Causal Models of Mobile Service Robot Behavior

Michael Beetz and Henrik Grosskreutz
University of Bonn, Dept. of Computer Science 111,
Roemerstr. 164, D-53117 Bonn, Germany,
email: beetz, grosskre@cs.uni-bonn.de

Abstract

Temporal projection, the process of predicting what
will happen when a robot executes its plan, is essen-
tial for autonomous service robots to successfully plan
their missions. This paper describes a causal model
of the behavior exhibited by the mobile robot RHINO
when running concurrent reactive plans for performing
office delivery jobs. The model represents aspects of
robot behavior that cannot be represented by most ac-
tion models used in Al planning: it represents the tem-
poral structure of continuous control processes, several
modes of their interferences, and various kinds of un-
certainty. This enhanced expressiveness enables XFRM
(McD92; BM94), a robot planning system, to predict,
and therefore forestall, various kinds of behavior flaws
including missed deadlines whilst exploiting incidental
opportunities. The proposed causal model is experi-
mentally validated using the robot and its simulator.

Introduction

Temporal projection, the process of predicting what
will happen when a robot executes its plan, is essential
for autonomous service robots to successfully plan their
missions. For the projection of their plans robots must
have causal models that represent the effects of their
actions. Most Al planning systems use fairly simple
models of their actions and restrict themselves to work
on plans that are partially ordered sets of actions.
Unfortunately, in autonomous robot control we of-
ten cannot consider plans as partially ordered sets of
atomic actions without thwarting many opportunities
for improving the robots’ behavior through planning.
The actions of robots have extents in both space and
time and the information available for planning is defi-
cient. The actions’ extent and dependence on time re-
quire planning systems to predict when actions are ex-
ecuted, how long they take, and how they overlap with
concurrent actions. The restrictedness, unreliability,
and inaccuracy of sensors and effectors requires that
planning systems compute flexible plans and are able
to reason through contingencies whose likelihoods are

a priorl unknown and varying. These flexible plans vi-
olate assumptions underlying most action models used
for planning — in particular the assumptions about the
irrelevance of the temporal structure of actions and the
exclusion of interferences between concurrent actions.

Forestalling a wide range of behavior flaws typical
for service robots requires the planner to make use of
models that represent continuous processes, exogenous
events, interferences between concurrent behavior, in-
complete information, and passive sensors.

This paper describes a
model for predicting the be-
havior generated by a robot
controller for office delivery
jobs. The controller i1s de-
signed for robust and efficient
execution of delivery plans on
the autonomous mobile robot
RHINO (see Fig. 1), an RWI
B21 robot. The causal model Fig. 1: RuiNo
represents various kinds of uncertainty, the temporal
structure and concurrent execution of continuous con-
trol processes, and thereby enables the transforma-
tional planning system XFRM (McD92; BM97) to fore-
stall a variety of behavior flaws (BM94).

To predict possible execution scenarios quickly and
to keep the representation of the scenarios concise
the causal models of continuous control processes are
(partly) generated and revised during the temporal
projection of the processes. This allows the projec-
tion algorithm to use causal models tailored for the
surrounding plan and its state of execution. These
context-specific causal models predict only those state
transitions caused by the continuous processes that
might affect the course of plan execution.

We use RHINO’s navigation behavior as our princi-
ple example for sensor-driven, concurrent control pro-
cesses. Navigation behavior has several advantages
over other kinds of control processes: first, it’s difficult
to imagine having a sophisticated planner for mobile

robot applications without having an adequate model
of navigation behavior; second, navigation is one of
the best understood capabilities of mobile robots; and
third, navigation is a suitable means for experimentally
validating the causal models of concurrent continuous
processes.

In this paper we proceed as follows. The next sec-
tion describes the plans of the office delivery robot that
are to be projected. The rule language for specifying
causal models of actions is sketched in the subsequent
section. The section on modeling RHINO’s behavior
applies the rule language to model the base navigation
plans and the events that occur in the environment.
Finally, we give some experimental results on the accu-
rateness of the symbolic predictions of robot behavior.

