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Abstract

Developing and improving upon a good empirical model for an engine can be time-
consuming and costly. The goal of this thesis has been to evaluate data-driven modelling,
specifically neural networks, to see how well it can handle training for some static models
like the mass flow of air into the cylinder, mean effective pressure and pump mean ef-
fective pressure but also for transient modelling, specifically the exhaust gas temperature.
These models are evaluated against the classical empirical models to see if neural networks
are a viable modelling option. This is done with five different types of neural networks
which are trained. These are the feed-forward neural network, Nonlinear autoregressive
exogenous model network, layer recurrent network, long short term memory network and
gated recurrent network. The inputs were determined by looking at more simple physical
models but also looking at the covariance to determine the usefulness of the input. If the
calculation time is small for the specific network, the neural network structure is tested and
optimized by training many networks and finding the median/mean result for that specific
test. The result has shown that the static models are handled very well by the most sim-
ple feed-forward network. For the exhaust temperature, both NARX and Layer recurrent
network could predict and handle it well giving results very close to the empirical models
and could be a viable option for transient modelling, on the other hand, Long short term
memory, gated recurrent network and the feed-forward network had trouble predicting
the exhaust gas temperature and returned bad results while training.
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1 Introduction

1.1 Motivation

Knowledge of the internal engine-states are useful for many different things, such as diag-
nostics, control and development. The internal states of the engine can be predicted in three
ways:

• Measurements

• Physical modelling

• Data-driven modelling

Measuring all different physical properties of the engine is expensive and can not affordably
be done in commercially available passenger cars. Traditionally, the car industry has relied
mainly on physical modelling due to its predictability, but also on data-driven modelling to
solve more complex problems. These data-driven models can, for example, be curve-fitting,
mapping the variables or by using machine learning.

The car industry has existed for some time and has developed complex and well-tuned engine
models of both the physical and data-driven types. These models are expensive to make,
however, as they take a lot of development time. As new components are developed in order
to increase engine performance and comply with environmental laws, these models will have
to be expanded.

The engine developer and manufacturer Aurobay want to look into the possibilities of using
data-driven model development to speed up the process of creating new models. Specifically
if using artificial neural networks can be used to capture complex, dynamic and non-linear
behaviour where, currently, curve-fitting and map-based approaches are commonly used.

The temperature of the exhaust gas has a complicated behaviour as it is not only affected
by the combustion in the engine but also by the cooling of the engine components as heat
is transferred to the ambient air. It is therefore a good candidate for a sub-component in an

4



1.2. Aim

engine model to evaluate the performance of artificial neural networks as a modelling tool.
If the neural network does predict the exhaust temperature with very good results this could
in turn prove that a data-driven approach is a viable option for replacing or complementing
physical modelling. The method could then potentially lower development time and cost as
you could simply put a sensor for a needed variable, then use a data-driven method to extract
a model, and later remove that sensor if the performance of the data-driven model is good.

1.2 Aim

The underlying purpose of this thesis is to work as a proof of concept for the use of artifi-
cial neural networks as a way to decrease model development time. This will be done by
attempting to achieve a model of the exhaust gas temperature. The exhaust gas temperature
has been chosen partly because of the non-linear and dynamic aspects of the system.

1.3 Research questions

The question of checking the viability of using artificial neural networks for the purpose
of engine modelling, specifically for the exhaust gas temperature and its component can be
divided into four research questions:

• Is artificial neural network modelling a viable method for estimating the exhaust gas
temperature?

• How does the performance of the artificial neural network model compare to existing
empirical models?

• How can the structure of a neural network model of exhaust gas temperature be opti-
mised with respect to the results and computational effort?

• Which network structure is best suited for modelling the exhaust gas temperature?

1.4 Literature Review

A state-of-the-art review done by Bhatt and Shrivastava shows great potential in using arti-
ficial neural networks to predict complex engine performance [1]. Some of the areas where
research on artificial neural networks has been carried out are engine performance, heat and
temperature problems, exhaust emission composition, diagnostics and maintenance. The
authors noted that the most common training method used is the Levenberg–Marquardt
method. The networks employed to solve the problems investigated usually contain between
10 and 20 neurons per hidden layer and use either logarithmic sigmoid or tangent sigmoid
activation functions. Researchers at West Virginia University have managed to use different
types of machine learning principles to accurately estimate the exhaust gas temperature [2].
This was however done on a heavy-duty natural gas spark ignition engine converted from
a diesel engine. Their conclusion was that the most appropriate machine learning principle
was, if well trained, an artificial neural network.

A study using artificial neural networks as soft sensors for predicting exhaust emissions in
gasoline engines came to the conclusion that predicting different properties of the exhaust
emission using artificial neural networks is possible. The network used a series of local linear
models. The authors claimed however that it was difficult to capture the transient behaviour
of the temperature using their steady-state model [3].

A different study that attempted to model a heavy-duty diesel engine using layered artificial
neural networks also succeeded by using mainly static feed-forward networks. They solved
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1.5. Delimitations

the problem of modelling the more complex dynamic behaviour by using a non-linear au-
toregressive network with exogenous inputs (NARX) [4].

The conclusion from the work previously done in this area is that artificial neural networks
are well suited for engine modelling. Relying only on shallow feed-forward structures ap-
pears to be sufficient for simpler systems, such as several of the components used for calcu-
lating the exhaust gas temperature. For more dynamic systems, such as the exhaust tempera-
ture itself, a different approach needs to be used. It seems like previous researchers have had
some success using a non-linear auto-regressive network with exogenous inputs for similar
dynamic systems.

1.5 Delimitations

The delimitations for this project will be defined as followed.

• Only one engine model will be considered.

• Only the exhaust temperature model should be seen as a dynamic model and its com-
ponents as static models.

• The model will not separate sensor dynamics from the temperature measurements.
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2 Engine Modelling

The engine used for the project is a four-cylinder Volvo Engine Petrol 4 (VEP4) with a dis-
placement of 2.0 litres.

2.1 Mean Value Engine Models

The engine models are derived from [5] the assumption of some of the models being mean
value engine models. This means that the different models are assumed either as, static,
dynamic or as a constant depending on how fast the model values change during engine
cycles. An example is assuming a model is expressed as constant if its change is slower
than 1000 engine cycles, static if it changes during 1 cycle and dynamic if it changes between
3 ´ 1000 cycles.

2.2 Cylinder Air Flow

In order to examine the exhaust gas temperature it is necessary to calculate the air flow
through the engine. The total air flow ṁac for all cylinders at steady-state can be estimated
using a volumetric efficiency ηvol :

ṁac(N, pim, Tim, . . . ) = ηvol(N, pim, ...)
VD Npim
nrRTim

(2.1)

Where N is the engine speed, VD is the engine displacement, pim and Tim is the pressure and
temperature in the intake manifold, nr = 2 for a four-stroke, four-cylinder engine and the
specific gas constant R = 286 for air. The term pim

RTim
is the density of the air, assuming that the

ideal gas law holds for these conditions.

2.2.1 Estimation of Volumetric Efficiency

The volumetric efficiency is complex and depends on many things such as intake manifold
pressure, exhaust pressure, fuel, heat transfer, engine speed and exhaust gas re-circulation
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2.3. Engine Power and Efficiency

[5]. In many cases, the volumetric efficiency has to be measured empirically. There are several
common models for this. A simple relation for ηvol from [5]

ηvol(N, pim) = c0 + c1
?

pim + c2
?

N (2.2)

It can be noted that the above model is a parameterised non-linear data-driven model. This
makes the cylinder air flow model a grey-box model.

2.2.2 Variable Valve Timing

The gas flowing through the cylinder is controlled by the exhaust and inlet valves as in Fig-
ure2.1. These valves are traditionally controlled mechanically by the camshaft.

Figure 2.1: The air does not flow freely from the intake manifold through the cylinder but is
controlled by the inlet valve and exhaust valve. When these valves open and close affects the
efficiency of the engine.

If the exhaust valve is opened too early the pressure in the cylinder will drop, thus reducing
the engine efficiency [5]. If the exhaust valve is opened too late the pressure will not decrease
enough to efficiently pump new air into the cylinder. Having the valve openings overlap will
affect the amount of residual exhaust gases in the cylinders. The optimal timings for opening
the valves are different for different operating points. The exhaust valve for example should
have an earlier opening when at high speed or high load.

In order to optimise air intake over a range of engine speeds and engine loads variable valve
timing (VVT) can be used in the engine. This means that the opening and closing of the
inlet and exhaust valves can be offset by a certain angle decided by the engine management
system, both with respect to each other and to the combustion cycle. A simple way to model
VVT is to simply add an efficiency ηvvt to the cylinder flow model. The valve opening and
closing events need to be taken into consideration. Using only the valve overlap to model too
variable valve timing is not enough [6].

ṁac = ηvvtηvol
VD Npim
nrRTim

(2.3)

2.3 Engine Power and Efficiency

The gross work produced by the engine, as well as the pumping work consumed, can best
be described by a graph of the cylinder pressure and volume during a combustion cycle. A
typical combustion cycle can look like this in Figure2.2.
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2.3. Engine Power and Efficiency

Figure 2.2: A pressure to volume diagram of the engine cycle.

2.3.1 Gross Indicated Engine Work

The gross indicated work produced Wi,g by the engine is proportional to the amount of fuel
m f that is injected as well as qLHV , how much energy per kilogram that the fuel contains.

