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Abstract
We present an implementation of a very recent approximation algorithm for
scheduling jobs on a single machine with precedence constraints, minimising
the total weighted completion time. We also evaluate the performance of this
implementation. The algorithm was published by Shi Li in 2021 and is a (6+ε)-
approximation algorithm for the multiprocessor problem P |prec|

∑
j wjCj . We

have implemented a version which is a (2 + ε)-approximation algorithm for
the single processor problem 1|prec|

∑
j wjCj . This special case can easily be

generalised to the multiprocessor case, as the two algorithms are based on the
same LP relaxation of the problem. Unlike other approximation algorithms for
this and similar problems, for example, those published by Hall, Schulz, Shmoys
and Wein in 1997, and by Li in 2020, this algorithm has been developed with a
focus on obtaining a good asymptotic run time guarantee, rather than obtaining
the best possible guarantee on the quality of solutions. Li’s algorithm has run
time

O
(
(n+ κ) · polylog(n+ κ) · log3 pmax ·

1

ε2

)
,

where n is the number of jobs, κ is the number of precedence constraints and
pmax is the largest of the processing times of the jobs. We also present a detailed
explanation of the algorithm aimed at readers who do not necessarily have a
background in scheduling and/or approximation algorithms, based on the paper
by Li. Finally, we empirically evaluate how well (our implementation of) this
algorithm performs in practice. The performance was measured on a set of 96
randomly generated instances, with the largest instance having 1024 jobs and
32 768 precedence constraints. We can find a solution for an instance with 512
jobs and 11 585 precedence constraints in 25 minutes.
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Sammanfattning
Vi presenterar en praktisk implementation av en ny approximationsalgoritm
för schemaläggning av jobb på en maskin med ordningsbivillkor, under mini-
mering av den viktade summan av sluttider. Algoritmen, som publicerades av
Shi Li år 2021, är en (6 + ε)-approximationsalgoritm för multiprocessorpro-
blemet P |prec|

∑
j wjCj . Vi har implementerat en version som är en (2 + ε)-

approximationsalgoritm för enprocessorproblemet 1|prec|
∑

j wjCj . Detta spe-
cialfall kan enkelt generaliseras till multiprocessorfallet, eftersom de två algorit-
merna baseras på samma LP-relaxation av problemet. Till skillnad från andra
approximationsalgoritmer för detta och liknande problem, exempelvis de från
Hall, Schulz, Shmoys och Wein år 1997, och från Li år 2020, har denna algoritm
utvecklats med fokus på att uppnå en bra garanti på asymptotisk körtid, istället
för att försöka uppnå den bästa möjliga garantin på lösningarnas kvalité. Lis
algoritm har körtid

O
(
(n+ κ) · polylog(n+ κ) · log3 pmax ·

1

ε2

)
,

där n är antalet jobb, κ antalet ordningsbivillkor och pmax är den största körti-
den bland jobben. En detaljerad beskrivning av algoritmen riktad till personer
som inte nödvändigtvis har förkunskaper inom schemaläggning och/eller ap-
proximationsalgoritmer, baserad på artikeln, ges också. Slutligen utvärderar vi
empiriskt hur väl (vår implementation av) denna algoritm presterar i praktiken.
Implementationens egenskaper mättes på en uppsättning av 96 slumplässigt
genererade instanser, där den största instansen har 1024 jobb och 32768 ord-
ningsbivillkor. Med vår implementation kan vi hitta en lösning för en instans
med 512 jobb och 11 585 precedencensbivillkor på 25 minuter.
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Optimering, schemaläggning, approximationsalgoritmer, linjärprogramme-
ring
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Chapter 1

Introduction

In this work, we implement an efficient algorithm for solving a certain schedul-
ing problem. This problem has many similarities to scheduling problems that
appear in practical applications, in that it has precedence constraints and a
quite complex objective function. Many practical problems that are interesting
to solve in the industry, for example at Saab AB (where this work was carried
out), are of a similar nature. We are thus interested in being able to solve this
problem, and more complex problems like it, quickly.

One candidate for a quick method for finding solutions is an approximation
algorithm. This is a type of algorithm that is guaranteed to run in polynomial
time, and produce a solution that is not worse than some guarantee. For the al-
gorithm that we implement, where the approximation ratio is 2+ε, the solutions
never have more than 2+ε times as large objective value as an optimal solution.
The algorithm we implement is an approximation algorithm that runs in almost
nearly linear time. This algorithm is very recent (from 2021), and unlike most
other approximation algorithms for this kind of problem, it has been developed
with a focus on obtaining a low asymptotic run time, rather than obtaining the
best possible approximation ratio.

However, while this approximation algorithm is fast in theory, this is only an
asymptotic guarantee, meaning that the algorithm is not necessarily faster than,
for example, a good heuristic. Therefore it is interesting to evaluate empirically
how well an actual implementation of the approximation algorithm in question
performs. We do this using a set of randomly generated instances.

Alskog, 2022. 1



2 Chapter 1. Introduction

1.1 Background
Here we introduce the main subjects that we will work with, namely scheduling
and approximation algorithms. We begin by giving a short overview of the
mathematical fields of scheduling and approximation algorithms, and end with
a few examples of applications of scheduling.

Scheduling In scheduling, we typically have a set of jobs, which could, for
example, be small computer programs or manufacturing steps in a factory. Each
job has a processing time, which is the time it takes to complete after starting
it. The jobs may also be related by a number of precedence constraints, which
represent dependencies between jobs. For example, if a program requires as
input the output of another program or if a manufacturing step requires some
part manufactured by another step, then there is a precedence constraint be-
tween the corresponding jobs, i.e., the former job can only be started after the
latter job has been completed.

We may have one or more machines, which could be for example processor
cores or manufacturing tools. Processor cores are a typical example of what is
called identical machines while manufacturing tools are an example of unrelated
machines. For unrelated machines, the processing time of a job is allowed to
depend on which machine the job is scheduled on. We are interested in the case
of identical machines, where the processing time only depends on the job and
not on the machine.

In some cases, the jobs are allowed to be paused and resumed at some later
time, possibly on a different machine. This is known as preemption. However,
we are only interested in the case when jobs complete in their entirety after
starting.

There are several different properties which one may want to optimise. The
time at which a job j completes is known as its completion time, usually denoted
Cj . A natural objective function is to minimise the total time before all jobs
are completed, that is, to minimise maxj Cj . This is known as the makespan
and is denoted Cmax. Another reasonable objective is to minimise the average
completion time

∑
j Cj/n, where n is the total number of jobs. This is equivalent

to minimising the total completion time,
∑

j Cj , as n is constant for a given set
of jobs.

If certain jobs are deemed more important than others, we might want to
ensure that these complete quicker. This could be achieved by introducing a
weight wj for each job j, with a higher value representing that we are more
interested in scheduling the job earlier. In this case, we minimise the total
weighted completion time

∑
j wjCj .
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It is also possible to have additional constraints on the schedule. For exam-
ple, a scheduling problem might have release times and/or deadlines. A release
time rj for a job constrains it to start no earlier than some given point in time,
rj ≤ Cj−pj . Likewise, a deadline dj constrains a job to end no later than some
given point in time, Cj ≤ dj .

Approximation Algorithms Solving these scheduling problems is computa-
tionally difficult, as many other combinatorial optimisation problems are. How-
ever, in many applications of scheduling, we are often not interested in finding
an optimal solution, but simply a solution that is “good enough”. For solving
such a problem in practice, an approximation algorithm can be a useful tool.
An approximation algorithm is an algorithm which provides an approximate
solution to the problem in question, meaning a solution that is feasible, and
has an objective value that is within some given bound of the optimal objective
value.

For a minimisation problem, this is formulated as the criterion that the al-
gorithm provides a solution with objective value OBJ such that OBJ ≤ α ·OPT,
where OPT is the optimal objective value. The factor α is called the approxi-
mation ratio and is at least 1 for minimisation problems. For a maximisation
problem, the criterion is that OBJ ≥ α · OPT, and the approximation ratio is
at most 1. Note that if α = 1, the approximation algorithm gives an optimal
solution.

If the approximate solution has an objective value close to the optimal objec-
tive value, then the solution could possibly be used directly. If not, it could be
used as a starting point when trying to find better solutions by another method.

An approximation algorithm should complete within a run time that does
not grow too fast, as a function of the size of the input. In general, it should
be a polynomial-time algorithm. Some problems may be difficult, and we may
not be able to find an optimal solution in any reasonable time. If we have an
approximation algorithm for the problem, we can be certain that its output will
always have an objective value that is, for example, not more than twice as
large as the optimal objective value, if α = 2 and the problem in question is a
minimisation problem.

There are many different methods for finding an approximation algorithm,
but one straightforward approach is to relax the problem formulation, solve this
relaxed version, and then round the obtained solution. For example, if we have
some integer program (IP) to solve, we could relax this to a linear program (LP).
Then, if we can find a rounding rule that guarantees that any feasible solution
of the LP is rounded to a feasible solution of the IP, we are done. To formally
call this an approximation algorithm, we would also need to prove that the
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objective value is within some bounds and that the LP can indeed be solved in
polynomial time. An illustrative example of this approach, the relax-and-round
method, for the set cover problem is given in [37, Section 1.2–1.7].

It has been shown that if an efficient algorithm can be found for the schedul-
ing problem we are interested in (see Section 1.2), then an efficient algorithm can
also be found for many other computationally hard problems (and vice versa),
such as the boolean satisfiability problem, the travelling salesman problem and
the graph colouring problem. Problems in this class are called NP-complete.
Most researchers believe that the NP-complete problems cannot be solved in
polynomial time, but proving this is a long-standing open problem.

Another use for approximation algorithms, is as a way to study the “diffi-
culty” of a given problem as compared to other NP-complete problems. Prob-
lems for which a good (in some sense; usually with respect to the approximation
ratio) approximation algorithm exists, can be said to be “easier” problems than
those for which no good approximation algorithm exists. It is possible, in some
cases, to prove that any approximation algorithm must necessarily have worse
approximation ratio than some bound (given that, e.g., the P 6= NP conjecture
or the exponential time hypothesis hold, depending on the problem). In such a
case, we have a concrete measure of the “hardness” of the problem.

Applications of Scheduling Scheduling problems are a class of problems
which arise in a wide range of practical applications. Some examples of areas
where scheduling can be applied are [26, Chapters 45–51]:

• University timetabling

• Batch production scheduling

• Scheduling in the airline industry

• Bus and train driver scheduling

Another example of an area where scheduling can be applied is in avionics.
Avionics (aviation electronics) refers to electronic systems used in aircraft. Mod-
ern avionic systems usually consist of a large number of processors working to-
gether to perform tasks such as measuring important data (altitude, airspeed,
etc.) or controlling components, e.g., as fly by wire systems do. It is important
that these processors work together efficiently and reliably, to ensure the safety
of the aircraft.

In avionics, it is thus useful to find a schedule for all computer tasks before
the application is run, to guarantee that the system works as intended, and has
the required performance. An example of an application of scheduling to avionic
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scheduling is [18], wherein a matheuristic approach is used. This is a combi-
nation of metaheuristics (a class of heuristics which are not problem-specific)
and mathematical programming (a.k.a. optimisation). Matheuristics have some
similarities to approximation algorithms, but are slightly more practically ori-
ented. For example, a matheuristic solution method usually gives no formal
guarantee on the quality of the solution, as it is a heuristic method.

Our work was carried out at Saab AB in Linköping. As Saab works with
the design of avionics, there is an interest in developing efficient methods for
solving scheduling problems. Algorithms with good asymptotic performance
are interesting because they are useful to be able to solve large-scale problems.
Approximation algorithms are more often studied in a theoretical setting, as
compared to, e.g., heuristics, which are more closely associated with practical
applications. As such, it is interesting for us to see if the algorithm we implement
performs well in practice.

1.2 The Scheduling Problem
We are interested in the problem of scheduling to minimise the total weighted
completion time on identical machines with job precedence constraints, written
P |prec|

∑
j wjCj in the classic three-field notation of [13]. The first field of this

shorthand gives the type and number of machines and the middle field contains
any extra information, such as the use of precedence constraints here. The third
field contains the objective function, in this case using Cj for the completion
time and wj for the weight of a job j.

This is a quite basic scheduling problem, with the only constraint, besides
non-overlapping placement of jobs, being precedence constraints. The objective
function, minimising weighted completion time, is however slightly more difficult
to optimise compared to, for example, minimising makespan, as we will discuss
in Section 1.4.

Although we present the identical-machine problem, in much of this thesis
we focus on the simpler problem of minimising total weighted completion time
on a single machine with job precedence constraints, 1|prec|

∑
j wjCj . The two

problems are identical, except that the latter has the number of machines fixed
to 1. Our implementation of the algorithm is restricted to the simpler case of
the single machine problem. The former problem is defined as follows.

Definition 1.1. A number of machines m and a set J of n jobs are given. Each
job j ∈ J has a given processing time pj ∈ Z>0 and weight wj ∈ Z≥0. A binary
relation ≺ over J is also given, called the precedence relation. The precedence
constraint j ≺ j′ indicates that job j must complete before job j′ can start.
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Completion times (Cj)j∈J are to be found, which minimise the objective
function ∑

j∈J

wjCj , (1.1)

i.e., the weighted sum of completion times. The solution (Cj)j∈J should satisfy
the constraints

Cj ≥ pj ∀j ∈ J, (1.2)
Cj ≤ Cj′ − pj′ ∀j, j′ ∈ J : j ≺ j′, (1.3)

t ∈ (Cj − pj , Cj ] for at most m jobs j ∈ J ∀t ≥ 0. (1.4)

A solution (Cj)j∈J can be interpreted as meaning that the job j is scheduled
in the time interval (Cj − pj , Cj ]. The interval is open at one end to allow a
job j′ to start at the same time point another job j ends, that is, to allow
Cj′ − pj′ = Cj . We can remark that if this was not allowed, there would be a
problem, as Cj′ − pj′ = Cj + ε would only be a valid solution for ε > 0, but
wjCj +wj′Cj′ decreases as ε→ 0+, so there would exist no solution minimising
the objective function. We will always let the interval be open at the start, but
this is simply a convention and either end can be chosen.

The first two constraints are relatively straightforward. Constraint (1.2) en-
sures that no jobs complete before their processing time has elapsed. Constraint
(1.3) ensures that if there is a precedence constraint j ≺ j′, then j′ does not
start before j has been completed.

Constraint (1.4) can be understood by visualising the timeline of jobs as
in Figure 1.1. It ensures that for each time t, the number of jobs ct that are
“running” at the moment is at most m.

It is not obvious that the intervals (Cj−pj , Cj ] for j ∈ J can each be assigned
to a machine without overlap, given that ct ≤ m for every t ≥ 0. There could
hypothetically be a situation in which a job has to run on one machine at time t
and another machine at time t′, which is not allowed. A folklore result, which we
prove in Section 2.2.2, says that it is in fact possible to assign jobs to machines
without issue, given that we have a schedule that fulfills (1.2)–(1.4).

We can also note that there is no constraint ensuring that the comple-
tion times are integer valued. However, if the processing times are integer
valued, then there is an optimal solution with integer completion times. See
Section 2.2.1 for a proof. This proof further shows that if (Cj)j∈J fulfill the
constraints of the problem, then (bCjc)j∈J also fulfill the constraints. The ob-
jective value for the latter solution is not larger than that of the former, also
according to Section 2.2.1.

The single-machine scheduling problem can also be expressed in a slightly
simpler way.
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t

machines

1 2

3 4

5

ct : 1 2 2 3 2 3 2 1

Figure 1.1: A visualisation of a schedule for five jobs on three machines. The
rectangles each represent a scheduled job. Constraint (1.4) means that ct ≤ 3 =
m for all t ≥ 0.

Definition 1.2. A set J of n jobs is given. Each job j ∈ J has a given processing
time pj ∈ Z≥0 and weight wj ∈ Z≥0. A binary relation ≺ over J of precedence
constraints is given.

Completion times (Cj)j∈J are to be found, which minimise the objective
function ∑

j∈J

wjCj . (1.5)

The solution (Cj)j∈J should satisfy the constraints (1.2), (1.3) and

Cj ≥ Cj′ + pj′ or Cj′ ≥ Cj + pj ∀j, j′ ∈ J : j 6= j′, (1.4′)

called the “disjunctive” constraints.

Finding an optimal solution to the scheduling problem (for both single-
machine and multiple-machine variants) is NP-hard [22] [5].

1.3 Overview of the Implemented Algorithm
The algorithm which our implementation is based on was devised by Li in
2021 [28] and is a (6 + ε)-approximation algorithm for the multiple machine
problem P |prec|

∑
j wjCj . We implement a simpler version which is a (2 + ε)-

approximation algorithm for the single machine scheduling problem 1|prec|
∑

j wjCj .
Both algorithms are of the relax and round type and are based on the same LP
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relaxation of the problem. Thus the only change needed to extend our im-
plementation to the complete algorithm, is a slight modification to the final
step (the rounding algorithm, as we shall see later). This is described in [28,
Algorithm 2, p. 10].

Note that, technically, our implementation has approximation ratio 2+O(ε).
However, by using a smaller ε, we can make the term O(ε) arbitrarily small.
Thus, it is justified to say that the algorithm has approximation ratio 2 + ε, by
simply modifying the value of ε at the start of the algorithm. See Section 3.3.1
for more details on the approximation ratio.

The algorithm has a run time of

Õε((n+ κ) log pmax), (1.6)

where pmax := maxj∈J pj . See Section 2.3.2 for further explanation of the
notation Õε(·).

The algorithm that is implemented works by solving a linear programming
relaxation of the problem. In essence, we introduce binary decision variables
over a set of “allowed” completion times, for each job. To keep the number of
variables low, the gap between the “allowed” completion times is larger for later
completion times (scaling exponentially).

The linear program is then solved efficiently using a multiplicative weight
update (MWU) algorithm. This is a method by which a linear program with
many constraints can be solved, by iteratively solving a linear program with
only one “difficult” constraint. For more details, see Section 2.7. The algorithm
which solves this simpler LP is called the oracle O.

The simpler LP can be solved by considering its dual (see Section 2.4.3),
which can be considered as a set of network flow problems. See Section 4.1.1.
This set also needs to be small enough to give a good run time. To solve one
of these flow problems, which has a maximum flow objective, a graph-based
algorithm is used to find a minimum cut. Then the maximum-flow minimum-
cut theorem is used to show that this can be used to find a solution for the
primal linear program.

The algorithm for solving one of these network flow problems uses a so-called
shortcut graph, which has an edge for each path (in the original graph) from
a source to a sink, and an edge for each path (in the support of the current
flow) from a sink to a source. It also makes use of a novel data structure called
a handled graph [28, Definition D.1, p. 28]. We find a blocking flow (i.e., a
s-t-flow, such that all s-t-paths contain at least one edge saturated by the flow)
in this graph, as in Dinitz’ algorithm. We do this using a dynamic tree (also
known as a link/cut tree) data structure [34], in order to obtain the required
run time guarantee. By repeatedly doing this, we can obtain a maximal flow,
or equivalently a minimal cut.
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Finally, we solve an LP over the set of results (i.e., flows) obtained from the
flow problems, to get a solution to the LP with one “difficult” constraint. This
concludes the description of the inner workings of the oracle O. Running the
MWU loop over this process, we obtain a solution to our LP relaxation.

All that remains is now to round this solution to a solution to the original
problem. This is done by a so-called rounding algorithm, which in the case of
the single machine scheduling problem, is a special case of list scheduling [12].
In Figure 1.2, an overview of the process is given as a flowchart.

Instance LP relaxation LP solution Approximate
solution

Relax Solve Round

Figure 1.2: Conceptual sketch of the basic parts of the algorithm.

Our implementation is available online at https://github.com/mansalskog/
AlmostLinearApproximateScheduling. The version described in this report is
tagged with v1.0 in the version history.

1.4 Related Work
Scheduling problems in various forms have been studied for a long time. The
special case with the objective being minimisation of the total weighted comple-
tion time,

∑
j wjCj , is a particularly difficult problem compared to for example

the problem of minimising the makespan, Cmax [16, p. 513]. Some details of
this difficulty will be discussed in this section.

Precedence constraints are also a difficult aspect of scheduling problems, es-
pecially when designing approximation algorithms. In [31, p. 367], five examples
of difficult scheduling problems with precedence constraints are given.

Minimising the Makespan The first example is that of P |prec|Cmax, for
which the first approximation algorithm is essentially given by Graham in 1966
[12]. It has approximation ratio α = 2− 1

n . This method was thirty years old at
the time of [31] and even after close to sixty years, it remains the best approx-
imation algorithm for the problem. There can be no approximation algorithm
for this problem with an approximation ratio better than 4/3, unless P = NP
[25].

Graham’s algorithm is based on having a list of jobs L. Whenever a machine
completes a job (or at the very start), it starts the next job in the list L which
has not been scheduled already, and does not have any precedence constraints
preventing it from being scheduled at this time. If there is no such job, the

https://github.com/mansalskog/AlmostLinearApproximateScheduling
https://github.com/mansalskog/AlmostLinearApproximateScheduling
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machine is idle until another machine completes a job, at which point we check
again for an available job.

The total weighted completion time is a more general objective than the
makespan, i.e., each problem instance for the latter can be represented as an
instance for the former. To show this we add a “dummy” job j∗ with pj∗ = 1,
wj∗ = 1 and j ≺ j∗ for all j ∈ J . Then we define the weights for j ∈ J as
wj = 0, which gives us∑

j∈J∪{j∗}

wjCj = wj∗Cj∗ = 1 · (Cmax + 1),

as the job j∗ must end exactly one time unit after all other jobs have completed.
In 2010, it was shown by Svensson that it is NP-hard to approximate

P |prec|Cmax within a factor of 2 − ε for any ε > 0, assuming a variant of
the unique games conjecture [35], a conjecture about hardness of approxima-
tion [20]. This was done by showing that P |prec|Cmax is at least as hard as
1|prec|

∑
j wjCj , for which Bansal and Khot have shown that there exists no

(2− ε)-approximation algorithm, assuming the previously mentioned variant of
the unique games conjecture [3].

By the reasoning above, this also holds for P |prec|
∑

j wjCj . In fact, no
better hardness results are known for P |prec|

∑
j wjCj than for P |prec|Cmax,

i.e., there might exist a greater lower bound on the approximation ratio for the
former, but no such bound has been found yet [27, p. 284].

Linear-ordering formulation The best known approximation ratio for
1|prec|

∑
j wjCj is 2, presented by Hall, Schulz, Shmoys and Wein in 1997 [16].

A number of approximation algorithms are presented by Hall, Schulz, Shmoys
and Wein, for different variations on the scheduling problems. The basis of their
scheduling algorithm for 1|prec|

∑
j wjCj is replacing the constraint (1.4′) by∑

j∈J′

pjCj ≥
1

2

( ∑
j∈J′

p2j +
( ∑
j∈J′

pj
)2) ∀J ′ ⊆ J, (1.7)

which (it is shown) implies that

Cj ≥ (1/2)
∑

j′∈J:Cj′≤Cj

pj′ ,

for all j ∈ J . This does not necessarily give a feasible schedule, as the intervals
in which the jobs are scheduled are not constrained to be disjoint, which would
require

Cj ≥
∑

j′∈J:Cj′≤Cj

pj′ for all j ∈ J.
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Hall et al. then solve a linear relaxation of 1|prec|
∑

j wjCj (cf. Definition 1.2)
in which

∑
j∈J wjCj is minimised subject to (1.3) and (1.7), to obtain fractional

completion times (C̄j)j∈J . This can be done in polynomial time using the
ellipsoid algorithm for convex linear programs [30], even though the number
of constraints is exponential in the number of jobs. By scheduling the jobs in
order of nondecreasing C̄j and breaking ties by using the precedence relation,
a schedule that is within a factor 2 of the optimal schedule is obtained [16, p.
519].

This approximation scheme can be used in conjunction with other LP for-
mulations of the scheduling problem. One such formulation is based on vari-
ables (δi,j)i,j∈J:i6=j , which symbolise that job i precedes job j in the schedule
if δi,j = 1. This is called a linear-ordering formulation. By using this, the
fractional completion times (C̄j)j∈J can be found while avoiding the ellipsoid
algorithm. Hall et al. also consider a time indexed formulation [9], which has
variables (xj,t)j∈J,t∈[0,T ] where T =

∑
j∈J pj . If a job j completes at a point in

time t, then xj,t = 1.

Graph-based formulation The earliest approximation algorithm for
P |prec|

∑
j wjCj was published by Ravi, Agrawal and Klein in 1991 and had

an approximation ratio of O(log n log
∑

wj) [32]. The approach here was to
represent the problem instance as a (directed acyclic) graph G = (J,EJ) where
EJ = {(j, j′) : j ≺ j′}. Then the scheduling problem is solved by finding
a topological ordering j1, . . . , jn of G such that the minimum of

∑
j∈J wjCj ,

where

Cjk =

k∑
l=1

pl,

over all topological orderings of G, is attained. The problem is reduced to
another scheduling problem, that of minimising the storage-time product, by
adding some nodes and edges. This problem is then solved using a recursive
algorithm on the graph [32, pp. 755–759].