Plans of an Office Delivery Robot

We use structured reactive plans (SRPs) to specify
how the delivery robot is to respond to sensory input
in order to accomplish its jobs. They are written in RPL
(Reactive Plan Language) (McD91), a Lisp-like robot
control language with conditionals, loops, local vari-
ables, processes, and subroutines. RPL provides several
high-level concepts (interrupts, monitors) to synchro-
nize parallel actions, make plans reactive, and so on.

Structured Reactive Delivery Plans

To illustrate the advantages of high-level plans that
specify concurrent reactive behavior, we sketch a plan
that specifies how RHINO (see Fig. 1) is to deliver mail
to the rooms A-120, A-113, A-121, and A-110. Ini-
tially, the planner asked the robot to perform the de-
liveries in the order A-120, A-113, A-121, and A-110.
However, because the room A-120 is closed the cor-
responding delivery cannot be completed. Therefore,
the planning system revises the overall plan such that
the robot is to accomplish the delivery for A-120 as an
opportunity. In other words, the robot will interrupt
its current delivery to deliver the mail to A-120 (see
Fig. 2) if the delivery can be completed.

WITH-POLICY WHENEVER PASSING A DOOR
ESTIMATE DOOR ANGLE
WITH-POLICY SEQ WAIT-FOR OPEN?(A-120)
DELIVER MAIL TO Dieter
1.GO-TO(A-113)
2. GO-TO(A-121) BEFORE 10:30
3. GO-TO(A-110)

Figure 2: Office delivery plan
Constraints such as “whenever the robot passes a

door 1t estimates the opening angle of the door using
its laser range finders” and opportunities such as “com-
plete the delivery to room A-120 as soon as you learn
the office 1s open,” which are necessary for carrying out
the jobs opportunistically, are specified using the rRpL

construct WITH-POLICY. WITH-POLICY P B means “execute
the primary activity B such that the execution satisfies
the policy p.” Policies are concurrent processes that
run while the primary activity is active and interrupt
the primary if necessary.

Events that require RHINO to perform actions such
as “passing a door” are handled through fluents, pro-
gram variables that signal changes of their values
and thereby enable control threads to react to asyn-
chronous events. For instance, the RPL statement
WHENEVER F B is an endless loop that executes B when-
ever the fluent F gets the value “true.” WAIT-FOR F,
another control abstraction, blocks a thread of control
until the fluent F becomes true.

When a delivery gets interrupted because the robot
has detected that the door to A-120 is open, that op-
portunity has a side effect: 1t moves the robot into the
office A-120. The interrupted delivery plan has there-
fore to be replanned before it can be continued.

This in mind, we implement the navigation routine
as a loop that generates and executes base navigation
plans until the robot has arrived at its destination.
Interrupts are handled by terminating the current it-
eration of the loop and starting the next iteration in
which a new navigation plan starting from RHINO’s
new position is generated (BBFC98).

Base Navigation Plans

Base navigation plans are also specified as concurrent
reactive RPL plans. Figure 3 pictures such a navigation
plan, that is automatically generated for a given desti-
nation by the SRP’s navigation planner. The plan con-
sists of two components. The first specifies a sequence
of target points (the locations indexed by the numbers
1 to 5 in Figure 3) to be reached by the robot. The
navigation between the target points is accomplished
by a standard path planner (TBB*98).

Fig. 3: Topological navigation plan

The second component specifies in detail when and
how the robot is to adapt its travel modes as it follows
the navigation path (FBT97). In many indoor environ-
ments it 1s advantageous to adapt the driving strategy

to the surroundings: to drive carefully (and therefore
slowly) within offices because offices are cluttered, to
switch off the sonars when driving through doorways
(to avoid crosstalk between the sonars), and to drive
quickly in the hallways. This part of the plan 1s de-
picted by regions with different textures for the differ-
ent travel modes “office,” “hallway,” and “doorway.”
Whenever the robot crosses the boundaries between
regions the appropriate travel mode is set.