Wi,g = m f qLHVηig (2.4)

Where the efficiency ηig of the process sometimes is written as a product of several efficiency
loss sources.

ηig = (1 ´
1

r(γ´1)
c

)min(1, λcyl)ηignηig,ch (2.5)

Where:

• 1
r(γ´1)

c
are the losses for an ideal otto-cycle. r is the compression ratio and γ is the ratio

of specific heats.

• min(1, λcyl) limits the amount of energy that can be used when the gas is fuel-rich. λcyl
is the air/fuel equivalence ratio in the cylinder.

• ηign are the losses due to sub-optimal ignition timing.

• ηig,ch captures a range of engine-dependent losses.

The efficiency due to crank shaft ignition angle, ηign,is sometimes approximated as a polyno-
mial of order n of the deviation θign ´ θign,opt from the optimal ignition angle.

ηign(N, m f , λcyl , ...) = 1 ´

n
ÿ

i=2

Ci

(
θign ´ θign,opt(N, m f , λcyl , ...)

100

)i

(2.6)

The gross indicated work can be described as a gross indicated mean effective pressure,
IMEPg.

IMEPg =
Wi,g

Vd
(2.7)
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2.4. Heat Transfer

2.3.2 Net Indicated Work

Some of the work created by the engine is used up internally as pump work Wi,p, and does
not contribute to the net indicated work Wi,net.

Wi,net = Wi,g ´ Wi,p (2.8)

2.3.3 Pumping Work

A simple but common way to describe the pumping losses is as in Equation (2.9) [5]. This
model is simplified and does not take pressure losses into account. It does also not take VVT
behaviour into account.

Wi,p = Vd(peo ´ pim) (2.9)

The pumping work can also be expressed as a pumping mean effective pressure by normal-
ising against the engine displacement.

PMEP =
Wi,p

Vd
(2.10)

2.3.4 Grill shutter

A grill shutter controls the radiator inlet to adjust the airflow into the radiator which in turn
regulates the coolant temperature.

2.4 Heat Transfer

2.4.1 Engine Out Temperature

The engine out temperature Teo can be estimated by looking at the energy balance of an open
system representation of the engine [5].

cp(ṁac + ṁ f )Teo + ṁ f xeh f g + Ẇig + Q̇ht = ṁaccpTim + ṁ f cpTf + ṁ f qLHVηλ (2.11)

Where Q̇ht is the heat transfer to the coolant system, Tf is the temperature of the fuel and
xeh f g is the energy required to evaporate a fraction, xe, of the fuel.

This can be rewritten to estimate Teo

Teo =
ṁaccpTim + ṁ f (cpTf + qLHVηλ ´ xeh f g) ´ Ẇig ´ Q̇ht

cp(ṁac + ṁ f )
(2.12)

This method requires knowing the amount of heat that is transferred to the coolant system,
which can be difficult to estimate.

2.4.2 Heat Transfer in Exhaust Pipe

The engine out temperature is the temperature as the exhaust gases leave the cylinder. There
are however further losses in heat as the gas travels through the exhaust manifold.
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3 Artificial Neural Networks

3.1 Artificial Neural Networks

An artificial neural network (ANN) has the ability to infer rules with a given data set. A
simple example of this is recognising handwritten numbers. Defining an untrained neural
network with defined handwritten numbers and training the network to recognize these pat-
terns, gives the neural network an ability to recognise and distinguish the pattern and shapes
of the different numbers. The concept behind artificial neural networks is, as the name im-
plies, is to establish a network of artificial neurons, where input data is sent into this network,
and the neurons applies their own properties, in our case mathematical functions and inter-
nal parameters to reach an ideal output. An illustration of such a neuron can be seen in3.1.
This mathematical function is commonly referred to as the neurons activation function.
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3.1. Artificial Neural Networks

X1

X2
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wn

. . . . .  

Activation function

Figure 3.1: Sigmoid neuron

In this case the neuron output ŷ = σ(z) = σ(w̄T x̄ + b), where σ(z) is the Sigmoid activation
function and z = w̄T x̄ + b. The internal parameters w̄ and b are known as the weights and
bias of the neuron [7].

In the illustration σ, the sigmoid function is used, but other activation functions can be used as
well. A few different activation functions will be defined in this thesis, including the Sigmoid
function. The network does not need to use the same activation function for every neuron.

3.1.1 Feed forward Neural Network

A simple way to explain neural networks is to look at a simple feed-forward neural network
as illustrated in3.2. Here information is propagated from the input layer to the output layer,
going through each of the hidden layers in order, where each of the layers consists of neurons
similar to3.1.

Figure 3.2: A Feed forward neural network with two hidden layers.
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3.1. Artificial Neural Networks

An important distinction to make is that a feed-forward neural network does not use any
information on the time but is more focused on fitting data points if it is a simple non-linear
input-output ANN and so the use of a feed-forward network in some cases, might not be
optimal. This type of ANN is fine if the desired model is to be static, or if the model is to
describe a dynamic system while at steady state. If dynamics are to be incorporated into a
feed-forward neural network the input layer should include lagged input and output for a
more optimal result [8].

3.1.2 Recurrent Neural Network

Before the other structures are looked at, recurrent neural networks need to be explained as
that is what the more complex networks are defined as. In comparison to a Feed forward
neural network, the recurrent network can have data travelling forward and backwards i.e.
a feedback loop which can handle solving problems which the feed-forward network might
not be optimal for [7].

Figure 3.3: An example of a recurrent network. Feedback is introduced between the layers,
enabling the network to better capture the behaviour of dynamic systems.

NARX Network

One way to describe dynamic non-linear systems, where the output y(t) depends on time-
series of both external inputs u(t) and previous values y(t ´ ∆t) is as shown in (3.1). Different
types of input functions φ(t) can be used, but the most common by far is a simple vector
containing previous states as in (3.2). This is known as a nonlinear autoregressive network
with external inputs (NARX).

ŷ(t) = g(φ(t)) (3.1)

φ(t) = g[y(t ´ 1), . . . , y(y ´ na), u(t ´ nk), . . . , u(t ´ nk ´ nb ´ 1)] (3.2)

Where nanknb are the chosen delays for the input and output. Because g(t) is an unknown
non-linear function it can be very difficult to estimate. One way is to use an artificial neural
network. Such a network would be a type of recurrent network, similar to a feed-forward
network, but with a delayed output of the network used as input to the network as well.
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3.1. Artificial Neural Networks

Figure 3.4: A NARX network with one hidden layer, weights W, activation function g(x) and
internal delay of 5 samples.

Layer Recurrent Network

Layer recurrent neural network is a simple recurrent network which is very similar to NARX.
They are similar because they feedback their output with a delay into the input of the ANN
making both good for transient data. The difference is that Layer recurrent feedbacks the
output from the hidden layer back to the input while NARX feedbacks the output from the
output layer. If the network only has one hidden layer and the output layer has a linear
activation function, the layer recurrent network will be similar to a NARX network, hence
the tests for layer recurrent network will use at least two hidden layers[9].

Figure 3.5: A layer recurrent network with two hidden layers, weights W, activation function
g(x) and internal delay 5.
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3.1. Artificial Neural Networks

Long Short Term Memory Network

The layer of a long short term memory network(LSTM) is an extension of the functionality
of a recurrent network, as a recurrent neural network learns short-term relationships. The
architecture of a long short term memory network includes many functionalities in compari-
son to a simple feed-forward network. The gates decide what values gets added or removed
from the cell state which is the memory of the LSTM. The different gates use sigmoid and
tanh as activation functions, this implies that the cell state either gets updated regulated or
kept if the values are -1/1 or removed if the value is 0. The cell state gets updated with the
input values from the input gate. The hidden state which contains information on previous
inputs and is the output value that is sought after, gets updated in the output gate and then
gets pointwise multiplied with the cell state which has travelled through the tanh function on
the far right. these gates allow the network to learn long-term relationships in the data more
effectively which gives the LSTM network the benefit to have a lower sensitivity to the time
gaps, making it more suited for analyzing time series data than simple RNN [10].

Figure 3.6: Here the input gate is the forget gate

xt: Input
ht: Hidden state
ct : Cell state

Table 3.1: Long short term variable description
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3.1. Artificial Neural Networks

Gated Recurrent Network

Gated recurrent network (GRU) is a more simplified version of an LSTM unit by getting rid
of the cell state and using the hidden state to transfer information. The update gate acts
similarly to the forget and input gates of an LSTM. it decides what information it wants to
keep or throw away. Additionally GRU also has a reset gate which decides how much of
the past information it should forget. It is a simplified version of LSTM, with a decrease in
calculation time while trying to reach similar results to LSTM[11]

Figure 3.7: Long short term memory architecture

xt: Input
ht: Hidden state

Table 3.2: Gated recurrent unit, variable description

3.1.3 Learning in Neural network

For an ANN to learn the weights and biases of the different neurons have to be updated to
accommodate and adapt to the output. This can be done in multiple ways. Three different
methods will be described in this section.

Gradient descend method

This method uses the gradient of a cost function to update the weights. There are different
ways of defining a cost function, in this case, the cost function can be defined as a mean
squared error, as followed.

