gency call (even when the user is in a Global Positioning System (GPS) denied
zone), localization of devices to enable autonomous operation (both indoor and
outdoor) required by industrial IoT use cases. It is anticipated that the futuris-
tic use cases such as AR, VR, XR, autonomous navigation of UAVs, will require
capability beyond the positioning of the devices for efficient and effective provi-
sioning of these services to the end-users. The extended information that is vital
for these use cases, among many others, is the orientation estimation of the UE to
determine the heading of the device.

For orientation estimation, sensors are typically used to obtain the orienta-
tion of the user equipment. For example, smartphones use inner measurement
units (IMUs) and magnetic-angular rate-gravity (MARG) units to capture user’s
motion to estimate orientation. Generally speaking, three types of sensors are

1

2 1 Introduction

Figure 1.1: UE Orientation in 3D.

commonly used for orientation estimation: accelerometers, gyroscopes, and mag-
netometers [1]. Accelerometers measure the direction of acceleration in 3D space.
It consumes little power but has low precision. Gyroscopes measure angular ve-
locity of motion along one or several axes and are an ideal technology to com-
plement the capabilities of accelerometers. In fact, by combining the two sensors,
accelerometers and gyroscopes, system designers can track and capture complete
motion in 3D space, providing end users with a more realistic user experience,
accurate navigation systems, and other capabilities. Magnetometers measure the
local magnetic field. It is a navigation instrument that can identify the global
coordinate system which is North-East-Down (NED) reference frame [2]. Based
on the measurements of sensors, many different algorithms are designed to cal-
culate orientation. Grace Wahba in 1965 published the first solution in history
for definition of the main rotational problems related to spacecraft attitude [3].
Since then, the algorithms are gradually upgraded to compute more accurate re-
sults based on multiple information sources. Gebre-Egziabher in 2004 combined
all three types sensors to determine attitude [4].

However, all sensors have measurement error. A gyroscope measures the rel-
ative changes in orientation, which drifts slowly over its age and temperature.
An accelerometer measurements are polluted by uncorrelated dynamic acceler-
ations such as the gravity acceleration. A magnetometer measurements are dis-
turbed by various magnetic disturbances such as the local magnetic anomalies.
Therefore, the main challenge of fusion algorithms is to eliminate errors to get
accurate estimates [5]. The solution of most fusion algorithms is to use the predic-
tor–corrector structure, i.e. gyroscope measurements are applied as predictions,
accelerometer and magnetometer measurements are applied to correct predic-
tions. Kalman filter is one of the most popular fusion methods [6], its principle is

1.1 Background 3

to use the Kalman gain to modify the state prediction value to make it approach
the real value. The limitation factor is the assumption that both the process and
the measurement noise are based on Gaussian distribution, although there are
some extended solutions based on adaptive filters, the expensive computational
cost does not make them a better alternatives for small scale applications. An-
other fusion method is the complementary filtering [7], which designs filters to
filter out disturbances. This method requires less computational cost, but the
parameter design of the filters is complicated, especially when applied to time-
variant systems.

Considering that these sensors cost less than one dollar, consume little power,
respond rapidly, and the results are generally accurate, it is always a good idea
to consider using sensors to do orientation estimation. But if the application is
limited, e.g., the sensors are not available in some scenarios, is there any other
way to obtain the UE orientation? Considering that most UEs install antennas for
wireless communication, radio signal based methods are popular research topics
for high-accuracy orientation solutions, especially for numerous fifth-generation
mobile network enabled applications. In this project, the effect of UE orientation
on the received signal feature will be studied. The insights from the study will
then be used to develop a learning method for UE orientation estimation.

The environment that is explored in this study is an indoor-office scenario
with stochastic wireless transmission channels. The scenario uses a downlink
transmission with transmitters and receivers. From the signals received at the
receiver, the orientation of the device is estimated with LoS and NLoS propaga-
tion paths. LoS refers to the path propagation of radio signals where there are
no obstacles between the transmitter and the receiver. As the name infers NLoS
propagation paths occur when the path between transmitter and receiver is ob-
scured (partially or completely) by obstacles. The effect of NLoS and LoS on
orientation will also be investigated in this paper.

The term ML was popularised by Arthur Samuel in 1959 and he created the
first self-learning program for playing checkers [8]. ML is the process of extract-
ing useful information from the mathematical model of the data. The mathe-
matical model describes the relationship between the different variables in the
observed data [9] and is written as a computer program. The computer program
learns from the available sample data or training data, by capturing the impor-
tant information and automatically adjusting the settings, parameters in precise
mathematical form so as to agree with the data. Once the computer program or
algorithm learns from the training data, this machine learning model can be used
to make predictions or decisions without needing explicit programming.

4 1 Introduction

Figure 1.2: Describes how a model is trained using supervised machine
learning.

For ML, the data is a very important factor. Labelled training data contains
multiple instances of an input variable x accompanied with a labelled output vari-
able y. When the model is trained by these inputs and outputs that are labelled
by experts, it is called as supervised learning as shown in Figure 1.2. Another cat-
egory of ML algorithms is unsupervised ML algorithms that can be used to cluster
and analyze unlabelled datasets, where the output variable y is not present.

The training data in supervised learning contains input variable x that is re-
lated to output variable y, and the aim is to adjust the mathematical model dur-
ing training of the model, in such a way, when a new unseen test data x∗ is given,
it will be able to predict ŷ that is close to y∗. In other words, supervised learn-
ing can be described as learning from examples. Thus training data which is the
input-output data points (xi, yi) out of the total n number of them can be repre-
sented as T = (xi, yi) for i = 1, ..., n. Thus the aim of supervised ML is to obtain
as much information as possible from T .

Supervised Learning algorithms are classified into two general types of prob-
lems called as classification and regression problems based on the type of the
output variable y. The task of ML in classification problem is to accurately pre-
dict the category of each data point, i.e., the output variable is a categorical value.
Unlike classification, in regression the output to be predicted is a numerical value.
The input to the model can be a vector X = [x1x2...xp]T which can be p dimen-
sional, where each element x1, x2...xp contains information that can be relevant
to the problem, and these elements can contain both categorical and numerical
values. In our thesis we have a regression problem to solve since we need to pre-
dict the orientation of the UE as our output ŷ which is a continuous numerical
value and so the focus will be on regression.

Mathematical modelling of input-output relationships from the training data
is very important as it helps to reason about and understand the relationship

1.1 Background 5

between the input and the output [9]. Mathematical modelling also helps to
generalize the relationship between inputs and outputs, which in turn helps to
make predictions ŷ for previously unseen test data. Thus, ML algorithms are
techniques for learning a target function f that best maps the input variable x to
an output variable y which can be represented as:

y = f (x) (1.1)

Once the function f has been learnt from the available data, then this func-
tion can be used to make predictions ŷ for a new unseen datapoint x∗ as:

ŷ = f (x∗) (1.2)

Different ML algorithms make different assumptions about the underlying
functions, thus we have to try different algorithms to find out the best suiting al-
gorithm for the problem at hand. And this thesis aims to try different algorithms
to find the best target function (f) that can predict the orientation of the UE.

In order to answer the question of finding the best ML model, we need some
tools to evaluate the different models and hence, this will help us to improve the
model performance. In supervised machine learning, generalization error or out-
of-sample error is the measure of the ability of an algorithm to accurately predict
the outcome of previously unseen data [10]. In order to understand the idea, an
error function E(ŷ, y) is defined, which has the predicted value ŷ and measured
data point y as the inputs. The error function compares the prediction and the
measured data point or true value and help us to analyze the performance of
an already learned model. There are different types of error functions that are
decided based on the properties of the predictions. The common choice of the
error function for regression problems is the squared error which is taking the
square of the difference between the predicted value and the truth value as:

E(ŷ, y) = (ŷ − y)2 (1.3)

On an endless stream of unseen data, generated from distribution over data
p(x, y) the average squared error can be used to denote mathematically describe
the performance of a model. As the model depends on the training data T , we
can write the prediction as ŷ(x; T), i.e., if we use a different training data to learn
the same model, it would result in a completely different model. Thus the new
expected data error which is the average over possible data points (x∗, y∗) is

Enew = E∗[E(ŷ(x∗; T), y∗)], (1.4)

Where E∗ is the expectation over all possible data points with respect to the dis-
tribution (x∗, y∗). Thus, Enew is the new data error and describes how well the

6 1 Introduction

model generalizes from the training data to a new situation. Similarly we can
also introduce the training error as

Etrain =
1
n

n∑
i=1

E(ŷ(xi; T), yi)]. (1.5)

Etrain does not give any information about how well the model performs on un-
seen data, but it describes how the model performs on the seen training data. In
essence, the goal of any supervised ML algorithm is to have the least value for
Enew. Enew helps to choose the hyper parameters, compare different models and
also helps us to understand whether the model performance is satisfying rela-
tive to other models. It should be noted that there can be situation where we a
have small Etrain but still large Enew when given unseen data and this problem
is called as overfitting which will be elaborated later.

Figure 1.3: Describes hold-out dataset approach where the available data is
split into two sets and the model is trained on the training data and Ehold−out
can be estimated using the hold-out dataset.

Since we do not know the data distribution p(x, y) in practical cases, we are
unable to compute Enew. Hence, we use a technique to set aside some hold-out
data (xj , yj) where j in the range of 1 to nholdout. This hold-out data is not in T
that is used for training as shown in Figure 1.3. The hold-out error is represented
as

Ehold−out =
1

nholdout

nholdout∑
j=1

E(ŷ(xj ; T), yj). (1.6)

Ehold−out is an unbiased estimate of Enew since all the data points are chosen
from p(x, y). The size of the hold-out dataset nholdout should be big enough
so that there is less variance in Ehold−out, but this will decrease the amount of
training data. Therefore, the holdout data set size nholdout should be chosen ap-
propriately.

As already described, the main goal of supervised ML is to reduce the Enew
and in order to understand the concept more clearly, two new terms are intro-
duced which are Enew and Etrain. Consider that the model is trained on different
training sets of same size to obtain (Enew)k, where k ranges from 1 to m. Sim-
ilarly we also calculate (Etrain)k, where k ranges from 1 to m. Thus Enew and

1.1 Background 7

Etrain can simply be the average of unseen data error and training error that is
represented as,

Enew =
(Enew)k

k
, Etrain =

(Etrain)k
k

. (1.7)

In general, a method usually performs better on the trained data and worse
on the new, unseen data, i.e. , Etrain < Enew [9]. Generalization of a method is
very important as it explains its ability to perform well on unseen data after being
trained. Difference between Enew and Etrain is called as the generalization gap,

Generalization gap = Enew − Etrain. (1.8)

The problem and the method at hand determines the generalization gap, if
the method adapts to the training data more, the larger the generalization gap.
Model complexity is another term which describes the ability of the method to
adapt to the patterns in the training data. In general it can be said that, a model
with high complexity can learn complicated input-output relationships, whereas
a model with low complexity has limitations in what relationships it can explain.
Typically, it can be observed that the Enew attains a minimum value for some in-
termediate value of model complexity and for Etrain the value decreases as the
model complexity increases as seen Figure 1.4. Overfitting happens to a model
when the value of Enew is higher than with a less complex model. On the other
hand when the model complexity is very low, it is termed as underfitting. Hence,
the aim is to find a balance between underfitting and overfitting, i.e, we have to
find the spot where Enew attains the lowest possible value as described by the
green line in the Figure 1.4. In our problem of orientation estimation, we also
aim to find this balance between overfitting and underfitting.

8 1 Introduction

Figure 1.4: Describes how the values of Enew and Etrain changes with the
model complexity and the difference between these values are called gener-
alization gap. If the model is too complex then Enew increases again and it is
called as overfit and when the model is less complex it is called as underfit-
ting. Hence, the model should have a balanced complexity which is shown
by the green line.