Issues and Requirements

Suppose RHINO has received two electronic mails (1)
“Dieter will be back at 10:25” and (2) “We move ta-
bles from room A-110 to A-117.” In this situation the
task of the temporal projection module is the following:
given the delivery plan in Fig. 2 predict whether, in
conjunction with the new evidence, the plan is still ap-
propriate. In particular, the projection module should
predict that the robot is likely to miss the deadline for
the delivery to room A-121 (because it will take the op-
portunity to complete the delivery to A-120) and that
the robot is likely to bump into a table when entering
room A-110 (because it switches off sonar sensors when
entering doorways).

Making these predictions requires that the robot
planning system uses models of

e continuous processes for the base navigation plans
that predict whether and when endogenous events,
such as adaptations of the driving strategy and pass-
ing a door will occur;

e exogenous events like the opening of the door to room
A-120 around 10:25 or the refurnishing of A-110;

e interferences between concurrent behavior like the in-
teruption of a delivery plan to make use of the open
door to room A-120 to deliver the mail;

e incomplete information including the duration of
events, non-deterministic effects, and sensor models;

e passive sensors and obstacle avoidance such that the
models predict readings from passive sensors only
when they determine the course of action.

Probabilistic, Totally-Ordered
Temporal Projection

We use the representation of events and their effects
and the temporal projection algorithm developed by
McDermott and described in (McD92; McD94). The
plan projection process takes the current world model,
a structured reactive plan, rules for generating exoge-
nous events, and rules for probabilistically guessing
missing pieces of the world model together with proba-
bilistic causal models of the basic control routines and
generates execution scenarios of the plan.

An execution scenario represents how the execution
of a robot controller might go, that is, how the envi-
ronment changes as the structured reactive controller
gets executed. A timelineis a linear sequence of events
and their results. Timelines represent the effects of
plan execution in terms of time wnstants, occasions,
and events. Time instants are points in time at which
the world changes due to an action of the robot or
an exogenous event. An occasion is a stretch of time
over which a world state p holds and is specified by a
proposition, which describes P, and the time interval
for which proposition is true.

The plan projector works exactly like the plan inter-
preter, except that, whenever the executed plan inter-
acts with the real world, correspondingly the projected
plan interacts with the timeline. The places where this
happens are the low-level plans, such as the base nav-
igation plans: the projector guesses the results of exe-
cuting these plans and asserts their effects in the form
of propositions on the timeline.

The representational means for specifying causal
models used in the remainder of the paper are sum-
marized below (see (McD94)):

e Projection rules have the form (PROJECT ¢ A Es 0)
and the following meaning: if routine C starts and
A holds, then the events Es will occur and C will
return O upon completion. The outcome 0 is ei-
ther of the form (FINISH —vALUES—) if the routine
is completed successfully or (FAIL —DESCRIP—) oth-
erwise. This statement specifies the signal that is
sent by the behavior module when the behavior is

completed.
e Effect rules (E->P 4 E r B) specify that whenever
event F occurs and A holds, then with probability
r create and clip states as specified. The effects of
the E->P rules have the form A, causing the occasion
A to hold, (cLIP 4), causing A to cease to hold, and
(PERSIST ¢ A), causing A to hold for ¢ time units.
¢ Exogenous event rules are specified as P->E rules.
(P->E A d E) generate over any interval in which A is
true, generates random “Poisson-distributed” events
with an average spacing of d time units.
McDermott (McD94) gives a formal semantics for
the rule language introduced above, shows that a con-
sistent set of rules has a unique model, and proves the
algorithms for building and retrieving from the time-
line to be correct. (BM97) show that the average per-
formance of robot plans can be improved based on a
small number of randomly projected scenarios.

Modeling RHINO’s Behavior

After the description of the office delivery plans and the
introduction of projection, F->P, and P->F rules as a
means for representing action and change, we will now

apply these representations to describe the behavior
caused by the execution of delivery plans, such as the
one listed in Fig. 2.