The method was expanded on by Even, Naor, Rao and Schieber in 1995 [10]
to obtain a O(log n log log

∑
wj)-approximation algorithm. This was done by

improving the graph algorithm for minimising the storage-time product [10, pp.
607–608].

Time indexed formulation For P |prec|
∑

j wjCj , the best known approxi-
mation ratio is 2 + 2 log 2 + ε ≈ 3.4 + ε, which was shown by Li in 2020 using
a time indexed LP relaxation of the problem [27]. This improved on the earlier
best, a 4-approximation algorithm by Munier, Queyranne and Schulz [31] [29].
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Asymptotic time complexity All the results mentioned above have a focus
on finding the smallest possible approximation ratio in polynomial time. The
article by Li [28] differs in that the focus when developing the algorithm was
obtaining a low time complexity. The time complexity of Li’s algorithm is almost
nearly linear (see Definition 2.4), which is quite low in comparison with the other
algorithms mentioned. Most of them do not specify the run time further than
that it is polynomial. There is a trade-off however, as the approximation ratio,
6+ε, is not particularly good when compared with the best known, 2+2 log 2+ε.

Linear programming Since many approximation algorithms involve solving
a linear relaxation, it is necessary to have a fast algorithm for solving LPs. It has
been shown by Klee and Minty in 1972 that the simplex algorithm in its original
formulation has exponential time complexity, as it needs to visit all 2m vertices
of a problem with m constraints in the worst case [21]. By using a different
pivoting rule it is possible to improve the performance of the simplex algorithm.
A deterministic pivot rule leading to sub-exponential time complexity is known,
but it is an open question whether there exists a deterministic pivot rule leading
to polynomial time complexity [17].

The ellipsoid method was introduced in 1979 by Khachiyan [19], as the first
polynomial-time algorithm for solving linear programs. It built on the work of
Shor [33], as well as Nemirovski and Yudin [38]. The interior point method is
another polynomial time algorithm for solving linear programs.

Some recent fast algorithms for solving general LPs include one by Lee and
Sidford with run time Õ((N +m2)

√
m log(1/ε)) [23] and one by Lee, Song and

Zhang with run time (approximately) Õ(n̄2.373 log(1/ε)) [24], for a LP with a
constraint matrix of size m× n with N nonzero elements.

Multiplicative weight update Another way to solve linear programs is by
using the multiplicative weight update (MWU) algorithm. MWU is an algo-
rithm which has applications in many different areas. Examples include machine
learning, game playing problems in economics, and convex optimisation [2, p.
122]. We are interested in its application to solving packing linear programs.
Packing problems can be loosely described as problems of choosing a limited
number of items to maximise their total value.

There has been much research into using the MWU algorithm to solve linear
packing feasibility problems, such as deciding if there exists an x ∈ P such that
Ax ≤ b for some given P ⊆ Rn

≥0, A ∈ Rm×n with nonnegative elements and
b ∈ Rm [2, p. 135]. Usually, we are interested in approximate solutions, i.e.,
finding an x ∈ P such that Ax ≤ (1 + ε)b for some ε > 0.
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1.5 Outline of the Report
In Chapter 2 we give an overview of the mathematical concepts needed to un-
derstand the algorithm and our implementation of it. We leave out most proofs,
as they are readily found in other literature. The main parts of the report are
Chapters 3 and 4. In Chapter 3 we explain the overarching structure of the
algorithm, giving a complete description of how the problem is solved, but leav-
ing out the description of a helper function for solving a certain network flow
problem. This helper function is the subject of Chapter 4, wherein its imple-
mentation is described. Many of the more technical details are left out in the
interest of brevity. In Chapter 5, we present the results of the evaluation of
our implementation. Finally, in Chapter 6, we discuss the results and consider
possible extensions and future work in the area. Appendix A contains some
small technical details which are not essential to understanding Chapters 3–4,
but which nonetheless are interesting to discuss.



Chapter 2

Preliminaries

In this chapter we describe some basic results in scheduling and linear pro-
gramming, which will be used in the implementation. We explain the basics
of the multiplicative weight update method and parts of the simplex method.
We also prove two facts about the scheduling problem in question which we
have mentioned in the introduction. Finally, we give some definitions relating
to graphs and show how linear programming duality gives the the max-flow
min-cut theorem.

2.1 Notation
The set of real numbers is denoted R, and the set of integers Z. We use the
notation A≥x0

:= {x ∈ A : x ≥ x0}, for example, R≥0 = {x ∈ R : x ≥ 0}.
A<x0

, A≤x0
, A>x0

are defined analogously.
The interval notation [a, b] is used to mean either

{x ∈ R : a ≤ x ≤ b}

or
{k ∈ Z : a ≤ k ≤ b},

when the intended meaning is clear from the context. The notation [n] :=
{1, . . . , n} is used for integers only. Open and half-open intervals such as

(a, b] := {x ∈ R : a < x ≤ b}

are used for real numbers only.

14 Alskog, 2022.
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Vectors are denoted with boldface letters, for example, a. For a vector
a ∈ RA for some finite set A, coordinates are denoted ai for i ∈ A. A vector is
assumed to be a column vector, unless otherwise stated. The vector space Rn

is the same as R[n], meaning the coordinates of a ∈ Rn are a1, a2, . . . , an. If
a ∈ RA

≥0 is a vector over some finite set A, then we define

a(B) :=
∑
i∈B

ai,

for any B ⊆ A. For two vectors a and b over the same space RA, a ≤ b means

ai ≤ bi for all i ∈ A,

and likewise for the other inequalities <,≥, >.
Matrices are written with uppercase boldface letters, e.g., A ∈ Rm×n. Ai ∈

Rn denotes row i ∈ [m] of A as a row vector.
We write standard norms with single vertical bars, for example

|x| := |x|2 :=

√√√√ n∑
k=1

x2
k

and

|x|1 :=

n∑
k=1

|xk|,

for any vector x ∈ Rn.

2.2 Scheduling
In this section we prove that we can, without loss of generality, assume that there
exists integer-valued completion times for our problem (Definition 1.1) with
optimal weighted completion time. We also prove the fact that the constraint
ct ≤ m (see (1.4)) is enough to guarantee that each job can be run without
interruption.

2.2.1 Integer Completion Times
Here we prove that the optimal completion times for our scheduling problem
can be chosen to be integer-valued given that the processing times are. Consider
some solution (Cj)j∈J . If pj ∈ Z>0 then

Cj ≥ pj =⇒ bCjc ≥ bpjc = pj
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and

Cj ≤ Cj′ − pj′ ⇐⇒ Cj′ − Cj ≥ pj′

=⇒ bCj′c − bCjc ≥ bCj′ − Cjc ≥ pj′

=⇒ bCjc ≤ bCj′c − pj′ .

Finally, if for all t ≥ 0,

t ∈ (Cj − pj , Cj ] for at most m jobs j ∈ J

then for all t ≥ 0,

t ∈ (bCjc − pj , bCjc] for at most m jobs j ∈ J.

This can be proven by assuming, towards contradiction, that there exists a t ≥ 0
and jobs j1, . . . , jm+1 such that

t ∈ (bCjkc − pjk , bCjkc] ∀k ∈ [m+ 1],

which is the same as assuming that the intersection

m+1⋂
k=1

(bCjkc − pjk , bCjkc]

is nonempty, or in other words its length is positive,

min
k
bCjkc −max

k
(bCjkc − pjk) > 0, (2.1)

and because the length is an integer, it must be at least 1. Now let

δk = Cjk − bCjkc ∈ [0, 1) for k ∈ [m+ 1].

Then, we know that

min
k

Cjk = min
k

(bCjkc+ δk) = bCjk∗ c+ δk∗ ,

for some k∗ such that bCjk∗ c = minkbCjkc. Likewise, we have

max
k

(Cjk − pjk) = max
k

(bCjkc − pjk + δk)

= bCjk◦ c − pjk◦ + δk◦ ,
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for some k◦ such that bCjk◦ − pjk◦ c = maxk(bCjkc − pjk). Thus, by (2.1), we
get

min
k

Cjk −max
k

(Cjk − pjk) = (bCjk∗ c+ δk∗)− (bCjk◦ c − pjk◦ + δk◦)

= bCjk∗ c − bCjk◦ c+ pjk◦︸ ︷︷ ︸
≥1

+ δk∗ − δk◦︸ ︷︷ ︸
∈(−1,1)

> 0,

which finally gives us (by the same reasoning as above) that

t ∈ (Cjk − pjk , Cjk ] ∀k ∈ [m+ 1],

which is a contradiction.
In conclusion, if (Cj)j∈J is a solution, then (bCjc)j∈J is a solution, with

objective value
∑

j∈J wjbCjc ≤
∑

j∈J wjCj . Thus, we can deduce that there
exists an optimal solution that has integer completion times, if there exists any
optimal solution.

2.2.2 Congestion
We claimed in Section 1.2 that if we have a set of completion times (Cj)j∈J

such that ct, the number of jobs running at time t, is not greater than m for
each t ≥ 0, then it is possible to schedule the jobs J on m machines without
overlap, such that the jobs complete at the given completion times.

We prove this by finding the mapping M : J ×R≥0 → [m]∪ {⊥}, giving the
machine to run job j ∈ J on at time t ≥ 0, such that

M(j, t1) = M(j, t2) ∈ [m] ∀j ∈ J, t1, t2 ∈ (Cj − pj , Cj ],

M(j, t) = ⊥ ∀j ∈ J, t /∈ (Cj − pj , Cj ].

The value ⊥ represents that the job is not running at the given time. To find
this, first let Jt denote the set of jobs running at time t ≥ 0. Let t1, . . . , tK be
the completion times together with the start times, sorted and with duplicates
removed, i.e.,

t1 < t2 < . . . tK−1 < tK

and
{tk : k ∈ [K]} = {Cj : j ∈ J} ∪ {Cj − pj : j ∈ J}.

Let t0 := 0. For any time interval (tk−1, tk]k∈[K], we know that

Jt = Jt′ ∀t, t′ ∈ (tk−1, tk],
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because no jobs can complete or start “in the middle of” the interval. We have
also assumed that

|Jt| = ct ≤ m ∀t ≥ 0.

Now we start by setting

M(j, t) := ⊥ ∀j ∈ J, t ∈ R≥0 : t /∈ (Cj − pj , Cj ].

We proceed by induction on k = 1, 2, . . .. For k = 1, we can arbitrarily assign
the jobs Jt1 to the machines [m], giving us M(j, t1) for all j ∈ J . For a k > 1,
first set

M(j, tk) := M(j, tk−1) for all j ∈ Jtk ∩ Jtk−1
.

Now we have assigned |Jtk∩Jtk−1
| jobs, leaving us with m−|Jtk∩Jtk−1

|machines
available and |Jtk \ Jtk−1

| jobs to assign. Basic set theory tells us that

ctk = |Jtk | = |Jtk ∩ Jtk−1
|+ |Jtk \ Jtk−1

|,

so
|Jtk \ Jtk−1

| = ctk − |Jtk ∩ Jtk−1
| ≤ m− |Jtk ∩ Jtk−1

|,

meaning that we have at least as many machines available as we have jobs left.
Thus we can arbitrarily assign the jobs Jtk \ Jtk−1

, i.e., the jobs which start
running during the interval (tk−1, tk], to the available machines.

2.3 Asymptotic Run Time
When we say that a certain algorithm has time complexity O(g(n)) for some
function g, we mean that for the asymptotic running time of the algorithm for
an input of size n, T (n), the relation T (n) = O(g(n)) holds.

Definition 2.1 (Big O notation). The notation f(n) = O(g(n)) for some func-
tions f : Z≥0 → R≥0 and g : Z≥0 → R≥0 means that there exists some M and
n0 such that

f(n) ≤Mg(n) for all n ≥ n0.

Further, the notation f(n) = poly(n) means that f(n) = nO(1), i.e., there exists
some N > 0 such that f(n) = O(nN ). In this case, we say that f is polynomial
in n.

If f(n) = poly(log n) we say that f is polylogarithmic in n and write f(n) =
polylog(n).

There are numerous results relating to these concepts, for example, the fol-
lowing lemma which simplifies some calculations.
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Lemma 2.2. If f(n) = poly(n) then log f(n) = O(log n).

Proof. By definition, f(n) = poly(n) states that there are some M , n0 and N
such that f(n) ≤MnN for all n ≥ n0. We assume w.l.o.g. that n0 ≥ 3 > e and
M ≥ 1. As the logarithm function is strictly increasing,

log f(n) ≤ log(MnN ) = logM +N log n ≤M ′ log n,

where M ′ := logM + N , for all n ≥ n0 which is the definition of log f(n) =
O(log n).

In fact, polylogarithmic functions grow slowly compared to polynomial func-
tions, as we can see in the following theorem.

Theorem 2.3. Assume that f(n) = polylog(n). Then, for any ε > 0 and any
M > 0, there exists an n0 such that

|f(n)| ≤Mnε for all n ≥ n0.

In particular, f(n) = O(nε).

For a proof see [7, pp. 53–54]. This can be described as the fact that any
polylogarithmic function grows slower than any polynomial function, and moti-
vates the introduction of the concept of nearly linear time, which we will discuss
in Section 2.3.2.

2.3.1 Machine Models
The running time of an algorithm can be measured in various different ways. For
instance, the number of seconds for an actual program to complete is one way to
measure it. Another way to measure the run time is as the number of steps, or
instructions, an abstract machine has to perform to run the algorithm. This is
useful because the number of seconds to execute is very machine-dependent, but
the number of steps needed is more machine-independent. As the performance
of the physical machines we use is constantly changing, it is valuable to be able
to evaluate an algorithm in a way that will also be valid in the future. If the
abstract machine we use is similar enough to the actual physical machines, then
the theoretical performance of an algorithm can relatively easily be compared
to, and used to predict, the performance in practice.

The well-known Turing machine [36, pp. 231–246] was the first abstract ma-
chine to be introduced. We will however primarily work with another abstract
machine called the random-access machine (RAM). This model is more similar
to the physical computers which are used today, compared to the Turing ma-
chine. One definition of a random access machine is found in [1, Appendix 1, pp.
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189–190]. In essence, the machine consists of a store which can hold a number
of words, which are sequences of some number of bits, together with a set of in-
structions. The number of bits in a word is limited by some function of the input
size, typically O(log n). The machine runs programs, which are finite sequences
of instructions. The instructions available are typically basic mathematical op-
erations, e.g., plus, minus, and multiplication, memory access instructions, e.g.,
load and store, and conditional branching or some other control-flow instruc-
tions. All of these instructions take one time step to perform, by definition of
the RAM model.

2.3.2 Nearly Linear Time

One interesting class of algorithms is that consisting of algorithms that have
linear time complexity if a polylogarithmic factor in the input size is disregarded.

Definition 2.4. The notation f(n) = Õ(g(n)) means that

f(n) = O(g(n) · poly(log n)).

We say that an algorithm runs in nearly linear time if its time complexity is
Õ(n) for an input of size n.

This notion of nearly linear time is robust in the sense that a RAM can com-
pute a function in nearly linear time if and only if a number of other machine
models, namely a frugal nonerasing RAM, a random-access Turing machine
(RTM), a frugal nonerasing RTM, a bisecting-and-jumping Turing machine
(BTM), a Kolmogorov machine, and a Schönhage machine, can all compute
the function in nearly linear time [15, Theorem 1, p. 112]. It is said that these
machines can be efficiently simulated by each other. Note that a regular Turing
machine is not powerful enough to efficiently simulate the above machines. This
means that there exists at least one algorithm which runs in nearly linear time
on a RAM (and the other six models), but not in nearly linear time on a Turing
machine.

2.4 Linear Programming
We start by giving a general definition of a linear program and an integer (linear)
program.
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Definition 2.5. A linear program (LP) consists of a vector of variables x ∈ Rn,
a list of constraints on the form

A(1)x ≤ b1,

A(2)x = b2,

A(3)x ≥ b3,

where A(k) ∈ Rmk×n and bk ∈ Rmk for k = 1, 2, 3, and an objective function
cTx for some fixed c ∈ Rn. Solving the LP means finding a value for x such
that all the constraints are satisfied, and the value of the objective function, the
objective value, is minimised or maximised, depending on the problem.

Definition 2.6. An integer program (IP) is a LP with the additional constraint
that all variables take integer values, i.e., x ∈ Zn.

A linear program may have an optimal solution with a finite objective value,
it may have an unbounded solution such that the objective value can get ar-
bitrarily close to −∞ (or to +∞ for a maximisation problem), or it may be
infeasible, meaning that there is no x which fulfills the constraints.

All linear programs can be written on a simpler form, called standard form.

Theorem 2.7. Every linear program can be expressed as a problem of finding a
vector x ∈ Rn that minimises cTx and satisfies constraints x ≥ 0 and Ax ≥ b
for some given A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

We note that all linear programs can be expressed in this form by some
simple transformations. Constraints such as

Aix ≤ bi

can be written
−Aix ≥ −bi,

while constraints such as
Aix = bi

can be written {
Aix ≥ bi,

−Aix ≥ −bi.

Variables xi can be replaced by

xi = x+
i − x−

i ,

where x+
i ≥ 0 and x−

i ≥ 0. Finally, an objective to maximise cTx can be
replaced by the objective to minimise −cTx.
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2.4.1 The Simplex Method
The simplex method is an algorithm for solving linear programs. The basic
idea is to visit vertices in the polytope of allowed values. A polytope is an n-
dimensional generalisation of a polyhedron, i.e., a three-dimensional shape with
flat faces and straight edges meeting at vertices. For example, the set of points
where a finite set of linear inequalities all hold is a polytope (if it is nonempty).

At each step of the simplex algorithm, we move to a vertex that has a better
objective value, or if there is no such vertex, declare the problem solved. This
works because (as we will see) the optimal value is always attained at a vertex.
Consider the example in Figure 2.1, where the polytope of allowed values has
vertices A,B,C,D and the objective is to maximise cTx. The direction of the
vector c decides at which vertex the maximum is attained. In this case it is
at A. If the vector had instead had the direction c = [0,−1]T , the maximum
would be attained at both C and D.

A

B

C
D

x1

x2

c

Figure 2.1: An example of a polytope of allowed values for an LP with the
objective to maximise cTx.

Now assume that we want to solve the general LP

maximise cTx

subject to Ax ≤ b (2.2)
x ≥ 0 (2.3)

for some given A ∈ Rm×n, b ∈ Rm, c ∈ Rn. First we introduce slack variables
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s and rewrite (2.2) as

Ax+ s = b, (2.4)
s ≥ 0. (2.5)

We also add the unconstrained variable p, called the profit. It is set to be equal
to the objective value by the constraint

p = cTx ⇐⇒ −cTx+ p = 0. (2.6)

This gives us the simplex tableau:

a1,1 . . . a1,n 1 0 . . . 0 0 b1
a2,1 . . . a2,n 0 1 . . . 0 0 b2

...
...

. . .
...

am,1 . . . am,n 0 0 . . . 1 0 bn
−c1 . . . −cn 0 0 . . . 0 1 0

Here we use the notation ai,j for the element at row i and column j of the
matrix A. This is used by the simplex method to search among the so-called
basic feasible solutions, which correspond to possible solutions, i.e., candidates
for the optimal solution.

Definition 2.8. Given an LP on the above form, a basic solution is a solution
to (2.4) and (2.6), where n of the variables x1, . . . , xn, s1, . . . , sm are equal to
zero, and the columns of

[
A I

]
corresponding to the nonzero variables are

linearly independent. If x ≥ 0 and s ≥ 0, then the solution corresponds to a
point in the feasible region of the LP, and it is called a basic feasible solution.

We note that basic feasible solutions correspond exactly to the extreme points
of the set {[

x
s

]
: Ax+ s = b, x ≥ 0, s ≥ 0

}
,

where an extreme point is a point in the set such that there is no open line
segment between two other points in the set, which contains the extreme point.
See for example [14, Theorem 4.4, pp. 110–111] for a proof of this property of
basic feasible solutions.

Theorem 2.9. If an LP has a (finite) optimal solution, then it must occur at
one (or more) of the basic feasible solutions.

See for example [14, Theorem 4.7, pp. 121–122] for a proof. This theorem
lets us find an optimal solution by simply checking all basic solutions for feasi-
bility, and then comparing their objective values. However, the number of basic
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solutions for an LP with n variables and m constraints is, in the worst case
(when all columns are linearly independent),(

m+ n

n

)
=

(m+ n)!

n!(m+ n− n)!
=

(m+ n)!

n!m!
,

which may be very large.
Therefore, it is in many contexts interesting to consider a better way to

search among the basic solutions. One such strategy is the simplex method.
However, we will not explain it in detail here, as we will not need it. Instead
we explain a simpler strategy for finding a solution to a special form of LP. The
simplex method is a more efficient variant of this.

2.4.2 Solving a Simple LP
Suppose that we want to solve an LP with only two constraints:

maximise cTx

subject to aTx ≤ 1, (2.7)
bTx ≤ 1, (2.8)

x ≥ 0, (2.9)

where a,b, c ∈ Rn
≥0 are given. We can introduce slack variables s1, s2 ≥ 0 and

rewrite the constraints (2.7) and (2.8) as

aTx+ s1 = 1, (2.7′)
bTx+ s2 = 1, (2.8′)

which is an equation system with n+ 2 unknowns. Letting

x̂ =
[
x s1 s2

]T
,

â =
[
aT 1 0

]
,

b̂ =
[
bT 0 1

]
,

the equation system becomes [
â

b̂

]
x̂ =

[
1
1

]
However, we know from Theorem 2.9 that there exists an optimal solution for
which n of the unknowns are zero. Thus we can choose two indices k, l ∈
{1, . . . , n+ 2}, k < l and add the equations

x̂i = 0 for i = 1, . . . , n+ 2, i 6= k, i 6= l
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to the system. The solution is then given by solving the system

[
âk âl
b̂k b̂l

] [
x̂k

x̂l

]
=

[
1
1

]
,

using Gaussian elimination (or alternatively, finding the inverse matrix). The
objective value for some solution x̂k, x̂l is given by

cTx = ĉkx̂k + ĉlx̂l, where ĉi =

{
ci, 1 ≤ i ≤ n,

0, otherwise.
(2.10)

By simply iterating over all pairs of k, l and finding the solution with the largest
objective value, we can maximise cTx in O(n2) time. As long as n is small, this
performance is good enough for certain applications.

Note that we must take some care to not include solutions where either of
x̂k and x̂l is negative, as we require x ≥ 0 and s ≥ 0.

If

det

[
âk âl
b̂k b̂l

]
= 0, (2.11)

either the system has no solution, or the system has infinitely many solutions.

However, if (2.11) holds, then the columns k and l of
[
A I

]
, where A =

[
aT

bT

]
,

are linearly dependent, which is not allowed by Definition 2.8. Thus, we can
never have a basic solution such that (2.11) holds, so we do not need to consider
this case in our implementation. We can simply skip all k and l where the
determinant is zero.

2.4.3 Duality

An important concept in linear programming is duality. Assume we have an LP
on the form in Theorem 2.7, that is

minimise cTx

subject to Ax ≥ b,

x ≥ 0,

(P)
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or writing the matrix multiplications and vector inequalities using indices

minimise
n∑

i=1

cixi (2.12)

subject to
n∑

j=1

ai,jxj ≥ bi ∀i ∈ [m], (2.13)

xi ≥ 0 ∀i ∈ [n]. (2.14)

Multiply both sides of (2.13) with a new variable yi ≥ 0 for i ∈ [m] to get

yi

n∑
j=1

ai,jxj ≥ yibi ∀i ∈ [m],

which can also be written

yTAx = (ATy)Tx ≥ yTb.

Now suppose that we can show that ATy ≤ c. Then we would have a lower
bound yTb for the objective (2.12), and if we can increase yTb we get a better
lower bound. This leads us to the dual

maximise bTy

subject to ATy ≤ c,

y ≥ 0.

(D)

In this context, the LP (P) is called the primal. One can show that the dual of
(D) is again (P).

There are two important results relating to duality:

Theorem 2.10 (Weak duality). Any objective value of a feasible solution of
(P) is at least as large as any objective value of a feasible solution of (D).

Proof. The definition of the dual as above directly gives this result.

Theorem 2.11 (Strong duality). Given that (P) has a (finite) optimal solution,
(D) has an optimal solution and the optimal objective value for (D) is equal to
the optimal objective value of (P).

See for example [14, Theorem 6.9, pp. 180–181] for a proof.
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2.4.4 Constructing the Dual
When constructing the dual for a problem, it is tedious to first rewrite the pri-
mal on the standard form using Theorem 2.7 and then rewriting the dual on a
more convenient form, by, e.g., replacing two inequalities with a corresponding
equality. There is a “mechanical” method of constructing the dual, described
for the case when the primal is a maximisation problem in Table 2.1. For a min-
imisation problem, there is a corresponding method but with slightly different
details.

Table 2.1: A method for constructing the dual of an LP.