C(β, γ) ”
1

2n

ÿ

∥y ´ ŷ∥2 (3.3)

Here β denotes the collection of all weights in the network, γ all the offsets, n is the total
number of training inputs, y is the output data and ŷ defined as ŷ ” βx + γ. As in the name,
the weights are updated to move to the lowest point in the curve meaning that the gradient
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3.1. Artificial Neural Networks

should converge to the lowest possible value i.e

∇C ”

(
BC
Bβ

,
BC
Bγ

)
” 0 (3.4)

Defining the weight and offset parameters as v ” [β, γ] we can calculate the new weights
with the following equation.

vi+1 = vi ´ λ∇C (3.5)

where λ is a positive value called the learning rate. It is worth noting that the solution the gra-
dient descent converges to, might not be the most optimal solution as the gradient function
might have multiple minimums and even reach a maximum i.e. a bad solution. [7].

Gauss-Newton method

The Gauss-Newton method uses both the gradient of the cost function and the curvature.
Using newtons method to solve ∇C(v) = 0, with v = (β, γ). Expanding the gradient of the
cost function using Taylor series around v0 we get.

∇C(v) = ∇C(v0) + (v ´ v0)
T∇2C(v0) (3.6)

Assuming C is quadratic around v0 and solves for minimum v we get the following update
rule

vi+1 = vi ´ (∇2C(vi))
´1∇C(vi) (3.7)

where v0 is replaced with vi [12]

Levenberg-Marquardt method

The Levenberg-Marquardt algorithm varies the parameter updates between gradient descent
update and Gauss-Newton Update.

vi+1 = vi ´ (∇2C(vi) + λdiag[∇2C(vi)])
´1∇C(vi) (3.8)

where small values of the λ parameter will result in a Gauss-newton update and large values
of λ result in a gradient descent update. Since the hessian is proportional to the curvature of
C, 3.8 implies a large step in the direction with low curvature and a small step in the direction
with high curvature [12].

3.1.4 Activation Functions

The activation function is the function that is evaluated for each neuron. κ(z). Here z will be
assumed to be βTx + γ, where β is a vector of parameters (weights) and x is a vector of the
input for each neuron, and γ is a parameter (bias).

Name Function Range

Sigmoid κ(z) = σ(z) = 1
1+e´z κ(z) P [0, 1]

Hyperbolic Tangent κ(z) = tanh(z) = ez´e´z

ez+e´z κ(z) P [´1, 1]
Linear κ(z) = z κ(z) P] ´ 8, 8[
Rectified Linear Unit κ(z) = max(z, 0) κ(z) P [0, 8[

Table 3.3: Some of the most commonly used activation functions.

The sigmoid function works well with classification problems since it squishes the numbers
between 0 and 1. Another advantage of the sigmoid function is that it is continuously deriv-
able, and the gradient is contained within reasonable limits. The hyperbolic tangent function
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3.1. Artificial Neural Networks

improves upon this by extending the output range from negative one to positive one, thus
including the possibility of negative numbers. If the network is shallow, however, then there
is usually little difference in performance between the two [13].

Purely linear activation functions can be used but have some disadvantages. The most obvi-
ous is that it does not introduce non-linearities in the network. Rectified linear unit (ReLU),
however, is quickly becoming the most commonly used activation function [14]. The advan-
tage of using such a function is that it is non-derivable at zero. When the neuron can be
considered deactivated, which speeds up the learning process of the network. It also intro-
duces non-linearities, compared to the purely linear which does not.

3.1.5 Cross covariance, Auto covariance

To check the linear relationship between two signals or the same signal in different time steps,
cross-covariance and auto covariance are used. This will be of use to see how useful the signal
is to the output one trains for or how the sample delay of the output affects the output itself
[15]. Cross covariance is defined as the following equation.

R̂N
yx =

1
N

N
ÿ

t=1

y(t)x(t ´ τ) (3.9)

And auto covariance.

R̂N
yy =

1
N

N
ÿ

t=1

y(t)y(t ´ τ) (3.10)

3.1.6 Overfitting

An important aspect of neural network models is the ability to generalise the system be-
haviour for different data sets. If the model is overfitted to the training set then it might
accidentally try to capture the behaviour of measurement noise, which should not be ex-
plainable with the given inputs. This will lead to the model fitting well to the training set but
give bad predictions for new data sets. If a network is deeper than necessary it will likely lead
to over-fitting [13]. It is also important to note that not only the network parameters can lead
to over-fitting, but the input used as well. If multiple input contain the same information or
permutations of the same information, this might also lead to overfitting [16].

3.1.7 Evaluation Methods

To evaluate the performance of the neural network two evaluation methods will be used. The
first method is the coefficient of determination defined as followed

R2 = 1 ´

řN
t=1(yi ´ ŷi)

2

řN
t=1(yi ´ ȳi)2

(3.11)

and the second method is normalized root-mean-square.

NRMSE =

d

||y ´ ŷ||2
N ¨ ||y||2 ¨ 100 (3.12)

where N represents the size of the test set, y represents the actual data, ŷ is the neuron output
and ȳ is the mean of the actual data. An R2 value equal to 1 implies a perfect linear relation-
ship between the original data and the ANN output and for NRMSE a smaller value suggests
better forecasting [17][18][19].
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3.1. Artificial Neural Networks

A more intuitive way to compare different models of the same system is to simply look at the
absolute error |ϵ|. This method is not normalised, so it should not be used to compare models
of different systems or different inputs.

|ϵ| = |y ´ ŷ| (3.13)

It is also useful to plot the output of the neural network and the data set to get a visual
understanding of the results.
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4 Available Data

The data used for the system identification are collected by Aurobay and measured using the
same engine type. The location and environmental conditions for the tests vary heavily. The
data is divided into two categories: steady-state part load mappings and transient data. The
steady-state data will use five different data sets collected from engine test cells.

The transient data is from different environments. This includes three different runs in Kiruna
Sweden, six Gibraltar data sets, one data set collected in Spain and one data set collected in
the more southern warmer part of Sweden. Some of these sets are with warm start and some
with cold start. The starting condition for each data set follows the table 4.1. The velocity
profile for each data set can be seen in Figure 4.1. The engine load to engine speed for the
steady-state data can be seen in figure 4.2.

Data set Used for Starting condition

Spain Training warm
VNT Training warm

Gibraltar 1 Training cold
Gibraltar 2 Training warm
Gibraltar 3 Training warm
Gibraltar 4 Training cold
Gibraltar 5 Training warm
Gibraltar 6 Validation warm
Kiruna 1 Training warm
Kiruna 2 Validation cold
Kiruna 3 Training cold

Table 4.1: Data sets for transient data
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Figure 4.1: Vehicle speed for each data set.

Figure 4.2: Engine load to Engine Speed for the steady-state data sets

It is also important to mention that the temperature measurements come from a thermocouple
sensor. This sensor needs to be resistant to the heat in the exhaust gas, which gives a slow
response time. The sensor dynamics will thus be included in the model and high frequency
transients will be excluded from the model.
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5 Method

This chapter explains the data pre-processing and system identification methods used in the
thesis to estimate the exhaust gas temperature. A structured black-box approach is used.
Simple feed-forward models are used to estimate the cylinder flow, IMEPg and PMEP. These
features are then used as an input to a recurrent neural network estimating the exhaust gas
temperature. The temperature in turn is then used as an input to the IMEPg and cylinder
flow networks, according to Figure5.1. While a simple feed-forward network is expected to
work for the systems with fast dynamics (cylinder flow, IMEPg and PMEP), different types of
recurrent networks will be evaluated for the exhaust gas temperature.

Figure 5.1: Black-Box Exhaust Temperature Model

22



5.1. Choice of programming tools

5.1 Choice of programming tools

There are many different kinds of tools for creating and training artificial neural networks.
Two of the most common choices are to use either the Pytorch or TensorFlow modules for
Python. These modules are focused on creating deep networks and do therefore not include
the Levenberg-Marquardt algorithm, which is more suitable for shallow networks as this
algorithm can find very good results during the optimization process as the gradient step
adjusts itself accordingly but has high computational complexity. Instead, the Deep Learning
Toolbox in Matlab is used for this thesis.

5.2 Pre-processing and Training

Before training the data need to be pre-processed. This section describes the data and the
steps necessary to pre-process the data for training, as well as the methods used for training
the networks.

5.2.1 Non-reasonable Values

Some adjustments need to be made in the cases where the data set includes non-reasonable
values. For the part-load mapping, the data points which include such values are simply
removed. For the time-series data, all work is put to zero when the engine speed is zero.

5.2.2 Normalisation

The different inputs used for the neural network use different units, and the scale of these
units varies massively. The pressures for example are usually in the size of 105 while the
injected fuel mass is closer to 10´3. This means that changes in the larger inputs affect the
network more than changes in the smaller inputs. In order to counteract this, all inputs are
normalised to fit in the range [0, 1]. This is done by establishing in which range the inputs
are normally operating. These ranges can be seen in 5.1. An input z P [zmin, zmax] can be
normalised to z˚ P [0, 1] using (5.1).

Input Range

Intake Pressure 0 - 4 [Bar]
Exhaust Pressure 1 - 3[Bar]
Intake Temperature 223 - 373 [K]
Exhaust Temperature 223 - 1373 [K]
Ambient Temperature 253 - 313 [K]
Coolant Temperature 258 - 363 [K]
Engine Speed 600 - 6000 [RPM]
Cylinder Flow 0 - 0.14 [kg/s]
Fuel Injection 0 - 0.01 [kg/s]
Intake VVT 0 - 70 [Degrees]
Exhaust VVT 0 - 35 [Degrees]
Ignition Angle -20 - 45 [Degrees]
PMEP -1.75 - 0.35 [Bar]
IMEP 0 - 20 [Bar]
Grill Shutter 0 - 100 [%]
Vehicle Speed 0 - 50 [m/s]

Table 5.1: Normalisation Ranges

z˚ =
z ´ zmin

zmax ´ zmin
(5.1)
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The reasoning for using a table of pre-determined ranges rather than normalising against the
highest and lowest values of the data set is two-fold. Firstly, since the output can be any value
the normalisation needs to be the same for every data set, not just the training set. Secondly,
the operating ranges for the different inputs are well known, and might commonly include
regions not present in the training set.