The delivery plans control a dynamic system
(cf. (DW91)): the robot RHINO in its environment (see
Fig. 4). The state variables of the dynamic system
that are relevant for the delivery plans are the vari-
ables x, Y representing RHINO’s position, and the vari-
ables DOOR-ANGLE; representing the opening angle of the
doors. The robot controller uses fluents to store the
robot’s measurements of these state variables (RHINO-
X*, RHINO-Y*, DOOR-A120, etc.). The fluents are steadily
updated through “sensing processes” such as the po-
sition tracking process (BBFC98) and a model-based
procedure for estimating the opening angles of doors.
The actions generated by the controller are all changes
of the velocity and the heading of the robot.

ENVIRONMENT
f(s(t-1),a(t-1))
State Variables

DOOR-
X Y ANGLE

EFFECTORS
a(t)

SENSORS
h(s®)

STRUCTURED REACTIVE
CONTROLLER

RHINO-X*
Delivery Plan .
from Figure 1 RHINO-Y

DOOR-A120

Fig. 4: Office delivery as a dynamic system

Unfortunately, dynamic system models of plan exe-
cution that describe all state transitions are too fine-
grained to be useful for AI planning. On the other
hand, we cannot simply make the model more coarse-
grained: as we have pointed out earlier, the delivery
plans specify how the robot is to respond to changes
in the dynamic system, and therefore any states the
dynamic system traverses might potentially change the
course of action drastically.

Resolving the conflicting requirements of (1) predict-
ing all relevant events and states and (2) both generat-
ing projections quickly and representing them concisely
constitutes a difficult problem in applying Al planning
to autonomous robot control. Our approach to satisfy-
ing these requirements is to construct part of the causal
models of continuous processes in a context-dependent
way based on an analysis of the computational state of
plan execution at the start of the process.

We model the behavior generated by base naviga-
tion plans as a complex event that causes only qualita-
tive changes of behavior (e.g. adaptations of the travel
mode) and those changes of the robot’s position that
are relevant for the execution of the overall plan (e.g.
entering the hallway or passing a door). To realize this
model, the continuous processes are projected as fol-

lows: (1) analyze the computational state and extract
the conditions caused by the process and waited for by
concurrent branches of the delivery plan; (2) estimate
when the conditions will become true and what the
values of the system variables at that time will be; and
(3) generate a context-dependent causal model that is
used for projecting the plan.

Projecting Continuous Behavior

For efficiency reasons the process of projecting a con-
tinuous process p is divided into two phases. The
first phase estimates a schedule for endogenous events
caused by p while considering possible effects of p
on other processes but not the effects of the other
processes on p. This schedule 1s transformed into
a context-specific causal model tailored for the plan
which 1s to be projected. The second phase projects
the plan p using the model of endogenous events con-
structed in the first phase. This phase takes into ac-
count the interferences with concurrent events and re-
vises the causal model if situations arise in which the
assumptions of the precomputed schedule are violated.

The projection module uses a model of the dynamic
system that specifies for each continuous control pro-
cess the state variables it changes and for each state
variable the fluents that measure that state variable.
For example, consider the base navigation plans that
steadily change the robot’s position (that is the vari-
ables x and Y). The estimated position of the robot is

stored in the fluents RHINO-x* and RHINO-Y*:

CHANGES(BASE-NAVIGATION-PLAN, X)
CHANGES(BASE-NAVIGATION-PLAN, Y)
MEASURES(RHINO-X*, X)
MEASURES(RHINO-Y*,Y)

Extracting relevant conditions. When the projec-
tor starts projecting a base navigation plan it computes
the set of pending conditions that depend on RHINO-X*
and RHINO-Y*, which are the fluents that measure the
state variables of the dynamic system and are changed
by the base navigation plan. These conditions are im-
plemented as fluent networks.

Fig. 5: Fluent network for being in room A-120

Fluent networks are digital circuits where the com-
ponents of the circuit are fluents. Fig. 5 shows a fluent
network where the output fluent is true, if and only
if RHINO 1s in room A-120. The inputs of the circuit
are the fluents RHINO-X* and RHINO-Y* and the circuit is
updated whenever RHINO-Xx* and RHINO-Y* change.