Bias-variance decomposition is a way of examining the expected generaliza-
tion error Enew by using the bias, variance and a third unavoidable quantity
called as irreducible noise (σ). The term variance can be described as how the
prediction changes when trained on different training sets. On the other hand,
bias means the difference between the predictions and the truth values. The irre-
ducible error σ2 is the variance of the independent noise, i.e., random error that
is independent of all the other variables. From [9] it can be shown that Enew can
be decomposed as follows:

Enew = Bias2(ŷ(x∗; T)) + V ariance(ŷ(x∗; T)) + σ2 (1.9)

For the bias term to be small, the prediction ŷ should be close to the true
value y. When the variance term is small it means that the model is not sensitive
to the data points that happened to be in the training data set. A high model
complexity generally entails that the model performs well on the training data,
thus having low bias. Also, when the model is very complex, the variance in
prediction is large across different training datasets due to its dependence on the
training data. On similar lines, it can be argued that a model with lesser complex-
ity has a high bias and a low variance. Thus the task of achieving a small Enew
by having the optimal model complexity level is called the bias-variance trade-
off. These concepts are important to find an optimal model that can generalize
beyond the training data.

The aim of this paper is to first identify the input variables x1, x2, ..., xp and
associated output variable y from a simulated environment. Feature selection
techniques discussed in 3.2 are then used to select only the relevant features from
the input vector X where X = [x1, x2, ..., xp] . Once the important features are

1.2 Problem Formulation 9

identified, different ML methods are explored to learn an optimal function f
which can accurately estimate the orientation ŷ.

1.2 Problem Formulation

1.2.1 Problem Statement

Based on the introduction and aim, the following are the research questions that
will be addressed in the thesis.

1. Study the impacts of UE orientation on received signal features (X = [x1x2...xp]T)
such as ToA, RSRP, LoS condition, Identify which are the features that are
important for the ML model to estimate the orientation ŷ of a UE by utiliz-
ing the data generated from the simulated environment?

2. How do the radio frequency interference and the information about LoS
and NLoS affect the performance of the ML model?

3. Which ML model has the best performance, given features available?

To investigate the above questions, data was generated by using the Ericsson
simulator. This data was used for studying the different features associated with
orientation. The data is used for both training and evaluating the ML algorithms
in different LoS condition. There is a limitation that different frequency and an-
tenna patterns will not be considered for this study. Even though the orientation
is 3D can be in terms of roll, yaw, and pitch, the investigation done in this paper
is limited to one dimension due to the limited time frame available for the study.

1.3 Related Work

5G networks are widely used today, and their high data rate communication ca-
pabilities make their potential in positioning applications greatly tapped. After-
ward, the potential of 5G in orientation estimation needs to be discovered. There
have been some recent studies applying 5G mmWave systems for UE orientation
estimation. As was demonstrated in [11], in the scenario of communicating with
a BS, the UE orientation in 2D can be derived by measuring the angle on the an-
tenna array at the UE side. In [12], more features from channel estimation like
AoA at the UE side, AoD at the BS side and ToA are used for high-accuracy es-
timation of the UE orientation. Another study [13] for visible light system was
done by using Received Signal Strength (RSS), ToA and AoA are used as the main
features for the deep learning techniques to estimate the UE orientation. In [14],
it is derived that the UE orientation in 3D needs more input resources to be suf-
ficient to get estimation, such as multiple available BSs, the known position of
reflectors and scatterers, or the known environment.

In this paper, we consider using ML methods to analyze the input features
and estimate a UE orientation. In [15], it uses KNN algorithm to estimate the UE

10 1 Introduction

position through the received signal strength indicator (RSSI) sequences received
from multiple WiFi access points (APs). The paper considers the human body as
an obstacle, and different UE orientations affect the received RSSI, so the model
is trained by collecting RSSI sequences of different UE orientations in multiple
reference points (RPs), thereby estimating the unknown position of the UE. In
addition, the KNN and Random Forest algorithms background theories can be
found in [9].

The common part of the above papers is that they focus on estimating the
position of the UE, and the UE orientation estimation as an aid to enhance the
accuracy of the position estimation. In this paper, we will focus on the estimation
of the UE orientation without considering the position estimation.

1.4 Why ML?

ML is having success across many domains in both industry and the research
communities, especially in wireless communication, with a focus on networking,
resource management, and localization [16]. Hence ML algorithm was chosen
to apply to this problem of estimating the UE orientation. Another reason why
ML is a potential candidate is that the existing approaches confirms that received
signal features have a nonlinear relationship with orientation and ML algorithms
are good at finding the nonlinear relationships.

In our task to estimate the orientation of the UE, we need an algorithm that
can exploit the information contained in the features that are available to us from
the simulator. ML algorithms are popular for identifying complex relationships
[16], and this property can be utilized to identify the relationship between the
different features and the orientation degrees.

Existing systems make use of the sensors in the mobile device to estimate the
orientation of the device. But if we create an ML model, the dependency on the
mobile device and its sensors can be reduced, and thus create a model that can
be used for all devices.

This chapter introduced the problem and gave an idea about how to approach
the task. The next chapter explains the theoretical background that is essential
to solving the problem like the features to be analyzed and the ML algorithms.

2
Theoretical Background

2.1 Machine Learning

This section introduces the various machine learning approaches explored in the
thesis study.

2.1.1 KNN

KNN is a non-parametric supervised learning algorithm that can be used for both
regression and classification problems. The concept of KNN rule was introduced
by Fix and Hodges for pattern classification [17] in 1951. KNN is known for
its simplicity and effectiveness as it is based on estimating target data point by
finding the similarities in the underlying training data. In order to find the simi-
larities, KNN algorithm calculates the distance between the data points, and the
smallest distances are identified as the nearest neighbors. The initial letter K de-
fines how many nearest neighbors should be examined to determine the value of
target data point [18]. In regression tasks, the output value is the average of all
the K nearest neighbors. In classification tasks, the output is a class membership
which is determined by choosing the class which is the most common among its
neighbors.

As introduced in the Chap. 1 the training data (xi, yi) where i in the range
of 1 to n and xi is the input and yi the corresponding output. KNN also works
on the general idea of all supervised machine learning algorithms that if the test
point x∗ is close to the training data point xi, then it means that the prediction
ŷ(x∗) should also be close to yi [9].

According to KNN, when new data is encountered, two operations are per-
formed. The first step is to analyze which are the nearest neighbors by using

11

12 2 Theoretical Background

different methods like Euclidean distance, correlation matrix, etc. The Euclidean
distance calculates the distance between the test input and all the training inputs,
as shown in the Eq. (2.1), where i = 1,...,n. The second step is to find xj which
has the shortest distance to x∗ and use yj as the output, i.e, ŷ(x∗) = yj .

||xi − x∗||2 =
√

(xi1 − x∗1)2 + (xi2 − x∗2)2. (2.1)

This method is called one nearest neighbor method as its prediction depends
only upon one data point from the training data. This is simple and not very
complicated and the disadvantage is that the output will be erratic and sensitive
to noisy training data. In order to overcome this problem we can consider neigh-
bors, i.e., K number of nearest neighbors. Thus we define a set N∗ = { i: xi is one
of the training data points that is close to the data point x∗ } and the information
from the K outputs yj for j ∈ N∗ is combined to make the final predictions. For
regression problems we take the average of all the yj and for classification we
take the majority vote. We can summarize the method for KNN as shown,

Data: Training Data (xi, yi) for i = 1 to n and test input x∗
Result: Prediction output ŷ
1. Distances ||xi − x∗||2 are computed for for all the data points in the training

data from i = 1,...,n
2. Let N∗ = { i: xi is one of the training data points that is close to the data

point x∗ }
3. Final output ŷ is calculated,
ŷ = Average(yj : y ∈ N∗) − Regression

= Majority(yj : y ∈ N∗) − Classif ication

There are different ways of calculating nearest neighbors using Euclidean dis-
tance, two weight schemes can be considered. The first one is ’uniform’ weights,
where all the points in the neighborhood are weighted equally. The second weight
function is ’distance’ weights, where each point is given weight by the inverse of
its distances, which in turn will make the closest neighbor has a greater influence
than neighbors who are farther away. It can be represented as Eq. (2.2), where W
is the weight and d is the distance to the neighbor

W = 1/d. (2.2)

Another method to calculate the neighbors is using the correlation distance.
Correlation coefficient is the strength and direction of a relationship between two
vectors and correlation distance is calculated by one minus correlation coefficient,
which is expressed as follows

dst = 1 −
(xs − xs)(yt − yt)

′

(
√

(xs − xs)(xs − xs)
′)(
√

(yt − yt)(yt − yt)
′)
, (2.3)

2.1 Machine Learning 13

Figure 2.1: A simple problem using KNN where the number of neighbors set
to five. There are two different classes of red and black. The new point blue
is classified as red based on the majority vote as we have three red points and
two black points among the five nearest neighbors.

where the two vectors xs and yt are row vectors , and xs and yt are the mean
vectors of xs and yt respectively.

A visualisation of how KNN works can be seen in Figure 2.1, where the num-
ber of neighbors is set to five and hence we can see that there are five points in the
circle. We can see that there are two different classes which are red and black. In
the case of classification, the new point blue is classified as red since the majority
of its neighbors belong to red among all the five nearest neighbors. In the case
of regression if we consider five nearest neighbors, the output from the regressor
will be the average of all the five neighbors.

Determining the optimal value of K for the problem is very important and
since K is not a self learned by KNN, it is a design choice that needs to be made
and thus referred to as hyperparameter. Finding optimum K requires some it-
erative investigation. The choice of hyperparameter K has a big impact on the
predictions made the KNN algorithm [9]. As already discussed, real world prob-
lems usually have a certain amount of randomness in the data hence when K=1
the model gives a shaky behaviour. This is because the model adapts closely to
the training data and the predictions will depend not only on the interesting pat-
terns in the problem, but also on the random effects that is present in the training
data, thus we can say that overfitting happens. Thus with KNN we can mitigate
overfitting by increasing K but this cannot be true for all the cases as this depends
on the data and the problem that is studied. However, if we increase the value of
K beyond a limit, the averaging effect will clear out all the interesting patterns in
the data.

Thus the KNN algorithm can be run for different values of K and can be used
to generate predictions with that trained model and then calculate the error us-

14 2 Theoretical Background

ing any performance metric. By comparing the results of different models we can
identify the optimum value of K, usually by generating a plot having K values
vs. the error values. Input normalization is usually done on the inputs in KNN,
as when calculating the euclidean distance there will be unwanted bias due to
the difference in magnitudes of inputs. Thus the input variables are re-scaled by
using some normalization procedure. One method to normalize the inputs is by
using the mean and standard deviation in the training data:

xnewi[j] =
xij − xj

σj
,∀j = 1, ..., p, i = 1, ..., n, (2.4)

Where p is the number of input variables and n is the total number of training
data points. And xj and σj are the mean and standard deviation of each input
variable respectively.

One main advantage of the KNN technique compared to other methods is
that it is robust to noise in the data and is also effective for large training data
[18]. However, since KNN uses the entire training data, the computation can
be very expensive for large datasets, as the time complexity of this algorithm is
exponential which is a disadvantage for KNN [19]. KNN doesn’t learn from the
training data, instead memorizes it, and then uses that data to predict the target.
In that sense, KNN is also called lazy learning algorithm.

2.1.2 Random Forest

In this section, the concept and theory of RF is explained by introducing the
concept of decision trees and bagging.

Decision Trees

Decision trees are called as rule-based models since the rules that are used to de-
fine the model can be organized into a graph structure called as binary trees [9].
The input space is divided into multiple disjoint regions, and these regions have
a constant value that is used for prediction ŷ(x∗). Sequential decision making
process corresponding to the traversal of a binary tree, is the process of selecting
a specific model, when given an input x [19].

From Figure 2.2, a recursive partitioning of the input space along with corre-
sponding tree structure can be seen. The whole input space is first divided into
two regions based on whether X1 > Q1, where Q1 is a parameter. This process
creates two subregions, and they can be further divided based on whether X2 >
Q2. Thus, this type of recursive subdivision can be described by the traversal of
a binary tree as shown in Figure 2.3. As seen in the tree structure, for any new in-
put variable x, the region into which it belongs to is determined by following the
path from the top of the tree to the root node according to the different decision
rules at each node. Each region means that a seperate model to predict the target

2.1 Machine Learning 15

Figure 2.2: An illustration of the two dimensional input space that is divided
into five regions by boundaries.