Primal objective Dual objective
maximise cTx minimise bTy

Primal variable Dual constraint
xk ≥ 0 (AT )ky ≥ ck
xk ≤ 0 (AT )ky ≤ ck

xk unrestricted (AT )ky = ck

Primal constraint Dual variable
Akx ≥ bk yk ≤ 0
Akx ≤ bk yk ≥ 0
Akx = bk yk unrestricted

2.5 Graph Theory
Here we give some basic definitions from graph theory.

Definition 2.12. An undirected graph is a tuple G = (V,E) of sets V , called
the vertices, and E ⊆ {{v, u} : v, u ∈ V }, called the undirected edges.

Definition 2.13. A (directed) graph is a tuple G = (V,E) of vertices V and
(directed) edges E ⊆ V × V = {(v, u) : v, u ∈ V }.

An example of a directed graph can be found in Figure 2.2. The vertices
are represented by circles, and the edges are represented by arrows between the
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two vertices they connect. The graph in the figure has the edges

E = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (3, 6), (4, 3), (4, 5), (4, 6), (5, 6)}.

1

2

3

4

5

6

Figure 2.2: An example of a directed graph with V = {1, . . . , 6} and |E| = 10.

Definition 2.14. Let G = (V,E) be a directed graph and v ∈ V a vertex. The
set of outgoing edges of v is defined as

δ+G(v) = {(v
′, u) ∈ E : v′ = v}.

We define the outgoing neighborhood of v as

∆+
G(v) = {u ∈ V : (v, u) ∈ E},

The vertices u ∈ ∆+
G(v) above are called direct successors of v. Likewise, the

set of incoming edges of v is

δ−G(v) = {(u, v′) ∈ E : v′ = v}.

and we define the incoming neighborhood as

∆−
G(v) = {u ∈ V : (u, v) ∈ E}.

The vertices u ∈ ∆−
G(v) above are called direct predecessors of v.

We define the neighbourhood of v as

NG(v) := ∆+(v) ∪∆−(v).
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Definition 2.15. Let G = (V,E) be an undirected graph. The neighbourhood
of a vertex v is defined as

NG(v) := {u ∈ V : {v, u} ∈ E}.

In the example in Figure 2.2, we have for instance

δ+G(4) = {(4, 3), (4, 5), (4, 6)},
δ−G(4) = {(1, 4), (2, 4)},
∆+

G(4) = {3, 5, 6},
∆−

G(4) = {1, 2},
NG(4) = {1, 2, 3, 5, 6}.

Definition 2.16. For a directed graph G = (V,E) and a set of vertices V ′ ⊆ V ,
we define

δ+G(V
′) := {(v, u) ∈ E : v ∈ V ′, u ∈ V \ V ′}

and
δ−G(V ′) := {(v, u) ∈ E : v ∈ V \ V ′, u ∈ V ′}.

We also define

∆+
G(V

′) := {u ∈ V : (v, u) ∈ δ+(V ′) for some v ∈ V ′}

and
∆−

G(V
′) := {v ∈ V : (v, u) ∈ δ−(V ′) for some u ∈ V ′}.

Note that, for example, δ+G({v}) = δ+G(v) for any v ∈ V .

Definition 2.17. Let G = (V,E) be a graph and V ′ ⊆ V . If G is undirected,
then we let

δG(V
′) = {{v, u} : {v, u} ∈ E for some v ∈ V ′, u ∈ V }

If G is directed, then
δG(V

′) = δ+G(V
′) ∪ δ−G(V ′).

The subscript G in δ+G(·), δ
−
G(·), etc., will be omitted if the graph in question

is clear from context.

Definition 2.18. Let G = (V,E) be a directed graph. A path in G is a finite
sequence of vertices v1, . . . , vk ⊆ V such that

(vj , vj+1) ∈ E for all j ∈ [k − 1].
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In this case, vk is said to be reachable from, or a successor of, v1, while v1 is said
to be a predecessor of vk. We write v1  G vk to denote this relation, omitting
the graph G if it is clear from context.

If v1 = vk we say that the path is a cycle. If instead all vertices v1, . . . , vk
are distinct, we say that it is a simple path.

Definition 2.19. A set of vertices V ′ ⊆ V is said to be reachable from v ∈ V ,
written v  V ′, if

∃v′ ∈ V ′ such that v  v′.

Likewise, v is reachable from V ′, V ′  v, if

∃v′ ∈ V ′ such that v′  v.

Definition 2.20. A directed acylic graph (DAG) is a directed graph that has
no cycles.

In the graph in Figure 2.2, we have the (simple) path (1, 2, 4, 3, 6), among
others. This graph contains no cycles, so it is a DAG.

Definition 2.21. Let G = (V,E) be a directed graph. A graph Ĝ = (V̂ , Ê) is
a subgraph of G if

V̂ ⊆ V and Ê ⊆ E.

In this case, G is said to be a supergraph of Ĝ.

Another class of graphs are bipartite graphs:

Definition 2.22. Let G = (V,E) be a directed (undirected) graph. Assume
that there exist sets V1 and V2, which form a partition of V , such that for all
edges (v, u) ∈ E (edges {v, u} ∈ E), either v ∈ V1 and u ∈ V2, or v ∈ V2 and
u ∈ V1. Then we say that G is a bipartite graph.

See Figure 2.3 for an example of a directed bipartite graph.

2.6 Network Flow Problems
A network flow problem is a problem where we want to find a flow f ∈ RE for a
given graph G = (V,E), according to some specified objective and constraints. A
flow is simply a vector over the edges of a graph, that satisfies the conservation
of flow, which will be explained in Definition 2.23. It can be thought of as
representing the quantity of something (e.g., water or electrical current) moving
along the edges of the graph (which represent e.g., pipes or wires). One network
flow problem that is of interest to us is the following:
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1

2

3

4

5

6

Figure 2.3: An example of a (directed) bipartite graph with V = {1, . . . , 6},
|E| = 6, V1 = {1, 2, 3} and V2 = {4, 5, 6}.

Definition 2.23 (Maximum flow problem). Given a DAG G = (V,E), a source
s ∈ V , a sink t ∈ V and capacities ce ∈ [0,∞] for e ∈ E, we wish to find a valid
flow f ∈ RE

≥0, which is a vector satisfying the conservation of flow

f(δ−(v)) = f(δ+(v)) ∀v ∈ V \ {s, t},

or equivalently ∑
u∈∆+(v)

fv,u −
∑

u∈∆−(v)

fu,v = 0 ∀v ∈ V \ {s, t}, (2.15)

as well as the capacity constraints

fv,u ≤ cv,u ∀(v, u) ∈ E. (2.16)

We define the value of a valid flow, which we wish to maximise, as

val(f) := f(δ+(s)) = f(δ−(t)).

An intuition for this problem is that we have some roads (edges) between
different cities (nodes), and want to maximise the amount of product (the flow)
sent from one location (s) to another (t).

For the problems we are interested in, we can also assume that

δ−(s) = δ+(t) = ∅, (2.17)

that is, that there are neither incoming edges to the source nor outgoing edges
from the sink. The dual of this problem (given our assumption) has a variable
dv,u for every (v, u) ∈ E and a variable zv for every v ∈ V \{s, t}. The constraints
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of the dual are

dv,u − zv + zu ≥ 0 ∀(v, u) ∈ E : v 6= s, u 6= t, (2.18)
ds,u + zu ≥ 1 ∀u ∈ ∆+(s) : u 6= t, (2.19)
dv,t − zv ≥ 0 ∀v ∈ ∆−(t) : v 6= s, (2.20)

ds,t ≥ 1 if (s, t) ∈ E, (2.21)
dv,u ≥ 0 ∀(v, u) ∈ E. (2.22)

The objective is to minimise ∑
e∈E

cede. (2.23)

If for any e ∈ E, we have ce =∞, then we say that the whole sum is ∞, unless
de = 0.

This LP can be interpreted by first noting that there always exists an optimal
integral solution, i.e., we can find values de ∈ {0, 1} for e ∈ E and zv ∈ {0, 1} for
v ∈ V \{s, t}, such that the objective value of the LP (2.18)–(2.23) is minimised.
This fact is proved in [11, pp. 26–30].

We can assume we have such a solution and introduce the sets

Vs := {v ∈ V \ {s, t} : zv = 1}

and
Vt := V \ (Vs ∪ {s, t}) = {v ∈ V \ {s, t} : zv = 0}.

as well as the set of edges

EC := {e ∈ E : de = 1}.

We note that the constraint (2.18) ensures that if v ∈ Vs and u ∈ Vt,
then dv,u ≥ zv − zu = 1 − 0, so (v, u) ∈ EC . The constraint (2.19) ensures
that if u ∈ Vt ∩ ∆+(s), then (s, u) ∈ EC , and likewise (2.20) ensures that if
v ∈ Vs ∩ ∆−(t), then (v, t) ∈ EC . The constraint (2.21) guarantees that if
(s, t) ∈ E, then (s, t) ∈ EC .

The objective (2.23) is to minimise cap(EC), the sum of the capacity over
the edges in EC . Because this is minimised, we do not need any constraints to
guarantee that an edge (v, u) is not in EC if, e.g., both v ∈ Vs and u ∈ Vs. We
note that this is not true for the edge case of cv,u = 0.

This dual can thus be interpreted as the problem:

Definition 2.24 (Minimum (s, t)-cut problem). We are given a DAG G =
(V,E), a source s ∈ V , a sink t ∈ V , and capacities ce ∈ [0,∞] for e ∈ E. A cut
C = (Vs, Vt) is a partition of V , i.e.,

V = Vs ∪ Vt and Vs ∩ Vt = ∅ (2.24)



2.7. The Multiplicative Weight Update Method 33

such that
s ∈ Vs and t ∈ Vt. (2.25)

The cut set of a cut is defined as the set of edges from Vs to Vt (not including
edges from Vt to Vs),

EC := δ+(Vs) = δ−(Vt) = (Vs × Vt) ∩ E

and the capacity of a cut, which we wish to minimise, is defined as

cap(C) :=
∑
e∈EC

ce.

Theorem 2.25 (Max-flow min-cut theorem). Given G = (V,E), s, t and c as
in Definition 2.23 and Definition 2.24, we have

max
f s.t. (2.15),(2.16)

val(f) = min
C s.t. (2.24),(2.25)

cap(C).

Proof. As the min-cut problem is the dual of the max-flow problem, this follows
directly from strong duality, Theorem 2.11.

Note that here we have only shown the max-flow min-cut theorem for the
special case where we assume (2.17), but it is true for the general problems
described in Definition 2.23 and Definition 2.24. See [11, pp. 11–12, Theorem
5.1] for a proof.

2.7 The Multiplicative Weight Update Method
A method that is useful for solving a variety of problems is the multiplicative
weight update method [2]. This method works for situations where we have a
number of experts that can give advice about a situation, but we are not sure
whose advice to follow.

Assume that we have n experts each giving some advice for a number of
days T , which results in some reward or penalty m(t) ∈ [−1, 1]n for t ∈ [T ],
called the outcome. The penalty m

(t)
i = 1 is the worst outcome and the reward

m
(t)
i = −1 is the best. These are not known to the algorithm until after the

decision for day t ∈ [T ] has been made.
The idea of the method is to assign a weight w

(t)
i ∈ R≥0 to each expert

i ∈ [n] at each time t ∈ T , starting with

w(1) = (1, . . . , 1) ∈ Rn
≥0
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and updating the weights after each step according to

w
(t+1)
i = (1− ηm

(t)
i )w

(t)
i ,

where η ∈ (0, 1/2) is a parameter chosen before the start of the algorithm. This
parameter affects how much the weight is changed based on the outcome, and
the performance guarantee (2.26) (which will be explained in Theorem 2.26)
depends on the value chosen for η.

Define the potential function

Φ(t) =

n∑
i=1

w
(t)
i .

At each day, we choose the expert whose advice to follow by picking randomly,
with probabilities according to the normalised weights

p
(t)
i =

w
(t)
i

Φ(t)
.

This gives us the expected cost m(t) · p(t) at day t ∈ T .
The idea of this method is that the weight of an expert that gives bad advice

(i.e., advice resulting in a high value for the outcome m
(t)
i ) quickly decreases to

near zero, while the cost incurred by mistakes (i.e., the sum
∑t

t′=1 m
(t′)
i ) grows

slowly. More exactly, the weight decreases exponentially while the cost grows
linearly.

Using this method, we obtain an upper bound on the total penalty (or
reward) [2, p. 126]:

Theorem 2.26. Running the MWU algorithm for n experts and T days, with
penalties according to m(t) ∈ [−1, 1]n for each day t ∈ [T ], it holds that

T∑
t=1

p(t) ·m(t) ≤
T∑

t=1

m
(t)
i + η

T∑
t=1

∣∣m(t)
i

∣∣+ log n

η
(2.26)

for all i ∈ [n].
In particular, (2.26) holds for the expert i∗ ∈ [n] which had the lowest total

number of mistakes.

The following proof is from [2, pp. 127–128].
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Proof. Rewrite the potential function

Φ(t+1) =
∑
i∈[n]

w
(t+1)
i

=
∑
i∈[n]

w
(t)
i (1− ηm

(t)
i )

=
∑
i∈[n]

w
(t)
i − η

∑
i∈[n]

=Φ(t)p
(t)
i︷︸︸︷

w
(t)
i m

(t)
i

= Φ(t) − ηΦ(t)
∑
i∈[n]

m
(t)
i p

(t)
i

= Φ(t)(1− ηm(t) · p(t))

≤ Φ(t) exp(−ηm(t) · p(t)).

The inequality at the end uses the fact that

e−x ≥ 1− x for x ∈ R, (2.27)

which can be proven by noting that e−x is convex, as d2

d2xe
−x = e−x > 0, and

has the tangent e−0 + (−e−0x) = 1− x at 0. A convex function lies above any
of its tangents, which gives (2.27). We also use the fact that Φ(t) ≥ 0 in the
last inequality, which can be proven by noting that w

(1)
i = 1 is positive, and for

each iteration, we multiply it by

1− η︸︷︷︸
<1/2

m
(t)
i︸︷︷︸

<1

≥ 0.

Now induction gives

Φ(t+1) ≤ Φ(t) exp(−ηm(t) · p(t))

≤ Φ(t−1) exp(−ηm(t) · p(t) − ηm(t−1) · p(t−1))

≤ Φ(1)︸︷︷︸
=
∑

i w
(1)
i

exp

(
− η

t∑
t′=1

m(t′) · p(t′)

)

= n exp

(
− η

t∑
t′=1

m(t′) · p(t′)

)
.



36 Chapter 2. Preliminaries

We also have that

Φ(t+1) =
∑
i∈[n]

w
(t+1)
i ≥ w

(t+1)
i for any i ∈ [n].

Bernoulli’s inequality states that

1− ηx ≥ (1− η)x for x ∈ [0, 1], η ≤ 1 (2.28)

and replacing x by −x and η by −η gives us

1− ηx ≥ (1 + η)−x for x ∈ [−1, 0], η ≥ −1.

These inequalities together with induction on the definition of the weights gives

w
(t+1)
i =

t∏
t′=1

(
1− ηm

(t′)
i

)
≥

∏
≥0

(1− η)m
(t′)
i ·

∏
<0

(1 + η)−m
(t′)
i

= (1− η)
∑

≥0 m
(t′)
i · (1 + η)−

∑
<0 m

(t′)
i ,

(2.29)

where the subscript ≥ 0 on the product and sum means taking the product or
sum, respectively, over t′ = 1, . . . , t where m

(t′)
i ≥ 0. The subscript < 0 has the

analogous meaning.
Combining these preceding equations gives

n exp
(
−η

t∑
t′=1

m(t′)·p(t′)
)
≥ Φ(t+1) ≥ w

(t+1)
i ≥

(
1−η

)∑
≥0 w

(t′)
i

(
1+η

)−∑
<0 w

(t′)
i

and taking the logarithm of both sides, as well as using (2.29), results in

log n− η

t∑
t′=1

m(t) · p(t) ≥ log(1− η)
∑
≥0

m
(t′)
i − log(1 + η)

∑
<0

m
(t′)
i
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which can be rearranged to

t∑
t′=1

m(t′) · p(t′) ≤ 1

η
log

1

1− η

∑
≥0

m
(t′)
i +

1

η
log(1 + η)

∑
<0

m
(t′)
i +

log n

η

≤ η + η2

η

∑
≥0

m
(t′)
i +

η − η2

η

∑
<0

m
(t′)
i +

log n

η

=
∑
≥0

m
(t′)
i +

∑
<0

m
(t′)
i + η

∑
≥0

m
(t′)
i − η

∑
<0

m
(t′)
i +

log n

η

=

t∑
t′=1

m
(t′)
i + η

t∑
t′=1

∣∣m(t′)
i

∣∣+ log n

η
,

where the second inequality in the above equation uses that

log(1 + η) ≥ η − η2 for η ∈ (0, 1)

and
log

1

1− η
≤ η + η2 for η ∈ (0, 1/2).

2.7.1 Solving an LP using MWU
A variation of the basic MWU algorithm can be used to solve certain opti-
misation problems efficiently, given that we accept some approximations. The
algorithm is described in [4] and [6]. We first define what a convex set is:

Definition 2.27. A set (of vectors) C is said to be convex if for all x ∈ C and
y ∈ C, it holds that

(1− t)x+ ty ∈ C ∀t ∈ [0, 1].

The problem which the method can solve is the convex optimisation problem

maximise f(x), (2.30)
subject to gi(x) ≤ 1 ∀i ∈ [m], (2.31)

x ∈ Q, (2.32)

where gi : Rn → R are convex functions and f : Rn → R is a continuous function.
The convex set Q is assumed to be “easy” or “simple”, i.e., we can find an
optimum for some given objective inside the set quickly. The constraints gi(x) ≤
1 are so-called “complicated” constraints.



38 Chapter 2. Preliminaries

The following theorem states that we have a “continous-time” algorithm
finding an approximately feasible solution to the problem [4, Theorem 3, p.
204]. That is, a solution to the problem where the constraint (2.31) has been
relaxed to (2.33).

Theorem 2.28. The procedure given in Algorithm 1 solves the problem (2.30)–(2.32)
approximately, by returning an xout such that xout ∈ Q and

gi(xout) ≤ 1 +
logm

η
∀i ∈ [m], (2.33)

where η > 0 is a parameter analogous to the η described in Section 2.7. Note
however that we no longer have an upper bound on η.

In particular, if η ≥ logm
ε for some ε ∈ [0, 1/2), then gi(xout) ≤ 1 + ε for

i ∈ [m].

Algorithm 1 MWU template from [4, p. 204]
procedure MWU(f, g1, . . . , gm,Q, η)

w(0) ← all-1 vector of size m
for t ∈ [0, 1] do

Find v(t) that is good for f(v(t)), and such that
v(t) ∈ Q and

∑m
i=1 w

(t)
i gi(v

(t)) ≤
∑m

i=1 w
(t)
i

for i ∈ [m] do
dw

(t)
i

dt ← ηw
(t)
i gi(v

(t))
end for

end for
xout ←

∫ 1

0
v(t)dt

return xout
end procedure

In Algorithm 1, note that the for-loop iterates over the set [0, 1], which is
uncountable. Clearly it is not possible to implement this algorithm in practice.
However, we can replace the interval by some partition of it, for example {k/N :
k = 0, . . . , N} for some positive integer N , and consider the algorithm as the
limit as the number of points in the partition increase, in this case N → ∞.
This is similar to the idea of the Riemann integral.

Of course, this limit is also not possible to compute in finite time, but a
discretisation of the algorithm can be found, based upon that idea. This is
found in Algorithm 2 [4, Algorithm 2, p. 206]. Note that it is only valid for the
case when gi(x) ≥ 0 for i ∈ [m] and x ∈ Q. In [4, Theorem 11, p. 207] it is
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further proved that the discrete version of the algorithm, Algorithm 2, returns
an xout that satisfies xout ∈ Q and gi(xout) ≤ 1+2ε where η := logm/ε for some
ε ∈ (0, 1/2). An important special case of (2.30)–(2.32) is when f(x) = cTx

Algorithm 2 Discretisation of Algorithm 1.
procedure MWU_discrete(f, g1, . . . , gm,Q, ε)

w(0) ← all-1 vector of size m
x← all-0 vector of size n
t← 0
while t < 1 do

Find v(t) that is good for f(v(t)), and such that
v(t) ∈ Q and

∑m
i=1 w

(t)
i gi(v

(t)) ≤
∑m

i=1 w
(t)
i

δ ← min
{

ε
η ·

1
maxi∈[m] gi(v(t))

, 1− t
}

x← x+ δv(t)

for i ∈ [m] do
wi(t+ δ)← w

(t)
i · exp(ηδ · gi(v(t)))

end for
t← t+ δ

end while
xout ← x
return xout

end procedure

and gi(x) = Aix for i ∈ [m], for a matrix A where all elements are nonnegative.
The special case problem is thus

maximise cTx subject to x ∈ Q and Ax ≤ 1. (2.34)

In this case Algorithm 2 simplifies to Algorithm 3 [28, Algorithm 1, p. 8]. This
algorithm is the basis of the method which we use to solve the LP. However, we
also let the v(t) which solves (2.34) be an approximate solution. This approxi-
mation will be explained later.

2.8 Dynamic Programming
Dynamic programming is a method in algorithm design that takes advantage of
so-called optimal substructure of a problem. This is defined as the property that
an optimal solution to a problem can be found, if an optimal solution to each
of its subproblems is known. Another method in algorithm design that takes
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Algorithm 3 Solving a linear packing problem, a special case of Algorithm 2.
procedure MWU_linear_packing(c,A,Q, η, ε)

w(0) ← all-1 vector of size m
x← all-0 vector of size n
t← 0
η ← logm

ε
while t < 1 do

b← w(t)

|w(t)|A

Find v(t) that is good for cTv(t) such that
v(t) ∈ Q and

∑m
i=1 w

(t)
i Aiv

(t) ≤
∑m

i=1 w
(t)
i

δ ← min
{

ε
η ·

1
maxi∈[m] Aiv(t) , 1− t

}
x← x+ δv(t)

for i ∈ [m] do
w

(t+δ)
i ← w

(t)
i · exp(ηδ ·Aiv

(t))
end for
t← t+ δ

end while
xout ← x
return xout

end procedure

advantage of this property is divide-and-conquer. The difference between these
two is that dynamic programming also makes use of the property of overlapping
subproblems, i.e., the fact that a naive implementation would end up solving the
same subproblem multiple times.

For example, the following recursive definition of the Fibonnacci numbers

f(1) = 1, f(2) = 1, f(n) = f(n− 2) + f(n− 1) ∀n ≥ 3,

requires evaluating f twice for each recursive step, so a straightforward imple-
mentation would require O(2n) evaluations to compute f(n). However, we can
instead start by computing f(3) = f(1) + f(2) and store the result, then com-
pute f(4) = f(2)+f(3), and so on until we reach f(n). This gives us the results
f(n) after n steps, each step consisting of only an addition (as well as reading
f(k− 2), f(k− 1) from memory and writing f(k)), so this implementation runs
in O(n) time.



Chapter 3

The Algorithm and its
Implementation

In this chapter, we describe the algorithm. In essence, it consists of constructing
a linear programming relaxation of (a restriction of) the original problem and
solving this LP relaxation using an MWU algorithm, before finally rounding
this to a solution of the original problem using a rounding algorithm. This is
an application of the so-called relax-and-round method. See Figure 3.1 for an
overview of how these parts interact.

We describe the details of this LP relaxation, how it is transformed into
a packing LP that can be solved by the MWU algorithm, and our implemen-
tation of the MWU and rounding algorithms. The MWU algorithm uses a
sub-algorithm for solving a certain network flow problem, which arises as the
dual of a subproblem of the packing LP. This sub-algorithm will be explained
in Chapter 4.

We start by explaining the high-level view of the algorithm. The details will
be explained in the following sections. The LP relaxation is based on an integer
programming (IP) model of (a restriction of) the problem, where we model the
completion time of each job with a number of binary variables, one for each
time point. This is called a time indexed model, and there exist a few variants
in how the relation between the binary variables and the completion times is
defined. We use the relation that

xj,t =

{
1, if Cj ≤ t,

0, otherwise.

See Figure 3.2 for a sketch. We see that this representation of Cj cannot rep-

Alskog, 2022. 41
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Instance LP relaxation
Fractional
solution
(Cj)j∈J

Approximate
solution
(C̃j)j∈J

Relax Solve Round

LP relaxation
Packing LP

a,P,Q
Approx.

LP solution
x

Fractional
solution
(Cj)j∈J

Preprocess MWU Convert

Packing LP
a,P,Q

Simple LP
a,b,Q

Solution
y

Approx.
LP solution

x

Decompose Oracle O Aggregate

Figure 3.1: Detailed sketch of the “outer layer” of the algorithm, which is de-
scribed in this chapter.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
Cj

Figure 3.2: An example of how binary variables xj,t for t = 0, 1, 2, . . . are used
to model the completion time Cj for some job j. Here we have Cj = 3.2, so
xj,0 = xj,1 = xj,2 = xj,3 = 0 and xj,4 = xj,5 = 1.

resent every possible value for the completion time, but only a discrete set of
values, for example {0, . . . , 5} in Figure 3.2. In Section 3.1.1, we explain how we
chose this set of values for our model. Of note is that the set of values cannot be
too large, because this would result in a large number of variables, which in turn
affects the time it takes to find a solution to the LP. Therefore, we constrain
our allowed solutions to those where the completion times are zero or a power
of (1 + ε).