Structured reactive plans are set up such that the
fluent networks that compute conditions for which the
plan is waiting can be automatically determined using
(ProLOG-like) relational queries:

(SETOF ?FL-NET (AND (FLUENT ?FL) (STATUS ?FL PENDING)
(CHANGES BASE-NAV-PLAN 7STATE-VAR)
(MEASURES ?STATE-VAR-FL ?STATE-VAR)
(DEPENDS-ON ?FL ?STATE-VAR-FL)
(FLUENT-NETWORK ?FL ?FL-NET))
?PENDING-FL-NETS)

This query determines ?PENDING-FL-NETS, the set of flu-
ent networks ?FL-NET such that ?FL-NET is a network with
output fluent ?FL. ?FL causes a plan thread to pend and
depends itself on a fluent measuring a state variable
?STATE-VAR changed by the base navigation plan.
Endogenous event schedules. For each class of con-
tinuous processes we have to provide an endogenous
event scheduler that takes the initial conditions of the
process, the parameterization of the process, and the
fluent networks that might be triggered by the process
and computes the endogenous event schedule. The en-
dogenous event scheduler for the base navigation plans
is described in the next section. Given the kind of pro-
cess (e.g., base navigation plan), the process parame-
ters (e.g., the destination of the robot), and the pend-
ing fluent networks, the scheduler returns the sequence
of predicted endogenous events, which are triples of the
form (At, (SV1, ..., SV,.), {evi, ..., evn,). At 1s the delay be-
tween the ith and the ¢+ Ith event in the schedule, (sv;,
..., SV,) the values of the state variables, and {evq, ..., ev,}
the events that are to take place.

If a state for which the plan is waiting, becomes true

at a time instance ¢, then at ¢ a PASSIVE-SENSOR-UPDATE
event is triggered. PASSIVE-SENSOR-UPDATE 1s an event
model that takes a set of fluents as its parameters,
retrieves the values of the state variables measured by
these fluents, applies the sensor model to these values,
and then sets the fluents accordingly.
A causal model of base navigation plans. Pro-
jecting the initiation of the execution of a navigation
plan causes two events: the start event and a hypo-
thetical completion event after infinite number of time
units. This is shown in the following projection rule.

(PROJECT (BASE-NAV-PLAN ?DEST-DESCR ?ID ?FLUENT)
(TRUE)
(0 (BEGIN (BASE-NAV-PLAN ?DEST-DESCR ?ID ?FLUENT))
oo (END (BASE-NAV-PLAN ?DEST-DESCR ?ID ?FLUENT)))
(FINISH))

The effect rule of the start event of the base naviga-
tion plan computes the endogenous event schedule and
asserts the schedule the occurrence of the next endoge-
nous navigation event as an occasion to the timeline.

(E->P (ENDOGENOUS-EVENT-SCHEDULE
BASE-NAV-PLAN ?DEST-DESCR ?SCHEDULE)
(BEGIN (BASE-NAV-PLAN ?DEST-DESCR ?ID ?FLUENT))
1.0 (AND (PREDICTED-EVENTS ?ID ?SCHEDULE)
(RUNNING (RHINO-GOTO ?DESCR ?ID))
(NEXT-NAV-EVENT 7ID)))

The occasion (NEXT-NAV-EVENT 7ID) triggers the next
endogenous event (BEGIN (FOLLOW-PATH ?HERE (?X,?Y})) 7DT
?21D)). The remaining two conditions determine the pa-
rameters of the FOLLOW-PATH event: the next scheduled
event and RHINO’s position.

(P->E (AND (NEXT-NAV-EVENT ?ID)
(PREDICTED-EVENTS ?ID
((?DT {?X,7Y) ?EVS) 17REMAINING-EVS))
(RHINO-LOC ?HERE))
0.0 (BEGIN (FOLLOW-PATH ?HERE (?X,?Y} ?DT 7ID)))

The effect rule of the (BEGIN (FOLLOW-PATH ...)) event
specifies among other things that the next endogenous
event will occur after ?pT time units (PERSIST ?DT (SLEEP-
ING 7ID)).