A normalised value can be returned to its original size with (5.2).

z = z˚(zmax ´ zmin) + zmin (5.2)

5.2.3 Sampling Frequency

In some cases, the data might not have the same sampling frequency. One of the main reasons
why it is necessary to resample the data to a uniform frequency is that it can affect the results
when it comes to testing different feedback delays for NARX, as the change in the output in a
higher frequency will be smaller than the lower sampled data set. To solve this, the data will
be resampled to the same frequency of 25 Hz. Other benefits to resampling the data set are as
follows.

• Downsampling shortens the length of the data in turn reducing calculation time when
training the ANN.

• Downsampling the data set reduces the high-frequency noise.

• Resampling to a uniform time difference means that some data points that seem to be
missing from the measurements are interpolated instead.

5.2.4 Preparing data for ANN Training

Feed-Forward Networks

For the feed-forward networks simply using a collection of data points is enough, as the or-
dering of these points should not matter. Here, part load mapping data are intended to be
used. That is because a data set collected in an engine test cell will collect all of the character-
istics of an engine from max to min in load and engine speed. It is however also possible to
use transient time-series data, as the dynamics for these systems are assumed to be fast in the
first place.

Recurrent Networks

While training a recurrent network it is necessary to use only time-series data.

For training a NARX network with multiple data sets at the same time. The data will be set
up as an array with the column corresponding to the data set, and the row representing the
input and output at that specific timestep.
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Figure 5.2: [XXX] representing a vector with the inputs in a timestep and Teo the output at the
same timestep

During the training, the data have to be separated and trained in indices so that the network
gets its data in a time-series structure and not randomly from the data-sets.

Long short term memory/Gated Recurrent network

To train these networks, the training would have to run separately with different data sets to
be able to train multiple scenarios. So all of the data will be set up individually and trained
separately to the same network.

5.2.5 Input-output Correlation

To check if the input will be useful for training the ANN, it is good to check the cross-
covariance of the variable against the output. Covariance might have the drawback that it
only shows the linear relationship between two signals, which might not mean that the spe-
cific input does not affect the output that one uses covariance for if the covariance is low. For
training an ANN, this will be useful because the ANN looks specifically at the behaviour of
the different inputs and adjusts weights to accommodate the output. But it is good to con-
sider the actual physics of the variable you are training for and test these inputs that still have
an effect, to see if they bring any improvements to the results of the ANN.
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5.3. Network training Process

5.3 Network training Process

This section mentions how the networks are trained and which data are used.

5.3.1 Training Data

The feed-forward networks are independent of time. Because of this, the neural network is
trained using a data-set of singular data points, no time series are used. The inputs used for
each network can be seen in table 5.2 and table5.3.

Cylinder Flow PMEP IMEPg

Engine On/Off Engine On/Off Engine On/Off
Intake Pressure Intake Pressure Intake Pressure

Exhaust Pressure Exhaust Pressure Exhaust Pressure
Intake Temperature Cylinder Flow Cylinder Flow

Exhaust Temperature Intake VVT Angle Intake Temperature
Intake VVT Angle Exhaust VVT Angle Exhaust Temperature

Exhaust VVT Angle Engine Speed Intake VVT Angle
Engine Speed Exhaust VVT Angle

Engine Speed
Ignition Angle

Fuel Injection Rate

Table 5.2: Input used for the static neural network models

Exhaust Gas Temperature

Engine On/Off
Cylinder Flow

IMEPg
PMEP

Vehicle Speed
Engine RPM

Fuel Injection Rate
Intake Pressure

Exhaust Pressure
Intake Temperature
Intake VVT Angle

Exhaust VVT Angle
Ignition Angle

Coolant Temperature

Table 5.3: Input used for the temperature neural network models

5.3.2 Network Training

The networks are trained using Matlabs Deep Learning Toolbox. They are trained using
the Levenberg-Marquardt algorithm, excluding LSTM which does not have the Levenberg-
Marquardt algorithm and uses gradient descent instead. The reason for this is because of the
way the algorithm can adjust its step size if needed to find an optimum. An example of the
benefit is when descending a very steep local minimum parable, it is necessary to use small
step sizes to avoid passing over that minimum and vice versa for the opposite case. If in the
case of using gradient descent, the step size would be fixed, so would take much longer to
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5.3. Network training Process

find that optimum for a small step size. During training, if the gradient becomes too small or
the number of iterations too large the training is deemed finished. The initial weights used for
training are normally randomised. This can cause some problems when evaluating different
network structures as it is difficult to see if the varying results are because of the random
weights or because of the different structures. For this reason, several networks are trained.
The network that performs best on a separate validation set is then chosen.

Early Stopping

In order to avoid over-fitting and improve generalisation a technique called early stopping is
used. This is implemented by dividing the data set into two independent sets. One set is used
for estimating the parameters of the neural network and one set for validating the network.
If by further improving the performance of the training, the performance on the validation
set is reduced for several iterations in a row, the training process is halted, as further training
reduces generalisation. For this thesis, the number of iterations for validation checks is set as
six.

For static data sets the order of the data points is irrelevant. Thus the training-validation
divide can be set as random. For time-series data the set is split into two blocks. The ratio
used is 85 % of the data for training and 15 % for early stopping validation. It should be noted
that the early stopping validation set is still a part of the training process, and should not be
confused with independent validation sets.

Initial Weights

The initial weights for the training are randomised. This can have the effect that the same
training process results in networks with different performances. Ideally, the training process
finds a global optimum. However, it is also likely that the training process finds a local
optimum, and that the local optimum found might vary depending on the initial weights.

Open-loop training of NARX-networks

When training a NARX network it can be seen as a feed-forward neural network which uses
a time series, as well as a delayed version of the time series, as an input. This is in contrast
with when the network is used for prediction, where the previous estimates have to be fed
back as an input to generate predicted time series, as shown in ??. This type of feed-forward
training is fast compared to other recurrent neural networks, which are usually trained by
being unfolded in the time dimension.
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5.3. Network training Process

Figure 5.3: When using the neural network for prediction the output is used as feedback to
generate time-series data.

5.3.3 Network Structure

The network structure can be defined in large by its number of layers and number of neurons
in each layer, as well as the activation function used for the neurons. The recurrent networks
might have further parameters related to the recurrent nature of the networks. For example,
the number of delays, and the positioning of these delays, is an important design choice for
the NARX network. The number of delays used internally for the layer recurrent network is
also important.

How these parameters affect the performance of the network for each network type and sys-
tem are investigated to decide an optimal structure. Due to the random initial weights, sev-
eral networks need to be trained for each setup. Only one structure parameter is investigated
at a time to reduce the complexity of the analysis.

Number of neurons

For finding a good structure of the network, a test on the number of neurons needs to be
done. This test can be done by locking the other changeable parameter, and varying the
number of neurons while training multiple networks in a number of iterations to minimize
the randomness of the result, and calculating the NRMSE for each iteration.

Activation functions

To find an appropriate activation function multiple networks will be trained where the acti-
vation functions are varied between, linear ReLU, tanh and sigmoid.

Feedback Delay and input delay

This test will only apply to NARX and layer-recurrent neural networks, with NARX having
the additional test on the input delay. The delay, similar to the neuron test will be varied while
locking the other parameters and calculating the NRMSE for each new network created for a
number of iterations.
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5.3. Network training Process

5.3.4 Validation on steady-state data

The feed-forward ANNs will be validated simply using the steady-state data as input. For
the dynamic networks, it will be necessary to generate a time series of constant values to see
where the simulation ends up in steady state.

5.3.5 Validation on transient data

For the exhaust gas temperature and the cylinder flow, the validation will be done against
the measured sensor value. In the case of the IMEPg and PMEP, the validation will be done
against Aurobays model. The data used for validation consists of one warm start and one
cold start data set.
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6 Results

This chapter presents the results for each system and network type separately. Both in regards
of finding the optimal structure and the validation of these networks. The structure for the
result will be the following

• Cylinder Flow: FNN

• PMEP: FNN

• IMEPg: FNN

• Exhaust Gas Temperature Model: FNN

• Exhaust Gas Temperature Model: NARX

• fully connected ANN with NARX

• Exhaust Gas Temperature Model: LSTM

• Exhaust Gas Temperature Model: GRU

• Exhaust Gas Temperature Model: LRN
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6.1. Cylinder Flow: FNN

6.1 Cylinder Flow: FNN

6.1.1 Network Structure

First, a single layer is tested with a varying amount of neurons. Several separate networks
are trained for each amount of neuron. The cylinder flow network is evaluated on Kiruna 2
and Gibraltar 6 data sets and the other transient data sets are used for training. The perfor-
mance as a function of the number of neurons in a single hidden layer network can be seen
in Figure6.1. The results vary slightly despite having the same amount of neurons. This is
because of the randomised initial weights and is to be expected. The green bar represents the
95 % confidence interval. It can be seen that adding more than six neurons has little effect,
if none, on the performance of the network. Another thing to note is that the network that
performs best on the training data also performs well on the validation data for all numbers
of neurons.