Figure 2.3: An illustration of the binary tree corresponding to the partition-
ing of input space as in Figure 2.2.

variable. A,B,C,D,E in Figure 2.3 are called as the leaf nodes and the internal
splits are called as internal nodes.

Decision tree predictions ŷ(x∗) for a regression tree is a piecewise constant
function of the input x∗, which is

ŷ(x∗) =
L∑
l=1

ŷlI{x∗ ∈ Rl}, (2.5)

where L is the total number of leaf nodes in the tree, Rl is the lth region and ŷl
is the constant prediction from the lth region. There is an indicator function I,
which means if x ∈ Rl then I{x∗ ∈ Rl} = 1 and otherwise zero.

Finding suitable parameter for the parameters defined in Eq. (2.5), corre-

16 2 Theoretical Background

sponds to learning the tree from the data. We can compute the constants ŷl from
l = 1, ..., L as the average of the training data points which falls into those region:

ŷl = Average{yi : xi ∈ Rl}. (2.6)

Next we have to find the regions Rl and the idea is to identify regions so that
the tree fits into the training data. But the process of finding the tree that can
optimally partition the input space to fit the training data is computationally ex-
pensive, because of the combinatorial explosion that happens when trying to find
the number of ways an input space can be partitioned.

Recursive binary splitting is a greedy heuristic algorithm that is used for solv-
ing this problem. The tree is constructed from the tree top to bottom based on
the splitting rules one after the other. When determining how to split the root
node, we only think about the root node and not the complete tree, and hence
this algorithm is called greedy. Once the decision about first split of the input
space is made, this decision is kept fixed and we continue in a similar way for the
resulting two half-spaces. Consider that we have p input variables x1, ..., xp and
corresponding cutpoint c that divides the input space,

R1(j, c) = Average{x|xj < c} and R2(j, c) = Average{x|xj >= c}. (2.7)

The predictions associated with the two regions depends upon the index j
and also on the splitting cutpoint c and they can be represented as,

ŷ1(j, c) = Average{yi : xi ∈ R1(j, c)} and ŷ2(j, c) = Average{yi : xi ∈ R2(j, c)}.
(2.8)

Once predictions are estimated, we need to find the prediction error which is
the difference between the constant prediction associated with that region and yi.
This done for all the training data points and the sum of squared errors can be
represented as, ∑

i:xi∈R1(j,c)

(yi − ŷ1(j, c))2 +
∑

i:xi∈R2(j,c)

(yi − ŷ2(j, c))2. (2.9)

Closeness of a prediction and the training data is calculated by using the
squared error as they are one of the common loss functions as introduced in Sec-
tion 1. Thus, to find the optimal split in the tree we find the minimum squared
error (2.9). Hence, moving through different possible values of j, we find the pair
(j,s) for which the expression of squared error can be minimized. Once optimal
split for root node as per the minimum squared error has been fixed, this pro-
cess is continued for both the left and right branches. Thus each branch is split
over all training data points by minimizing the squared errors and this process is
continued until there is only single data point in each region.

But the disadvantage of having a tree that is fully grown is that the predic-
tions will exactly match the training data points in each of the regions, which

2.1 Machine Learning 17

leads to the problem of overfitting as described in Section 1.1 to the noisy train-
ing data. Stopping criterion are generally used to control the growth of the tree
at an early stage, like adding restrictions to the number of training data points
associated with each leaf node or by having a maximum limit on the tree depth.
We can summarize the method for decision tree using recursive binary splitting
as,

Data: Training Data T = (xi, yi) for i = 1 to n
Result: predictions ŷ1, ..., ŷL and corresponding regions R1, ..., RL of the deci-

sion tree

Algorithm 1 Learning a decision tree by recursive binary splitting

1: Let the whole input space be denoted by R.
2: Compute the input space(R1, ..., RL) = Split(T = (R, T)).
3: Compute the predictions ŷl for l = 1, ..., L as

ŷl = Average(yi : xi ∈ Rl) − Regression
= Majority(yi : xi ∈ Rl) − Classif ication

4: Function Split(R, T):
5: if stopping criterion not fulfilled then
6: For all input variables j = 1, ..., p, parse through all possible splits xj < s.
7: Select the pair of j, s that minimizes (2.9).
8: Split the regions based on (2.7) into subregions R1 and R2.
9: Split data T into T1 and T2.

10: return Split (R1, T1), Split(R2, T2)
11: else
12: return R
13: end if

Data: Training data T = {xi, yi}ni=1, test data point x∗, Regions of decision tree
R1, ..., RL

Result: predictions for test data point ŷ(x∗)

Algorithm 2 Prediction from the decision tree

1: Go through possible options and find out the region Rl where x∗ belongs.
2: Predictions are returned as ŷ(x∗) = ŷl

Choosing the depth of a tree is an important factor which influences the final
predictions. By depth it means the maximum distance between the root node
and any of the leaf nodes. When a tree is fully grown then there is a chance
of overfitting as the trees will be very much adapted to the training data points.
Hence, shallow trees are used to mitigate this risk. As any other ML models, the
optimal size of the tree depends upon the problem and it is a trade-off between
flexibility and rigidity [9].

18 2 Theoretical Background

Bagging

Ensemble learning method is a technique where we combine multiple instances
of some basic ML models to make more accurate predictions than the individ-
ual model, and the resulting methods are called as ensemble methods. In other
words, "Wisdom of crowds" is the main idea, where different base models are
trained in slightly different ways so that all of them can contribute to learning the
input-output relationship, and finally using these individual predictions from all
these base models as the average or majority vote to obtain final prediction [9].

Bagging or bootstrap aggregating is a type of ensemble method. Bootstrap is
the process of creating slightly different training data for the model, by randomly
sample overlapping subsets of training data. Thus, an ensemble of similar, but
not identical models are created and this helps to reduce the variance compared
to using a single model, which in turn reduces the risk of overfitting. As intro-
duced in the section 1, bias-variance tradeoff is an important concept of ML and
complicated input-output relationships can be represented by using flexible mod-
els. But the disadvantage of using highly flexible models is the risk of overfitting
or high model variance. Thus in essence, these high variance models can be used
as base models in bagging and reduce the variance of the base models without
increasing its bias.

In Bootstrap method, datasets of size n is generated from one base dataset of
size n. In statistics, bootstrap is used to quantify the uncertainties associated with
estiamtors such as confidence intervals. We have our training data T = {xi, yi}ni=1,
and the assumption is that the training data T at hand is a good representation
of the real world data generating process, and so if a new dataset is created by
collecting data, it will be similar to the training data T . Using this assumption
we argue that generating new dataset is similar to randomly selecting datapoints
that is already contained in T . In other words, instead of collecting new data
from the population we try to sample from the available training data which is
assumed to have a good representation of the population. One important fact is
that we do sampling with replacement, hence the bootstrapped dataset might con-
tain multiple copies of the same datapoint from original training data T and also
will in turn miss some other datapoints. Bootstrap method can be represented as:

Data: Training data T = {xi, yi}ni=1
Result: Bootstrapped dataset T̃ = {x̃i, ỹi}ni=1

Algorithm 3 Bootstrap

1: for i = 1, ..., n do
2: Sample m uniformly on set of integers {1, ..., n}
3: Set x̃i = xm and ỹi = ym
4: end for

Random but similarly distributed bootstrap datasets T̃ (1), ..., T̃ (P) are created

2.1 Machine Learning 19

by repeating the bootstrap algorithm 3 for P times. Later these P training datasets
are used to train an ensemble of P base models and the average predictions can
be represented as:

ŷbag (x∗) =
1
P

P∑
p=1

ỹ(p)(x∗) or gbag (x∗) =
1
P

P∑
p=1

g̃(p)(x∗), (2.10)

Where ŷbag(x∗) and gbag(x∗) are the final predictions for regression and clas-
sification tasks respectively. ỹ(1)(x∗), ..., ỹ(p)(x∗) and g̃(1)(x∗), ..., g̃(p)(x∗) are the
individual predictions from the ensemble members. Thus we can summarize bag-
ging as:

Data: Training data T = {xi, yi}ni=1
Result: Base models P

Algorithm 4 Base model learning

1: for i = 1, ..., P do
2: Algorithm 3 is run to obtain bootstrapped training dataset T̃ (p)

3: Learn base model from T̃ (p)

4: end for
5: Compute ŷbag(x∗) or gbag(x∗) by averaging (2.10)

Data: Base models P and test input x∗
Result: Final prediction ŷbag(x∗) or gbag(x∗)

Algorithm 5 prediction with base models

1: for p = 1, ..., P do
2: Use base model p to predict ỹ(p)(x∗) or g̃(p)(x∗).
3: end for
4: Compute ŷbag(x∗) or gbag(x∗) by averaging (2.10)

Thus the main idea of variance reduction in (2.10) can be formalized as, let
Z1, ..., ZP be a group of identically distributed random variables with variance
V ar[Zp] = σ2 and mean value E[Zp] = µ for p = 1, ..., P . ρ is assumed to be the
average correlation between any two pairs. Thus, the mean and variance can be
represented as:

E =

 1
P

P∑
p=1

Zp

 = µ, V ar =

 1
P

P∑
p=1

Zp

 =
1 − ρ
P

σ2 + ρσ2. (2.11)

The Eq. (2.11) tells us that variance is reduced by averaging, if the correlation
ρ < 1 and the mean does not change when the averaging a number of identically
distributed random variables. In order to understand how bagging affects the

20 2 Theoretical Background

variance, ŷp(x∗) are considered as random variables and since all the base mod-
els and predictions are based on the same training data T , we can say that ŷp(x∗)
are identically distributed but correlated. Hence to conclude, averaging the iden-
tically distributed predictions as per (2.10), each with low bias, bias remains low
and the variance is reduced as shown in Eq. (2.11).

Construction of bagging only reduces variance and does not make the result-
ing model more flexible by the additional ensemble members. Also, the addition
of ensemble members does not help to obtain a better fit to the training data. But
when the individual ensemble member overfits, the averaging across the ensem-
ble member will have a smoothing effect and creates a better generalization. The
limiting behaviour of P →∞ and the identically distributed ensemble members
makes the bagging model as (2.12) where expectation is based on the bootstrap-
ping algorithms randomness.

ŷbag (x∗) =
1
P

P∑
p=1

ỹ(p)(x∗) P →∞−−−−−−−→ E[ỹ(p)(x∗)|T], (2.12)

where when P increases we expect bagging model to converge but in practice
the choice of P is mainly guided by the computational complexity as increasing
P with no error reduction is of no use.

As we are using bootstrapping, only 63 percent of training points in T will be
present in the bootstrapped training data T̃ [9]. This means that one third of the
ensemble members will not have seen that datapoint during training, and these
ensemble members are called out of bag ensemble. Thus if we compute error for

these out of bag ensemble, we get a error E(i)
OOB. And if we calculate the average

EOOB for all data points xi, yi, we get a good estimate of Enew and this is called
as out of bag error estimate.

Random Forest

RF is a non-parametric supervised learning algorithm that uses an ensemble
learning method. Ensemble learning as described earlier, is a method where mul-
tiple machine learning algorithms are trained on the same problem and the out-
puts are combined as the final prediction from the model. This approach will
help to have more accurate predictions rather than individual predictions. In the
context of RF, boosting aggregation or bagging is a technique to combine weak
learners (i.e.,decision trees) and produce a more accurate strong learner [20]. RF
can be used for regression and classification tasks.

Bagging reduces variance by averaging over ensemble of models,i.e, reducing
the correlation between individual ensemble members dependence on ρ, the av-
erage correlation [9]. Furthermore, we can use a simple method to reduce the
correlation even more and this is called as RF, where the ensemble base models

2.1 Machine Learning 21

are either classification or regression trees. In simple words, additional random-
ness is added when a tree is constructed so that the correlation between base
models is reduced.