(E->P (RHINO-LOC ?COORDS)
(BEGIN (FOLLOW-PATH ?FROM ?TO ?DT ?ID))
1.0 (AND (RUNNING (FOLLOW-PATH ?FROM ?TO ?DT ?ID))
(CLIP (RHINO-LOC ?COORDS))
(CLIP (NEXT-NAV-EVENT ?ID))
(PERSIST ?DT (SLEEPING ?ID))))

If a running follow path event has finished sleeping
the (END (FOLLOW-PATH ...)) event occurs.

(P->E (AND (NOT (SLEEPING ?ID))
(RUNNING (FOLLOW-PATH ?FROM ?TO ?TIME ?ID)))
0.0 (END (FOLLOW-PATH ?FROM ?TO ?TIME ?ID)))

Our model of base navigation plan presented so far
suffices as long as nothing important happens while
carrying out the plan. However, suppose that an ex-
ogenous event that causes an object to slip out of the
robot’s hand is projected at time instant ¢ while the
robot is in motion. To predict the new location of the
object the projector predicts the location [of the robot
at the time ¢ and asserts it in the timeline.

Qualitative changes in the behavior of the robot
caused by adaptations of the travel mode are described
through E->p-rules. The following E->P-rule describes
the effects of the event (NAV-EVENT (SET-TRAVEL-MODE ?N)):

E->P (TRAVEL-MODE ?M)
(NAV-EVENT (SET-TRAVEL-MODE DOORWAY))
1.0 (AND (CLIP (TRAVEL-MODE ?M))
(CLIP (OBSTACLE-AVOIDANCE-WITH SONARY))
(TRAVEL-MODE DOORWAY)))

The rule specifies that if at a time instant at which
an event (NAV-EVENT (SET-TRAVEL-MODE ?N)) occurs the
state (TRAVEL-MODE ?M) holds for some ?m, then the states
(TRAVEL-MODE ?M) and (OBSTACLE-AVOIDANCE-WITH SONAR)
will (with a probability of 1.0) not persist after the event
has occurred, i.e., they are clipped by the event. The
event also causes the state (TRAVEL-MODE DOORWAY) to
hold until it is adapted the next time.

Endogenous Event Scheduler

We have just shown how events are projected from
a given endogenous event schedule, but we have not
shown how the schedule 1s constructed. Thus, this sec-
tion describes the implementation of the endogenous
event scheduler for base navigation plans. The sched-
uler predicts the effects of the base navigation plan

on the state variables x and Y. The endogenous event
scheduler assumes the robot follows a straight path
between the locations 1 to 5. As we have pointed out
earlier, there are two kinds of events that need to be
predicted: the ones causing qualitative physical change
and the ones causing the ¢rigger conditions that the
plan is waiting for.

The qualitative events caused by the base navigation
plan pictured in Fig. 2 are the ones that occur when the
robot arrives at the locations 1, 2, 3, 4, and 5 in which
the robot either changes its travel mode or arrives at
its destination. For each of these time instants the
occurrence of a SET-TRAVEL-MODE-event is predicted.

The scheduler for trigger events works in two phases:
(1) it transforms the fluent network into a condition
that it is able to predict and (2) it applies an algo-
rithm for computing when these events occur. The
conditions that are caused by the base navigation plan
can be represented as regions in the environment such
that the condition is true if and only if the robot is
within this region. The elementary conditions are nu-
meric constraints on RHINO’s position or the distance
of RHINO to a given target point. The scheduler as-
sumes that RHINO-x* and RHINO-Y* are the only fluents
in these networks that change their value during the
execution of the plan. More complex networks can be
constructed as conjunctions and disjunctions of the el-

ementary conditions.

E

Fig. 6: Inmitially predicted endogenous events

The endogenous event scheduler approximates the
regions by rectangular areas in order to apply faster
computation methods. Consequently, circles, that is
regions specified by a maximal distance to a given
point, are approximated as the surrounding squares.
Thus, the step performed by the endogenous event
scheduler is to transform the given fluent network into
a union or intersection of rectangles.