Figure 6.1: Cylinder flow FFNN performance dependence on number of neurons.

In the figure,6.2 a network with six neurons in the first layer and a varying amount of neurons
in the second layer has been tested. It appears that adding a second layer does not affect the
performance at all.
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6.1. Cylinder Flow: FNN

Figure 6.2: The performance of different networks. The number of neurons in the first hidden
layer is six and the number of neurons in the second hidden layer changes as seen in the
figure.

Figure 6.3shows the performance of a one hidden layer network with varying amounts of
neurons for different activation functions in the hidden layer (for previous testing only hy-
perbolic tangent function has been used). It can be seen that the sigmoid and the hyperbolic
tangent function is best suited for the cylinder flow model.
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Figure 6.3: The performance of different activation functions.

6.1.2 Validation on Static Data

Figure 6.4shows the estimation of the cylinder flow model compared to the measurements
for a steady-state data-set that was not involved in the training of the network. An R2 of
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6.1. Cylinder Flow: FNN

0.9956 was achieved on the evaluation set. This corresponds to an average absolute error of
1.2 grams per second.

Figure 6.4: Validation of the cylinder flow model on a part-load data set

6.1.3 Validation on Transient Data

The cylinder flow is the only static model that is trained on transient data. The networks
performance on the data sets not used for training can be seen in Table6.1. The cylinder flow
model handles cold starts well, although not to the same degree as warm starts. In Figure,6.5
the cylinder flow model can be seen compared to the measured data from the data gathered
in Kiruna.

Data set R2 NRMSE Starting condition

Gibraltar 6 0.99743 0.0098971 warm
Kiruna 2 0.98832 0.053353 cold

Table 6.1: Performance of the cylinder flow model on different transient data sets.

33



6.1. Cylinder Flow: FNN

Figure 6.5: Cylinder flow model on the data-set with cold start.

6.1.4 Engine On/Off input

In Figure, 6.6it can be seen that the model correctly predicts that the cylinder flow is zero
when the engine is turned off. This is due to the binary engine on/off signal provided as an
input to the network. Without including such a signal the model tends to undershoot and
predict a negative cylinder flow, such as in Figure6.7. While a back-flow is not impossible, it
should not happen at these points. Obviously, no steady-state data has been collected when
the engine is turned off, therefore it is necessary to add artificial data for the networks that are
trained on steady-state. This data consists of random noise for all signals except the engine
on/off and cylinder flow, which is zero.
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Figure 6.6: With the engine on/off input, the model correctly predicts no flow when the
engine is off.
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Figure 6.7: Without the engine on/off input, the model incorrectly predicts negative values
when the engine is off.

35



6.2. PMEP: FNN

6.2 PMEP: FNN

Network Structure

In Figure 6.8 it can be seen that about five neurons are sufficient to model the pump work.
The networks are trained on steady-state data and evaluated on different steady-state data.

Figure 6.8: The performance of a trained network depending on the number of neurons.

Using six neurons in the first hidden layer and changing the number of neurons in the second
shows that a second hidden layer does not affect the performance of the network, which can
be seen in6.9.

Figure 6.9: The performance of different networks. The number of neurons in the first hidden
layer is six and the number of neurons in the second hidden layer changes as seen in the
figure.
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6.2. PMEP: FNN

In Figure 6.10 it can be seen that the hyperbolic tangent function and the sigmoid function
performs better than the other two types for the pump work as well. Although ReLU seems
to catch up with the other two when using a higher number of neurons.
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Figure 6.10: The performance of different activation functions in a one hidden layer network.

6.2.1 Validation on Static Data

In Figure 6.11 it can be seen that the network predicts pump work on steady-state data well.
The performance is R2 = 0.995 and an average absolute error of 1.7 kPa.
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Figure 6.11: Validation of the PMEP model on a part-load data set

6.2.2 Validation on Transient Data

Just as with the IMEPg the PMEP can not be evaluated against measured values and is instead
validated against Aurobays modelled PMEP. The PMEP network follows Aurobays model
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6.2. PMEP: FNN

with little deviation. An example of this can be seen in Figure, 6.12. In Figure 6.13it can be
seen that there is a slight static error during cold start.

Figure 6.12: Validation on warm start transient data set.

Figure 6.13: Validation on cold start transient data set.
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6.3 IMEPg: FNN

6.3.1 Network Structure

The results for how the number of neurons in a single hidden layer network impacts the
IMEPg can be seen in Figure 6.3.1. The networks are trained on steady-state data and eval-
uated on different steady-state data. The performance seems to converge after about four to
six neurons.

Figure 6.14: The performance of different activation functions in a one hidden layer network.

Just as with the cylinder flow and PMEP, The number of neurons in the second layer of a
two hidden layer network with six neurons in the first hidden layer is evaluated. Figure 6.3.1
shows that a second layer has little effect on the performance of the network.
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6.3. IMEPg: FNN

Figure 6.15: The performance of different networks. The number of neurons in the first hid-
den layer is six and the number of neurons in the second hidden layer changes as seen in the
figure.

Figure 6.3.1 shows the performance of different activation functions. Due to the difference
between the transient data set and the steady-state sets the evaluation is done only on the
steady-state data set. Similarly to the cylinder flow and PMEP the hyperbolic tangent func-
tion and the sigmoid function gives better results than ReLU.
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Figure 6.16: The performance of different activation functions in a one hidden layer network.

6.3.2 Validation on Static Data

The performance can be seen in Figure 6.17. R2 is 0.9994 the NRMSE is 0.0654 and the average
absolute error is 7.2 kPa.
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6.3. IMEPg: FNN

Figure 6.17: Validation of the IMEP model on a part-load data set

6.3.3 Validation on Transient Data

Validating the IMEPg against the transient data sets would require the cylinder pressure to be
measured. Something that is not done. Instead, our neural network model will be validated
against Aurobays model. In Figure 6.18 it can be seen that the ANN model does follow
Aurobays model, however, it does have a lot of spikes. A similar result can be seen in Figure
6.19, but with fewer spikes. Figure 6.20 shows that the network handles cold starts well, with
the exception of the very first couple of seconds.

Figure 6.18: Validation on warm start transient data set.
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Figure 6.19: Validation on warm start transient data set.

Figure 6.20: Validation on cold start transient data set.
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6.4 Exhaust Gas Temperature Model: FNN

Network Structure

The performance as a function of the number of neurons for the exhaust gas temperature can
be seen in Figure 6.4. It can be seen that no more than four neurons are needed.

Figure 6.21: The performance of a trained network depending on the number of neurons.

The performance as a function of the number of neurons in the second layer for the exhaust
gas temperature can be seen in Figure 6.4. It can be seen that adding a second layer has little
effect.

Figure 6.22: The performance of different networks. The number of neurons in the first hid-
den layer is four and the number of neurons in the second hidden layer changes as seen in
the figure.
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6.4. Exhaust Gas Temperature Model: FNN

The performance as a function of the number of neurons and activation function can be seen
in figure 6.4. The figure shows that either the logistic sigmoid function or the hyperbolic
tangent function is optimal.

Figure 6.23: The performance of different activation functions in a one hidden layer network.

6.4.1 Validation on Static Data

Figure 6.24 shows that the feed-forward network performs decently on steady-state data. The
performance is R2 = 0.9678 and has an average absolute error of 14.6 K.

Figure 6.24: Validation of the exhaust gas temperature model on a part-load data set
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6.4. Exhaust Gas Temperature Model: FNN

6.4.2 Validation on Transient Data

The dynamic response of the feed-forward exhaust gas temperature network can be seen in
figure 6.25. In order to take the slow sensor dynamics into account, the ANN prediction is
filtered with a fourth-order Butterworth low-pass filter with a cut-off time of 12 seconds. The
filtered response can be seen in figure 6.26. The performance of on all warm start can be seen
in table 6.2. The network can not predict cold starts.

Figure 6.25: Validation on warm start transient data set.

Figure 6.26: Validation on warm start transient data set. Prediction is low-pass filtered
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6.4. Exhaust Gas Temperature Model: FNN

Data set R2 R2 NRMSE NRMSE starting condition
Unfiltered Filtered Unfiltered Filtered

Spain 0.2525 0.59776 0.12935 0.094889 warm
VNT 0.49769 0.6449 0.059986 0.050437 warm

Gibraltar 2 0.58116 0.73326 0.032534 0.025963 warm
Gibraltar 3 0.25129 0.506 0.05935 0.048209 warm
Gibraltar 5 0.553 0.74633 0.03762 0.02834 warm
Gibraltar 6 0.66569 0.81516 0.037355 0.027776 warm
Kiruna 1 0.44759 0.57145 0.14528 0.12796 warm

Table 6.2: Performance of the filtered and unfiltered feed-forward exhaust gas temperature
network
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6.5 Exhaust Gas Temperature Model: NARX

6.5.1 Network Structure

What needs to be evaluated for the NARX structure, are the number of neurons, number of
hidden layers, activation functions, number of output delays and choice of inputs which test
will be conducted.