RF is similar to decision tree explained in 2.1.2 except that whenever a node
is split we do not consider all possible input variables x1, ..., xp as splitting vari-
able. Instead of considering all the possible inputs, only a small subset q <= p
inputs are only used as splitting variables. In the following split points, another
subset of q inputs are used as splitting variables and this process continues. The
B ensemble members end up using different subsets for the different trees as the
random subset selection is done independently. Larger reduction in variance is
achieved in random forest compared to bagging since the B trees are less corre-
lated but the training procedure tends to increase the variance of each individual
trees. That is, in Eq. (2.11), random forest decreases ρ but at the same time
increases σ2 compared to bagging. In practise, the average prediction variance
seems to be often reduced as the reduction in correlation has dominant effect [9].

As explained in 2.1.2, trees are build using recursive binary splitting, the al-
gorithm make choices that appear to be good in the beginning but can turn out
to be suboptimal further down the splitting procedure. In case of bagging, there
can be a situation where a dominant variable is chosen for the first split for all
ensemble members, which will inturn make all trees identical after the first split.
But in this scenario if random forest is used, some ensemble members won’t be
having access to this dominant variable, as the random subset q is chosen for the
first split. This process may not improve the performance of individual trees but
can be usefull when splitting further nodes, and thus the average of all these dif-
ferent ensemble members can improve the overall performance.

In the case of regression, RF will be having B decision trees that will be trained
on B different randomly sampled subsets of the data and also with randomly cho-
sen features. This property of RF makes it impossible to overfit the data when
more trees are added since each tree is trained on a different dataset. The B
trained models form an ensemble and the final result for a regression task is the
average of all the predictions from the individual trees. An example of RF is
shown in Figure 2.4, where there are 200 different trees and the output from the
RF will be the average of all these 200 trees.

RF can be used for feature selection by using the property of variable impor-
tance. Prediction error increases when the out of bag data for that variable is
changed without changing the others, this increase in prediction error tells us
the variable importance. Variable importance can be measured using impurity
score, the higher the value of impurity score, the more important the feature.
When a tree is constructed, impurity score decides which variable is chosen to
split a node. The calculation of impurity is based on the reduction in the sum of
squared errors whenever a variable is chosen to split. Hence the split maximizes
the decrease in impurity score [21][22]. In other words, each split is made in

22 2 Theoretical Background

Figure 2.4: A visualization of RF for a regression task with 200 trees.

such a way that once the split is done there is more similarity within individual
tree branch than between two different branch. Thus, this property of RF can be
leveraged to identify the important variables from the whole set of input variable
vector X.

Another advantage of using RF is that there are only very few parameters to
optimize, unlike other machine learning methods. Examples of parameters are
the number of trees in the RF and the number of leafs in each random subset at
each node. Thus RF is a robust algorithm against the noise in the data which is
prone to overfitting, faster in execution and easily parallelizable [20][22][19].

2.2 Features

This part is to study the features of received signals, such as RSRP, ToA, and LoS
condition for each radio propagation path.

2.2.1 RSRP

RSRP is an average power received in subcarriers/resource elements compris-
ing an Orthogonal Frequency-Division Multiplexing (OFDM) symbol [23], and
it uses reference signals to calculate average received power. Reference signal
is a predefined signal occupying specific resource elements within the downlink
time–frequency grid. In the simulator, the value of RSRP is linear, the unit is watt
(W).

2.2 Features 23

Considering a downlink communication scenario with one UE and one TRP,
which is shown in Figure 2.5 as an example. The position PT X ∈ R

2 and antenna
orientation θT X ∈ [0◦, 360◦) of the TRP are known, while the position PRX ∈ R

2

and antenna orientation θRX ∈ [0◦, 360◦) of the UE are unknown. In this thesis,
our primary objective is to determine UE orientation only. The TRP transmits
reference signals, and the reference signals are received by the UE after having
transmitted though multiple propagation paths. There are MP propagation paths.
When the signals transmit though ith path, i ∈ 1, ..., MP , the transmit power in
direction ϕT ,i is F(ϕT ,i) dB, where ϕT ,i is the Angle of Departure (AoD) of the
ith path. Similarly, the receive power of ith path is G(ϕR,i) dB, where ϕR,i is the
Angle of Arrival (AoA) of the ith path.

The transmission power is PT dBm. The received RSRP s is given as

s = db2pow(PT +
MP∑
i=1

(pi + F(ϕT ,i) + G(ϕR,i))) + n, (2.13)

where the function db2pow(x) = 10
x

10 is to transform power from logarithmic
scale to linear. pi dB is the path loss of the ith path, and n is the noise.

According to Eq. 2.13, the RSRP value depends on the transmission power,
the path loss, AoD and AoA of each propagation path. In this paper, transmis-
sion power and the orientation of TRP antenna panel are predefined. Path loss is
mainly due to the distance between the transmitter and receiver, the height and
position of the antenna (i.e. spatial free space loss), and the indoor office envi-
ronment (e.g. reflection, diffraction, etc, in the propagation path). AoD and AoA
are related to transmit power and receive power in different directions since the
propagation path perpendicular to the antenna panel transmits/receives the high-
est power according to the multiple antenna communication theory [24]. There-
fore, the RSRP can be used as a feature for UE orientation estimation since it
is affected by the antenna orientation. In this thesis, we will use a RSRP vector
S = [s1, s2, ..., s36] from 36 TRPs to investigate UE orientation estimation.

2.2.2 ToA

Since the transmission speed c of the signal is constant, the signal receiving time
from ith propagation path for i ∈ 1, ..., MP is proportional to the path distance
di . ToA t is the time when a signal is received at UE from the TRP, which can be
calculated by

t = min
i∈1,...,MP

di
c
. (2.14)

Since ToA only depends on the signal propagation path which is not related
to the orientation of the UE, ToA cannot be used as a feature for estimating the
orientation of the UE.

24 2 Theoretical Background

Figure 2.5: A transmission model example including the LoS path and three
NLoS paths between TRP and UE. The TRP has predefined position PT X and
antenna panel orientation θT X , the UE has unknown position PRX and an-
tenna panel orientation θ. ϕT ,i and ϕR,i are the AoD and AoA of the ith
propagation path.

2.2.3 LoS Condition

When there is no obstruction between the transmitter and the receiver, and the
transmitter orientation and the receiver orientation are facing each other, the
channel model is LoS, otherwise it is NLoS. Since LoS path is the shortest among
all the propagation path, the received power from LoS path is the strongest be-
cause of the low attenuation when the channel model is LoS. Therefore, if UE
receives the strongest power at ToA, the channel model is LoS, otherwise, the
channel model is NLoS.

To find the UE receives the maximum power from which propagation path,
the calculation is

z = arg max
i∈1,...,MP

(pi + F(ϕT ,i) + G(ϕR,i) + ni). (2.15)

The UE receives the maximum power from the zth propagation path. If ToA of
zth path is the minimum among the ToA of all the path, we can say that LoS exists
in the propagation path, the channel model is LoS. Otherwise, the LoS does not
exist in the propagation path, the channel model is NLoS.

According to Eq. 2.15, the LoS condition depends on the the path loss, AoD
and AoA of each propagation path. Therefore, the LoS condition can be used
as a feature for UE orientation estimation since it is affected by the antenna
orientation. In this thesis, we define ’isLoS’ as a flag to distinguish the LoS
condition. When isLoS is true or 1, the channel model is LoS; when isLoS is
false or 0, the channel model is NLoS. We will use a LoS condition vector L =
[isLoS1, isLoS2, ..., isLoS36] from 36 TRPs to investigate UE orientation estima-

2.2 Features 25

tion.

In this chapter, we discussed the theoretical background of KNN and RF and
learned about the features of the received signal. In the next chapter, we will
introduce the system model used in this thesis and analyze its wireless transmis-
sion model.

3
Method

In this chapter, we will discuss the scenario where the signals transmit, and ex-
plain the downlink transmission model. The feature selection section will elab-
orate on the useful features for the UE orientation estimation. The dataset gen-
erated from the selected features will be pre-processed before being fed to ML
models. The analysis of angles section will talk about the orientation degree cal-
culations. The performance metrics section will discuss the methods to evaluate
the ML models estimation performance. The ML algorithms will be explained in
the way that they have been applied in this thesis.

3.1 Scenario

The scenarios used in this thesis are the indoor-office scenario specified in the
3GPP standard [25]. The wireless transmission channels are stochastic whose pa-
rameters are defined in the standard. We generated these indoor-office scenarios
using the Ericsson simulator. The layout of indoor-office scenario is shown in Fig-
ure 3.1, and its parameters are list in Table 3.1. The circles in Figure 3.1 represent
the location of Base Stations (BS). There are a total of 12 BSs in the layout. Each
BS has 3 sectors facing 90°, 210°, and 330°, which represent the 3 Transmission
and Reception Points (TRP). 5G New Radio (NR) Positioning Reference Signal
(PRS) is transmitted in the downlink by TRPs, which is the main reference signal
supporting downlink-based positioning methods [26]. The carrier frequency is
2GHz and the antenna panel of a TRP consists of two antenna elements. The top
and side views of radiation pattern of the antenna panel used at a TRP are shown
in Figure 3.2a and 3.2b.

The antenna panel of the UE is also composed of two antenna elements like
the antenna panel of the TRP, as shown in Figure 3.3, but does not have the re-

27

28 3 Method

Figure 3.1: Layout of indoor-office scenario.

Table 3.1: Parameters of indoor-office scenario.

Parameter Value
Room size (W × L × H) 120 m × 30 m × 3 m
BS antenna height 3 m (ceiling)
UE antenna height 1.5 m
Transmission direction Downlink
Carrier frequency 2 GHz
Subcarrier spacing 30 kHz
Total transmission power 23 dBm

ceive beamforming. UE receives the maximum power when the input signal is
perpendicular to the UE antenna panel. The height of the UE antenna is 1.5m.
The UE can be in any orientation degree in the 2D horizontal plane ∈ [0, 360◦).

In this thesis, we consider different wireless communication scenarios, which
are list in Table 3.2. The interference in the table refers to the radio frequency
interference caused by two or more radios using the same time and frequency
resources[27]. Due to frequency interference, the received signal has large noise
when different BSs send the same frequency signals at the same time. For each
scenario, we randomly drop 1000 UEs at different positions, and collect each UE’s
received signals from each TRP in every orientation degree. In this thesis, we will
analyze the relationship between the received signals in different orientation de-
grees at the same position, and compare the orientation estimation performance
of employed ML algorithms in different scenarios.

3.2 Feature Selection 29

(a)The top view of antenna panel
radiation pattern.

(b) The side view of antenna
panel radiation pattern.

Figure 3.2: Antenna panel radiation pattern. The darker the color, the
stronger the radiation. The blue color indicates the strongest radiation.

Figure 3.3: UE antenna panel. The blue arrow indicts the orientation of the
UE and θ is the orientation degree.

3.2 Feature Selection

The feature selection technique is the process of selecting the most relevant fea-
tures for the ML model. One of the key benefits of using feature selection is that
it improves accuracy since the misleading data is removed. Other benefits are
it reduces training time and reduces over-fitting. From the received signal, we
can get feature vector X which contains features like the RSRP, ToA, and LoS
condition. Each feature is defined in Section 2.2. To understand the influence
of each feature on orientation, the feature selection property of the RF algorithm
as explained in Section 2.1.2 is utilized. The way to calculate the impurity of
each feature is also described in Section 2.1.2. The output of the algorithm is
illustrated in Figure 3.4, which shows that RSRP is the most important feature to
determine the orientation degrees, then is LoS condition, and the least important
is ToA.

30 3 Method

Table 3.2: Description for different indoor-office environment and wireless
communication scenarios.

Scenario Description

No obstruction

There is no obstruction between a UE and a TRP
in the indoor-office. Therefore, whether there is the
LoS channel between a UE and a TRP only depends
on the antenna orientation of the TRP and the orien-
tation of the UE.

Obstruction

There may be obstruction between a UE and a TRP
in the indoor-office, the probability of the existence
of obstruction is defined in [25]. Therefore, whether
there is a LoS between a UE and a TRP depends not
only on the antenna orientation of the TRP and the
orientation of the UE, but also on whether there is
obstruction in the transmission path.

No interference
TRPs transmit signals in different time to avoid in-
terference.