This IP model can then be relaxed by allowing the binary variables to take
any real value (in [0, 1]), which makes it an LP relaxation. Since we can solve the
LP relaxation quickly with the method described in Section 2.7.1 (i.e., MWU),
we can solve the scheduling problem by solving a number of simpler LPs. The
LPs which we need to solve are simpler in the sense that they have only a single
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constraint, where the original LP has many rows. This is because the MWU
algorithm in each iteration handles a single linear inequality, which is computed
from the original constraint matrix using the weights. We can transform one
such simple LP into a set of network flow problems, which we will solve using
an algorithm that we will explain in Chapter 4.

The rounding algorithm for a single machine, which is described in Sec-
tion 3.3, simply works by sorting the jobs based on their fractional completion
times, i.e., the completion times produced by solving the LP relaxation. By
Theorem 3.2, which states that the fractional completion times obey the prece-
dence constraints, we see that we only have to remove eventual overlaps. This
can be done by simply setting the completion time of a job j to the total process-
ing time of all jobs which come before j, when sorted by fractional completion
times.

3.1 Integer Programming Formulation
The starting point of the algorithm is an IP formulation of the original problem
in Section 1.2. As we saw in Section 1.2, if the processing times are integral,
then there exists an optimal solution with integer-valued completion times. A
natural starting point for a model will thus use a binary variable xj,t for every
j ∈ J, t = 0, 1, . . . , T , where T := p(J), which indicate that j completes before
or at time t if xj,t = 1, and that j completes after t if not. This can be expressed
using the completion time Cj as

Cj ≤ t, if xj,t = 1,

Cj > t, otherwise.

We can then compute the completion times (Cj)j∈J from (xj,t)j∈J,t∈[0,T ] by
setting

Cj :=

T∑
t=1

t(xj,t − xj,t−1) = p(J)−
T−1∑
t=0

xj,t,

so the objective of our model is to minimise

∑
j∈J

wjCj =
∑
j∈J

wj

(
p(J)−

T−1∑
t=0

xj,t

)

= w(J)p(J)−
∑
j∈J

wj

T−1∑
t=0

xj,t. (3.1)
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By definition, if xj,t = 1 (which represents the job completing before or at time
t), then it must be the case that xj,t+1 = 1 (which represents the job completing
before or at time t+ 1). This gives us the constraints

xj,t ≤ xj,t+1 ∀j ∈ J, t ∈ [0, T − 1]. (3.2)

The constraints
xj,t ≥ xj′,t ∀j ≺ j′, t ∈ [0, T ] (3.3)

ensures that for two jobs j ≺ j′, if j′ completes before or at time t, then j also
completes before or at time t. We also have the constraints∑

j∈J

pjxj,t ≤ t ∀t ∈ [0, T ] (3.4)

to ensure that the total time spent on jobs before time t does not exceed t time
units.

Now we need to introduce a new parameter. Let qj be the maximum of the
total length of jobs in any precedence chain ending at j ∈ J , i.e.,

qj := max
j1≺j2≺···≺jK=j

K∑
k=1

pjk .

This is computed as described in Section 3.1.4. Like all code listings in this
thesis, it is written in the Julia language. To ensure that the job j does not
complete before time qj , we have the constraints

xj,t = 0 ∀j ∈ J, t ∈ [0, T ] : t < qj . (3.5)

For example, a job j with processing time pj = 3 for which there are no prece-
dence constraints on the form j′ ≺ j, can complete at the earliest at time 3.
Likewise, a job j with pj = 3 and for which the only precedence constraint is
j′ ≺ j, where pj′ = 2, can complete at the earliest at time 5. The constraints

xj,T = 1 ∀j ∈ J (3.6)

ensures that all jobs complete before or at time T .

3.1.1 Discretisation of Completion Times
In the model we just described, we have discretised the completion times by
requiring that they be integer valued. However, the actual model we solve uses
a slightly different discretisation. We define the list of discrete completion times
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by setting τ1 = 0 and τd = (1 + ε)d−1 for every integer d ≥ 2. Here we use a
parameter ε > 0 that affects the quality of the solution, as well as certain aspects
affecting the run time, such as the number of variables. We note that this is
a method often used in approximation algorithms for scheduling problems, see
for example [16] and [27]. Let D be the smallest integer such that

τD+1 ≥ p(J) (3.7)

and set ηd := τd+1−τd for each d ∈ [D]. Now ηd is the length of the time interval
between τd and τd+1, which is useful, for example, in computing the comple-
tion times in (3.10). Note that we use indexing from one, i.e., (τd)d∈[1,D+1] as
opposed to indexing from zero, i.e., (τd)d∈[0,D] as in [28, p. 8].

It is necessary to use this discretisation of completion times, because the IP
model is time indexed, meaning that it has one (binary) decision variable for
each job and time point. Allowing any integer completion time results in

n · T = n · p(J) (3.8)

variables. This would cause the algorithm to have a run time exceeding (1.6).
Using the discretisation explained above results in nD variables. Solving for D
in (3.7) gives

p(J) ≤ τD+1 = (1 + ε)D ⇐⇒ log p(J) ≤ D log(1 + ε)

⇐⇒ D =
⌈ log p(J)

log(1 + ε)

⌉
,

as D is the smallest integer which the inequality holds for. If we assume that
pmax = poly(n) then we also have

p(J) ≤ npmax = npoly(n) = poly(n).

Using Lemma 2.2 we get
log p(J) = O(log n),

which in turn gives
D = O

( log n
ε

)
. (3.9)

Here we also use that log(1 + ε) ≥ ε log 2 for ε ∈ (0, 1), which gives
1

log(1 + ε)
≤ 1

ε log 2
.

Thus the number of variables has been reduced from n · p(J) to

n
⌈ log p(J)

log(1 + ε)

⌉
= O

(
n
log n

ε

)
through the discretisation.
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3.1.2 The Objective Function
In the IP model, the variable xj,d ∈ {0, 1} indicates that job j ∈ J has comple-
tion time at most τd, if xj,d = 1. Thus, if τd < Cj ≤ τd+1 then

xj,1 = · · · = xj,d = 0,

and
xj,d+1 = · · · = xj,D+1 = 1.

We can then obtain completion times from values for (xj,d)j∈J,d∈[D+1] by setting

Cj :=

D+1∑
d=2

τd(xj,d − xj,d−1)

= τD+1 −
D∑

d=2

(τd+1 − τd)xj,d

= τD+1 −
D∑

d=1

ηdxj,d.

(3.10)

To show that this is a sensible definition, consider the following: Let (C∗
j )j∈J

be optimal completion times for some instance and let (xj,d)j∈J,d∈[D+1] be the
corresponding values of the decision variables for this solution, i.e.

τd < C∗
j ≤ τd+1 =⇒

{
xj,1 = · · · = xj,d = 0,

xj,d+1 = · · · = xj,D+1 = 1.

The definition (3.10) sets Cj to the latest possible completion time, that is

τd < C∗
j ≤ τd+1 =⇒ Cj = τd+1.

This results in the guarantee that

Cj = τd+1 = (1 + ε)τd < (1 + ε)C∗
j ,

which in turn gives us the result that∑
j∈J

wjCj < (1 + ε)
∑
j∈J

wjC
∗
j , (3.11)

i.e., the objective value is not increased by more than a factor of (1 + ε).
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It is then clear that the objective function can be written

∑
j∈J

wjCj =
∑
j∈J

wj

(
τD+1 −

D∑
d=1

ηdxj,d

)

=

(∑
j∈J

wj

)
τD+1 −

∑
j∈J

wj

D∑
d=1

ηdxj,d

= w(J)τD+1 −
∑
j∈J

wj

D∑
d=1

ηdxj,d.

3.1.3 The Complete IP model
Here we summarise the model which we have described in Sections 3.1–3.1.2
The objective of our IP model is

minimise w(J)τD+1 −
∑
j∈J

wj

D∑
d=1

ηdxj,d (3.12)

subject to the constraints

xj,d ≤ xj,d+1 ∀j ∈ J, d ∈ [D], (3.13)
xj,d ≥ xj′,d ∀j, j′ ∈ J, d ∈ [D + 1] : j ≺ j′ (3.14)∑

j∈J

pjxj,d ≤ τd ∀d ∈ [D + 1], (3.15)

xj,d = 0 ∀j ∈ J, d ∈ [D + 1] : τd < qj , (3.16)
xj,D+1 = 1 ∀j ∈ J, (3.17)

xj,d ∈ {0, 1} ∀j ∈ J, d ∈ [D + 1]. (3.18)

The constraint (3.13) ensures that the variables are consistent with their in-
terpretation. If xj,d = 1, interpreted as the job completing before τd, then
xj,d+1 = 1, interpreted as the job completing before τd+1. For two jobs j ≺ j′,
(3.14) states that if xj′,d = 1, i.e., the job j′ completes before τd, then xj,d = 1,
i.e., the job j also completes before τd. The constraint (3.15) ensures that the
total time spent on jobs before time τd does not exceed τd time units. The con-
straints (3.16) ensures that a job j ∈ J does not complete before qj and (3.17)
simply states that all jobs end at or before time τD+1.

Note that (3.16) and (3.17) together with (3.13) give us that

0 = xj,1 ≤ xj,2 ≤ · · · ≤ xj,D ≤ xj,D+1 = 1 ∀j ∈ J
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as τ1 = 0 < pj ≤ qj for any j ∈ J . This implies that xj,d ∈ [0, 1] for all
j ∈ J, d ∈ [D + 1], so constraint (3.18) can be replaced by xj,d ∈ Z, without
changing the model.

3.1.4 Maximum Length of Precedence Chains

Here we explain the details of how we compute qj as defined in Section 3.1.
Algorithm 4 computes (qj)j∈J from the DAG of precedence constraints. This is
done using dynamic programming, by first setting qj to the processing time for
all jobs j where ∆−(j) = ∅ and then working forwards in the graph, setting qj
to

pj + max
j′∈∆−(j)

qj′ .

Making use of solutions to previous subproblems in this manner is the defining
characteristic of dynamic programming.

As stated above, the subproblems are simply to maximize qj′ for j′ ∈ ∆−(j).
Because we process the jobs in the topological order, we know that we have
already solved this subproblem for each j′ ∈ ∆−(j), by the time we get to j.
For the base case, i.e., when ∆−(j) = ∅, we simply set qj to pj . This takes
O(1) time, while the other subproblems take O(|∆−(j)|) time if we find the
maximum by simply checking all elements of the set. Thus, Algorithm 4 takes

∑
j:∆−(j)=∅

O(1)

︸ ︷︷ ︸
≤|J|=n

+
∑

j:∆−(j) 6=∅

O(|∆−(j)|)

︸ ︷︷ ︸
=|E((J,≺))|=κ

= O(n+ κ).

The algorithm uses a so-called topological order, defined as follows.

Definition 3.1. Given a graph G = (V,E), a topological order is a order of V
such that if v  G u for some v, u ∈ V , then v comes before u in the order.

A topological order can, for example, be found using depth first search. We
describe the algorithm in Appendix A.1. When we call the function
longest_prec_chains, prec_order is assumed to be a topological order com-
patible with prec_graph, stored as a vector of vertices. The variable prec_graph
contains the graph (J,≺).
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Algorithm 4 Compute the total processing times for precedence chains ending
at each job.

1 function longest_prec_chains(inst, prec_graph::Graph, prec_order)

2 q = zeros(Int, inst.n)

3 # prec_order is a topological order compatible with prec_graph

4 for j in prec_order

5 # inst.p[j] is the length of the job j

6 q′ = inst.p[j] + maximum(q[j′] for j′ in Δ_inc(prec_graph, j), init=0)

7 @assert q[j] == 0

8 q[j] = q′

9 end

10 q

11 end

3.2 LP Relaxation

The LP relaxation of the model in Section 3.1, given in [28, p. 2], found by
simply removing constraint (3.18), is:

minimise w(J)τD+1 −
∑
j∈J

wj

D∑
d=1

ηdxj,d, (3.19)

subject to

xj,d ≤ xj,d+1 ∀j ∈ J, d ∈ [D], (3.20)
xj,d ≥ xj′,d ∀j ≺ j′, d ∈ [D + 1], (3.21)∑

j∈J

pjxj,d ≤ τd ∀d ∈ [D + 1], (3.22)

xj,d = 0 ∀j ∈ J, d ∈ [D + 1] : τd < qj , (3.23)
xj,D+1 = 1 ∀j ∈ J. (3.24)

These constraints are exactly the same as (3.12)–(3.17). Again, we have the
implicit constraint that xj,d ∈ [0, 1] for all j ∈ J, d ∈ [D+ 1], due to constraints
(3.20), (3.23), (3.24), and the fact that pj > 0 for every j ∈ J . Removing the
integrality constraint cannot make the optimum worse, so if we find an optimal
solution to this LP, its objective value will be at worst (1+ε) times the optimum
for the original scheduling problem (see (3.11)). However, it is not immediately
clear how to go from fractional completion times to actual completion times, as
the fractional completion times do not necessarily fulfill the constraints of the
original problem. For this we need a rounding algorithm.
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3.3 Single Machine Rounding Algorithm
From the LP relaxation in Section 3.2 we obtain a set of fractional comple-
tion times (see [28, Definition of Cj , p. 9]). These are computed by the same
expression as the integer completion times, (3.10), i.e.,

Cj = τD+1 −
D∑

d=1

ηdxj,d, (3.25)

which makes it intuitively reasonable that we should be able to use them to
sort our jobs correctly. Here (xj,d)j∈J,d∈[D+1] is a solution to (3.19)–(3.24). The
following property of the fractional completion times is useful.

Theorem 3.2 ([28, Claim 3.3]). For a job j ∈ J , we have Cj ≥ qj. For jobs
j ≺ j′, we have Cj ≤ Cj′ .

Proof. Let j be any job and let d′ be the smallest integer such that xj,d′ > 0.
The constraint (3.23) gives us that

xj,d = 0 for all d ∈ [D + 1] such that τd < qj ,

thus τd′ ≥ qj , and we know that

Cj = τD+1 −
D∑

d=1

ηdxj,d =

D∑
d=1

ηd −
D∑

d=1

ηdxj,d

=
D∑

d=1

ηd(1− xj,d) ≥
d′−1∑
d=1

ηd = τd′ ≥ qj ,

where both the first and second inequality is due to (3.23).
Assume we have some jobs j ≺ j′. Then we have

Cj′ − Cj = τD+1 −
D∑

d=1

ηdxj′,d − τD+1 +

D∑
d=1

ηdxj,d

=

D∑
d=1

ηdxj,d −
D∑

d=1

ηdxj′,d

=

D∑
d=1

ηd(xj,d − xj′,d) ≥ 0,

as each term of the sum is greater than or equal to zero, by (3.21).



3.3. Single Machine Rounding Algorithm 51

Note that this proof assumes that we solve the LP exactly. The MWU
algorithm only solves it approximately, as we will see in Definition 3.3 and later
in Section 3.4. However, only the optimality of the objective value and the
constraint (3.22) are approximated, and since the proof only uses constraints
(3.23) and (3.21), this is not an issue.

A valid schedule can be computed by Algorithm 5, an application of the list
scheduling algorithm [12]. We re-use the topological order, used in Algorithm 4,

Algorithm 5 Find completion times given a set of fractional completion times.

1 function round_completion_times(inst::Instance, C::Vector, prec_order::Vector)

2 ρ = ordering_to_rank(prec_order)

3 J_sorted = sort(collect(1:inst.n), by=j -> (C[j],ρ[j]), alg=MergeSort)

4

5 # inst.n is the number of jobs

6 # inst.p[j] is the completion time for job j

7 C = zeros(Int, inst.n)

8 for (j,C_j) in zip(J_sorted, cumsum(inst.p[J_sorted]))

9 C[j] = C_j

10 end

11 C

12 end

in order to find a rank function for J , the vertices of the precedence graph. A
rank function is a function ρ : J → Z such that ρ(j) < ρ(j′) if j comes before
j′ in the order. We use it in order to break ties. This is necessary if we have a
situation where

Cj1 = · · · = Cjk

for some j1, . . . , jk. The fractional completion times give us no information
about the order of these jobs, but they cannot be scheduled arbitrarily because
of precedence constraints. However, if j ≺ j′ then ρ(j) < ρ(j′) and the jobs are
scheduled in the correct order.

The run time of Algorithm 5 can be computed by noting that the merge sort
on line 3 takes O(n log n) time, while computing the cumulative sum and setting
C[j] on lines 8–10 takes O(n) time. Thus the total run time of the rounding
algorithm is O(n log n), where n = |J |.

3.3.1 Approximation Ratio of the Complete Algorithm
The following result proves that solving the LP relaxation and applying the
rounding algorithm, is a (2 + O(ε))-approximation algorithm for the problem
1|prec|

∑
j wjCj . In it, we use a solution provided by Algorithm 6, which is

an algorithm that solves the problem (3.19)–(3.24) approximately. This will be
explained in Section 3.4. It provides solutions to the following problem.
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Definition 3.3. Let LPapx denote the problem of finding an x satisfying (3.20),
(3.21), (3.23), (3.24) and

∑
j∈J

pjxj,d ≤ (1 + ε)τd ∀d ∈ [D + 1] (3.22′)

such that

w(J)τD+1 −
∑
j∈J

wj

D∑
d=1

ηdxj,d ≤ OPTLP +φ, (3.19′)

where OPTLP is the optimal objective value for (3.19)–(3.24) and φ ≤ ε ·OPT is
a parameter, where OPT is the weighted completion time of an optimal schedule.

Theorem 3.4 ([28, Lemma 3.4]). Let C ′ ≥ 0 be a time point and let (Cj)j∈J

be the fractional completion times obtained from a solution to LPapx. Then we
have

p({j ∈ J : Cj ≤ C ′}) ≤ (2 +O(ε))mC ′.

For a proof of this see [28, Proof of Theorem 3.4, p. 21].
In fact, from this proof together with [28, Proof of Theorem 2.4, p. 20],

follows a more detailed bound, namely:

Theorem 3.5. Let C ′ be a time point and let (Cj)j∈J be fractional completion
times as in Theorem 3.4. Then it holds that

p({j ∈ J : Cj ≤ C ′}) ≤ 2 · (1 + ε)2 + ε

1− ε
mC ′. (3.26)

Given that Theorem 3.5 holds, Algorithm 5 schedules jobs such that for a
job j,

C̃j ≤ p({j′ ∈ J : Cj′ ≤ Cj}),

where (C̃j)j∈J is the output of Algorithm 5 given the fractional completion
times (Cj)j∈J (which come from a solution to LPapx). This is because the job
j cannot be scheduled after any jobs having a larger fractional completion time
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than Cj . Thus,∑
j∈J

wjC̃j ≤
∑
j∈J

wjp({j′ ∈ J : Cj′ ≤ Cj})

≤ 2
(1 + ε)2 + ε

1− ε
·
∑
j∈J

wjCj

≤ 2
(1 + ε)2 + ε

1− ε

(
OPTLP +φ

)
≤ 2

(1 + ε)2 + ε

1− ε

(
OPTIP +ε ·OPT

)
≤ 2

(1 + ε)2 + ε

1− ε

(
(1 + ε) ·OPT+ε ·OPT

)
= 2

(1 + ε)2 + ε

1− ε
(1 + 2ε) ·OPT

where OPTLP is the optimal objective value for (3.19)–(3.24), OPTIP is the
optimal objective value for (3.12)–(3.18) and OPT is the weighted completion
time of an optimal schedule. Here we use (3.11), together with (3.19′), with the
parameter φ set to its maximum value. We can rewrite

2
(1 + ε)2 + ε

1− ε
(1 + 2ε) =

2 + 10ε+ 14ε2 + 4ε3

1− ε

= 2 + 12ε+
26ε2 + 4ε3

1− ε

= 2 + 12ε+
2ε2(13 + 2ε)

1− ε
,

which shows that:

Theorem 3.6. Let OPT be the weighted completion time of an optimal schedule.
Let OBJround be the objective value for the solution generated by Algorithm 5
run on the completion times given by a solution to LPapx.

Then OBJround ≤ α(ε) ·OPT, where

α(ε) := 2 + 12ε+
2ε2(13 + 2ε)

1− ε
= 2 +O(ε),

for the parameter ε ∈ (0, 1).

See Figure 3.3 for an illustration of the approximation ratio given different
values of ε.
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Figure 3.3: Plot of the approximation ratio α(ε) as a function of ε.

3.4 MWU Based Solver
We now need to solve the LP relaxation, which can be done quickly (i.e., in
almost nearly linear time) using an MWU based solver for linear programs of a
certain form [28, pp. 7–8].

This subset of LPs, called packing LPs, are in general described as follows:
Let P ∈ Rm×n

≥0 be a nonnegative matrix. Let a ∈ Rn
≥0 be a row vector. Fi-

nally, let Q ⊆ Rn
≥0 be a polytope which is defined by “easy” constraints, i.e.,

constraints which we do not need to “remove” using the MWU algorithm, but
which can be left to be handled in the oracle for the simpler LP (3.32), as de-
scribed in Section 3.4.2. The LP which is solved by the MWU-based solver,
Algorithm 6, is

maximise ax subject to x ∈ Q and Px ≤ 1. (3.27)

The performance of our solver, Algorithm 6, is guaranteed by the following
theorem:

Theorem 3.7 ([28, Theorem 2.4]). Given parameters ε ∈ (0, 1) and φ > 0,
Algorithm 6 will return an approximate solution x to (3.27) such that

x ∈ Q, Px ≤ (1 +O(ε))1 and ax ≥ ax∗ − φ, (3.28)
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where x∗ is the optimal solution to (3.27). This will be done within O
(
m logm

ε2

)
iterations of the MWU loop (lines 14–31 of Algorithm 6), where m is the number
of rows in the matrix P.

For a proof, see [28, p. 20]. From this proof a more precise guarantee on the
constraint can be extracted, which avoids the O(ε) term.

Theorem 3.8. Given parameters ε ∈ (0, 1) and φ > 0, Algorithm 6 returns an
approximate solution x to (3.27) such that

Px ≤ ((1 + ε)2 + ε)1. (3.29)

and
ax ≥ ax∗ − φ. (3.30)

Now we know that we can use MWU to solve packing LPs on the form (3.27).
Before we examine the details of the MWU algorithm in Section 3.4.2, we must
first reformulate our linear program, (3.19)–(3.24), as a packing LP.

3.4.1 Preprocessing of the LP Relaxation
Before we can apply Algorithm 6, we need to convert the linear program (3.19)–(3.24)
to the form (3.27). To do this, we start by defining the set V as the set of all
(j, d) such that xj,d is not fixed to 0 or 1 by (3.23) or (3.24), respectively. That
is, set

V := {(j, d) : j ∈ J, d ∈ [D], τd ≥ qj}.

Then we define E by adding an edge for each constraint (3.20) and (3.21), so
that

E := {((j, d), (j, d+ 1)) : (j, d) ∈ V, (j, d+ 1) ∈ V }
∪ {((j′, d), (j, d)) : j ≺ j′, (j, d) ∈ V, (j′, d) ∈ V }.

It is clear that the graph G = (V,E) is acyclic, because there can be no cyclic
precedence constraints. If there were any such, the instance would not have any
solution. From the graph G we can derive the polytope

Q := {x ∈ [0, 1]V : xv ≤ xu,∀(v, u) ∈ E},

consisting of the values x which fulfill the “easy” constraints (3.20) and (3.21).
Because Q is derived from the graph G, the set itself is not stored in memory
in the implementation, but only G.
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Now let P ∈ R[D+1]×V
≥0 be such that the constraint (3.22) can be written

Px ≤ 1. This can be done by setting

Pd′,(j,d) =

{
pj/τd if d = d′,

0, otherwise,

so that each sum in (3.22) corresponds to one row of P multiplied by x. This
also gives us that P has N̄ := |V | nonzero elements, as each vertex v ∈ V
corresponds to exactly one non-zero element of P.

Finally, let aj,d := wjηd for (j, d) ∈ V . The objective (3.19) is then to
minimise

w(J)τD+1 −
∑
j∈J

wj

D∑
d=1

ηdxj,d = w(J)τD+1 −
∑
j∈J

D∑
d=1

wjηdxj,d

= w(J)τD+1 − ax,

(3.31)

that is, to maximise ax.

3.4.2 The MWU Algorithm
The MWU algorithm we have implemented is almost the same as Algorithm 3.
It solves linear programs on the form (3.27) such that Theorem 3.8 holds. Our
implementation is found in Algorithm 6.

It works by solving a simpler LP in each step, which is of the form

maximise ay subject to y ∈ Q and by ≤ 1. (3.32)

To solve this LP an oracle, i.e., a “black box” that can perform a specified
function, is used.
Theorem 3.9 ([28, Theorem 3.2]). Let G = (V,E) be a DAG and Q := {y ∈
[0, 1]V : yv ≤ yu ∀(v, u) ∈ E}. Let a,b ∈ RV

≥0 be two row vectors. Let

y∗ := argmax
y∈Q,by≤1

ay.