Choice of activation function

A test of different activation functions will be made on a single layer from 1 to 8 neurons. The
test will iterate 50 times for each activation function at each neuron count. The median value
will be plotted as a dot.
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Figure 6.27: Activation function test with median value, training data

47



6.5. Exhaust Gas Temperature Model: NARX

0 1 2 3 4 5 6 7 8 9

Nr of neurons

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

N
R

M
S

E

sigmoid

tanh

ReLU

Linear

Figure 6.28: Activation function test with median value, validation data Kiruna 2
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Figure 6.29: Activation function test with median value, validation data Gibraltar 2

From the figures above, it shows that the best performing activation function is ReLU while
training, which will be the choice of activation function for the final network and for the
continuing tests.
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6.5. Exhaust Gas Temperature Model: NARX

Number of Neurons and hidden layers

To see the appropriate number of neurons to use for the network a test had to be done to verify
good performance. This is done by training multiple ANN:s while changing the number of
neurons and calculating the NMRSE for each iteration. The vertical lines separate the number
of neurons. This results in the following figure.
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Figure 6.30: Training data NRMSE, 95% confidence interval

The test is set up so that the number of neurons changes from 1 to 15 with all of the training
data sets. As can be seen in the graph, the number of neurons has a significant impact on the
performance using at least two neurons, but also the results do get slightly better at around
five neurons, looking at the median and mean. Having a good number of neurons does
bring performance benefits at a cost of calculation performance, anything above one neuron
would bring good results, but from the figure above, using five neurons and above should be
recommended.
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0 5 10 15

Neurons

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
R

M
S

E

[1] neuron [2] neuron [3] neuron [4] neuron [5] neuron [6] neuron [7] neuron [8] neuron [9] neuron [10] neuron [11] neuron [12] neuron [13] neuron [14] neuron [15] neuron

median

mean

Best ANN from training

Figure 6.31: Gibraltar 6, validation results 95% confidence interval
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Figure 6.32: Kiruna 2, validation results 95% confidence interval

The graph for Gibraltar 6 validation data is very similar to the training data but is offset on
the y-axis overall, which seems logical considering that the trained neural network has never
seen the data before but Gibraltar 6 is also easier to handle as it is a warm start. Looking at
Kiruna 2 mean, it looks like 11 and 15 neurons are worse than one but this is because of single
bad values which worsen the mean. Looking at the median, it is clear that a good choice of
neurons is around five and above.

The black dot in the graph above is using the best performing ANN in the training data
and sending the validation data Gibraltar 6 into them. The dots hence show that the best
performing ANN from training does not mean that the results in the validation data will
necessarily be good.
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6.5. Exhaust Gas Temperature Model: NARX

For finding the appropriate amount of hidden layers a test with two hidden layers will be
made. this is enough of a test, if the second layer does bring any improvements in the results
of the training, then a more in-depth test has to be done with multiple hidden layers but if
the second layer does not improve the performance of the ANN, then one hidden layer will
be sufficient enough.
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Figure 6.33: Test on number of neurons with two hidden layers, training data
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Figure 6.34: Test on number of neurons with two hidden layers, validation data Kiruna 2
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Figure 6.35: Test on number of neurons with two hidden layers, validation data Gibraltar 6

The first hidden layer is set to 5 while a second hidden layer is added, iterating from 0 to 10.
The vertical line separates the number of neurons in the second hidden layer, with the first
vertical line showing no neurons in the second hidden layer and the last having 10. From the
figures above, it shows that the second hidden layer does not affect the performance at all
and in turn adds unnecessary computation time and complexity to the model. Specifically
looking at the median the value seems consistent throughout the figure, the mean in neuron
[5 6] is bad but that is because of one very bad network which offsets the mean. There is also
no consistency with the best neural network from the validation figures and so could end up
anywhere in the green squares.
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6.5. Exhaust Gas Temperature Model: NARX

Early Stopping Ratio

As previously mentioned a part of the data is used for early stopping regularisation. For
a NARX network, it is important that the input sequence is in the correct order. The data
is thus divided into training and early stopping validation blocks. The impact of changing
the ratio between training data and early stopping data can be seen in Figure 6.36for the
training set itself and 6.37 for the independent validation set. Here Gibraltar 3 is used for
training and Gibraltar 6 as an independent validation set. Both sets are warm starts. To reduce
randomness three networks are trained for each ratio and only the median performance is
shown. This test is based on the assumption that at least 50 % of the data is necessary for
training.

Figure 6.36: Network performance as a function of early stopping ratio. Trained on Gibraltar
3

Figure 6.37: Network performance as a function of early stopping ratio. Trained on Gibraltar
3 and evaluated on Gibraltar 6
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6.5. Exhaust Gas Temperature Model: NARX

Feedback delays

Autocorrelation is calculated for every data set to see if there is a definite sample value to use
as feedback for NARX.
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Figure 6.38: Autocorrelation to 150 sample delays

It is clear from the graph above that the performance degrades the higher the sample delay
is set. with testing on higher delay counts. Using Kiruna 2 as training data while varying the
feedback from 10 to 150 gives us the following result.
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Figure 6.39: Training result of Kiruna two

Which does confirm the performance degradation with higher sample delays. Additionally,
the higher delay count introduces oscillation to the behaviour of the results which might
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6.5. Exhaust Gas Temperature Model: NARX

not be ideal. A network has been trained with 75 feedback delay and this resulted in high
oscillation. This can be seen in the figure below.
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Figure 6.40: Validation on Kiruna two data set, orange: ANN, blue:original

This behaviour has been shown to occur as the feedback delay is increased hence A good
choice in delay is concluded to be between 1 to 10 delays to avoid degradation in performance
and oscillation.

Looking at using multiple delays, a test has been done whereas the input delay is set to zero
and the feedback delay varies from 1 to [1 2 3 .... 10] to see how the added delays affect the
performance. This resulted in the following graphs.
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Figure 6.41: Training data on delay test
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Figure 6.42: Kiruna 2 validation data on delay test
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Figure 6.43: Gibraltar 6 validation data on delay test

As can be seen on the colour map the NRMSE whereas a dark blue colour represents the
lowest value on NRMSE, one delay performs the best and so only one delay will be used.
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Input delays

The cross-covariance for the inputs varies between data sets. Looking at the cross-covariance
for two data sets gives the following figures

Figure 6.44: cross-covariance between the inputs and the exhaust temperature up to 2 min
sample delay

Figure 6.45: cross-covariance between the inputs and the exhaust temperature up to 2 min
sample delay

The delay where the correlation is the highest varies for the different inputs, but in most cases,
it is the highest at lower sample delays.
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6.5. Exhaust Gas Temperature Model: NARX

To see how the number of delays affects the performance, a test has been done where we
incrementally ad a delay with an increased value of one, we start by sending [0 1] and in the
last 10 iterations, we reach [0 1 2 3 ... 10] input delays. The colour will represent the NRMSE.
This resulted in the following graph.
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Figure 6.46: Training data input delay test
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Figure 6.47: Validation data Kiruna 2
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Figure 6.48: Validation data Gibraltar 6

The figures above seem to not affect the validation data much, but for the training data,
the result seems to get a bit better the more input delays you add, but this also adds a lot
of complexity to the training as you would have to train with 11 times more data with the
added delays.
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6.5.2 Validation of NARX Model

Trained ANN without cold start
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Figure 6.49: Validation on Gibraltar 6 data set, orange: ANN, blue:original

Validation data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Gibraltar6 0.9666 0.0118 0.986 0.0076 warm

Table 6.3: Narx performance on validation data against Aurobays physical model with no
cold start.

Training data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Vnt 0.9445 0.0399 0.8890 0.0564 warm
Spain 0.9179 0.0429 0.9611 0.0295 warm
Kiruna1 0.9609 0.0387 0.9688 0.0345 warm
Gibraltar2 0.9697 0.0088 0.9666 0.0092 warm
Gibraltar3 0.9459 0.0160 0.9860 0.0092 warm
Gibraltar5 0.9721 0.0094 0.9761 0.0087 warm

Table 6.4: Narx performance on training data against Aurobays physical model with no cold
start.

This test is to check if only training with warm start data improves the network performance
for driving with a warm engine. If that is the case then it is possible to have two separate
networks, one for cold start and one for when the engine is warm, but comparing the two
tables 6.3 and 6.5we can see that training with no cold start does not bring any improvements
to the network.
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6.5. Exhaust Gas Temperature Model: NARX

Best fully trained ANN

In the figures and tables below is the best performing ANN including cold start behaviour,
which uses 6 neurons and sample five as a feedback delays
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Figure 6.50: Validation on Kiruna 2 data set, orange: ANN, blue:original

Validation data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Kiruna 2 0.9236 0.05234 0.9737 0.03077 cold
Gibraltar 6 0.9700 0.0112 0.9860 0.00764 warm

Table 6.5: Narx performance on validation data against Aurobays physical model.

Training data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Vnt 0.9527 0.0368 0.8890 0.0564 warm
Spain 0.9388 0.0370 0.9611 0.0295 warm
Kiruna1 0.9407 0.0476 0.9688 0.0345 warm
Kiruna3 0.9454 0.0422 0.9710 0.0308 cold
Gibraltar1 0.92243 0.0491 0.6943 0.0976 cold
Gibraltar2 0.9705 0.0086 0.9666 0.0092 warm
Gibraltar3 0.9459 0.0160 0.9860 0.0092 warm
Gibraltar4 0.8887 0.0206 0.7871 0.0285 cold
Gibraltar5 0.9720 0.0094 0.9761 0.0087 warm

Table 6.6: Narx performance on training data against Aurobays physical model.
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6.5.3 Validation on Steady-State Data

The transient NARX model is also validated against the steady-state data. This is done by
artificially creating a time series for the input of each data point and simulating the temper-
ature model until it has reached steady state. The results for all steady-state data points can
be seen in figure 6.51. This corresponds to an average error of around 60 degrees.