Interference

TPRs in the same BS transmit signals in the same
time and in the same frequency to cause interfer-
ence. TRPs in the different BSs transmit signals in
the different frequencies to avoid interference.

Extreme interference
All the TRPs transmit signals in the same time and
in the same frequency to cause interference.

To get a better understanding of feature selection, we compare the feature
value in each orientation degree at a certain position to study the impact of the
change of the orientation degree of the UE on the received signal feature vectors.
As shown in Figure 3.5, RSRP has similar vector values when the orientation de-
grees are adjacent, and relatively different vector values when the degrees are not
adjacent. ToA has similar vector values regardless of degree. isLoS, which is the
vector name for LoS condition feature described in 2.2.3, has the same vector val-
ues when the orientation degrees are adjacent, and different vector values when
the degrees are not adjacent.

The correlation coefficient matrix is then used to verify the findings. In or-
der to do that, we collect the received signal feature vectors in each orientation
degree at a certain position, then calculate the correlation coefficient matrix for
each feature. For example, for each orientation degree, the RSRP feature value is
a 36 × 1 vector which represents the received signal power from 36 TRPs. There
are a total of 360 orientation degrees, so we have 360 RSRP vectors. Then we
can calculate the correlation coefficients between all possible RSRP vector pairs,
which together form the RSRP correlation coefficient matrix. An example of

3.3 Pre-processing of Data 31

Figure 3.4: The importance of each feature for orientation estimation. There
is a total of 108 features as input features, and the first 36 features belong to
the RSRP feature, after 36 features belong to the ToA feature, and the last 36
features belong to the LoS condition feature.

RSRP correlation coefficient matrix is shown in Figure 3.6a, that UE is in a sce-
nario of no obstruction and no interference. From the figure, we can see that
the RSRP correlation coefficients in the diagonal are larger than the rest, which
means RSRP vectors have strong relationship when the orientation degrees are
adjacent, and RSRP vectors have weak relationship when the orientation degrees
are non-adjacent. This shows that by looking for similar RSRP vectors, we can
find similar orientation degrees to some extent. The same process goes for ToA
and isLoS vectors. The correlation coefficient matrix results are presented in Fig-
ure 3.6b and Figure 3.6c correspondingly. From the figures, we can infer that
RSRP and LoS condition features can be used for orientation estimation, but ToA
feature can not be used for orientation estimation since the ToA has similar vec-
tor values regardless of the orientation degree.

In summary, by using the feature selection property of the RF algorithm and
correlation coefficient, we conclude that RSRP and LoS condition features are
related to orientation degree. The thesis will investigate using RSRP and LoS
condition to estimate the orientation degree of the UE, and compare their perfor-
mance.

3.3 Pre-processing of Data

This section describes different ways of pre-processing the data before feeding it
into the model.

32 3 Method

(a) Vector values of RSRP in the orienta-
tion of 0◦, 1◦, and 200◦.

(b) Vector values of ToA in the orienta-
tion of 0◦, 1◦, and 200◦.

(c) Vector values of isLoS in the orienta-
tion of 0◦, 1◦, and 200◦.

Figure 3.5: The vector values of received signal features at a certain position.

(a) The correlation co-
efficient matrix of RSRP
feature.

(b) The correlation co-
efficient matrix of ToA
feature.

(c) The correlation co-
efficient matrix of LoS
condition feature.

Figure 3.6: The correlation of received signal features.

3.3 Pre-processing of Data 33

3.3.1 Dataset Structure

First we studied the dataset structure of features and target values. From the last
section we know that the features to be investigated are RSRP and LoS condition,
as we introduced in Section 2.2, the value of RSRP vector generated from the
simulator is linear, the value of isLoS vector is binary. For the UE in a certain
position and a certain orientation, it receives signals from 36 TRPs. From the
received signal, RSRP value and the LoS condition between the UE and the TRP
are determined. So for each UE position and each orientation we have a vector
with 36 RSRP values and a vector with 36 binary values which denotes LoS con-
dition of the UE with all TRPs. We have a total of 1000 UE positions and each
position has 360 orientation degrees, so the dataset contains 1000×360 = 360000
elements, as shown in Figure 3.7. Each element (xi, yi) in the dataset is a data
object, and the object properties RSRP, isLoS are inputs to the model x1, x2 along
with the corresponding output target variable y, the orientation degree. The data
object structure is shown in Table 3.3.

Figure 3.7: The dataset structure. Each element is a data object.

Table 3.3: Data object structure.

Property Size Type Value
RSRP 36 × 1 Linear value 10−16 ∼ 10−6

isLoS 36 × 1 Binary value 0 (NLoS), 1 (LoS)
degree 1 × 1 Scalar 0, 1, 2, ..., 359

34 3 Method

3.3.2 Imputing the Missing Values

Once the dataset is created it is observed that some RSRP values (x1) are Not-a-
Number (NaN) values in some scenarios. The reason is that the simulator only
considers the signals which are received within a specific time frame and when
it exceeds this limit, the value becomes NaN. Hence the NaN values need to be
formatted before feeding into the model and we used imputing. Imputing is
the process of replacing missing values. The missing NaN values in RSRP are
replaced by the smallest RSRP value in the dataset since the received power tends
to be smaller as transmission time passes.

3.3.3 Logarithm Transformation

As discussed in Section 2.1.1 normalization of inputs are important for KNN espe-
cially when calculating the neighbors. Since the RSRP vectors (x1) have linear val-
ues, when analyzing the difference among different RSRP vectors, the difference
between the numbers with small values is too small to be identified compared
to the difference between the numbers with large values, so that the algorithm
would ignore the difference of the numbers with smaller values when finding
similar vectors, resulting in a larger estimation error. Therefore, we apply the
logarithmic transformation to the base 10 to the RSRP vectors to alter the scale
and make the small element differences visible to the algorithm. Figure 3.8 com-
pares the RSRP vectors of linear value and logarithm value. The two vectors of
linear values in Figure 3.8a are almost the same, we can not tell the difference
between small values of two vectors. The two vectors of logarithms values in Fig-
ure 3.8a have clear difference such as when index are 26 and 28, which helps the
algorithm to distinguish the difference between the two vectors.

(a) The linear values of RSRP vector at dif-
ferent degrees.

(b) The logarithm values of RSRP vector at
different degrees.

Figure 3.8: The comparison of RSRP vectors of linear value and logarithm
value.

3.4 Analysis of Angles 35

3.4 Analysis of Angles

Angle analysis is different from linear analysis. Below we will discuss how to
calculate the difference in angles, and how to use a minimum-variance estimator
to find the best estimate of angles from a set of estimates.

3.4.1 Difference in Angles

When calculating estimation error, estimation performance, and regression aver-
age, we need to calculate the angular difference since the estimated values are
2D degrees. As shown in Figure 3.9a, in 2D, zero degree is specified along the
positive x-axis of the coordinate system, and the degrees increase in the counter-
clockwise direction. The range of degrees is [0◦, 360◦).

Calculating the difference in angles is different from calculating the difference
in numerical values, the difference in angles is not linear. For example, when we
have two angles of 358◦ and 0◦, their linear difference is 0◦−358◦ = −358◦, which
should be 2◦ counterclockwise rotated according to the physical meaning. In ad-
dition, the linear average between 358◦ and 0◦ is (358◦ + 0◦)/2 = 179◦, which is
not reasonable in physical meaning. So calculating the angular difference in a
proper way is necessary when considering the actual physical meaning.

To calculate the angular difference, first is to subtract the two degrees to get
the linear difference. Then the angular difference can be calculated by

diffangle = ((difflinear + 180) mod 360) − 180, (3.1)

where difflinear = deg2 − deg1, and deg1, deg2 are two degrees ∈ [0, 360). The
equation graph for correspondence between linear difference and angular differ-
ence is shown in Figure 3.9b. Accordingly, the angular difference between 358◦

and 0◦ is 2◦. The physical meaning is to rotate 2◦ counterclockwise to transform
from 358◦ to 0◦.

3.4.2 Minimum-variance Estimator of Degrees

Our goal is to get the best estimate for the orientation degree ŷ. When using ma-
chine learning algorithms such as KNN and RF, the output are continuous real-
valued degrees, which requires regression techniques to get the best estimate. For
example, KNN calculates the K nearest neighbors for the input features and then
uses regression to get the best estimate from these K neighbors. RF constructs M
decision trees during the training period, and M estimates are generated through
these decision trees using the input features. Similarly, RF also needs to use re-
gression to get the best estimate from M estimates.

Generally, regression techniques use the mean as the best estimate. But as
analyzed in Section 3.4.1, linear averaging is not suitable to calculate the average
of the angles. Considering the difference in angles derived in Section 3.4.1, we

36 3 Method

(a) Schematic diagram of angles
in the directions. Degrees in-
crease in the counterclockwise
direction.

(b) Correspondence between lin-
ear difference and angular differ-
ence. On the x-axis is the lin-
ear difference between two de-
grees and on the y-axis is the cor-
responding angular difference.

Figure 3.9: Difference in Angle.

can use the minimum-variance estimator to calculate the best estimate from a set
of degree estimates.

The minimum-variance estimator is an estimator to get an estimate with the
smallest variance among all estimates. The variance reflects the variation of the
data around the average. The smaller the variance value, the closer the data is
to the average, and the smaller the dispersion. Therefore, the best estimate is
obtained by using a minimum-variance estimator, which is closest to the average
of the angles.

The minimum variance estimator is calculated as

min
∀d∈D

1
N − 1

N∑
n=1

|dn − d|2 (3.2)

where D = (d1, d2, ..., dn), dn is nth estimate of the angle in degrees, and N is
the number of estimates.

3.5 Performance Metrics

Performance metrics are performance measures that are used to evaluate the ef-
fectiveness of the ML model to solve the problem in consideration. As explained
in Section 1 error functions helps us to compare the predicted value ŷ and the
measured data point y. Since the task at hand is a regression task, the most
commonly used error functions E(ŷ, y) for calculating the estimation error of a
forecasting model are the Root Mean Squared Error (RMSE). And for describing
the estimation error probability distribution Cumulative Distribution Function

3.6 ML Algorithms Implementation 37

(CDF) plot is used. In the thesis, both RMSE and CDF plot are used to evaluate
the ML estimation performance.

3.5.1 RMSE

RMSE calculates the square root of the mean of squared differences between the
estimated values ŷ and the actual values y. The mathematical equation of RMSE
is √√

1
n

n∑
i=1

(yi − ŷi)2, (3.3)

where n is the number of element in the vector y, yi is the ith element of the ac-
tual vector and ŷi is the ith element of the estimated vector.

Since in this thesis the estimates are the orientation degrees, we need to cal-
culate the difference in angles. The calculation method is described in Section
3.4.1.

3.5.2 CDF

CDF plot is used to specify the probability that a variable X will take a value less
than or equal to value x. The CDF of X is the function given by

FX(x) = P (X < x). (3.4)

In the thesis, CDF plot is used to evaluate the estimated error distribution of
each model. At the same value of estimated error, the larger the value of CDF, the
better the performance. Therefore, CDF plot together with RMSE provide a more
comprehensive evaluation of the model.

3.6 ML Algorithms Implementation

The two different ML algorithms adaptation are explained in this section.

3.6.1 KNN

KNN regressor as introduced in the theoretical Section 2.1.1 works by taking the
average of the neighbor’s orientation degree. In the problem, the Euclidean dis-
tance (2.1) was used initially as the matrix to calculate the neighbors.

When calculating the distance using Euclidean distance, two weight func-
tions were considered as described in Section 2.1.1. ’Uniform’ weighting scheme
was used as the first technique and later ’distance’ weighting scheme was imple-
mented on the same data to identify which weighting scheme was suitable for
our data. Another technique called correlation (2.3) was also used to calculate

38 3 Method

Figure 3.10: An example of RSRP values of adjacent degrees and non-
adjacent degrees. Sometimes they are similar.

the nearest neighbors so that the best performing case could be identified for the
problem at hand. The results of different techniques will be discussed in the re-
sult section.