Given the two parameters ε ∈ (0, 1) and φ ∈ (0, |a|1/2), we can find an y ∈ Q
satisfying by ≤ 1 + ε and ay ≥ ay∗ − φ in Õε

(
|E| ·

(
log |a|1

φ

)2) time.

We will use O to represent an oracle that finds such a y. How O works
will be explained in more detail in the following section. Algorithm 6 is an
adaptation of Algorithm 3, which we explained in Section 2.7.1. Note that we
have replaced the parameter η with ερ, where ρ = log m̂/ε2, which is equivalent
to setting η = log m̂/ε. We set

φ := ε · w(J). (3.33)
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Algorithm 6 A MWU based approximate solver for the LP (3.27).

1 function mwu_solve_lp(a::Vector, P::Matrix, G::Graph, ϵ, ϕ)

2 @assert 0 < ϵ < 1

3 @assert ϕ > 0

4

5 (m̂,n̂) = size(P)

6 @assert length(a) == n̂

7

8 R = typeof(ϵ) # float type used

9 t = zero(R)

10 ρ = log(m̂) / ϵ^2

11 x = zeros(R, n̂)

12 u = ones(R, m̂)' # row vector

13

14 while t < 1

15 b = (u/norm(u, 1) * P)' # row vector but transposed for convenience

16

17 ϵ′ = sqrt(1+ϵ) - 1

18 y = oracle_solve_lp(a, b, G, ϵ′, ϕ)

19

20 # note that we validate with the original epsilon as we want by ≤ (1+ϵ′)^2 ≤ 1+

ϵ

21 validate_oracle_solution(b, G, y, ϵ)

22

23 δ = min(minimum(1/(ρ * P[i,:]'*y) for i in 1:m̂), 1-t)

24

25 for i in 1:m̂

26 # P[i,:]'*y == P[i:i,:] * y

27 u[i] = u[i] * exp(δ*ϵ*ρ * P[i,:]' * y)

28 end

29 x = x + δ*y

30 t = t + δ

31 end

32 x

33 end

3.5 The Approximate Oracle O
To implement the oracle O we need a way to find solutions to the LP (3.32).
However, as our instance of the LP originates from our scheduling problem, it
can be shown that a few assumptions can be made, without loss of generality.
These assumptions are described in Theorem 3.10 and Theorem 3.11.

This allows us to simplify the problem by applying some “preprocessing”
and “postprocessing” steps, giving us the equivalent LP (3.41)–(3.45). Finally,
we find the dual of this LP. This dual can be split up into a set of subproblems,
which are network flow problems. It can be shown that by solving a finite
number of such subproblems, we can (approximately) solve the original problem.
This is the focus of Chapter 4.

The structure of our implementation of O is explained by Figure 3.4. In
this figure, and in the rest of this section, we let G = (V,E),Q,a,b, ε and φ be
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as in Theorem 3.9. The sections Section 3.5.1, Section 3.5.2 and Section 3.5.3,
correspond to the steps in the figure Preprocess DAG, Postprocess, and Find
Dual, respectively. The step Solve will be described in Chapter 4.

Simple LP a,b, G

Min-Cut LP a,b, G, S, T

Dual LP a,b, G, S, T

Solution γ, f , r

LP solution y

Preprocess DAG

Find Dual

Solve

Postprocess

Figure 3.4: Overview of the implementation of the oracle O.

3.5.1 Preprocessing the DAG
Define S := {s ∈ V : as > 0} and T := {t ∈ V : bt > 0}. The vertices in S can
be thought of as sources of flow, and the vertices in T as sinks. The particular
flow problem we consider will become clear later.

Recall that the LP which we wish to solve is

maximise ay, (3.34)
subject to by ≤ 1, (3.35)

yv ≤ yu ∀(v, u) ∈ E, (3.36)

given graph G = (V,E) and the vectors a,b ∈ RV
≥0. Note in particular that the

constraint (3.36) implies that

yv ≤ yu for all v, u ∈ V such that v  u.

Thus, if we fix the value of yv, it imposes a minimum value on yu for all nodes
u which are reachable from v. Likewise, it imposes a maximum value on yv for
all nodes v from which u is reachable.

Before we continue, we prove some properties of these two sets, namely:
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Theorem 3.10. Without loss of generality, we can assume that

• S ∩ T = ∅,

• there is no edge (s, t) ∈ E from s ∈ S to t ∈ T ,

• δ−(s) = ∅ for every s ∈ S,

• δ+(t) = ∅ for every t ∈ T ,

• for every v ∈ V we have S  v and v  T .

Proof. This is done by a “preprocessing” step, which changes S and T , and fixes
some yv, to guarantee the properties. For any vertex v such that S 6 v, set
yv := 0 and remove it from V . The reason this is the best value for yv is that
if we have a t ∈ T such that v  t, then we know yt ≥ yv, and we want btyt
to be as small as possible (due to (3.35)). Setting yv to zero does not impose
any restrictions on ys for s ∈ S, as we assumed that s 6 v. Thus we do not
constrain the value of our objective function

ay =
∑
s∈S

asys

by this preprocessing step.
For any vertex v such that v 6 T , set yv := 1 and remove it from V . This is

the best value for yv because if we have s ∈ S such that s v, then ys ≤ yv and
we want to maximise asys (due to (3.34)). This does not impose any restrictions
on the value of by, by a similar reasoning as before.

For every s ∈ S, add a new vertex s′ to V and a new edge (s′, s) to E. Set
as′ := as, bs′ := 0 and change as to 0. Remove s from S and add s′ instead. For
every t ∈ T , add a new vertex t′ to T and a new edge (t, t′) to E. Set at′ := 0,
bt′ := bt and change bt to 0. Remove t from T and add t′ instead. See Figure 3.5
for an illustration of this.

This does not change the instance as the existence of the edge between s′

and s implies that ys′ ≤ ys, and this is the only constraint on ys′ . It is thus best
to set ys′ = ys in order to maximise the term as′ys′ . Likewise, we have yt′ ≥ yt
and it is best to set yt′ = yt in order to minimise the term bt′yt′ .

It now clearly holds that S ∩ T = ∅. We also have that

δ−(s′) = ∅

and
δ+(t′) = ∅
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for any s′ ∈ S and t′ ∈ T , respectively. Further, δ+(s′) contains only an edge to
the vertex which was “replaced” by s′. This vertex is not in T , so it holds that
we have no edge between S and T .

Figure 3.5: A sketch of the modifications of S and T in Theorem 3.10.

Our implementation of this procedure is found in Algorithm 7. A general
theme of the implementation is the need to keep track of all transformations
done. For instance, in Section 3.4.1 we need to record which variables xj,d are
fixed and which are added to the set V . Here, in Algorithm 7, we also need
to record which variables yv are fixed to zero or one, and which are kept as
variables. This is done using the vectors fix_y and new_v. In the code, the set
V is a set of integers instead of a subset of J×[D+1]. The vector new_v contains
the new index corresponding to yv. In the vector old_v we also maintain the
“backwards” mapping.

3.5.2 Postprocessing the solution

We also prove that the constraints can be simplified slightly:

Theorem 3.11. Without loss of generality, we can replace the constraint y ∈
[0, 1]V in Theorem 3.9 with

ys ≤ 1 ∀s ∈ S,

yt ≥ 0 ∀t ∈ T.

Proof. This is done through a “postprocessing” step which takes any solution
to the weaker version of the problem and produces a solution to the stronger
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version. Assume that we have a (approximate) solution y to

maximise aTy,

subject to bTy ≤ 1, (3.37)
yv ≤ yu ∀(v, u) ∈ E, (3.38)
ys ≤ 1 ∀s ∈ S, (3.39)
yt ≥ 0 ∀t ∈ T, (3.40)

for some a,b ∈ RV
≥0, where

as > 0 ⇐⇒ s ∈ S,

bt > 0 ⇐⇒ t ∈ T.

Then, we can modify the solution by changing yv to

max
s∈S:s v

ys for all v ∈ V \ S.

This is the smallest value we can use for yv (given these (ys)s∈S) and still satisfy
constraint (3.38), which implies

yv ≥ ys for all v ∈ V \ S, s ∈ S such that s v.

As no ys is greater than 1, this gives us a new solution such that yv ≤ 1 for all
v ∈ V . Note in particular that this holds for t ∈ T . Because we assume (3.37),
and we have not increased y, this constraint still holds. The objective function
ay is unchanged because we have not modified (ys)s∈S .

Now we modify the solution again, by changing yv to

min
t∈T :v t

yt for all t ∈ V \ T.

This is the largest value we can use for yv and still satisfy the constraint (3.38),
as

yv ≤ yt for all v ∈ V \ T, t ∈ T such that v  t.

Because no yt is less than 0 or (by the above) greater than 1, this gives us a new
solution such that yv ∈ [0, 1] for all v ∈ V . We assumed that ay was maximal,
and because we have not decreased y, this is still true. The constraint (3.37)
holds as we have not modified any (yt)t∈T .

Our implementation of this step is found in Algorithm 8.
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3.5.3 The Dual of the LP as a Flow Problem
The LP (3.32) can now be rewritten as

maximise
∑
s∈S

asys, (3.41)

subject to
∑
t∈T

btyt ≤ 1, (3.42)

yv ≤ yu ∀(v, u) ∈ E, (3.43)
ys ≤ 1 ∀s ∈ S, (3.44)
yt ≥ 0 ∀t ∈ T. (3.45)

The objective (3.41) and the constraint (3.42) are simply maximise ay and
by ≤ 1, respectively. We note that

y ∈ Q ⇐⇒ y ∈ [0, 1]V and yv ≤ yu ∀(v, u) ∈ E,

so we get the constraint (3.43) and according to Theorem 3.11, y ∈ [0, 1]V can
be written as (3.44) and (3.45).

This LP has the dual

minimise γ +
∑
s∈S

rs, (3.46)

subject to f(δ+(s)) + rs = as ∀s ∈ S, (3.47)
γbt − f(δ−(t)) ≥ 0 ∀t ∈ T, (3.48)

f(δ+(v))− f(δ−(v)) = 0 ∀v ∈ V \ (S ∪ T ), (3.49)
γ ≥ 0, (3.50)

fv,u ≥ 0 ∀(v, u) ∈ E, (3.51)
rs ≥ 0 ∀s ∈ S. (3.52)

The variables γ, (fv,u)(v,u)∈E and (rs)s∈S correspond to the constraints (3.42),
(3.43) and (3.44), respectively. The constraints (3.47), (3.48) and (3.49) cor-
respond to variables (ys)s∈S , (yt)t∈T and (yv)v∈V \(S∪T ), respectively. We only
require that yt ≥ 0 for t ∈ T , so therefore (3.47) and (3.49) are equalities. In
Section 2.4.4 we explain this mechanical method of constructing the dual.

The dual problem looks like a network flow problem, if we fix γ. The con-
straint (3.49) can be interpreted as conservation of flow, while (3.48) looks like
a constraint on the total flow into the vertex t ∈ T . The constraint (3.47) can
also be interpreted as a capacity constraint, as we will see later on.

What remains now is to find an approximate solution to (3.41)–(3.45). In
Chapter 4 we will show that solving (3.46)–(3.52) for a finite set of fixed γ allows
us to obtain such a solution.
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Algorithm 7 A procedure for the transformations discussed in the proof of
Theorem 3.10.
1 function transform_data(a::Vector, b::Vector, G::Graph)

2 S = [s for s in 1:G.n if a[s] > 0]

3 T = [t for t in 1:G.n if b[t] > 0]

4

5 fix_y = Vector{Union{Nothing,Int}}(nothing, G.n)

6 new_v = Vector{Union{Nothing,Int}}(nothing, G.n) # new_v[v] = v′

7 old_v = Int[] # old_v[v′] = v

8 reach_from_S = falses(G.n)

9 for v in reach_from(G, S)

10 reach_from_S[v] = true

11 end

12 reach_to_T = falses(G.n)

13 for v in reach_to(G, T)

14 reach_to_T[v] = true

15 end

16 for v in 1:G.n

17 if !reach_from_S[v] # not reachable from S, remove and fix y[v] to 0

18 fix_y[v] = 0

19 elseif !reach_to_T[v] # not reachable from T, remove and fix y[v] to 1

20 fix_y[v] = 1

21 else # otherwise, keep the vertex

22 push!(old_v, v)

23 new_v[v] = length(old_v)

24 end

25 end

26

27 new_edges = [

28 (new_v[src_vertex(G, e)],new_v[dst_vertex(G, e)]) for e in edges(G)

29 if !isnothing(new_v[src_vertex(G, e)])

30 && !isnothing(new_v[dst_vertex(G, e)])]

31 new_n = length(old_v)

32 new_a = zeros(eltype(a), new_n)

33 new_b = zeros(eltype(b), new_n)

34

35 for s in S

36 if new_v[s] === nothing

37 continue

38 end

39 s′ = new_n + 1

40 new_n += 1

41 push!(new_a, a[s])

42 push!(new_b, zero(eltype(b)))

43 push!(new_edges, (s′,new_v[s]))

44 end

45

46 for t in T

47 if new_v[t] === nothing

48 continue

49 end

50 t′ = new_n + 1

51 new_n += 1

52 push!(new_a, zero(eltype(a)))

53 push!(new_b, b[t])

54 push!(new_edges, (new_v[t],t′))

55 end

56

57 new_G = Graph(new_n, new_edges)

58 new_S = [s for s in 1:new_n if new_a[s] > 0]

59 new_T = [t for t in 1:new_n if new_b[t] > 0]

60 (new_a,new_b,new_G,new_S,new_T,fix_y,new_v)

61 end
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Algorithm 8 Postprocessing to simplify the constraints as stated in Theo-
rem 3.11.
1 function postprocess_y(y::Vector, G::Graph, a::Vector, b::Vector)

2 G_order = topological_ordering(G)

3 # set y[v] = max(y[s] for s in S if (v reachable from s) for v in V \ S

4 for v in G_order

5 if a[v] != 0 # faster way to check if a in S

6 continue

7 end

8 y[v] = maximum(y[u] for u in Δ_inc(G, v))

9 end

10 # set y[v] = min(y[t] for t in T if (t reachable from v) for v in V \ T

11 for v in Iterators.reverse(G_order)

12 if b[v] != 0 # faster way to check if b in T

13 continue

14 end

15 y[v] = minimum(y[u] for u in Δ_out(G, v))

16 end

17 y

18 end



Chapter 4

Network Flow Algorithm

Here we describe how to solve the network flow problem which needs to be
solved as a part of the algorithm described in Chapter 3. We also explain
our implementation of this solution method. The implementation consists of a
number of procedures, each related to a lemma or algorithm in Li’s paper [28,
Appendix D, pp. 28–34].

See Figure 4.1 for an overview of how these procedures interact. The sub-
problem NFPγ which is produced by the step Split Into Subproblems, and its
dual are described in Section 4.1.1 and Section 4.1.2, respectively. The step
Construct Long Paths is implemented in Algorithm 11 and described in Sec-
tion 4.2. The final step Reduce Over γ is implemented in Algorithm 9, and is
described in Section 4.1.4.

To start with, after the simplifications in Chapter 3, we know that an approx-
imate solution to 1|prec|

∑
j wjCj can be found by solving the LP (3.46)–(3.52)

with parameters given by the vectors a,b, the graph G and the sets S, T . As
we will explain later on, this LP can be solved approximately by solving a num-
ber of maximum flow problems (NFPγ)γ∈Γ, in the graph G where the sources
S have capacity a and the sinks T have capacity γb. Thus, we will need an
efficient algorithm for solving NFPγ .

An algorithm for solving a similar maximum flow problem (with a single
source and sink) is Dinitz’ algorithm [8]. This algorithm is based on finding a
blocking flow (see Definition 4.12) in a graph GL, called the level graph. The
level graph is defined as GL = (V,EL), where

EL = {(v, u) ∈ Ef : dist(v) + 1 = dist(u)},

dist(v) gives the length of the shortest path from the source to v, and Ef is the
set of edges in the residual graph for f and G, defined below. One can think of

Alskog, 2022. 65
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Dual LP a,b, G, S, T

Flow problem set (NFPγ)γ∈Γ

(S′
γ , f

′
γ)γ∈Γ

Solution y

Split Into Subproblems
With Fixed γ

Construct Long Paths

Reduce Over γ

Figure 4.1: A sketch of the “inner layer” of the algorithm.

this as removing all edges from the residual graph which do not “increase the
distance”, i.e., make progress towards the sink. The residual graph Gf = (V,Ef )
has the set of edges Ef , which is the set of edges in E on which we can still add
more flow, together with a “reverse” edge for each edge in E on which we can
remove flow.

If we augment f by a blocking flow f ′ (that is, add f ′ to f), this amounts to
removing the edges that have reached their capacity from Gf (replacing them
by edges going “the other way”). One can prove that the length of the shortest
augmenting paths increases by one, after each iteration of the main loop of
Dinitz’ algorithm. Thus a blocking flow needs to be found at most O(|V |)
times.

Li’s algorithm is similar to Dinitz’ algorithm in that it is based around finding
a blocking flow in the graph a number of times, in order to increase the length
of the shortest augmenting paths.

The reason we cannot use Dinitz’ algorithm directly, is that the run time
would be too large. However, if G were a directed bipartite graph from S to T ,
then we could use Dinitz’ algorithm. This is because it is possible to show that
if the residual graph does not contain an augmenting path of length at most
2L+ 1, where L is “nearly constant” with respect to n and κ, then we can find
an approximate solution to the problem in nearly linear time. See Theorem 4.9.

In each iteration, can find a blocking flow in the residual graph Gf , restricted
to shortest augmenting paths in nearly linear time, using dynamic trees. In Li’s
algorithm, augmenting f by this blocking flow increases the length of augmenting
paths by 2. See Algorithm 15.



4.1. Solving the Simpler LP Approximatively 67

Given any G that fulfills Theorem 3.10, we can obtain such a directed bipar-
tite graph H from S to T , by letting H = (S ∪ T,EH) where (s, t) ∈ EH if and
only if s  G t for some s ∈ S, t ∈ T . We call H the shortcut graph. However,
the graph H is too big to create (the number of edges can be quadratic in |V |).

Therefore, H is “emulated” it using the original graph G, letting each path
from S to T in G correspond to an edge from S to T in H, called a forward
shortcut edge. We also let each path from S to T in supp(f) correspond to an
edge from T to S in H, called a backward shortcut edge. A shortest augmenting
path in H corresponds to an augmenting path in G with the minimum number
of “switches” between following forward edges and following backward edges
[28, p. 12].

In Li’s algorithm, the level graph in Dinitz’ algorithm is essentially repre-
sented by the sets (Si)i∈[1,`] and (T i)i∈[1,`], which are defined as described in
Section 4.3.2. Briefly, they can be described as the sources and sinks that lie at
a distance 2i− 1 and 2i− 2, respectively, from S in the graph H.

It is not straightforward to emulate H using G, as there will be “interference”
between the forward and backward segments, see [28, p. 12–13] and also [28,
p. 33]. Li solves this problem by introducing the concept of a handle (see
Definition 4.5) in a graph, which is simply a copy of all the vertices and edges
in the paths between some subset of the sources S′ ⊆ S and some subset of the
sinks T ′ ⊆ T . See Definition 4.5. Such handles are added to represent each of
the backward shortcut edges, before finding the blocking flow g.

4.1 Solving the Simpler LP Approximatively
We can now solve the LP (3.41)–(3.45) approximatively, by iteratively fixing the
variable γ to each value in a finite set Γ, and solving the problem (3.46)–(3.52),
with this γ. We explain this in detail in Section 4.1.4. The set Γ is defined by

Γ :=
{φ

3
,
φ

3
(1 + ε),

φ

3
(1 + ε)2, . . . ,

φ

3
(1 + ε)K

}
,

where K is the smallest integer such that

φ

3
(1 + ε)K > |a|1.

As we will see in Theorem 4.6, we obtain a sufficiently good approximate solution
by optimising over just γ ∈ Γ instead of γ ≥ 0. We start by considering the
problem obtained by fixing γ in (3.46)–(3.52), which is a maximum flow problem.
We also consider its dual, which is a minimum cut problem.
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4.1.1 The Maximum Flow Problem
If γ is fixed, the LP (3.46)–(3.52) can be considered as a network flow problem:

Definition 4.1. For γ ∈ Γ, we use NFPγ to denote the following network flow
problem: We are given the network G = (V,E) with sources S ⊆ V and sinks
T ⊆ V such that

S ∩ T = ∅,

(s, t) 6∈ E ∀s ∈ S, t ∈ T,

δ−(s) = ∅ ∀s ∈ S,

δ+(t) = ∅ ∀t ∈ T,

S  v and v  T ∀v ∈ V.

The sources have supplies a ∈ RS
>0 and the sinks have capacities γb where γ ≥ 0

and b ∈ RT
>0. We want to find a valid flow, which is a vector f ∈ RE

≥0 satisfying

f(δ+(s)) ≤ as ∀s ∈ S, (4.1)
f(δ−(t)) ≤ γbt ∀t ∈ T, (4.2)

f(δ+(v)) = f(δ−(v)) ∀v ∈ V \ (S ∪ T ). (4.3)

We let Fγ ⊆ RE
≥0 denote the set of valid flows for some γ, and define the value

of a flow f as
val(f) := f(δ+(S)) = f(δ−(T )).

Let f be the maximum flow for some NFPγ , and let OPTγ be the value of
this flow. Let rs := as − f(δ+(s)) for each s ∈ S. By (4.1), rs is nonnegative
and thus (3.47) and (3.52) are fulfilled. By (4.2) and (4.3), constraints (3.48)
and (3.49), respectively, are fulfilled. The constraints (3.50) and (3.51) are also
fulfilled, so γ, (fv,u)(v,u)∈E and (rs)s∈S give a feasible solution to (3.46)–(3.51).
The objective value for this solution is

γ +
∑
s∈S

rs = γ +
∑
s∈S

(as − f(δ+(s)))

= γ + |a|1 − f(δ+(S))

= γ + |a|1 −OPTγ .

Thus, by weak duality (see Theorem 2.10), we have proved the following (see
also [28, p. 12]):

Lemma 4.2. The objective value of any solution to (3.41)–(3.45), i.e.,
∑

s∈S asys,
is bounded above by γ + |a|1 −OPTγ for any γ ≥ 0.
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4.1.2 The Minimum Cut
We would like to express the problem NFPγ on a more standard form, namely
as in Definition 2.23. In order to do this we add a new vertex s∗ to V , and
add edges (s∗, s) for each s ∈ S to E. Likewise, we add a new vertex t∗

and edges (t, t∗) for each t ∈ T . Note that the constraint of conservation of
flow, f(δ+(v)) = f(δ−(v)) is present in both NFPγ and Definition 2.23, for
v ∈ V \ (S ∪ T ) respectively v ∈ V \ {s∗, t∗}. Because of this, the constraints
(4.1) and (4.2) can be expressed as (2.16), if we set the edge capacities to

cs∗,s := as for s ∈ S,

ct,t∗ := γbt for t ∈ T,

cv,u :=∞ for v ∈ V \ {s∗}, u ∈ V \ {t∗}. (4.4)

This gives us

f(δ+(s)) = f(δ−(s)) = fs∗,s ≤ cs∗,s = as ∀s ∈ S

and
f(δ−(t)) = f(δ+(t)) = ft,t∗ ≤ ct,t∗ = γbt ∀t ∈ T,

as desired.
By Theorem 2.25, the dual of this problem consists of finding a cut C =

(Vs, Vt) such that

s∗ ∈ Vs,

t∗ ∈ Vt,

Vs ∩ Vt = ∅,

V = Vs ∪ Vt,

and cap(C) =
∑

e∈EC
ce (see Definition 2.24 in Section 2.6) is minimised.

We will use the notation

T (S̃) := {t ∈ T : S̃  G t}

for any S̃ ⊆ S. Because of (4.4), only edges connected to s∗ or t∗ can be in
the optimal cut set EC , as otherwise the total capacity would become infinite.
Clearly, this is larger than |a|1, which we get if we simply set EC := {(s∗, s) :
s ∈ S}. We can also see that if and only if (s∗, s) /∈ EC for some s ∈ S, then
we must have

(t, t∗) ∈ EC ∀t ∈ T ({s}),
in order to separate s∗ from t∗ with the cut C. It is easy to see this by considering
a sketch such as Figure 4.2.
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s∗

s1

s2

s3

. . .

. . .

. . .

t1

t2

t3

t∗

Figure 4.2: A sketch of the definition of s∗ and t∗. The dashed line represents
a cut with EC = {(s∗, s1), (s∗, s2), (t3, t∗), (s3, . . . ), (. . . , t2)}.

Now we introduce the set

S′ := S ∩ Vs = {s ∈ S : (s∗, s) /∈ EC}.

We can then relate the cut set EC to S′ ⊆ S by

EC = {(s∗, s) ∈ E : s ∈ S \ S′} ∪ {(t, t∗) ∈ E : t ∈ T (S′)},

which gives us the total capacity

cap(C) =
∑
e∈EC

ce

=
∑

s∈S\S′

cs∗,s +
∑

t∈T (S′)

ct,t∗

=
∑

s∈S\S′

as +
∑

t∈T (S′)

γbt

= a(S \ S′) + γb(T (S′))

and by the max-flow min-cut theorem (Theorem 2.25),

OPTγ = min
S′⊆S

a(S \ S′) + γb(T (S′)).