Figure 6.51: NARX model validated against steady-state data. The green line indicates the
size of the error for each measurement.
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6.5. Exhaust Gas Temperature Model: NARX

6.5.4 Full ANN Simulation

When fully simulating the exhaust gas temperature without measuring all signals the static
models need to be used as well. The feed-forward neural networks for the cylinder flow,
IMEPg and PMEP are used to simulate inputs for the exhaust gas temperature network. It
should be noted that the IMEPg and PMEP networks require the cylinder flow output as in-
puts and that the cylinder flow network requires the exhaust gas temperature output as an
input. The simulation, therefore, includes feedback which will make the errors of all mod-
els accumulate. The simulation is implemented in Simulink and does not include the deep
learning toolbox. This is done to increase performance. The results can be seen in table 6.7.
The figreffig:FullANN shows a graph of the estimated temperature for the Kiruna 2 data set.

Figure 6.52: Validation on Kiruna 2 data set using ANN-models for cylinder flow, IMEPg and
PMEP inputs.

Data set R2 R2 NRMSE NRMSE starting condition
Full ANN Measured Inputs Full ANN Measured Inputs

Kiruna 2 0.9262 0.9236 0.0515 0.05234 cold
Gibraltar 6 0.9675 0.9700 0.0117 0.0112 warm

Table 6.7: Performance of a full ANN simulation of the exhaust gas temperature. Data from
table ?? is repeated here for readability.
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6.6. Exhaust Gas Temperature Model: LSTM

6.6 Exhaust Gas Temperature Model: LSTM

Running and training these types of networks are very time-consuming so the structure here
was chosen by doing many different training runs with different setups and choosing the best
ANN.

This ANN uses gradient descent optimization method As this method does not have the
Levenberg-Marquardt method and the Adams method brought no improvements when test-
ing. The setup also uses 15 neurons.
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Figure 6.53: Validation on Cold 2 data set, orange: ANN, blue:original

Validation data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Kiruna 2 0.0575 0.1842 0.9737 0.03077 cold
Gibraltar 6 0.8109 0.0281 0.9860 0.00764 warm

Table 6.8: LSTM performance on validation data against Aurobays physical model.

Training data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Vnt 0.7339 0.0873 0.8890 0.0564 warm
Spain 0.6467 0.0890 0.9611 0.0295 warm
Kiruna1 0.6569 0.1146 0.9688 0.0345 warm
Kiruna3 0.2377 0.1581 0.9710 0.0308 cold
Gibraltar1 0.0605 0.1711 0.6943 0.0976 cold
Gibraltar2 0.7108 0.0270 0.9666 0.0092 warm
Gibraltar3 0.7419 0.0349 0.9860 0.0092 warm
Gibraltar4 0.0222 0.0611 0.7871 0.0285 cold
Gibraltar5 0.7541 0.0279 0.9761 0.0087 warm

Table 6.9: LSTM performance on training data against Aurobays physical model.
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6.7 Exhaust Gas Temperature Model: GRU

The Gated recurrent network was trained similarly to the LSTM

This ANN uses gradient descent optimization method As this method does not have the Lev-
enberg marquardt method and the Adams method brought no improvements when testing.
The setup also uses 15 neurons.
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Figure 6.54: Validation on Cold two data set, orange: ANN, blue:original

Validation data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Kiruna 2 0.0627 0.1837 0.9737 0.03077 cold
Gibraltar 6 0.8196 0.0274 0.9860 0.00764 warm

Table 6.10: GRU performance on validation data against Aurobays physical model.

Training data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Vnt 0.7265 0.0886 0.8890 0.0564 warm
Spain 0.6959 0.0825 0.9611 0.0295 warm
Kiruna1 0.6508 0.1156 0.9688 0.0345 warm
Kiruna3 0.1662 0.1653 0.9710 0.0308 cold
Gibraltar1 -0.0795 0.1834 0.6943 0.0976 cold
Gibraltar2 0.6751 0.0287 0.9666 0.0092 warm
Gibraltar3 0.7425 0.0348 0.9860 0.0092 warm
Gibraltar4 -0.0969 0.0648 0.7871 0.0285 cold
Gibraltar5 0.7478 0.0283 0.9761 0.0087 warm

Table 6.11: GRU performance on training data against Aurobays physical model.
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6.8 Exhaust Gas Temperature Model: LRN

Activation function

This test is made similarly to the NARX test in the NARX result section. The neuron setup is [6
x] where x is varied from 1 to 8 and each activation function is tested for 50 iterations before
adding a neuron. The plot will then be presented as the median for the specific activation
function at the neuron.
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Figure 6.55: Median from training data
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Figure 6.56: Median Result with the validation data set Kiruna 2
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Figure 6.57: MedianResult with the validation data set Gibraltar 6

Looking at figure 6.55 it seems that the ReLU does not perform the best but the y-axis is also
very small and is 10´3, so using ReLu is still a viable option to get a good performing ANN
while also minimizing the calculation time as it takes longer to train an ANN with sigmoid
and tanh. Something noticeable here in the figures is also that some of the values are missing
in the higher neuron count which is because of the ANN not being able to find a good solution
which returns "not a number" as a result.
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Number of Neurons and hidden layers

Similarly to NARX, there needs to be a test on the number of neurons. The difference now is
that the test is conducted with two hidden layers as a single hidden layer recurrent network
is similar to a NARX network.

The test locks the first hidden layer to 5 and a second hidden layer varying the neuron count,
with 100 training iterations before adding a neuron until it reaches 15 neurons in the second
hidden layer. This resulted in the following graphs
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Figure 6.58: Result with training data
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Figure 6.59: Result with the validation data Kiruna 2
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Figure 6.60: Result with the validation data Gibraltar 6

There are a lot of data points that are missing. This is because of the ANN not finding a good
result at the higher neuron count for the second hidden layer and so return a Nan or infinite
as a result. Finally, the choice of neurons here should be similar to NARX with the first hidden
layer whereas the performance is sufficient with a neuron count above 5 and for the second
hidden layer 1 neuron is sufficient.
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Feedback delay test

For the Layer recurrent network, a test will be done with the feedback delay. This test is done
with the initial feedback setup of [1] and in delay 10 it is set up as [1 2 3 ... 10] to see how the
number of delays affects the performance of the ANN. The number of neurons used for this
test is [6 1] and the activation function used is ReLU. This resulted in the following graphs

0 10 20 30 40 50 60 70 80 90 100

Network

32

34

36

38

40

42

44

46

48

50

52

C
a

lc
u

la
ti
o

n
 t

im
e

 f
o

r 
tr

a
in

in
g

 [
s
]

1 delays 2 delays 3 delays 4 delays 5 delays 6 delays 7 delays 8 delays 9 delays 10 delays

1

2

3

4

5

6

7

8

9

10

N
R

M
S

E

Figure 6.61: Feedback test with training data
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Figure 6.62: Feedback test with validation data Kiruna 2
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Figure 6.63: Feedback test with validation data Gibraltar 6

As can be seen on the graphs above, the performance degrades with more delays with some
of the neural network dots having an infinite NRMSE, with the validation data, these dots do
not appear because the value returned is Nan as the ANN does not know what to do with
the validation data, which is why there are no dots above 3 delays. So only one delay is used
and that delay will be set to 5.
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Layer Recurrent Network

The best LRN network is presented below. The network has five in feedback delay and the
number of neurons is set to [6 1].
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Figure 6.64: Validation on Kiruna 2 data set, orange: ANN, blue:original

Validation data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Kiruna 2 0.9039 0.0587 0.9737 0.03077 cold
Gibraltar 6 0.9739 0.0104 0.9860 0.00764 warm

Table 6.12: Layer Recurrent performance on validation data against Aurobays physical
model.

Training data R2 NRMSE R2 Aurobay NRMSE Aurobay Starting condition
Vnt 0.9749 0.0268 0.8890 0.0564 warm
Spain 0.9643 0.0282 0.9611 0.0295 warm
Kiruna1 0.9735 0.0318 0.9688 0.0345 warm
Kiruna3 0.9444 0.0426 0.9710 0.0308 cold
Gibraltar1 0.9201 0.0498 0.6943 0.0976 cold
Gibraltar2 0.9842 0.0063 0.9666 0.0092 warm
Gibraltar3 0.9596 0.0138 0.9860 0.0092 warm
Gibraltar4 0.8827 0.0212 0.7871 0.0285 cold
Gibraltar5 0.9724 0.0093 0.9761 0.0087 warm

Table 6.13: Layer Recurrent performance on training data against Aurobays physical model.
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6.9 Summation of Results

A summation of the performance for the different network structures can be seen in table 6.14.
The performance of Aurobay’s current empirical model is also included for comparison.

Dataset Model R2 NRMSE Starting condition

Kiruna 2 Aurobay 0.9737 0.03077 cold
Gibraltar 6 Aurobay 0.9860 0.00764 warm

Kiruna 2 NARX 0.9236 0.0523 cold
Gibraltar 6 NARX 0.9700 0.0112 warm

Kiruna 2 LRN 0.9039 0.0587 cold
Gibraltar 6 LRN 0.9739 0.0104 warm

Kiruna 2 LSTM 0.0575 0.1842 cold
Gibraltar 6 LSTM 0.8109 0.0281 warm

Kiruna 2 GRU 0.0627 0.1837 cold
Gibraltar 6 GRU 0.8196 0.0274 warm

Table 6.14: Summation of model performance on validation data.
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6.9. Summation of Results

6.9.1 Implementation in the electronic control unit

The models mentioned in the section "Best fully trained ANN" with NARX, alongside the
static models in the sections PMEP IMEPg and cylidner flow were made in Simulink, flashed
into the electronic control unit of the engine and logged. The reason for this is to see how well
the ANN works with new data in real-time. The data from the cylinder flow and the exhaust
gas temperature are presented below in the following figure.