After using the correlation distance as the metric, it was observed that the
worst-performing cases were for UEs with orientation angles of around 0 degrees.
Furthermore, the neighbors were analyzed and it was observed that the orienta-
tion angles which were far apart were having similar RSRP values as shown in
Figure 3.10. The true value of orientation of the UE is 300 degrees which is the
first plot in the figure. From the result, we can see that the RSRP values of 301
degrees and 168 degrees look similar with an extra peak for the 168 degrees.

However, the error can be reduced if the variance of each neighbor’s degree is
calculated and then use the degree with minimum variance as the final prediction.
The algorithm is shown in 3.4.2. The algorithm first takes the nearest neighbor
vector, and then computes the differences between each neighbor to all other
neighbors and calculates the variance, Finally, the one with minimum variance is
chosen as the output. A more detailed explanation is provided in Section 3.4.2.
The increase in performance after this modification will be discussed in the result
section.

Value of Optimal K

The value of the optimum number of neighbors for the KNN was done by calcu-
lating the RMSE against different K values and choosing the one which has the
lowest RMSE value. This plot was generated after the addition of the minimum

3.6 ML Algorithms Implementation 39

variance estimator for the prediction and the plot shows us how the number of
neighbors affects the RMSE value in Figure 3.11.

Figure 3.11: RMSE of different numbers of neighbors.

From the figure it can be observed that increasing the number of nearest neigh-
bors has less influence on the RMSE value. Thus in our problem at hand choosing
the best nearest neighbors has more impact on the final prediction rather than
the number of neighbors considered. Hence, we chose 4 as the K value initially
because it fits to most of the scenarios that have been studied in this paper.

3.6.2 Random Forest

RF is a non-parametric supervised algorithm as described in section 2.1.2. For
the regression problem of estimating the orientation ŷ, the RF regressor was im-
plemented as explained in the sub-sections to follow.

Number of Trees

In RF, having more number trees generally gives better predictions. However,
as discussed in Section 2.1.2 more number of trees also mean that the compu-
tational time increases, and after a certain number of trees the improvement in
performance is very small. A similar trend was observed in the problem at hand
as shown in Figure 3.12 and considering the time and performance, the number
of trees was chosen to be 130.

Depth of the Tree

The depth of the trees is an important factor which influence the final prediction
as described in Section 2.1.2. They can be controlled and one of them is the min-
imum number of observations per tree leaf. To decide the optimum number of

40 3 Method

Figure 3.12: RMSE of different numbers of trees.

observations per tree leaf, different values were used as shown in Figure 3.13. It
is observed that the RMSE value increases as the number of leaf nodes increases.
Hence 3 was chosen as the optimum value for minimum number of observations
per tree leaf.

Figure 3.13: RMSE of different numbers of tree depth.

In this Chapter, we discussed the scenarios layout, the wireless communica-
tion model, and features for ML models as well as their data structures. And the
implementation of KNN and RF algorithm in this thesis is introduced specifically.
In the next Chapter, we will present the result and compare performance of these
methods.

4
Results and Performance Evaluation

This chapter presents the results and performance evaluations of the KNN and
RF algorithms. The methods of generating training dataset and test dataset are
introduced. The performance of the two ML algorithms in different scenarios are
also discussed based on different input features.

4.1 Dataset Splitting

As analyzed in section 3.3.1, we have 360000 data objects(xi, yi) in the dataset.
For evaluation, there are two different ways to separate the dataset into a training
dataset T and a test dataset, which are called random or consecutive selection.
The reason for dividing the whole dataset is explained in Section 1.

4.1.1 Random Selection

The first way is to randomly select 90% of the data objects from each UE position
dataset to train the ML model, and the remaining 10% of the data objects are used
for testing, as shown in Figure 4.1. In this way, the UE position of the training
dataset includes the UE position of the test dataset, while the orientations of the
training dataset at a certain position are different from the orientations of the test
dataset at the same position. The purpose is to evaluate the orientation estimation
performance of the ML model for the existing UE position. From the results we
can evaluate which feature performs the best for the UE orientation estimation.

4.1.2 Consecutive Selection

The second method is to consecutively select all the data objects belonging to ran-
dom 10 UE positions as the test dataset, and the remaining data objects belonging

41

42 4 Results and Performance Evaluation

Figure 4.1: Random selection. 10% of the data objects are randomly selected
from each UE position dataset as the test dataset, and the remaining 90% of
the data objects are used as the training dataset. The orange data objects are
selected as the test dataset.

Figure 4.2: Consecutive selection. All the data objects belonging to random
10 UE positions are selected as the test dataset, and the remaining data ob-
jects belonging to 990 UE position as the training dataset. The orange data
objects are selected as the test dataset.

4.2 KNN 43

to 990 UE position as the training dataset as shown in Figure 4.2. The purpose is
to evaluate the orientation estimation performance of the ML model for the new
UE position.

The training dataset obtained by these two ways of dataset splitting are not
biased, since the UE positions and the orientations in the training dataset are uni-
formly distributed.

4.2 KNN

In this section, the results obtained by KNN are described. We will discuss KNN
estimation performance for different input features, investigate the obstruction
influence in the scenarios, and compare the impact of different levels of signal
interference. Furthermore, the KNN orientation estimation performance for the
UE at a new position will be evaluated.

4.2.1 Obstruction Influence

In this section, we discuss the obstruction influence by comparing scenarios with
and without obstruction, described in Section 3.2. When there is no obstruction
in the scenario, whether a UE and a TRP are in LoS only depends on the antenna
orientation of the TRP and the UE. Moreover, the RSRP value only depends on
the antenna orientation of the TRP and the UE, and the position of the UE in the
indoor-office. When there is obstruction in the scenario, both LoS condition and
the strength of the received RSRP are influenced by the obstruction. Therefore,
we discuss the obstruction influence on UE orientation estimation for different
input features to analyze which feature can provide the better performance in
the different scenarios.

To exclude the influence of interference, we use scenarios without interfer-
ence to compare the obstruction influence, and the random dataset selection is
applied. The CDF of the orientation estimation errors of KNN for scenarios with
and without obstruction is shown in Figure 4.3. From the results, RSRP as the
input feature provides better performance than others, and the estimation error
increases when obstructions in the scenario increases. Using the isLoS vector
alone as the input feature can estimate the UE orientation to some extent, and ob-
struction improves its performance slightly. The reason is that obstruction makes
the environment more complex, which brings more different changes to the isLoS
vectors. When there are more differences between feature vectors of two differ-
ent orientation degrees, the estimation gets more accurate. Combining RSRP and
isLoS has worse performance than using RSRP alone. The reason is that the KNN
algorithm treats each feature equally important, adding isLoS feature to RSRP
will reduce the performance of RSRP alone.

44 4 Results and Performance Evaluation

Figure 4.3: In the no interference scenarios, the CDF of the orientation esti-
mation errors of different features using KNN, with and without obstruction
scenarios.

4.2.2 Interference Level

Ideally, we want the received signal to be free from interference. But in reality,
interference always exists. In this section, the estimation performance of the dif-
ferent levels of interference in the received signals, described in Section 3.2, are
compared. Similar to the previous section, we will also compare the estimation
performance of different features in different scenarios.

Figure 4.3 shows the CDF of the orientation estimation errors with no interfer-
ence, Figure 4.4 is with interference, and Figure 4.5 is with extreme interference.
Considering all the results together, the estimation performance of each feature
gets worse when the level of interference increases. Similar to the previous sec-
tion, RSRP alone as the input feature performs better than other features in all
the scenarios. Combining RSRP and isLoS decreases performance a bit. When
considering isLoS alone, the estimation performance reduces significantly, and
stronger the interference, even worse is the performance. The reason is that the
interference affects the detection of LoS condition, which makes isLoS vector not
able to describe the actual condition of the UE, which makes the estimation per-
formance decrease greatly.

In summary, the RMSEs of each feature in different scenarios of KNN are
shown in Table 4.1. The smaller the RMSE value, the better the estimation per-
formance. Considering all the scenarios, RSRP alone as input feature provides

4.2 KNN 45

Figure 4.4: In the interference scenarios, the CDF of the orientation estima-
tion errors of different features using KNN, in the with and without obstruc-
tion scenarios.

Figure 4.5: In the extreme interference scenarios, the CDF of the orientation
estimation errors of different features using KNN, in the with and without
obstruction scenarios.

46 4 Results and Performance Evaluation

Table 4.1: The RMSEs of KNN using different features for orientation esti-
mation in the different scenarios.

Feature No obstruction Obstruction

No interference
isLoS 6.0306 4.9440
RSRP 1.0604 1.1090
RSRP+isLoS 1.9347 1.9465

Interference
isLoS 5.1407 4.8827
RSRP 1.2577 1.6073
RSRP+isLoS 1.9602 2.1509

Extreme
interference

isLoS 73.5739 73.8140
RSRP 2.2359 2.7300
RSRP+isLoS 8.1861 8.7275

the best estimation performance. isLoS can estimate orientation to some extent.
While combine RSRP and isLoS together will reduce performance a bit compar-
ing to the performance of RSRP alone. Perhaps using some other ML algorithms
which can consider the two features comprehensively could improve the estima-
tion performance.

4.2.3 Evaluation of Orientation Estimation in New UE Positions

Conclusions can be drawn from the previous two sections, that the best estima-
tion performance of random selection happens under no obstruction and no in-
terference scenario. In this section, we will use this scenario to discuss the ori-
entation estimation performance when the test dataset contains the UE with the
new positions.

We use the consecutive selection way to split the dataset. The CDF of the ori-
entation estimation errors of KNN for the new UE positions are shown in Figure
4.6 when K=4. The RMSE of each feature is in Table 4.2. From the results, the
CDF of each feature is almost a diagonal line, and the RMSE of each feature esti-
mation is rather poor, which means that using RSRP, isLoS, or combining the two
features as the input, when the training dataset does not contain the orientation
data of UE at a certain position, KNN has limited ability to predict the UE orien-
tation degree. The result shows that RSRP feature or combining RSRP and isLoS
features together as input has the ability to estimate orientation to some extent,
but the performance is significantly reduced compared to when the position is
being trained. The investigations below explain why KNN has limited ability to
predict the UE orientation degree for data with new position.

From Eq. 2.13, the received RSRP vector S from TRPs is mainly affected by
UE position PRX and orientation θRX . Generally, UE receives similar S when both
PRX and θRX are similar, therefore, we will investigate if the neighbors calculated

4.2 KNN 47

Figure 4.6: In the no interference scenarios with no obstruction, the CDF of
the orientation errors of KNN for different input features.

Table 4.2: The RMSEs of KNN using different features for orientation esti-
mation when test dataset has new UE positions.

isLoS RSRP RSRP+isLoS
RMSE 96.7750 84.3009 81.1042

by KNN method have similar position and orientation as the test data. From Fig-
ure 4.7a, more than 90% of the neighbors are less than 7 meters away from the
test data when K=4 and 3600 test data, which means that most of the neighbors
calculated by KNN method have similar positions to the testing data. From Fig-
ure 4.7b, around half of neighbors’ orientation are similar to the orientation of
test data, but the orientation of about half of the neighbors is less than 50 de-
grees different from the orientation of their test data, indicating that KNN has
some abilities to estimate the orientation at the new location. However, neigh-
bors with larger errors (that is, neighbors with an error greater than 50 degrees)
also account for about half of the total, and are roughly random distributed. This
is because at a certain location, the RMSE received by different orientations does
not change much, as shown in the Figure 3.6a, the minimum correlation between
each orientation at the same position is around 0.9, so the neighbors calculated
by KNN appears randomly at all angles.

48 4 Results and Performance Evaluation

(a) Histogram of the 2D dis-
tance between the 3600 test data
and their neighbors from KNN
method when K=4.

(b) Histogram of the orientation
difference between the 3600 test
data and their neighbors from
KNN method when K=4.

Figure 4.7: Histograms when test data are in the new positions.

4.3 Random Forest

In this section, the results obtained by RF are described. Similar to KNN, we
will discuss the estimation performance of RF for different input features, and
investigate the obstruction influence in the environment and different levels of
signal interference. Furthermore, the orientation estimation performance of RF
for the UE at a new position will be evaluated.