In Figure 4.2 we have Vs = {s∗, s3, . . . , t3} and Vt = {s1, s2, . . . , t1, t2, t∗},
where the ellipsis represents some unspecified sets of vertices. We also have
S′ = {s3}.
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4.1.3 The Shortcut Graph and Handled Graphs
In this section we let G = (V,E) be a directed graph and S ⊆ V , T ⊆ V such
that the properties in Theorem 3.10 hold. We are only really interested in the
sets S and T , and would like to ignore the structure of the graph “between”
these two sets. Therefore we introduce a new concept:

Definition 4.3 ([28, Definition D.4]). Let G′ = (V ′, E′) be a graph and S, T ⊆
V ′ such that Theorem 3.10 holds. Let f ′ be a valid flow. We define the shortcut
graph as H = (S ∪ T,EH) where

EH := {(s, t) : s ∈ S, t ∈ T, s t}
∪ {(t, s) : s ∈ S, t ∈ T, s supp(f ′) t}.

The edges in the first set are called forward shortcut edges, and the edges in the
second set are called backward shortcut edges (w.r.t. f ′).

This is a bipartite graph: there are two disjoint sets (S and T here) such
that every edge connects a node in one set to a node in the other, and there are
no edges from a node in S to a node in S, nor from a node in T to a node in T .
The shortcut graph for G is too large to create within our bounds on run time,
since the number of edges may be quadratic in n.

In order to “emulate” it, a novel data structure called a handled graph is
used. The idea is to add copies of vertices and edges to the graph G, but keep
the same S and T .

Definition 4.4 ([28, Definition D.1]). Let Ĝ = (V̂ , Ê) be a sub-graph of G =
(V,E) and let S, T ⊆ V . A directed graph G̃ = (Ṽ , Ẽ) is a copy of Ĝ if

Ṽ ∩ (S ∪ T ) = V̂ ∩ (S ∪ T ),

(Ṽ \ (S ∪ T )) ∩ (V̂ \ (S ∪ T )) = ∅,

and there is a bijection π : Ṽ → V̂ such that π(v) = v for every v ∈ Ṽ ∩ (S ∪ T )
and (v, u) ∈ Ẽ if and only if (π(v), π(u)) ∈ Ê for every v, u ∈ Ṽ .

Definition 4.5 ([28, Definition D.2]). Let G1 = (V 1, E1), G2 = (V 2, E2), . . . , Gk =
(V k, Ek) be k copies of sub-graphs of G for some integer k ≥ 0 such that

V i ∩ V j ⊆ S ∪ T ∀i, j ∈ [1, k].

We say that G′ = (V ′, E′), where

V ′ = V ∪ V 1 ∪ V 2 ∪ · · · ∪ V k, E′ = E ∪ E1 ∪ E2 ∪ · · · ∪ Ek,

is a handled graph, and G1, G2, . . . , Gk are called the handles of G′.
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4.1.4 Solution to the Simple Packing LP from Solutions
to NFPγ

Consider the following theorem:

Theorem 4.6 ([28, Theorem 3.10]). Let γ ≥ 0, ε > 0 and let G = (V,E),
S, T ⊆ V , a,b ∈ RV

≥0 be an instance of NFPγ . It is possible to find a valid flow
f and a set S′ ⊆ S such that

a(S \ S′) +
γ

1 + ε
b(T (S′)) ≤ val(f) +

φ

3
.

This can be done in
O
(1
ε
· |E| · log |V | · log |a|1

φ

)
time.

Given such a solution fγ , S
′
γ for each γ ∈ Γ, we can obtain an approximate

solution y to (3.41)–(3.45) by setting

yv :=
∑

γ:S′
γ v

zγ for each v ∈ V,

where z is the vector that solves (4.5)–(4.8) optimally. In the following LP we
define the vectors ã and b̃ by

ãγ := a(S′
γ),

b̃γ := b(T (S′
γ)),

for γ ∈ Γ:

maximise ãz, (4.5)
subject to |z|1 ≤ 1, (4.6)

1

(1 + ε)2
b̃z ≤ 1, (4.7)

z ∈ Rγ
≥0. (4.8)

To see that this y is a solution we check a few properties. For any v ∈ V , we
have

yv ≤
∑
γ∈Γ

zγ = |z|1 ≤ 1,
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that is, (3.44). Likewise, z ≥ 0 gives (3.45). For any (v, u) ∈ E, S′
γ  v implies

S′
γ  u, so yv ≤ yu, i.e., (3.43) holds. Further, (4.7) gives us

(1 + ε)2 ≥ b̃z =
∑
γ∈Γ

b(T (S′
γ))zγ =

∑
γ∈Γ

∑
t∈T,S′

γ t

btzγ

=
∑
t∈T

btyt = by,
(4.9)

which is (3.42), relaxed by a factor of (1+ε)2. By instead using ε′ =
√
1 + ε−1,

we get
by ≤ (1 + ε′)2 =

√
1 + ε

2
= 1 + ε.

Note that ε′ ≥ (
√
2− 1)ε, so this change of ε does not affect the expression for

running time given by Theorem 4.6.
By a similar rewriting to (4.9), we obtain ãz = ay.
Theorem 4.6 gives us

a(S \ S′
γ) +

γ

1 + ε
b(T (S′

γ)) ≤ val(fγ) +
φ

3
≤ OPTγ +

φ

3
, (4.10)

where OPTγ is the optimum flow for NFPγ . Now, by Lemma 4.2, we have

ay∗ ≤ min
γ≥0

(|a|1 −OPTγ +γ) ≤ min
γ∈Γ

(|a|1 −OPTγ +γ),

where y∗ is the optimal value for (3.41)–(3.45). Combining these two equations
gives

ay∗ ≤ min
γ∈Γ

(
|a|1 − a(S \ S′

γ)−
γ

1 + ε
b(T (S′

γ)) + γ
)
+

φ

3

= min
γ∈Γ

(
a(S′

γ)−
γ

1 + ε
b(T (S′

γ)) + γ
)
+

φ

3
.

Further, one can prove [28, Lemma B.2, p. 23], that

ãz ≥ min
γ∈Γ

(
a(S′

γ)−
γ

1 + ε
b(T (S′

γ)) + γ
)
− 2φ

3
.

This finally gives

ay = ãz

≥ min
γ∈Γ

(
a(S′

γ)−
γ

1 + ε
b(T (S′

γ)) + γ
)
− 2φ

3

≥ ay∗ − φ

3
− 2φ

3
= ay∗ − φ.

In other words, we have proved the following:
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Theorem 4.7 ([28, Theorem 3.2]). Let G = (V,E) be a directed acyclic graph
and Q := {y ∈ [0, 1]V : yv ≤ yu ∀(v, u) ∈ E}. Let a,b ∈ RV

≥0. Let y∗ ∈ Q
satisfy by∗ ≤ 1 and be such that ay∗ is maximised. Let ε ∈ (0, 1), φ ∈ (0, |a|1/2).
Then in Õε

(
|E| · log2 |a|1

2

)
time, we can find y ∈ Q satisfying by ≤ 1 + ε and

ay ≥ ay∗ − φ.

The code for actually performing this step is very simple, as seen in Algo-
rithm 9. Note that this calls the function brute_force_lp. Because the LP

Algorithm 9 For finding a solution y from solutions to (NFPγ)γ∈Γ.

1 function y_from_nfp_gamma(G::Graph, ã::Vector, b̃::Vector, S′::Vector, ϵ)

2 Γ_length = length(S′)

3

4 A = [ones(1, Γ_length) ; reshape(b̃, 1, :)]

5 b = [one(ϵ), (1+ϵ)^2]

6 c = ã

7 (z_value,_) = brute_force_lp(A, b, c)

8

9 # this sets y[v] = sum(z[γ] where (v reachable from S′[γ]))

10 y = zeros(typeof(ϵ), G.n)

11 for i in 1:Γ_length

12 for v in reach_from(G, S′[i])

13 y[v] += z_value[i]

14 end

15 end

16 y

17 end

(4.5)–(4.8) only has two non-trivial constraints, it can be solved by simply iter-
ating over all of the vertices of the set of allowed z, as described in Section 2.4.2.
See Algorithm 10 for an implementation of this, for the LP:

maximise cTx subject to Ax ≤ b and x ≥ 0, (4.11)

where A ∈ R2×n, b ∈ R2 and c ∈ Rn.

4.2 Solving NFPγ

Here we give an overview of the proof of Theorem 4.6. Many of the details are
skipped, in order to keep the description short.

We note that the concept of a shortcut graph (previously defined in Defini-
tion 4.3), can be extended to the case when G′ is a handled graph and f ′ is a
valid flow for G′.

Definition 4.8. Let G′ = (V ′, E′) be a handled graph, f ′ be a valid flow for
G′, and H be the shortcut graph for f ′. Let a > 0 and b > 0 be vectors over S
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and T , respectively. Let γ ≥ 0. A source s ∈ S is said to be satisfied (w.r.t. f ′)
if f(δ+(s)) = as, and unsatisfied otherwise. Likewise, a sink t ∈ T is said to be
saturated (w.r.t. f ′) if f(δ−(t) = γbt, and unsaturated otherwise.

An alternating shortcut path in H is defined as a path which starts at an
unsatisfied source s ∈ S. An augmenting shortcut path in H is defined as an
alternating shortcut path in H which ends at an unsaturated sink t ∈ T .

The following lemma from [28, Section D.2] states that if all the augmenting
paths in the shortcut graph for a flow f ′ are longer than some certain length,
then we can find a good cut set S′.

Theorem 4.9 ([28, Lemma D.6]). Let G′ = (V ′, E′) be a handled graph and f ′

be a valid flow. Let

L =
⌊
log1+ε

3|a|1
φ

⌋
= Õε

(
log
|a|1
φ

)
.

Assume the shortcut graph H for f ′ does not contain an augmenting path of
length at most 2L+1. Then in time Oε(|E′|) we can find a set S′ ⊆ S such that

a(S \ S′) +
γ

1 + ε
b(T (S′)) ≤ val(f ′) +

φ

3
.

For a proof of this lemma, see [28, p. 30]. So, now we simply need to find
such a G′ and f ′. This is handled by Algorithm 11 [28, Algorithm 4, p. 34]. This
algorithm simply starts with the graph G and zero flow, and repeatedly calls
the subroutine inc_len (see Algorithm 15). This subroutine takes a handled
graph, which we call G(`), and a flow which we call f (`). The shortest augmenting
path in the shortcut graph for G(`) and f (`) must have length at least 2` + 1.
It returns a new handled graph G(`+1) and a new flow f (`+1), such that the
shortest alternating shortcut path in this new graph, has length at least 2`+3.

Clearly the shortest augmenting shortcut path for G(0) = G and f (0) = 0 has
length at least 1. Thus, after L+1 iterations, G(L) and f (L) fulfill the conditions
of Theorem 4.9. In Section 4.3, we will explain some of the implementation
details of Algorithm 15).

4.3 Increasing the Length of the Shortest Alter-
nating Shortcut Path

Here we give a quick overview of the details of the subroutine inc_len. It uses
a few utility functions, among which are a function for finding particular sets
of sources and sinks, as well as a function for projecting a flow to a (copy of a)
sub-graph. Further, it uses a function for finding a blocking flow in a graph.
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4.3.1 Projection of a Flow
We start by defining a projection of a flow:

Definition 4.10 ([28, Definition D.10]). Let G = (V,E) be a handled graph and
f a valid flow for G. Let G̃ = (Ṽ , Ẽ) be a sub-graph or a copy of a sub-graph of
G. If for every edge (v, u) ∈ supp(f), we have some (ṽ, ũ) ∈ Ẽ with π(v) = π(ṽ)
and π(u) = π(ũ), we say that f can be projected to G̃. The projection is defined
as the flow f̃ with

f̃ṽ,ũ := f
(
{(v, u) ∈ E : π(v) = π(ṽ), π(u) = π(ũ)}

)
.

Note that f̃ is a valid flow for G̃, and that val(f̃) = val(f).

See Figure 4.3 for a sketch of a projection of a flow f to the sub-graph
G̃ = ({s, ṽ, ũ, t}, Ẽ) of G = ({s, v, u, v′, u′, ṽ, ũ, t}, E) with S = {s} and T = {t},
where

π(ṽ) = π(v′) = π(v) = v,

π(ũ) = π(u′) = π(u) = u.

We see that this flow must be valid, because the total flow out of s is the same
for f and f̃ , and likewise the total flow into t is unchanged. This holds for all
vertices in S and T . Note in this case that the sets S and T consist of a single
element each, but the preceding statement is true in general. This also shows
us that the value, which is simply defined as the sum of flow out of all vertices
in S, is the same for f and f̃ .

s

v′

v

ṽ

u′

u

ũ

t

fv′,u′

fv,u

fṽ,ũ

f̃ṽ,ũ := fv′,u′ + fv,u + fṽ,ũ

Figure 4.3: Sketch of a projection of a flow to a sub-graph.

4.3.2 Finding Certain Sets of Sources and Sinks
In Algorithm 15 we also use the sets Si ⊆ S, which are defined as the sources
to which the shortest alternating shortcut path in H has length 2i − 2 for all
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i ∈ [1, `], and the sets T i ⊆ T , which are defined as the sinks to which the
shortest alternating shortcut path in H has length 2i− 1, for all i ∈ [1, `]. The
set S`+1 is defined as the sources to which there is no alternating shortcut path
of length at most 2`− 2, i.e.,

S`+1 := S \
⋃

i∈[1,`]

Si.

Likewise, T `+1 is defined as the sinks to which there is no alternating shortcut
path of length at most 2`− 1, i.e.,

T `+1 := T \
⋃

i∈[1,`]

T i.

Here H is the shortcut graph for the graph G◦ and the flow f◦ which are passed
as parameters to Algorithm 15. The procedure we use for finding such Si and
T i is Algorithm 12.

It works by constructing a graph, which we call F , containing two vertices
for each vertex of G◦. F has an edge for each edge in G◦, as well as an edge
for each edge in supp(f◦). A sketch of this graph is found in Figure 4.4. In this
figure, any ṽ corresponds to the vertex v ∈ V (G◦).

We define the sets S̃ := {s̃ : s ∈ S} and T̃ := {t̃ : t ∈ T}. The edges of F
are (v, u) for (v, u) ∈ E(G◦), and (ũ, ṽ) for (v, u) ∈ E(supp(f◦)). We also define
a weight vector w by setting

wt,t̃ := 1 ∀t ∈ T,

ws̃,s := 1 ∀s ∈ S,

wv,u := 0 ∀(v, u) ∈ E(G◦),

wũ,ṽ := 0 ∀(v, u) ∈ E(supp(f◦)),

i.e., the weight is one if and only if the edge is between S̃ and S, or between T
and T̃ .

When we traverse a path from S̃ to T in F , starting with an edge with
weight one from S̃ to S, it corresponds to following a forward shortcut edge in
H (i.e., a path in G◦). Likewise, when we traverse a path from T to S̃, starting
with an edge of weight one from T to T̃ , it corresponds to following a backward
shortcut edge in H (i.e., a backwards path in supp(f◦)). In other words, for
any path in F the number of weight-one edges, or equivalently, the sum of the
weights of the edges, is equal to the length of the corresponding path in H. We
can call this sum the distance of the path in F .

If we know the minimum distance of some s ∈ S from the set of unsaturated
sources (i.e., {s ∈ S : δ+(s) < as}), then we know which Si this source belongs
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to. Likewise, if we know the minimum distance of some t ∈ T from the set of
unsaturated sources, we know which T i it belongs to. Algorithm 12 finds this
minimum weight and stores it in the variable distance. Then we simply set

Si = {s ∈ S : distance[s] = 2i− 2}

and
T i = {t ∈ T : distance[t] = 2i− 1}.

S S̃

T T̃

(v, u) ∈ E(G◦)

(t, t̃)

(ũ, ṽ) for (v, u) ∈ E(supp(f◦))

(s̃, s)

Figure 4.4: The graph F , used for finding Si and T i.

4.3.3 Finding a Subflow Sent by Sources or Received by
Sinks

We also need to find a subflow, defined in Definition 4.11, which is sent by some
subset of sources S′, or alternatively a subflow that is received by some subset
of sinks T ′.

Definition 4.11 ([28, Definition D.7]). Let G′ = (V ′, E′) be a directed graph
and let S ⊆ V ′ and T ⊆ V ′ be sets of sources and sinks, respectively. Let f ′ be
a valid flow. Let S′ ⊆ S. Then, a subflow of f ′ sent by S′ is a flow f ′′ satisfying

f ′′
e ≤ f ′

e ∀e ∈ E,

f ′′
e = f ′

e ∀e ∈ δ+G′(S
′),

f ′′
e = 0 ∀e ∈ δ+G′(S \ S′).

Likewise, a subflow of f received by T ′ is a flow f ′ satisfying

f ′′
e ≤ f ′

e ∀e ∈ E,

f ′′
e = f ′

e ∀e ∈ δ−G′(T
′),

f ′′
e = 0 ∀e ∈ δ−G′(T \ T ′).
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Our procedure for finding such a subflow sent by S′ is given in Algorithm 13.
The procedure for finding a subflow received by T ′, which we call find_flow_to_T,
is implemented very similarly. The major difference is that supp_out is replaced
by supp_inc. Note that the procedure makes use of a vector c ∈ RV

≥0, which
is initialised to all zeros. The reason that this is a parameter and not a local
variable, is simply that it is too large to construct within the run time bound
of the subroutine find_flow_from_S, which is

O(|S′|+ |Vsupp(f ′′)| · log |V ′|+ |Esupp(f ′′)|).

For some vertex v ∈ V ′, cv represents the amount of flow in f ′′ that reaches this
node. This will only be updated for vertices in V (supp(f ′′)), and remain zero
for all other vertices. At the end of the procedure, it is reset to zero for these
vertices.

4.3.4 Finding a Blocking Flow
A fast algorithm for finding a blocking flow was presented by Sleator and Tar-
jan in 1983 [34, p. 388]. This description is repeated in Algorithm 18 in Ap-
pendix A.2. Our implementation of this algorithm is found in Algorithm 19,
also in Appendix A.2. Here we give a brief high-level overview of the algorithm,
starting with the definition of a blocking flow.

Definition 4.12. Let R = (VR, ER) be a directed graph. Let c ∈ [0,∞]ER be
a vector of capacities. Assume we have a source s ∈ VR and a sink t ∈ VR, such
that δ−(s) = δ+(t) = ∅. A valid flow is a flow g such that

g(δ+(v)) = g(δ−(v)) ∀v ∈ VR \ {s, t},
ge ≤ ce ∀e ∈ ER,

i.e., the flow is conserved and the capacities of all edges are satisfied. A blocking
flow is a valid flow g with the additional condition that every path from s to t
in R contains an edge e for which ge = ce.

A blocking flow is thus a flow where it is not possible to increase the flow in
any path from the source to the sink.

The algorithm makes use of a data structure called a link-cut tree or dynamic
tree. In essence, the algorithm in question performs a depth-first search (DFS)
from s to t, linking the link-cut tree nodes with all edges we walk along. If this
DFS succeeds we have an augmenting path. Then we put the largest flow we
can on this path, and decrease the capacities by this flow. If the DFS instead
reaches a node where all the outgoing edges have capacity zero, then we remove
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from the graph all edges leading to that node, to make sure we do not end up
there again. Then we continue the search, cascading the removal of edges as
necessary.

We repeat this until there are no more augmenting paths from s to t, i.e. all
outgoing edges from s have been removed from the graph.

4.3.5 Implementation of Algorithm 15
The subroutine is implemented as seen in Algorithm 15. This implementation
is based on the description of the algorithm in pseudocode from [28, Algorithm
3, p. 32], which is repeated in Algorithm 14 for convenience.

Lines 1–13 of Algorithm 15 correspond to the lines 1–7 from Algorithm 14.
Here we construct the sets Si and T i for i ∈ [1, `+ 1], the sub-graphs Gi,+ for
i ∈ [1, ` + 1] and the copies of sub-graphs Gi,− for i ∈ [1, `]. The sets Si and
T i are stored simply as vectors, but the sub-graphs are not stored as Graph

objects. Instead, they are stored as pairs of vertices and their adjacency lists
(v, δ+(v)). The handled graph G′ is also constructed, by adding new vertices
for all vertices in V (Gi,−) for i ∈ [1, `], and defining the projection mappings π′

and π′
edge appropriately. The mapping π′

edge : E(G′)→ E(G) is

π′
edge : (v, u) 7→ (π′(v), π′(u)),

i.e., it is a mapping from pairs of vertices to pairs of vertices. However, in adja-
cency lists of graphs in the implementation, we represent edges by ids (integers),
instead of as pairs of vertices. Thus we need to keep track of π′

edge, which we
store as a mapping from edge ids to edge ids, in addition to π′.

Lines 14–41 correspond to the lines 8–15 from Algorithm 14. In each iteration
here, we find a subflow f◦(i,+) of f◦ sent by Si, subtract it from f◦, and set f ′(i,+)

to the projection of the subflow to G(i,+). We also find a subflow f◦(i,−) of f◦
received by T i, subtract it from f◦, and set f◦(i,−) to the projection of the
subflow to G(i,−). Because the subflow f (i,+) is equal to f◦ on each source in
Si, this in essence “partitions” f◦ into (f◦(i,+))i∈[1,`+1] and (f◦(i,−))i∈[1,`]. Then
we define the flow f ′ as the sum of all these subflows f ′(i,+) and f ′(i,−), treating
missing edges as having flow zero.

Finally, lines 42–61 correspond to the lines 16–20 from Algorithm 14. Here
we simply define the graph R by adding edges (v, u) for each (v, u) ∈ E(Gi,+)
for i ∈ [1, ` + 1] and edges (u, v) for each (v, u) ∈ E(Gi,−) for i ∈ [1, `]. Then
we find a blocking flow g in R and add it to, or subtract it from (depending on
the type of edge), the flow f ′.
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Algorithm 10 Solving the LP (4.11) by iterating over all vertices.

1 function brute_force_lp(A::Matrix, b::Vector, c::Vector)

2 n = length(c)

3 @assert length(b) == 2 "can only handle two constraints"

4 @assert size(A) == (2,n) "invalid size for A"

5 A_2 = [A I]

6 c_2 = [c ; 0 ; 0]

7 obj_star = convert(eltype(c), -Inf)

8 kl_star = nothing

9 x_star = nothing

10 for k in 1:n+2, l in k+1:n+2

11 A_kl = A_2[:,[k,l]]

12 if det(A_kl) == 0

13 # If the determinant is zero then x[1],x[2]

14 # cannot be a basic solution, as explained

15 # section 2.4.2 of the report.

16 # Therefore we can skip this case w.l.o.g.

17 continue

18 end

19 x = A_kl \ b

20 if x[1] < 0 || x[2] < 0

21 # do not allow negative solutions

22 continue

23 end

24 obj = c_2[k]*x[1] + c_2[l]*x[2]

25 if obj > obj_star

26 obj_star = obj

27 kl_star = [k,l]

28 x_star = x

29 end

30 end

31 if x_star === nothing

32 return nothing

33 end

34 x = zeros(eltype(c), n)

35 if kl_star[1] <= n

36 x[kl_star[1]] = x_star[1]

37 end

38 if kl_star[2] <= n

39 x[kl_star[2]] = x_star[2]

40 end

41 @assert A * x <= b .+ FLOAT_TOLERANCE "not feasible!"

42 @assert abs(c' * x - obj_star) <= FLOAT_TOLERANCE "wrong objective!"

43 (x,obj_star)

44 end
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Algorithm 11 Constructing S′ and f ′ as in Theorem 4.9.

1 function find_S′_and_f(G::Graph, a::Vector, b::Vector, S, T, γ, ϵ, ϕ)

2 Gl = G

3 πl = collect(1:G.n) # Identity mapping of vertices

4 π_edgel = collect(1:G.m) # Identity mapping of edges

5 fl = zeros(eltype(a), Gl.m)

6 L = floor(Int, log(1+ϵ, 3*norm(a, 1)/ϕ))

7

8 topo_order = topological_ordering(G)

9 ρ = ordering_to_rank(topo_order)

10

11 for ℓ = 0:L

12 (Gl,πl,π_edgel,fl) = inc_len(ℓ, G, Gl, πl, π_edgel, a, b, S, T, γ, fl, ρ)

13 end

14 f′_list = [(π_edgel[e], warn_if_negative(flow)) for (e,flow) in enumerate(fl)]

15 S′ = find_S′(Gl, fl, a, b, S, T, γ, ϵ, ϕ)

16

17 # convert flow list to flow vector

18 f = zeros(eltype(a), G.m)

19 for (e,flow) in f′_list

20 f[e] += flow

21 end

22 (S′,f)

23 end
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Algorithm 12 Finding Si and T i, that are used in inc_len.