Figure 6.65: Results of the mass flow into the engine, in real-time

Figure 6.66: Results of the exhaust gas temperature, in real-time

The exhaust gas temperature sensor was not logged and so it is only comparing the ANN to
Aurobays empirical model.
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7 Discussion

7.1 Results

7.1.1 Cylinder Flow

It is easy to estimate very accurate single hidden layer feed-forward neural networks to model
the cylinder flow. This can be done using only a few neurons using the most common activa-
tion functions. Due to the cylinder flow being measured during the transient data sets as well
as the steady-state data sets there is an abundance of data that can be used to train with. This
also increases the performance of the model. The cylinder flow model performs well on both
cold and warm starts. The good performance of the model even on cold starts is somewhat
surprising, however, the transient data used for the training does include cold starts as well.
By only training the network on steady-state data the cold start performance would decrease.

7.1.2 PMEP and IMEPg

Since the IMEPg is not measured during the transient data sets the model is trained only on
steady-state data. This results in predictions with extreme transient spikes. The IMEPg is
validated against Aurobays model and, except for the spikes, follows the model well. It is
possible that using a lowpass filter in conjunction with the steady-state trained ANN could
improve the performance.

The PMEP model has a much more reasonable behaviour than the IMEPg model and fol-
lows Aurobays prediction well. There are however slight deviations between the two when
looking at cold start data sets.

7.1.3 NARX Temperature Model

The network structure test and evaluations have given a good indication as to how the struc-
ture should be set up. Due to the variations in the performance for each training process, it
is still necessary to train multiple networks to find one that performs well. It can also be seen
in figure 6.32 that the variance in the performance is larger for the validation set than for the
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training set. The ANN presented in the result section is very good and close to the behaviour
of the sensor.

Validating the NARX model on the steady-state data does not give very accurate predictions.
This could be either because of how the measurements are taken, since the steady-state data
consists of engine mappings and does not include an actual vehicle in the test, which could
affect the engine in different ways, such as with convection. An other explanation could be
that the network is simply not trained on data that is eventually stabilising at steady-state,
thus the model only captures faster dynamics. The average error of 60 degrees could be
considered significant if the model is intended to be used for controlling the engine at steady-
state. This is an unlikely scenario, however. In reality, the engine operating point changes a
lot throughout the drive cycle and the temperature rarely, if ever, settles at steady-state.

7.1.4 Layer-Recurrent Network Temperature Model

For the setting of having a single hidden layer, an LRN is very similar to a NARX network
lacking an input delay.

The best LRN has very similar results to the best NARX network when looking at the eval-
uation values. The variation of the results from training implies that both NARX and LRN
can outperform each other depending on luck in training but not significantly. The difference
here is that an LRN is much more unstable with many networks trained converging to infin-
ity or returns NAN as a result which can be seen by looking at for example 6.58 where values
are missing at higher neuron count. It is concluded then that it would be fine to use either
NARX or Layer-Recurrent network as an ANN for modelling purposes.

7.1.5 LSTM and gated recurrent network

Both the LSTM and the gated recurrent networks give similar results. When it comes to the
structure of these networks. What has been varied in these tests were the layer structure,
activation functions, having multiple LSTM/Gated recurrent blocks, and also the learning
rate and drop rate. All of these factors had minimal effect on the result, with some of the
changes worsening the performance.

7.1.6 NARX training with warm start data

The ANN trained with warm start data did not bring any improvements to the warm start
data, initially, the idéa here was to see if it is a viable option to train a network for a cold
start scenario and a warm start scenario as an alternative instead of a single ANN handling
both, but by comparing the results from the tables 6.3 6.4 to 6.5 6.6 we can see that a neural
network only trained for warm start scenarios does not bring any performance benefits and
so the idéa will not be implemented.

7.1.7 Full ANN

The initial expectation was that when using the feed-forward networks as input to the dy-
namic temperature network, as well as using the dynamic temperature network as input to
the feed-forward networks the small errors of all networks would start to accumulate over
time. This does not seem to be the case in the decrease in performance is marginal.
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7.1.8 Implementation in the electronic control uni

As can be seen in figure 6.65 and 6.66 the results are excellent and as such, truly validates
the performance of the ANN as it has been tested in real-time in a vehicle and proves the
performance of the ANN could be used for engine modelling purposes.
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7.2 Method

7.2.1 Network Structure Tests

The tests are limited in the sense that some parameters had to be fixed to conduct the test
of a chosen parameter. This is to decrease computation time as these tests are limited to the
computers that are being used. A more thorough way of conducting these tests is to vary all
of the existing parameters in different combinations, but this requires a very strong computer
to be feasible. The method used might miss certain optimal combinations of parameters, and
interdependence of parameters.

7.2.2 Cylinder flow, IMEPg and PMEP Models

Training the cylinder flow model on transient data from an actual vehicle improves the per-
formance compared to simply training the data from an engine test cell. Training the IMEPg
and PMEP models in a similar way might increase the performance of these models as well.

7.2.3 Network structure of Exhaust Gas Temperature Model

The performance of the network does not seem to depend on the number of neurons used in
the network, as long as at least five neurons are used. The most efficient way to produce an
accurate network seems to be to use around six neurons and then choose the best performing
network out of several attempts. This is a computationally heavy approach.

The most common reason for deeming the training finished is the early stopping regularisa-
tion. It is therefore surprising that the ratio between the data used for training the network
and the early stopping regularisation does not seem to have a huge impact on the perfor-
mance of the network.

Model Inputs

The ambient temperature could have a large impact on the exhaust gas temperature. The rea-
son for not including the ambient temperature as an input is that the temperature networks
rely on time-series data. Throughout each data set, the ambient temperature is relatively con-
stant, however, it does change significantly between data sets. For the feed-forward network,
the data is collected in a test cell. This means that the ambient temperature is constant for the
steady-state data as well.

The approach was to use as many reasonable input signals as possible and let the net-
work training decide if the inputs were to be used or not. Instead, the input-output cross-
correlation could be investigated to only choose signals with a high correlation to the output.

7.2.4 NRMSE and R2

The idea of using a normalised RMSE was to have the values be independent of which feature
was evaluated. Instead, what could be considered good changes for each data set. Solely
relying on the R2 metric can also be slightly misleading. It is almost a necessity to compare
plots of the model response with measured data when evaluating the performance.

7.3 Future Work

It is possible that better hyperparameter combinations can be found by testing multiple struc-
ture parameters such as the network size, delays et cetera at the same time. It could also be
of interest to instead train the network on data from a sensor with faster dynamics to give
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a more accurate prediction of the temperature transients. In order to achieve better predic-
tions during cold start, a separate network could be used in conjunction with an indicator
of whether the engine is warm or cold. Such an indicator could for example be the engine
coolant temperature.

In order to guarantee robustness more validation should be done, including an analysis of
how changes in specific inputs affect the network predictions. How the network interacts
with a control system that is dependent on the network predictions should also be analysed.

In this thesis, regularisation of the networks is done mainly through early stopping. Different
regularisation methods could be attempted and compared as well.

7.4 The work in a wider context

A neural network in the context of engine development has the potential to speed up devel-
opment time to release a product more environmentally friendly and cheaper, as the reduced
development cost could be reflected in the consumer price. With the potential of neural net-
works, it might be able to get a better model than a physical model which might normally
be hard to design. The negative aspect of neural networks is that it is hard to prove the
robustness of the model without a lot of testing. This can be dangerous for a driver if the en-
gine starts acting strange during driving, because of a certain driving scenario that the model
hasn’t trained for.
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8 Conclusion

The research questions presented in the thesis can be concluded in the following way:

Is artificial neural network modelling a viable method for estimating the exhaust gas temperature and
How does the performance of the artificial neural network model compare to existing empirical models?

In consideration to the results, it can be presumed that the resulting ANN is satisfactory
enough as it is very good for NARX networks and LRN. This can be seen by looking at the
tables6.13,6.12, 6.6 and 6.5 which performs very close to the physical models with some of
the training data performing better than the physical model. Additionally, with the result
from the electronic control unit implementation, seen in figure 6.66, the ANN behaves sim-
ilarly to the physical model, you could then conclude that the performance can be deemed
satisfactory. This is not the case for LSTM or GRU networks as their performance is subpar in
comparison to NARX, LRN and the physical model which can be seen in the two tables 6.10
and 6.8.

How can the structure of a neural network model of exhaust gas temperature be optimised with respect
to the results and computational effort?

A small network is enough to give a model with decent accuracy, both using a layer recur-
rent network and a NARX network for the temperature and when using the feedforward
networks for the cylinder flow, IMEPg and PMEP. A compromise between performance and
computational effort does not need to be made.

Which network structure is best suited for modelling the exhaust gas temperature?

Based on the result, the layer-recurrent network and NARX handles modelling the exhaust
temperature very well but LSTM and GRU do not give any good results in comparison to the
other two network types.
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Appendix

Simulink model of NARX network
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Simulink model of NARX network layer subsystem
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Simulink model of NARX network output layer subsystem
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