4.3.1 Obstruction Influence

Supposing in the no interference scenario, the randomly selection splitting way
is used to compare the obstruction influence on the estimation performance of RF
algorithm, and the CDF is shown in Figure 4.8. The results are slightly different
from KNN, the best estimation performance is when RSRP is used as the input
feature and there are obstruction in the environment. The reason is that instead
of comparing the similarity of all the features like KNN, RF makes decision by
considering which features to choose and what conditions to use for decision. Fig-
ure 4.9 compares the obstruction influence on the received RSRP. The obstruction
increases the fluctuation of RSRP, so the RF algorithm can select special features
with large fluctuations to do estimation, which makes obstruction scenarios esti-
mation performance better.

Overall, the obstruction has relatively small effect on estimation performance
comparing to the type of the input features. When the input feature is RSRP alone
or RSRP and isLoS together, the estimated performance is much better than isLoS
alone. This result is similar to KNN.

4.3 Random Forest 49

Figure 4.8: In the no interference scenarios, the CDF of the orientation es-
timation errors of different features using RF, in the with and without ob-
struction scenarios.

4.3.2 Interference Level

In this section, we will investigate the impact on estimation performance of RF
when there are different levels of interference in the received signals. The CDF of
the orientation estimation errors of RF for no interference are shown in Figure 4.8,
for interference are shown in Figure 4.10 , and for extreme interference are shown
in Figure 4.11. Similar to KNN, the estimation performance of each feature be-
comes worse when interference increases. RSRP alone as input feature gives the
best estimation performance. Combining RSRP and isLoS together decreases per-
formance a bit. When only considering isLoS, the estimation performance drops
significantly, and the stronger the signal interference, the worse the performance.

In summary, the RMSE of RF algorithm estimation in different scenarios are
shown in Table 4.3. Considering all the scenarios, RSRP alone as input feature
provides the best estimation performance when using the RF algorithm. But com-
bining RSRP and isLoS together reduces performance a bit. Besides, isLoS can
estimate orientation to some extent.

4.3.3 Evaluation of Orientation Estimation in New UE Positions

Similarly, in this section we will discuss the RF estimation performance when
the testing dataset contains the UE with the new positions. The CDF of the ori-
entation estimation errors of RF for the new UE positions are shown in Figure

50 4 Results and Performance Evaluation

Figure 4.9: The received RSRP in 360 orientation degrees at a certain posi-
tion. The first figure is when no obstruction in the environment, the second
when obstruction exist. Each different colored line represents the RSRP vec-
tor in a certain orientation degree.

Table 4.3: RMSE of RF algorithm estimates in different scenarios.

Feature No obstruction Obstruction

No interference
isLoS 23.7300 20.9849
RSRP 3.9381 3.6519
RSRP+isLoS 4.0232 3.7518

Interference
isLoS 21.9658 21.4752
RSRP 4.0199 3.8881
RSRP+isLoS 4.0344 4.0098

Extreme
interference

isLoS 81.1315 80.9952
RSRP 5.8205 5.5670
RSRP+isLoS 5.7378 5.5303

4.12. The RMSE of each feature is in Table 4.4. From the results, the CDF of
isLoS feature is almost a diagonal line, which means isLoS only has no ability for
orientation estimation. Using RSRP, or a combination of the two as the input fea-
ture has some certain ability to estimate UE orientation when the training dataset
does not contain the orientation data of a UE at a certain position, and they are
better than using KNN method. The reason for the limited performance of using
RF to estimate the orientation of the UE at the new position is the same as that
of Section 4.2.3, which is because the features are sensitive to position changes,

4.3 Random Forest 51

Figure 4.10: In the interference scenarios, the CDF of the orientation estima-
tion errors of different features using RF, in the with and without obstruction
scenarios.

Figure 4.11: In the extreme interference scenarios, the CDF of the orienta-
tion estimation errors of different features using RF, in the with and without
obstruction scenarios.

52 4 Results and Performance Evaluation

but not the orientation changes, so the input data cannot be distinguished, caus-
ing the not ideal estimation performance. However, using RF method performs
better than using KNN method, it is because RF does not use all features, it pri-
oritizes high-importance features to differentiate the input data. As can be seen
from the Figure 4.9, for different orientations, several of the features vary greatly,
so RF can distinguish the orientation from comparing certain features.

Figure 4.12: In the no interference scenarios with no obstacle, the CDF of
the orientation errors of RF for different input features.

Table 4.4: The RMSEs of different features estimation of RF with new UE
positions.

isLoS RSRP RSRP+isLoS
RMSE 86.9300 66.3523 66.5864

4.4 Random Forest With Modification

In the scenario, where there is no interference and LoS was only considered, the
normal RF algorithm without any modification and the RF with modification by
implementing the minimum variance estimator was implemented. It is observed
from Figure 4.13 that the performance of the RF algorithm improved after we
implemented the modification. The reason for the improvement is that instead of
taking the average of the estimates from all decision trees, the minimum variance

4.5 Comparison Between KNN and RF Estimation Performance 53

estimator as defined in Section 3.4.2 estimates the final orientation degree with
the smallest variance among all estimates.

Figure 4.13: In the no interference scenario with no obstacle, the CDF of
the orientation errors of RF before and after implementing the minimum
variance estimator.

4.5 Comparison Between KNN and RF Estimation
Performance

In the same scenario, the estimation performance of KNN is better than RF. The
main reason is that KNN uses the data with the most similar feature as orienta-
tion estimation directly, without doing any regression calculation. RF uses an
ensemble learning method for regression, which is a technique that combines
predictions from multiple decision trees. It uses linear average for regression cal-
culation, which is not suitable for degree average, as described in Section 3.4.1.
So the ensemble learning method introduces some errors in the RF estimation
results, which reduces the estimation performance of RF.

Since RF constructs a multitude of decision trees, it takes a certain amount of
time during the training period. After the RF model is generated, it takes little
time to estimate during the testing period. In contrast, KNN does not need to
generate any model, so it does not need to spend any time during the training
period. When using the test dataset for estimation, KNN takes a long time since
it needs to calculate the distance between data points.

54 4 Results and Performance Evaluation

In this chapter, we show the results of this thesis. We evaluated the estimation
performance of KNN and RF in different scenarios and with different input Fea-
tures, and compared the similarities and differences between the two algorithms.
In the next chapter, we will do a comprehensive discussion and summary of this
thesis.

5
Discussion and Conclusions

This chapter discusses the results that is described in chapter 4, concludes the
work by recalling the problem formulation, and suggests the future work.

5.1 Discussion

This section analyses and discusses the results obtained in section 4.

5.1.1 KNN

The KNN algorithm works better than Random Forest after finding the correct
neighbor and implementing the minimum variance estimator as shown in Tables
4.1 and 4.3.

From Figure 4.4 it is observed that for most of the scenarios RSRP alone as
a feature performs better than the case where a combination of both RSRP and
isLoS is used. This is because KNN treats all the features with same importance
even though RSRP is more important than isLoS in our case. The addition of
isLoS to the training data is not adding any information and only increases the
dimensionality of the data. This is further verified in the case when isLoS alone
was used as a feature, the performance is lowest for all the interference scenarios.
Further it was noticed that, the dependence of orientation angle on LoS is nega-
tively affected when there is extreme interference as seen in Figure 4.5. Another
important observation when using isLoS alone as input feature x is that the per-
formance improves when there exist obstructions. This is due to the increase in
complexity of the environment which creates more distinct changes in isLoS that
helps the model to identify the relationship f between inputs x and outputs y

55

56 5 Discussion and Conclusions

better.

It can also be noticed that the model has the best performance with RSRP as a
feature. When RSRP alone is used as a feature, the performance deteriorates for
all levels of interference where there is obstruction as shown in Table 4.1.

As described in the Section 2.1.1, one main limitation of KNN is its depen-
dency on the training data T , as it does not learn from the training data, but
memorizes and uses the closest neighbors’ orientation angle to predict the ori-
entation angle ŷ of an unseen UE. The dependency of KNN on training data T
is also discussed in [28] where another algorithm is used along with KNN to
overcome this theoretical limitation. This limitation can also be observed in our
results as shown in Table 4.2, when a dataset which contains new UE position is
introduced, the model performs poorly. Thus, due to this limitation our model
cannot be used for finding the orientation if the data of the UE at that position is
not included in the training data T and cannot generalize to untrained/unseen
locations. Furthermore, input variables x0, ..., x36 in the data used for training
the model have different distributions for two different UEs even with same ori-
entation degree, since the data were recorded in different locations. Hence when
a new unseen UE with new position and orientation x∗ is given as input to the
model it is unable to predict y∗ because it has not seen any data that is similar.
Capturing these dependencies for different positions and for all orientations can
become a complex endeavour. As a starting point the positions of the UEs can be
added as an additional input variable.

5.1.2 Random Forest

From Table 4.3 and Table 4.1 it can be seen that RF performs well but not as good
as KNN due to the cyclic nature of orientation angles which was solved better in
KNN by using minimum variance estimator defined in section 3.4.2, but was not
completely solved in case of RF, even though the minimum variance estimator
was implemented, as described in Section 4.5.

Similar to KNN, when RSRP is used as a feature, the model performs best
comparatively as seen in table 4.3. It can be noted that the model performs better
in case there exist scatters. Similar to KNN, when a combination of RSRP and
isLoS is used the performance worsened compared to the case when RSRP alone
is used as a feature. However, the level of performance degradation is less in the
case of RF compared to KNN.

From Figure 4.11 it is observed that regardless of the existence of the obsta-
cles, the performance seems to be similar in experiments where the interference
levels are the same. Another interesting observation is that, the performance im-
proves slightly only in the case of extreme interference when RSRP and isLoS are
combined as they together give better information about orientation.

5.2 Conclusions 57

Similar to the case of KNN, Section 4.3.3 confirms that the RF model can pre-
dict the orientation only if training data T contains information about UE at that
specific position. Thus the trained RF model cannot be used for predicting orien-
tation in untrained locations, since the input variables x0, ..., x36 have different
distributions in different locations, even if they have the same orientation.

The RF makes predictions that is the average of the previously observed data
and it cannot extrapolate. Thus, in our regression problem RF predictions will
be bound to the values in the training data, and when the test data differs in dis-
tributions it is called as covariate shift which was introduced by Shimodaira [29].
This might be another reason why the RF cannot generalize to unseen/untrained
locations as the distributions of relevant variables are different for an unseen UE
with a new position.

5.2 Conclusions

Looking back into the problem formulation in chapter 1, where the questions
to be investigated were, to study the impacts of UE orientation on received sig-
nal features such as ToA, RSRP, and LoS condition, which are the features that
are important for the ML model to estimate the orientation of a UE by utilizing
the data generated from the simulated environment? How do the interference
and the information about LoS condition affect the performance of the ML algo-
rithm? Which ML model has the best performance, given features available? are
answered in the following paragraphs.

As described in Section 2.2, different features, such as ToA, RSRP, and LoS
condition, were studied. As in Section 3.2 feature selection technique was imple-
mented to identify which are the features contributed to the orientation of the UE
from the data. The RSRP was identified as the most relevant feature followed by
the LoS condition for the orientation problem and hence the first research ques-
tion is answered.

The second research question of how the information about LoS condition in-
fluences orientation can be found in Section 4 and it was observed that the LoS
condition can give some information about the orientation. When it comes to in-
terference, the cases where there is no interference give better results compared
to the cases where interferences exist and it can be concluded that interference
has negative impact on performance, as seen in Table 4.1 and Table 4.3.

The third research question was to identify which ML model has the best per-
formance, given features available. As per the results in Section 4.1, KNN gave
better performance after the minimum-variance estimator was implemented. From
Section 4 it is observed that the KNN performs better than the RF once the min-

58 5 Discussion and Conclusions

imum variance estimator has been implemented. Thus the best ML model is
identified as per the third research question.

To get a better performance it is very important to take a logarithmic scale, es-
pecially for smaller values like RSRP, which helped the model to identify peaks
and thus better performance. Another conclusion is to take the cyclic nature of
the orientation angles into consideration. Furthermore, the results conclude that
RSRP is the best feature that can be used for estimating the orientation of a UE
device.