1 function find_Si_and_Ti(L, G′::Graph, a::Vector, S::Vector, T::Vector, f′::Vector)

2 distance = find_distance_from_S(L, G′, a, S, T, f′)

3

4 Si = [Int[] for i=1:L+2]

5 Ti = [Int[] for i=1:L+2]

6

7 for s in S

8 d = distance[G′.n+s]

9 if d <= 2*L

10 @assert d >= 0

11 @assert rem(d, 2) == 0

12 i = div(d, 2)

13 else

14 i = L + 1

15 end

16 push!(Si[i+1], s)

17 end

18

19 for t in T

20 d = distance[t]

21 if d <= 2*L+1

22 @assert d >= 1

23 @assert rem(d, 2) == 1

24 i = div(d - 1, 2)

25 else

26 i = L + 1

27 end

28 push!(Ti[i+1], t)

29 end

30

31 (Si,Ti)

32 end
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Algorithm 13 Finding a subflow sent by S′ ⊆ S.

1 function find_flow_from_S(G′::Graph, π′::Vector, f′::Vector, supp_out, S′::Vector, ρ::

Vector, c::Vector)

2 # we assume that x == 0 for x in c

3

4 # store flow as tuples (edge,flow)

5 f″_list = Tuple{Int,eltype(f′)}[]

6 # store as tuples (priority,value)

7 H = BinaryHeap{Tuple{Int,Int}}(Base.By(first))

8 E″ = Int[]

9

10 for s in S′

11 for e in supp_out[s] # δ_out(supp(f′), s)

12 c[s] += f′[e]

13 end

14 if c[s] > 0

15 push!(H, (ρ[π′[s]],s))

16 end

17 end

18

19 while !isempty(H)

20 (_,v) = pop!(H)

21 push!(E″, v)

22 a = c[v]

23 for e in supp_out[v] # δ_out(supp(f′), v)

24 a′ = min(a, f′[e])

25 push!(f″_list, (e, a′))

26 u = dst_vertex(G′, e)

27 if c[u] <= 0 # more robust than c[u] == 0

28 push!(H, (ρ[π′[u]],u))

29 end

30 c[u] += a′

31 a -= a′

32 if a <= 0

33 break

34 end

35 end

36 end

37

38 for v in E″

39 c[v] = zero(eltype(c))

40 end

41 (f″_list,E″)

42 end
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Algorithm 14 The procedure inc_len.
Input: A handled graph G◦ and a valid flow f◦, defining the shortcut graph

H◦. G◦ and f◦ should be such that the shortest augmenting path in H◦ has
length at least 2`+ 1.

Output: A handled graph G′ and a valid flow f ′ such that the shortest aug-
menting path in the shortcut graph H ′ (defined by G′ and f ′) has length at
least 2`+ 3.

1: Si ← the sources to which the shortest alternating shortcut path in H◦ has
length 2i− 2, ∀i ∈ [1, `]

2: S`+1 ← the sources for which there is no alternating shortcut path of length
at most 2`− 2

3: T i ← the sinks to which the shortest alternating shortcut path in H◦ has
length 2i− 1, ∀i ∈ [1, `]

4: T `+1 ← the sinks for which there is no alternating shortcut path of length
at most 2`− 1

5: Gi,+ ← the sub-graph of G between Si and T i, ∀i ∈ [1, `+ 1]
6: Gi,− ← a copy of the sub-graph of G between Si+1 and T i, ∀i ∈ [1, `]
7: G′ = (V ′, E′)← the handled graph with handles {Gi,− : i ∈ [1, `]}
8: for i = 1,…,`+1 do
9: find a subflow f◦(i,+) of f◦ sent by Si, and set f◦ ← f◦ − f◦(i,+)

10: f ′i,+ ← the projection of f◦(i,+) to Gi,+

11: if i = `+ 1 then break
12: find a subflow f◦(i,−) of f◦ received by T i, and set f◦ ← f◦ − f◦(i,−)

13: f ′(i,−) ← the projection of f◦(i,−) to Gi,−

14: end for
15: Define f ′ :=

∑`+1
i=1 f

′(i,+) +
∑`

i=1 f
′(i,−)

16: Define R := (V ′ ∪ {s∗, t∗}, ER) and c ∈ [0,∞]ER where ER and c are
constructed by:

• for every i ∈ [1, `+ 1] and edge e in Gi,+ add e to ER and ce ←∞
• for every i ∈ [1, `] and edge (v, u) in Gi,− add (u, v) to ER and cu,v ←

f ′
v,u

• for every s ∈ S1 add (s∗, s) to ER and cs∗,s ← as − f ′(δ+(s))

• for every t ∈ T `+1 add (t∗, t) to ER and ct∗,t ← γbt − f ′(δ−(t))

17: find a blocking flow g for (R, c) using Algorithm 19
18: for every edge e in Gi,+, for some i, do f ′

e ← f ′
e + ge

19: for every edge (v, u) in Gi,−, for some i, do f ′
u,v ← f ′

u,v − gv,u
20: return (G′, f ′)
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Algorithm 15 Our implementation of inc_len.

1 function inc_len(l, G::Graph, G°::Graph, π°, π°_edge, a::Vector, b::Vector, S, T, γ, f°

::Vector, ρ)

2 (Si,Ti) = find_Si_and_Ti(l-1, G°, a, S, T, f°)

3 (adj_Gi_plus,adj_Gi_minus) = find_Gi(G, Si, Ti, l)

4 # adjacency lists for supp(f°)

5 supp_out = [Int[] for v in 1:G°.n]

6 supp_inc = [Int[] for v in 1:G°.n]

7 for e in 1:G°.m

8 if f°[e] > 0

9 push!(supp_out[src_vertex(G°, e)], e)

10 push!(supp_inc[dst_vertex(G°, e)], e)

11 end

12 end

13 (G′,π′,π′_edge,π′_edge_inv) = construct_G′(l, G, a, b, adj_Gi_minus)

14 f′_plus_list = Vector{Vector{Tuple{Int,R}}}(undef, l+1)

15 f′_minus_list = Vector{Vector{Tuple{Int,R}}}(undef, l)

16 scratch_space = zeros(R, G°.n)

17 for i in 1:l+1

18 # f_list_plus is f°(i,+) in the paper

19 (f_list_plus,visited_V_plus) = find_flow_from_S(G°, π°, f°, supp_out, Si[i], ρ,

scratch_space)

20 for (e,flow) in f_list_plus

21 f°[e] = warn_if_negative(f°[e] - flow)

22 end

23 update_support!(f°, visited_V_plus, supp_out, supp_inc)

24 f′_plus_list[i] = [(π°_edge[e°], warn_if_negative(flow)) for (e°,flow) in

f_list_plus]

25 if i >= l+1

26 break # skip second part on the last iteration

27 end

28 (f_list_minus,visited_V_minus) = find_flow_to_T(G°, π°, f°, supp_inc, Ti[i], ρ,

scratch_space)

29 for (e,flow) in f_list_minus

30 f°[e] = warn_if_negative(f°[e] - flow)

31 end

32 update_support!(f°, visited_V_minus, supp_out, supp_inc)

33 f′_minus_with_dups = [(π°_edge[e°], warn_if_negative(flow)) for (e°,flow) in

f_list_minus]

34 f′_minus_list[i] = [(e, flow) for (e, flow) in f′_minus_with_dups

35 if !(abs(flow) < EXPRESSION_TOL && count(x -> x[1] == i, π′_edge_inv[e]) !=

1)]

36 end

37 f′ = sum_of_subflows(l, G′.m, f′_plus_list, f′_minus_list, π′_edge_inv)

38 (R_graph,C,edge_in_R_graph,s_star,t_star) = construct_R_graph(

39 l, G, G′, f′, a, b, γ, adj_Gi_plus, adj_Gi_minus, Si, Ti, π′_edge_inv)

40 g = find_blocking_flow(R_graph, C, s_star, t_star)

41

42 for i in 1:l+1

43 for (_,out) in adj_Gi_plus[i], e in out

44 f′[e] = f′[e] + g[edge_in_R_graph[e]]

45 end

46 end

47 for i in 1:l

48 for (_,out) in adj_Gi_minus[i], e in out

49 e′ = get_edge_inv(π′_edge_inv, e, i)

50 f′[e′] = warn_if_negative(f′[e′] - g[edge_in_R_graph[e′]])

51 end

52 end

53 # clean up near-zero floats (including small positive values)

54 for e in 1:G′.m

55 if f′[e] < VARIABLE_TOL

56 f′[e] = zero(R)

57 end

58 end

59 (G′,π′,π′_edge,f′)

60 end



Chapter 5

Results

The implementation of the algorithm was evaluated on a set of randomly gener-
ated instances. In this chapter we describe how the accuracy and performance of
the algorithm were measured, and present the resulting data which we gathered.
We also describe how the instances used for the evaluation were generated.

5.1 Instances
The instances used in our evaluation are quite simple and were generated by
the simple random method described in Algorithm 16. We have three different
categories of instances, characterised by the number of precedence constraints
relative to the number of jobs. We name these categories L for “large” instances
with κ = bn1.5c, M for “medium” instances with κ = n, and S for “small”
instances with κ = bn0.5c.

The number of jobs used for our instances were n = 2k for k = 3, . . . , 10,
i.e., n = 8, 16, 32, 64, 128, 256, 512, 1024.

The job weights (wj)j∈J were sampled from the uniform distribution with
values between 0 and n, and the processing times (pj)j∈J were sampled from the
uniform distribution with values between 1 and n. In Section 6.1.2 we discuss
evaluating the implementation on instances where wj or pj are sampled from
nonuniform distributions.

The names of the instances consist of four fields, the first being the category,
L, M or S. The second is n, and the third is κ. The fourth field is a number
to identify each instance among those with identical n and κ. For example, the
four instances in category L with n = 8 and κ = 22 are named L_00008_22_01
to L_00008_22_04.

Alskog, 2022. 87
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Algorithm 16 Generating instances for the evaluation.

1 function generate_instance(n, κ, w_domain, p_domain, m, name)

2 job_order = Random.randperm(n)

3

4 max_κ = div(n*(n-1), 2)

5 has_edge = Random.shuffle([trues(κ) ; falses(max_κ-κ)])

6 @assert length(has_edge) == max_κ

7 @assert sum(has_edge) == κ

8

9 edges = NTuple{2,Int}[]

10 k = 1

11 for i in 1:n, j in i+1:n

12 if has_edge[k]

13 push!(edges, (job_order[i],job_order[j]))

14 end

15 k += 1

16 end

17 @assert length(edges) == κ

18

19 w = Random.rand(w_domain, n)

20 p = Random.rand(p_domain, n)

21

22 return Instance(p, w, edges, m, name)

23 end

5.2 Main Results
We focus on evaluating the run time of the algorithm, as well as the objec-
tive value. There are a few different objective values to consider. For a given
instance, we obtain from our implementation both the fractional weighted com-
pletion time

WCTfrac :=
∑
j∈J

wjCj ,

where Cj are fractional completion times, i.e., the input to Algorithm 5 as
described in Section 3.3, and the (integer) weighted completion time

WCTround :=
∑
j∈J

wjC̃j ,

where C̃j are integer completion times, i.e., the output of Algorithm 5.
By using an external LP solver to solve the problem (3.19)–(3.24) as de-

scribed in Section 3.2, we obtain the objective value WCTLP, which we can com-
pare to our WCTfrac. By instead using an external IP solver to solve (3.1)–(3.6),
described in Section 3.1, we obtain the objective value WCTIP, which we can
compare to our WCTround.

In Tables 5.1–5.3 we present the main results. The evaluation was carried out
on a computer with two Intel Xeon Gold 6130 Processors (2×16 cores, 2.10 GHz)
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and 96 GB memory. We used Julia version 1.7.3 and the flags --optimize=3

and --check-bounds=no. The command run was

julia --project --optimize=3 --check-bounds=no src/main.jl [instance] 0.6

where [instance] represents the path to the instance as a JSON file, and 0.6
is the value we use for ε.

The packages which our implementation depends on (and their versions),
apart from those included in Julia’s standard library, are: DataStructures 0.18.13,
JSON 0.21.3, LinkCutTrees 0.2.1, and DoubleFloats 1.2.2. For the external IP
and LP solver, we used Gurobi 9.1.0, with the flag MIPGap=0 when solving IP
instances.

The implementation was run with ε = 0.6, giving us the generated approxi-
mation ratio α(ε) = 34.76. See Section 3.4 for further discussion of this.

Table 5.1: Objective values and run time for instances in category L. The values
are rounded to integers.

Instance Implementation IP solver LP solver

Name WCTround WCTfrac
Run

time (s) WCTIP WCTLP

L_00008_22_01 732 711 10 897 820
L_00008_22_02 443 533 8 584 540
L_00008_22_03 895 988 8 988 988
L_00008_22_04 1020 1251 8 1354 1251
L_00016_64_01 6349 4626 17 8158 7106
L_00016_64_02 8639 6976 18 10 157 9319
L_00016_64_03 12 532 11 392 12 15 359 13 371
L_00016_64_04 11 937 9948 15 14 722 13 300
L_00032_181_01 143 891 95 293 38 182 198 159 134
L_00032_181_02 165 572 141 680 31 206 860 189 463
L_00032_181_03 134 624 89 897 52 178 721 150 064
L_00032_181_04 138 073 95 635 44 161 316 155 764
L_00064_512_01 2 382 783 1 429 030 163 2 986 310 2 751 540
L_00064_512_02 1 599 676 1 017 180 179 1 969 660 1 828 240
L_00064_512_03 1 817 165 1 123 910 197 2 212 160 2 080 260
L_00064_512_04 2 151 365 1 304 960 162 2 679 150 2 474 070
L_00128_1448_01 35 576 544 22 381 600 756 44 792 300 44 104 800
L_00128_1448_02 29 274 349 18 568 900 949 36 624 500 35 314 000
L_00128_1448_03 32 916 917 20 410 900 832 41 117 800 39 597 800
L_00128_1448_04 35 028 410 21 589 600 719 43 840 800 42 563 700
L_00256_4096_01 547 334 689 331 015 000 2989 678 937 000 664 352 000
L_00256_4096_02 553 736 923 333 420 000 3610 684 001 000 666 590 000



90 Chapter 5. Results

L_00256_4096_03 477 893 270 296 775 000 2765 585 863 000 574 650 000
L_00256_4096_04 510 726 979 312 627 000 3381 627 204 000 613 226 000
L_00512_11585_01 8 444 619 440 5 129 530 000 18 993 10 155 200 000 10 083 850 370
L_00512_11585_02 8 004 423 451 4 934 460 000 15 260 9 700 910 000 9 520 250 967
L_00512_11585_03 8 754 628 136 5 413 090 000 19 881 10 753 300 000 10 623 579 370
L_00512_11585_04 8 611 934 544 5 228 290 000 16 099 10 426 700 000 10 261 252 930
L_01024_32768_01 139 308 315 747 82 682 100 000 77 662 168 570 000 000 164 321 728 900
L_01024_32768_02 136 932 074 485 83 436 800 000 78 213 166 807 000 000 164 846 410 200
L_01024_32768_03 135 984 768 515 83 166 700 000 78 128 166 746 577 602 163 320 689 800
L_01024_32768_04 138 245 035 142 84 717 500 000 72 990 168 712 000 000 166 860 441 600

Table 5.2: Objective values and run time for instances in category M. The values
are rounded to integers.

Instance Implementation IP solver LP solver

Name WCTround WCTfrac
Run

time (s) WCTIP WCTLP

M_00008_8_01 674 446 11 935 714
M_00008_8_02 600 512 10 803 638
M_00008_8_03 281 225 9 373 288
M_00008_8_04 492 342 10 546 484
M_00016_16_01 6054 3855 22 7847 6727
M_00016_16_02 8819 5398 24 10 484 9743
M_00016_16_03 5211 3335 21 6060 5670
M_00016_16_04 5935 3791 23 7356 6726
M_00032_32_01 121 822 77 554 82 147 851 142 337
M_00032_32_02 102 532 67 632 81 125 339 122 273
M_00032_32_03 116 259 72 851 77 143 923 139 952
M_00032_32_04 70 062 46 372 60 86 498 82 849
M_00064_64_01 1 617 043 1 075 580 300 2 001 420 1 977 030
M_00064_64_02 1 422 757 961 961 269 1 775 470 1 747 340
M_00064_64_03 1 548 156 1 028 980 296 1 914 720 1 896 860
M_00064_64_04 1 419 688 945 930 299 1 757 890 1 733 560
M_00128_128_01 25 720 939 17 271 300 983 31 884 300 31 732 300
M_00128_128_02 22 260 587 15 195 100 961 27 735 700 27 615 700
M_00128_128_03 17 301 589 11 895 500 988 21 489 200 21 405 100
M_00128_128_04 18 311 343 12 476 500 967 22 801 300 22 698 000
M_00256_256_01 303 183 703 210 261 000 3436 381 160 000 380 508 000
M_00256_256_02 320 819 294 219 799 000 2674 403 099 000 402 503 000
M_00256_256_03 320 875 908 221 356 000 3323 403 079 000 402 425 000
M_00256_256_04 297 596 069 206 050 000 3407 374 017 000 373 443 000
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M_00512_512_01 5 283 999 821 3 652 330 000 12 476 6 661 250 000 6 658 491 576
M_00512_512_02 5 894 228 366 4 057 080 000 12 220 7 411 490 000 7 408 432 317
M_00512_512_03 5 674 022 489 3 908 900 000 12 347 7 134 550 000 7 131 869 225
M_00512_512_04 6 243 908 566 4 261 800 000 12 733 7 814 330 000 7 811 479 723
M_01024_1024_01 83 857 953 774 57 892 200 000 43 865 106 368 000 000 106 356 693 800
M_01024_1024_02 83 999 399 156 58 031 300 000 43 656 106 111 000 000 106 101 424 600
M_01024_1024_03 88 384 642 117 60 819 200 000 43 132 111 600 000 000 111 584 093 600
M_01024_1024_04 85 523 791 573 59 020 300 000 51 068 108 209 000 000 108 198 605 200

Table 5.3: Objective values and run time for instances in category S. The values
are rounded to integers.

Instance Implementation IP solver LP solver

Name WCTround WCTfrac
Run

time (s) WCTIP WCTLP

S_00008_2_01 355 215 11 428 366
S_00008_2_02 235 148 11 305 235
S_00008_2_03 332 205 12 415 351
S_00008_2_04 434 277 12 566 460
S_00016_4_01 6565 4240 26 8164 7557
S_00016_4_02 5091 3276 25 6162 5664
S_00016_4_03 4876 3141 27 6082 5622
S_00016_4_04 7272 4687 24 9135 8540
S_00032_5_01 98 217 66 557 77 122 645 119 097
S_00032_5_02 83 999 56 207 77 105 860 101 640
S_00032_5_03 98 416 65 579 77 121 902 118 311
S_00032_5_04 102 431 68 845 80 127 625 124 013
S_00064_8_01 1 072 206 738 604 272 1 339 410 1 318 060
S_00064_8_02 1 299 270 886 673 285 1 605 770 1 593 060
S_00064_8_03 1 499 340 1 012 090 320 1 850 720 1 839 160
S_00064_8_04 1 185 994 814 946 285 1 481 800 1 462 690
S_00128_11_01 16 728 909 11 640 100 996 21 037 000 20 971 700
S_00128_11_02 19 337 169 13 417 300 891 24 381 800 24 311 200
S_00128_11_03 16 892 041 11 753 200 954 21 197 700 21 138 900
S_00128_11_04 16 177 125 11 270 400 928 20 245 800 20 190 200
S_00256_16_01 299 863 744 209 318 000 3423 378 177 000 377 899 000
S_00256_16_02 226 965 929 159 295 000 2898 287 475 000 287 209 000
S_00256_16_03 280 702 419 196 608 000 3290 354 566 000 354 231 120
S_00256_16_04 264 662 840 186 057 000 3380 334 526 000 334 170 000
S_00512_22_01 4 470 028 858 3 139 270 000 12 303 5 658 820 000 5 657 391 961
S_00512_22_02 4 523 605 078 3 173 220 000 12 169 5 737 140 000 5 735 548 265
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S_00512_22_03 4 639 265 869 3 249 050 000 12 245 5 868 530 000 5 866 812 078
S_00512_22_04 4 545 401 163 3 186 290 000 12 245 5 753 760 000 5 752 503 683
S_01024_32_01 73 308 880 692 51 406 900 000 50 011 93 120 400 000 93 112 835 570
S_01024_32_02 67 726 651 324 47 644 000 000 42 133 86 110 600 000 86 105 203 350
S_01024_32_03 72 497 386 583 50 846 800 000 50 147 91 970 900 000 91 961 586 240
S_01024_32_04 69 611 534 639 48 912 700 000 41 568 88 482 000 000 88 472 501 120

5.2.1 Run Times
We plot the run time as a function of n+κ. Such a plot is found in Figure 5.1a.
We should expect the run time to grow with

O
(
(n+κ) ·polylog(n+κ) · log3 pmax ·

1

ε2

)
= O

(
(n+κ) ·polylog(n+κ) · log3 n

)
,

given that pmax = O(n) and ε is constant w.r.t. n and κ.
We can also consider the run time as a function of just n, as we have done

in Figure 5.1b. Here we see that the three categories L, M and S have quite
similar run times. This indicates that the “density” of precedence constraints
does not have a big effect on the actual performance, but instead that the main
factor is the value of n, the number of jobs.

5.2.2 Objective Values
We can compare on one hand WCTround to WCTIP, and on the other WCTfrac
to WCTLP. We present the ratios
WCTround/WCTIP and WCTfrac/WCTLP in Tables 5.4–5.6. We see that these
ratios are all quite close to 1.

The straightforward relations that one might initially expect to hold for these
values are not necessarily true. One might assume that WCTround should be
larger than WCTIP, since the former is found by an approximation algorithm
and the latter by an exact solver. Likewise, one might expect that WCTfrac
should be larger than WCTLP. Thus, we would expect all of the ratios in
Tables 5.4–5.6 to be greater than 1.

However, first we can note that WCTround is the objective value for a solu-
tion to the original problem, i.e., Definition 1.2, while WCTIP is the objective
value for an IP formulation of the problem, which can increase each comple-
tion time Cj by up to a factor (1 + ε). The actual guarantees we have are in
fact WCTround ≤ αWCTopt and WCTIP ≤ (1 + ε)WCTopt, where WCTopt is
the optimal objective value for the original problem Definition 1.2. Thus it is
possible that WCTround can be lower than WCTIP.
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Secondly, WCTLP is the objective value for a strict solution of the LP, while
WCTfrac is the objective value of a solution to a relaxation of the problem (see
Theorem 3.7 in Section 3.4). In particular, the constraint Px ≤ 1 is relaxed to
Px ≤ (1+O(ε))1, which results in the possibility for WCTfrac to be lower than
WCTLP.

Table 5.4: A comparison of the objective values from our implementation with
objective values from IP and LP solvers, for instances in category L.

Instance name WCTround/WCTIP WCTfrac/WCTLP

L_00008_22_01 0.816 0.867
L_00008_22_02 0.759 0.989
L_00008_22_03 0.905 1.000
L_00008_22_04 0.753 0.999
L_00016_64_01 0.778 0.651
L_00016_64_02 0.851 0.749
L_00016_64_03 0.816 0.852
L_00016_64_04 0.811 0.748
L_00032_181_01 0.790 0.599
L_00032_181_02 0.800 0.748
L_00032_181_03 0.753 0.599
L_00032_181_04 0.856 0.614
L_00064_512_01 0.798 0.519
L_00064_512_02 0.812 0.556
L_00064_512_03 0.821 0.540
L_00064_512_04 0.803 0.527
L_00128_1448_01 0.794 0.507
L_00128_1448_02 0.799 0.526
L_00128_1448_03 0.801 0.515
L_00128_1448_04 0.799 0.507
L_00256_4096_01 0.806 0.498
L_00256_4096_02 0.810 0.500
L_00256_4096_03 0.816 0.516
L_00256_4096_04 0.814 0.510
L_00512_11585_01 0.832 0.509
L_00512_11585_02 0.825 0.518
L_00512_11585_03 0.814 0.510
L_00512_11585_04 0.826 0.510
L_01024_32768_01 0.826 0.503
L_01024_32768_02 0.821 0.506
L_01024_32768_03 0.816 0.509
L_01024_32768_04 0.819 0.508
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Table 5.5: A comparison of the objective values from our implementation with
objective values from IP and LP solvers, for instances in category M.

Instance name WCTround/WCTIP WCTfrac/WCTLP

M_00008_8_01 0.721 0.625
M_00008_8_02 0.747 0.803
M_00008_8_03 0.754 0.783
M_00008_8_04 0.901 0.707
M_00016_16_01 0.772 0.573
M_00016_16_02 0.841 0.554
M_00016_16_03 0.860 0.588
M_00016_16_04 0.807 0.564
M_00032_32_01 0.824 0.545
M_00032_32_02 0.818 0.553
M_00032_32_03 0.808 0.521
M_00032_32_04 0.810 0.560
M_00064_64_01 0.808 0.544
M_00064_64_02 0.801 0.551
M_00064_64_03 0.809 0.542
M_00064_64_04 0.808 0.546
M_00128_128_01 0.807 0.544
M_00128_128_02 0.803 0.550
M_00128_128_03 0.805 0.556
M_00128_128_04 0.803 0.550
M_00256_256_01 0.795 0.553
M_00256_256_02 0.796 0.546
M_00256_256_03 0.796 0.550
M_00256_256_04 0.796 0.552
M_00512_512_01 0.793 0.549
M_00512_512_02 0.795 0.548
M_00512_512_03 0.795 0.548
M_00512_512_04 0.799 0.546
M_01024_1024_01 0.788 0.544
M_01024_1024_02 0.792 0.547
M_01024_1024_03 0.792 0.545
M_01024_1024_04 0.790 0.545

Table 5.6: A comparison of the objective values from our implementation with
objective values from IP and LP solvers, for instances in category S.

Instance name WCTround/WCTIP WCTfrac/WCTLP
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S_00008_2_01 0.829 0.586
S_00008_2_02 0.771 0.629
S_00008_2_03 0.799 0.585
S_00008_2_04 0.767 0.603
S_00016_4_01 0.804 0.561
S_00016_4_02 0.826 0.578
S_00016_4_03 0.802 0.559
S_00016_4_04 0.796 0.549
S_00032_5_01 0.801 0.559
S_00032_5_02 0.793 0.553
S_00032_5_03 0.807 0.554
S_00032_5_04 0.803 0.555
S_00064_8_01 0.801 0.560
S_00064_8_02 0.809 0.557
S_00064_8_03 0.810 0.550
S_00064_8_04 0.800 0.557
S_00128_11_01 0.795 0.555
S_00128_11_02 0.793 0.552
S_00128_11_03 0.797 0.556
S_00128_11_04 0.799 0.558
S_00256_16_01 0.793 0.554
S_00256_16_02 0.790 0.555
S_00256_16_03 0.792 0.555
S_00256_16_04 0.791 0.557
S_00512_22_01 0.790 0.555
S_00512_22_02 0.788 0.553
S_00512_22_03 0.791 0.554
S_00512_22_04 0.790 0.554
S_01024_32_01 0.787 0.552
S_01024_32_02 0.787 0.553
S_01024_32_03 0.788 0.553
S_01024_32_04 0.787 0.553

5.3 Behaviour of the Algorithm
This section contains a detailed analysis of the steps of the implementation on a
single instance, M_00010_10_01. We are interested to see how certain guarantees
given in [28] hold, for example, if there is some slack in a certain inequality, or
if it is a tight bound.

In Table 5.7, we present the objective value obtained from the oracle O at
each t in the MWU loop (for a certain instance). The objective value aTx(t)

increases as t → 1, and we also see that Px(t) increases, but its components
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never exceed (1+ ε)2 + ε, which in this case is (1+ 0.5)2 +0.5 = 2.75, as we use
ε = 0.5. This is guaranteed by Theorem 3.8.

From (3.33) in Section 3.4.2, we have φ = 0.5w(J) giving us the guarantee

ax(1) ≥ ax∗ − 0.5w(J),

where x∗ is an optimal solution to (3.27).
In Table 5.8, we present the value of the flow, and the sum of capacities

over the cut-set S′ for each γ, when iterating over Γ (for a certain instance and
iteration of the MWU loop). Here we compare the value of

a(S \ S′) +
γ

1 + ε
b(T (S′))

and the value of the flow f ′, for each iteration when calling find_S'_and_f'.
Note that the guarantee in Theorem 4.6, i.e.,

a(S \ S′) +
γ

1 + ε
b(T (S′)) ≤ val(f ′) +

φ

3
,

where φ/3 = 26.5/3 ≈ 8.83, holds empirically for each S′
γ and f ′γ . In this case

it even holds for φ = 0.
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Table 5.7: Details of each iteration of the MWU loop, for the instance
M_00010_10_01. We used ε = 0.5 and φ = 26.5.

t ax(t) |Px(t)|∞
0.000 0.000 0.000
0.032 120.093 0.101
0.064 240.187 0.201
0.095 360.280 0.302
0.128 484.610 0.402
0.171 644.298 0.503
0.219 821.601 0.594
0.267 998.022 0.672
0.314 1173.719 0.741
0.362 1348.810 0.803
0.410 1523.290 0.864
0.458 1699.597 0.964
0.516 1907.431 1.058
0.573 2114.912 1.152
0.630 2322.067 1.236
0.688 2529.021 1.319
0.745 2735.790 1.401
0.802 2942.379 1.483
0.860 3148.785 1.564
0.917 3354.999 1.644
0.974 3561.125 1.711
1.000 3654.212 1.756
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(a) Plot of the measured run time as a function of n+κ for our instances.
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(b) Plot of the measured run time as a function of n for our instances.

Figure 5.1: Plots of the run time as a function of n+ κ and n. Note that both
axes of the plots use a logarithmic scale.
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Table 5.8: Details of the results of each iteration of find_S'_and_f'. These
results were gathered at a MWU iteration with t = 0.314, for the instance
M_00010_10_01, with ε = 0.5.

γ a(S \ S′
γ) +

γ
1+εb(T (S

′
γ)) val(f ′γ)

8.833 15.407 18.869
10.819 18.869 23.110
13.250 23.110 28.304
16.228 28.304 34.665
19.875 34.665 42.455
24.342 42.455 51.997
29.812 51.997 63.683
36.513 63.683 77.996
44.719 77.996 95.525
54.769 95.525 116.994
67.078 116.994 143.287
82.154 143.287 175.490

100.617 175.490 214.931
123.230 219.453 262.373
150.926 262.373 314.941
184.846 318.875 375.181
226.389 375.181 444.141
277.268 446.154 516.985
339.583 541.975 599.497
415.903 605.794 668.059
509.375 668.059 744.318
623.854 749.493 830.613
764.062 830.613 929.966
935.781 947.235 1022.878

1146.093 1022.878 1115.521
1403.671 1115.521 1228.984
1719.139 1235.088 1361.024
2105.507 1363.126 1509.199
2578.708 1511.946 1671.305
3158.260 1714.771 1831.875
3868.063 1845.893 1963.665
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Conclusions and Discussion

We have implemented Li’s approximation algorithm for the scheduling problem
1|prec|

∑
j wjCj in the programming language Julia. The implementation is

quite simple, consisting of only about 2000 lines of code. We also have expanded
on the description of the algorithm, in order to make it more accessible for
nonexperts. Finally, we have evaluated our implementation on a set of randomly
generated instances. In this chapter, we state our conclusions from the results
and consider what further work could be done in this area. We also reflect on
the development process and consider what worked well and what could be done
differently.

6.1 Future Work
We start by describing possible extensions to the algorithm and other interesting
future work.

6.1.1 Extensions to the Implementation
There are a few obvious improvements that could be done, regarding the im-
plementation. Firstly, our implementation currently only handles instances for
1|prec|

∑
j wjCj . However, Li’s algorithm for P |prec|

∑
j wjCj is based on the

same LP relaxation as the algorithm for the single machine problem. Thus, if
the list scheduling algorithm [28, Algorithm 2, p. 10] were to be implemented,
we could also handle instances for P |prec|

∑
j wjCj . This is an important exten-

sion, as it would permit us to test and evaluate the performance of the algorithm
on a much wider variety of instances.

100 Alskog, 2022.
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Secondly, to actually handle all possible input instances, the LP relaxation
must be modified slightly to handle the case where pj (for all jobs j ∈ J) is not
bounded above by poly(n). This is described in [28, Appendix E.1, pp. 35–36].

Some parts of the algorithm could possibly be performed in parallel. There
are also a few other parts of the algorithm where some optimisations can be
done. It is worth investigating whether these optimisations result in improved
performance.

Given our implementation in the high-level language Julia, it should not take
too much work to write an implementation in a more low-level programming
language such as C++ or C. This could perhaps improve performance. Another
possible path is to simply optimise the Julia implementation.

6.1.2 Further Testing of the Implementation

We have evaluated the implementation on a set of randomly generated instances.
There are a number of interesting areas where further testing and evaluation of
the implementation can be done.

If more testing were to be done, we could test even larger instances, both
in terms of the number of jobs and precedence constraints. This could possi-
bly enable us to find, or at least estimate, the size of instances for which the
approximation algorithm is better than a general purpose LP solver. Such a
point must exist, because the run time of a general LP solver grows faster than
the run time of our algorithm, which has a run time which is approximately
(n + κ) · polylog(n + κ), if we disregard a few technicalities. See Figure 6.1
for an illustration of how different functions grow in comparison to each other.
However, note that it may be the case that the intersection point between the
run time of our implementation and a general LP solver is at such a large n,
that it is not relevant in practice.

One interesting extension to the evaluation could be to consider instances
where the distribution that wj or pj are taken from is not uniform. For example,
it could be interesting to see what happens if only a few jobs have nonzero
weights, or if a few jobs have much larger processing times than the other jobs.
It would not be particularly difficult to extend the instance generation function
Algorithm 16 to take a parameter w_distribution instead of w_domain.

If multiple-machine rounding was to be implemented, this would enable us to
run tests on instances gathered from many real world applications of scheduling.
See for example the applications described in Chapter 1. There are some sets
of publicly available instances for various scheduling problems. It could be
interesting to evaluate our implementation on some such sets of instances.



102 Chapter 6. Conclusions and Discussion

1 5 10 15 20 25
0

200

400

600

n

7 · n log n

n2

Figure 6.1: Example of the growth of two different functions. Here we see that
n2 > 7 · n log n for n > 21.

6.2 Concluding Remarks
In this final section, we state some concluding remarks about the development
methodology and some potential practical issues with our implementation that
might be readily corrected.

6.2.1 Development Methodology
During the implementation of the algorithm, there were several points at which
we could run the program, using an external solver instead of the “inner” parts
of the algorithm (which we had not implemented at the time). At these points,
we performed some tests to ensure that the algorithm still produced correct
results. The outputs of these partial implementations were compared against
each other to validate that they were consistent. This did hold true during the
development, however, the variety of instances and the depth of the testing were
not extensive enough, in retrospect. There were several mistakes and “bugs”,
which had to be corrected in the final implementation.

The milestones which we used were defined as: solving the IP model
(3.12)–(3.18) using an external solver; solving the LP relaxation (3.19)–(3.24)
using an external solver; solving the preprocessed LP (3.27) using an external
solver; running the MWU loop and using an external solver as the oracle for
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(3.32); finding the cut (S′, T ′) described in Section 4.1.2 using an external solver;
and finally finding the cut (S′, T ′) using the algorithm described in Chapter 4,
i.e., the complete algorithm.

6.2.2 Issues with Floating Point Numbers
The implementation as it is at the time of writing is not particularly robust to
rounding errors. One example of where such a problem arises is when computing
the support of a flow. The flow might have some components which are very
near zero, but positive, due to floating point rounding errors. We must then
take care not to include edges e where, for example, fe < 10−10, in supp f .

Another example is when computing the capacities of edges, before calling
the blocking flow algorithm. The blocking flow algorithm requires that the
capacities are nonnegative, however, they are defined by the expressions

cs∗,s = as −
∑

e∈δ+(s)

f ′
e

and
ct,t∗ = γbt −

∑
e∈δ−(t)

f ′
e,

which both include a subtraction and a sum of the flow over a few edges. It is
thus quite easy for a situation where the capacity should be zero, but it actually
is slightly negative, to arise. This must also be handled, by setting ce to zero
whenever, for example −10−10 < ce < 0.

It would be beneficial to make a systematic analysis of the code with regard
to this problem. This should be done in order to identify and correct all areas
where there might be problems.

To get more resilience to such numerical issues, the implementation currently
uses extended precision floating point numbers (Double64 from the DoubleFloats
package). Although faster than the built-in BigFloat, these numbers are slower
than standard floating point numbers (e.g., Float64). Thus, after a thorough
revision of the code to better handle rounding issues, it might be possible to use
Float64, and obtain a reduction of the run time.

6.2.3 The Practicality of the Algorithm
As we have noted above, the current implementation of the algorithm is not
very useful in practice. Using an external LP solver on the LP relaxation, in
combination with the rounding algorithm we have implemented, is significantly
faster. However, if the changes in Section 6.2.2, together with a few other



104 Chapter 6. Conclusions and Discussion

optimisations of the algorithm, were to be implemented, we could expect the
performance to improve quite a bit. It is not currently possible to say whether
this would result in the implementation being competitive with an external LP
solver, but perhaps for very large instances, it could be a good option. We
believe this because the size of the LP relaxation of the problem grows with
n. The number of variables is O(n log n/ε) and the run time of the best LP
solvers grows faster than the run time of our implementation, with the number
of variables. Thus, at least for large n, we should prefer our implementation.
What remains is only the matter of speeding up our implementation so that the
bound for what we consider “large” is low enough to be practical.
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Appendix A

Additional Proofs and
Algorithms

In this appendix, some algorithms which are commonly known and used are
explained.

A.1 Topological Ordering
Algorithm 17 finds a topological ordering for a given graph.

Definition A.1. Let G = (V,E) be a DAG. A topological ordering is an or-
dering of the vertices V such that if (v, v′) ∈ E, then v comes before v′ in the
order.

We can represent a topological ordering by a function ρ : V → Z≥0 that gives
the index of each vertex in the ordering. This function should then be such that

(v, v′) ∈ E =⇒ ρ(v) < ρ(v′),

for it to represent a topological ordering.
Algorithm 17 works by recursively visiting each node, and then visiting its

(unmarked) successors until it reaches one with no (unmarked) direct successors.
Each node is marked after visiting it. This strategy is known as depth-first
search (DFS) [7, Chapter 22.4, pp. 549–551]. The found node is then assigned
the index i, and i is decreased. Then, we work backwards, giving each node v
an index ρ(v) such that

v ∈ ∆+(u) =⇒ ρ(u) < ρ(v).
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That the run time is O(|V |+ |E|) can be seen by noting that visit(v) is called

Algorithm 17 An algorithm that finds a topological ordering S for the DAG
G = (V,E).
Input: A graph G = (V,E).
Output: A topological ordering S.
M ← all-false vector over V . marked (i.e., visited) nodes
T ← all-false vector over V . temporarily marked nodes
S ← empty vector
procedure visit(v)

if Mv is true then
return

else if Tv is true then
quit with error . graph is not a DAG

end if
Tv ← true
for u ∈ ∆+(v) do

visit(u)
end for
Tv ← false
Mv ← true
push v to the beginning of S

end procedure
for v ∈ V do . order of iteration does not matter

visit(v)
end for

once for each v ∈ V , i.e. |V | times. The function visit(u) is also called once for
each u ∈ ∆+(v) where v ∈ V , resulting in a total of∑

v∈V

|∆+(v)| =
∑
v∈V

|δ+(v)| = |E|

calls.

A.2 Finding a Blocking Flow
An algorithm for finding a blocking flow, i.e., a flow in which there is no s-t-path
consisting entirely of unsaturated edges, was presented in 1983 by Sleator and
Tarjan [34, pp. 387–389]. In Algorithm 18, their description of the algorithm is
given. In Algorithm 19, our implementation of the algorithm is found.
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Before we present the algorithm, we give a list of operations on link-cut tree
nodes, which are used in the algorithm. For any two link-cut tree nodes v and
w, the following operations (among others) are defined:

root(v) returns the root of the tree v belongs to,

parent(v) returns the parent node of v,

cost(v) returns the cost of the edge from v to its parent,

link(v, w, c) creates an edge from v to w with cost c ∈ R≥0,

cut(v) removes the edge from v to its parent,

mincost(v) find a node v′ in the path from v to the root, such that the cost of
the edge (v′,parent(v′)) is minimised,

update(v,∆c) update all costs of edges in the path from v to the root by adding
∆c ∈ R.

A.3 Auxiliary functions for Algorithm 15
Here we present three auxiliary functions. The first two, Algorithm 20 and Algo-
rithm 21, are used by Algorithm 15 directly, to construct the handled graph G′

and the graph R, respectively. The third, Algorithm 22, is used by Algorithm 12
to find the distance from unsatisfied sinks to all vertices in G.
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Algorithm 18 Sleator and Tarjan’s algorithm for finding a blocking flow.

Step 0 Create a forest of link-cut trees, with one tree for each vertex of the
graph. Go to Step 1.

Step 1 Let v = root(s). If v = t go to Step 4; otherwise, go to Step 2.

Step 2 (v 6= t; extend path. If no edges leave vertex v, go to
Step 3. Otherwise, select an edge (v, w) leaving v and perform
link(v, w, capacity((v, w))). Go to Step 1.

Step 3 (all paths from v to t are blocked) If v = s, compute the unused capacity
of every tree edge using cost, and stop. Otherwise, delete from the graph
every edge entering v. For each such edge (u, v) that is a tree edge, perform
cut(u), recording the unused capacity. Go to Step 1.

Step 4 (v = t; the tree path from s to t is augmenting) Let v = mincost(s)
(edge (v, parent(v)) is a minimum-capacity edge on the augmenting path).
Let c = cost(v). Perform update(s,−c). Go to Step 5.

Step 5 (delete edges with no remaining capacity) Let v = mincost(s). If
cost(v) = 0, delete (v, parent(v)) from the graph, perform cut(v), record-
ing an unused capacity of zero, and repeat Step 5. Otherwise (when
cost(v) > 0), go to Step 1.
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Algorithm 19 Our implementation of Algorithm 18.

1 function find_blocking_flow(G::Graph, capacity::Vector, s_star, t_star)

2 trees = [make_tree(Int, Int, R, v) for v in 1:G.n]

3 m = length(capacity)

4 unused_cap = zeros(R, m) # unused (residual) capacity

5 s = trees[s_star]

6 t = trees[t_star]

7 while true

8 while true

9 # step 1

10 v = find_root(s)

11 if v === t break end # go to step 4

12 # step 2

13 if !isempty(δ_out(G, label(v)))

14 # arbitrarily select an outgoing edge

15 e = first(δ_out(G, label(v)))

16 link!(v, trees[dst_vertex(G, e)], e, capacity[e])

17 continue # go to step 1

18 end

19 # step 3

20 if v === s

21 for w_idx in 1:G.n # compute unused capacity

22 w = trees[w_idx]

23 u = parent(w)

24 for e in δ_out(G, w_idx)

25 unused_cap[e] += trees[dst_vertex(G, e)] === u ? cost(w) :

capacity[e]

26 end

27 end

28 return [capacity[e] - unused_cap[e] for e in 1:m] # and stop

29 else

30 for e in collect(δ_inc(G, label(v)))

31 # record the unused capacity and cut incoming edges

32 u = trees[src_vertex(G, e)]

33 if parent(u) === v

34 unused_cap[e] += cost(u)

35 cut!(u)

36 else

37 unused_cap[e] += capacity[e]

38 end

39 delete_edge!(G, e) # and delete e from the graph

40 end

41 continue # goto step 1

42 end

43 end

44 # step 4

45 (v,c) = find_mincost(s)

46 add_cost!(s, -c)

47 while true

48 # step 5

49 (v,c) = find_mincost(s)

50 if parent(v) === nothing

51 break

52 end

53 if c > 0

54 break # go to step 1

55 end

56 delete_edge!(G, edge_label(v))

57 cut!(v)

58 # record unused capacity of 0 and go to step 5

59 end

60 end

61 end
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Algorithm 20 Constructing the graph G′.

1 function construct_G′(

2 l::Int,

3 G::Graph,

4 a::Vector{R},

5 b::Vector{R},

6 adj_Gi_minus::Vector{Vector{Tuple{Int,Vector{Int}}}}) where R<:Real

7 # construct G′

8 # this assumes that none of the edges of G have been removed

9 G′_edges = [(src_vertex(G, e),dst_vertex(G, e)) for e in 1:G.m]

10 n′ = G.n

11 π′ = collect(1:G.n)

12 # again assume that no edges have been removed

13 π′_edge = collect(1:G.m)

14 π′_edge_inv = [Tuple{Int,Int}[] for _ in 1:G.m]

15 for i in 1:l

16 π′_inv = zeros(Int, G.n)

17 for (v,_) in adj_Gi_minus[i]

18 if a[v] > 0 || b[v] > 0

19 # vertices in S or T are not copied

20 π′_inv[v] = v

21 else

22 n′ += 1 # add new vertex

23 push!(π′, v) # record what it's a copy of

24 π′_inv[v] = n′ # = the new vertex

25 end

26 end

27 for (v,out) in adj_Gi_minus[i]

28 for e in out

29 u = dst_vertex(G, e)

30 push!(π′_edge, e)

31

32 push!(G′_edges, (π′_inv[v],π′_inv[u]))

33 e′ = length(G′_edges)

34 push!(π′_edge_inv[e], (i,e′))

35 end

36 end

37 end

38 G′ = Graph(n′, G′_edges)

39 (G′,π′,π′_edge,π′_edge_inv)

40 end
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Algorithm 21 Constructing the graph R.

1 function construct_R_graph(

2 l, G::Graph, G′::Graph, f′::Vector, a::Vector, b::Vector, γ,

3 adj_Gi_plus, adj_Gi_minus, Si, Ti, π′_edge_inv)

4 R_edges = Tuple{Int,Int}[] # R = (V′,E_R), C : E_R → [0,∞]

5 C = R[]

6 inf_cap = 2*sum(a) # larger than any necessary capacity

7 # note that -1 is never a valid edge index

8 edge_in_R_graph = fill(-1, G′.m)

9

10 for i in 1:l+1

11 for (v,out) in adj_Gi_plus[i]

12 for e in out

13 u = dst_vertex(G, e)

14 push!(R_edges, (v,u))

15 edge_in_R_graph[e] = length(R_edges)

16 push!(C, inf_cap)

17 end

18 end

19 end

20 for i in 1:l

21 for (_,out) in adj_Gi_minus[i]

22 for e in out

23 e′ = get_edge_inv(π′_edge_inv, e, i)

24

25 u = dst_vertex(G′, e′)

26 v = src_vertex(G′, e′)

27 push!(R_edges, (u,v)) # note reversed direction

28 edge_in_R_graph[e′] = length(R_edges)

29 push!(C, f′[e′])

30 end

31 end

32 end

33

34 s_star = G′.n+1

35 for s in Si[1]

36 push!(R_edges, (s_star,s))

37 # edge_in_R_graph[e] = 0

38 c = a[s] - sum(f′[e] for e in δ_out(G′, s); init=zero(R))

39 c = warn_if_negative(c)

40 push!(C, c)

41 end

42 t_star = G′.n+2

43 for t in Ti[l+1]

44 push!(R_edges, (t,t_star))

45 # edge_in_R_graph[e] = 0

46 c = γ*b[t] - sum(f′[e] for e in δ_inc(G′, t); init=zero(R))

47 c = warn_if_negative(c)

48 push!(C, c)

49 end

50

51 # clean up near-zero negative floats

52 for k in 1:length(C)

53 if C[k] < 0 && abs(C[k]) < VARIABLE_TOL

54 C[k] = zero(R)

55 end

56 end

57

58 R_graph = Graph(G′.n+2, R_edges)

59 (R_graph,C,edge_in_R_graph,s_star,t_star)

60 end
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Algorithm 22 Finding the distance from unsatisfied sinks.

1 function find_distance_from_S_and_T(L, G′::Graph, a::Vector, S::Vector, T::Vector, f′::

Vector)

2 N = G′.n

3 F_edges = [(src_vertex(G′, e),dst_vertex(G′, e)) for e in 1:G′.m]

4 weight = zeros(Int, G′.m)

5 for e in 1:G′.m

6 if f′[e] > 0

7 # the edge (v,u) is in the support of f′, so add the edge (u′,v′) to F

8 v = src_vertex(G′, e)

9 u = dst_vertex(G′, e)

10 push!(F_edges, (N+u,N+v))

11 push!(weight, 0)

12 end

13 end

14 for s in S

15 # add edge from s′ to s with weight 1

16 push!(F_edges, (N+s,s))

17 push!(weight, 1)

18 end

19 for t in T

20 # add edge from t to t′ with weight 1

21 push!(F_edges, (t,N+t))

22 push!(weight, 1)

23 end

24 F = Graph(2*N, F_edges)

25

26 # construct S[1], ..., S[L+2] and T[1], ..., T[L+2]

27 q0 = Queue{Int}()

28 q1 = Queue{Int}()

29 distance = fill(10*(L+1), 2*N) # 10*(L+1) is basically infinity

30 visited = falses(2*N)

31

32 for s in S

33 out_flow = sum(f′[e] for e in δ_out(G′, s); init=zero(R))

34 if EXPRESSION_TOL < a[s] - out_flow # s not saturated by flow f′

35 enqueue!(q0, N+s)

36 end

37 end

38

39 d = 0

40 while true

41 if !isempty(q0)

42 v = dequeue!(q0)

43 if !visited[v]

44 distance[v] = d

45 visited[v] = true

46 for e in δ_out(F, v)

47 if weight[e] == 0

48 enqueue!(q0, dst_vertex(F, e))

49 else

50 enqueue!(q1, dst_vertex(F, e))

51 end

52 end

53 end

54 elseif !isempty(q1)

55 (q0,q1) = (q1,q0) # swap q0 and q1

56 d += 1

57 else

58 break

59 end

60 end

61 distance

62 end
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