As described in the Chap 1, the training data is very important for any ML
problem in order to obtain a model that can predict the target value and we can
observe that in Section 4. Thus the conclusion that is that the model can give
good performance only in the first case of data splitting where train data is ran-
domly selected as mentioned in Section 4.1, because then the training data also
inherits the UE position information. Neither the KNN nor the RF can estimate
UE orientation for a UE located in a position which is not covered by training set.
As discussed in Section 5.1, the model due to the variance in the input variables
in the data is not able to predict the orientation of a new unseen UE with new
position, thus the proposed model can only work on trained location.

Much of the time was spent on understanding the features in the data, ana-
lyzing the outputs, and why the outputs from the model were not as expected.
Once the problem was identified we created a custom solution called minimum
variance estimator that helped us to avoid the edge cases that improved the per-
formance of the algorithm as seen in Figure 4.13. This figure proves that the
custom method that we implemented works very well for the orientation angles
estimation problem.

The results in Section 4 and Section 3.2 prove that for orientation estimation
using RSRP values as features is the best for our current scenario, and also KNN
works better than RF.

5.3 Future Work

Although the results presented in this thesis are promising, the methods and
datasets used for evaluation are very limited. We expect more future work to
improve the performance.

5.3.1 Deep Learning And Other Techniques

Deep Learning (DL), which is a class of ML models, has drawn much attention in
recent years due to its expressive capacity and convenient optimization capability.
Artificial Neural Networks (ANN) are inspired by the sophisticated functionality
of human brains where hundreds of billions of interconnected neurons process

5.3 Future Work 59

information in parallel [30]. Neural networks consist of units that are similar to
biological neurons. A feed-forward neural network model also known as Multi-
layer Perceptron (MLP) is a tool for identifying patterns. Due to the success of
deep learning methods in solving complex problems, an MLP was implemented
and the performance was similar to a Random Forest without any modification.
It was found that the reason why the neural network was not better than the
Random Forest was because of the loss function MSE that was used for training
the neural network. Hence the future work can be to create a customized loss
function for the neural network model that considers the cyclic nature of orien-
tation angles. Another possible approach is to use a regression-enhanced RF by
penalized parametric regression technique [31].

5.3.2 More Scenarios

The model that was trained can be evaluated on a different scenario to identify
how well this model generalizes to a wider scenario. Another future work is to
use the trained model on an outdoor environment and evaluate the performance.
If the performance is not as expected then the trained model can be trained again
on the new outdoor environment data.

5.3.3 Large/Multi Antenna Panel

In the current receiver configuration that was studied in this paper, there were
only two antenna elements. The number of receiver could be increased to achieve
better accuracy in the RSRP values by averaging, thus the chance of having a more
precise orientation is higher as it considers more antenna elements for calculating
the RSRP values.

5.3.4 More Data

In the case that was studied in this paper, 1000 UEs were only considered due
to the time it takes for generating the data. A larger data set having more data
points will give the ML algorithms a bigger scope of learning, which could boost
the performance of the ML algorithm. Hence, a larger data set is promising for
obtaining better results.

5.3.5 6 Dimension (6D) Positioning

In our study, we have considered 1D orientation estimation, but in general, orien-
tation is 3D and can be defined by using roll, pitch, and yaw. Thus in the future
3D orientation along with 3D positioning can lead to 6D positioning of the UE.

Appendix

A
Contributions

The thesis project work was done together most of the time especially during the
implementation. During the initial days of reviewing previous works, Nikil was
responsible for reading works related to machine learning while Jianxin focused
on related works which had communication background. The simulation of data
for the project from the simulator was carried out together with each of them
trying to generate dataset with different set of parameters. Implementation of
KNN and RF was done together and with continuos discussions. When the report
was written, the communication theory was written by Jianxin and Nikil was
reponsible for the introduction chapter. Nikil focused on writing the theoretical
chapter of ML whereas Jianxin focused on the related works part. All the other
parts was written with equal contribution.

63

Bibliography

[1] Cynthia L Kendell and Edward D Lemaire. Effect of mobility devices on
orientation sensors that contain magnetometers. CMBES Proceedings, 31,
2008.

[2] Tatsuya Harada, Hiroto Uchino, Taketoshi Mori, and Tomomasa Sato.
Portable orientation estimation device based on accelerometers, magnetome-
ters and gyroscope sensors for sensor network. In Proceedings of IEEE Inter-
national Conference on Multisensor Fusion and Integration for Intelligent
Systems, MFI2003., pages 191–196. IEEE, 2003.

[3] Grace Wahba. A least squares estimate of satellite attitude. SIAM review,
7(3):409–409, 1965.

[4] Demoz Gebre-Egziabher, Roger C Hayward, and J David Powell. Design
of multi-sensor attitude determination systems. IEEE Transactions on
aerospace and electronic systems, 40(2):627–649, 2004.

[5] Josef Justa, Václav Šmídl, and Aleš Hamáček. Fast ahrs filter for accelerom-
eter, magnetometer, and gyroscope combination with separated sensor cor-
rections. Sensors, 20(14):3824, 2020.

[6] Angelo M Sabatini. Quaternion-based extended kalman filter for deter-
mining orientation by inertial and magnetic sensing. IEEE transactions on
Biomedical Engineering, 53(7):1346–1356, 2006.

[7] Roberto G Valenti, Ivan Dryanovski, and Jizhong Xiao. Keeping a good at-
titude: A quaternion-based orientation filter for imus and margs. Sensors,
15(8):19302–19330, 2015.

[8] A. L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 44(1.2):206–226, 2000.

[9] Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B
Schön. Machine Learning: A First Course for Engineers and Scientists. Cam-
bridge University Press, 2022.

65

66 Bibliography

[10] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations
of machine learning. MIT press, 2018.

[11] Arash Shahmansoori, Gabriel E Garcia, Giuseppe Destino, Gonzalo Seco-
Granados, and Henk Wymeersch. Position and orientation estimation
through millimeter-wave mimo in 5g systems. IEEE Transactions on Wire-
less Communications, 17(3):1822–1835, 2017.

[12] Jukka Talvitie, Mike Koivisto, Toni Levanen, Mikko Valkama, Giuseppe Des-
tino, and Henk Wymeersch. High-accuracy joint position and orientation
estimation in sparse 5g mmwave channel. In ICC 2019 - 2019 IEEE Interna-
tional Conference on Communications (ICC), pages 1–7, 2019.

[13] Mohamed Amine Arfaoui, Mohammad Dehghani Soltani, Iman Tavakkol-
nia, Ali Ghrayeb, Chadi M. Assi, Majid Safari, and Harald Haas. Invoking
deep learning for joint estimation of indoor lifi user position and orienta-
tion. IEEE Journal on Selected Areas in Communications, 39(9):2890–2905,
2021.

[14] Mohammad A Nazari, Gonzalo Seco-Granados, Pontus Johannisson, and
Henk Wymeersch. 3d orientation estimation with multiple 5g mmwave base
stations. In ICC 2021-IEEE International Conference on Communications,
pages 1–6. IEEE, 2021.

[15] Jingxue Bi, Yunjia Wang, Xin Li, Hongji Cao, Hongxia Qi, and Yongkang
Wang. A novel method of adaptive weighted k-nearest neighbor fingerprint
indoor positioning considering user’s orientation. International Journal of
Distributed Sensor Networks, 14(6):1550147718785885, 2018.

[16] Mohamed Amine Arfaoui, Mohammad Dehghani Soltani, Iman Tavakkol-
nia, Ali Ghrayeb, Chadi M. Assi, Majid Safari, and Harald Haas. Invoking
deep learning for joint estimation of indoor lifi user position and orienta-
tion. IEEE Journal on Selected Areas in Communications, 39(9):2890–2905,
2021.

[17] Kashvi Taunk, Sanjukta De, Srishti Verma, and Aleena Swetapadma. A brief
review of nearest neighbor algorithm for learning and classification. In 2019
International Conference on Intelligent Computing and Control Systems
(ICCS), pages 1255–1260, 2019.

[18] Aized Amin Soofi and Arshad Awan. Classification techniques in machine
learning: applications and issues. Journal of Basic and Applied Sciences,
13:459–465, 2017.

[19] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

[20] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and pre-
diction, volume 2. Springer, 2009.

Bibliography 67

[21] Jake Morgan. Classification and regression tree analysis. Boston: Boston
University, 298, 2014.

[22] Andy Liaw, Matthew Wiener, et al. Classification and regression by random-
forest. R news, 2(3):18–22, 2002.

[23] Farhana Afroz, Ramprasad Subramanian, Roshanak Heidary, Kumbesan
Sandrasegaran, and Solaiman Ahmed. Sinr, rsrp, rssi and rsrq measure-
ments in long term evolution networks. International Journal of Wireless
& Mobile Networks, 2015.

[24] Thomas L Marzetta. Fundamentals of massive MIMO. Cambridge Univer-
sity Press, 2016.

[25] 3GPP. Technical specification group radio access network; channel model
for frequency spectrum above 6 ghz (release 14), 2016.

[26] Ruben Morales Ferre, Gonzalo Seco-Granados, and Elena Simona Lohan. Po-
sitioning reference signal design for positioning via 5g. National Committee
for Radiology in Finland: Tampere, Finland, 2019.

[27] Anthony C. Caputo. 5 - wireless networked video. In Anthony C. Caputo,
editor, Digital Video Surveillance and Security (Second Edition), pages 145–
204. Butterworth-Heinemann, Boston, second edition edition, 2014.

[28] N Suguna and K Thanushkodi. An improved k-nearest neighbor classifi-
cation using genetic algorithm. International Journal of Computer Science
Issues, 7(2):18–21, 2010.

[29] Hidetoshi Shimodaira. Improving predictive inference under covariate shift
by weighting the log-likelihood function. Journal of statistical planning and
inference, 90(2):227–244, 2000.

[30] Sun-Chong Wang. Artificial neural network. In Interdisciplinary computing
in java programming, pages 81–100. Springer, 2003.

[31] Haozhe Zhang, Dan Nettleton, and Zhengyuan Zhu. Regression-enhanced
random forests. arXiv preprint arXiv:1904.10416, 2019.

	Abstract
	Acknowledgments
	Contents
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.2.1 Problem Statement

	1.3 Related Work
	1.4 Why ML?

	2 Theoretical Background
	2.1 Machine Learning
	2.1.1 KNN
	2.1.2 Random Forest

	2.2 Features
	2.2.1 RSRP
	2.2.2 ToA
	2.2.3 LoS Condition

	3 Method
	3.1 Scenario
	3.2 Feature Selection
	3.3 Pre-processing of Data
	3.3.1 Dataset Structure
	3.3.2 Imputing the Missing Values
	3.3.3 Logarithm Transformation

	3.4 Analysis of Angles
	3.4.1 Difference in Angles
	3.4.2 Minimum-variance Estimator of Degrees

	3.5 Performance Metrics
	3.5.1 RMSE
	3.5.2 CDF

	3.6 ML Algorithms Implementation
	3.6.1 KNN
	3.6.2 Random Forest

	4 Results and Performance Evaluation
	4.1 Dataset Splitting
	4.1.1 Random Selection
	4.1.2 Consecutive Selection

	4.2 KNN
	4.2.1 Obstruction Influence
	4.2.2 Interference Level
	4.2.3 Evaluation of Orientation Estimation in New UE Positions

	4.3 Random Forest
	4.3.1 Obstruction Influence
	4.3.2 Interference Level
	4.3.3 Evaluation of Orientation Estimation in New UE Positions

	4.4 Random Forest With Modification
	4.5 Comparison Between KNN and RF Estimation Performance

	5 Discussion and Conclusions
	5.1 Discussion
	5.1.1 KNN
	5.1.2 Random Forest

	5.2 Conclusions
	5.3 Future Work
	5.3.1 Deep Learning And Other Techniques
	5.3.2 More Scenarios
	5.3.3 Large/Multi Antenna Panel
	5.3.4 More Data
	5.3.5 6 Dimension (6D) Positioning

	A Contributions
	Bibliography