In the next step the endogenous event scheduler
overlays the straightline path through the intermedi-
ate goal points of the topological navigation path (see
Fig. 2) with the regions computed in the previous step.
It then computes a schedule for the endogenous events
by following the navigation path and collecting the in-

tersections with the regions (see Figure 6). The result
of the scheduling step is a sequence of triples of the
form (at,, (X;, Yi), {ev, ..., evn}).

Fig. 7. Modified endogenous event schedule

Rescheduling endogenous events. One problem
that our temporal projector has to deal with is that a
WAIT-FOR step might be executed while a base naviga-
tion plan is projected. For example, when the robot
enters the hallway, the policy that looks for the open-
ing angles of doors when passing them is triggered.
Therefore, the causal model that was computed by the
endogenous event scheduler i1s no longer sufficient. Tt
fails to predict the “passing a door” events.

These problems are handled by modifying the en-
dogenous event schedule: whenever the robot starts
waiting for a condition that is a function of the robot’s
position, 1t interrupts the projection of the base navi-
gation plan, adapts the causal model of the base navi-
gation plan, and continues with the projection. In the
case of entering the hallway, a new endogenous event
schedule is computed that contains endogenous events
for passing doorways. This updated schedule of en-
dogenous events is pictured in Fig. 7.

Projecting Exogenous Events

One type of exogenous event is an event for which we
have additional information about their time of occur-
rence, such as the event that Dieter will be back from
lunch around 12:25. These kinds of events are repre-
sented by an E->P rule together with a e->p rule. The
E->P rule specifies that the (START) event causes the
state (BEFORE-DIETERS-DOOR-OPENS) to hold and persist
for ?TIME time units. The event (DIETERS-DOOR-OPENS) 18
triggered as soon as (BEFORE-THE-DOOR-OPENS) no longer
holds.

(E->P (AND (ABOUT ?TIME 12:25)
(DIFFERENCE ?TIME *NOW* ?WAIT-FOR))
(START)
1.0 (PERSIST ?WAIT-FOR (BEFORE-THE-DOOR-OPENS)))

(P->E (NOT (BEFORE-THE-DOOR-OPENS))
0.0 (DIETERS-DOOR-IS-OPENED))

Passive Sensors and Obstacle Avoidance

Collision avoidance is not modeled except in situations
in which the robot is told about objects that are moved

around. In this case the endogenous event scheduler
adds a region corresponding to the object. If the region
blocks the way to the destination — that is the robot
cannot move around the region — then a POsSIBLE-BUMP-
EVENT is generated. The effect rule for a possible bump
event specifies that, if the robot has activated sen-
sors that can detect the object, the base navigation
plan fails with a failure description “path blocked.”
Otherwise a bump event is generated. For example,
since sonar sensors are the only sensors placed at table
height, the collision avoidance module can avoid a col-
lision with a table only if the sonar sensors are active.
Thus, to predict a bump, the projector has to deter-
mine how long the sonar sensors have been switched
off before the possible bump event occurs.

Experimental Results

We have validated our causal model of base navigation
plans and their role in office delivery plans with respect
to computational resources, qualitative prediction re-
sults, and quantitative results.

Projecting the plan listed in Fig. 2 takes on aver-
age b seconds (without optimizations). The projection
generates a timeline that is about 330 events long and
about 1200 stack frames. Many of these events are
generated through rescheduling the endogenous events
(21 times). If the robot were to be solely concerned
with navigation, the projection process would be too
slow. An office delivery robot, however, spends much
of its time interacting with people, picking up and de-
livering mail and therefore the planner has more than
adequate time for debugging its delivery plan.

Fig. 8: Projected navigation behavior and behavior

. generated in the simulator
Figure 8 shows the predicted endogenous events (de-

noted by the numbered circles) and the behavior gen-
erated by the navigation plan in the robot simula-
tor. The qualitative predictions of behavior relevant
for plan debugging are perfect. In Fig. 8 the projector
predicts correctly that the robot will exploit the oppor-
tunity to go to location 5 while going from location 1
to 9. For the two scenarios that we have discussed ear-
lier, the projector perfectly predicts the relevant qual-
itative aspects of the robot’s behavior: whether or not

the robot bumps into the table and whether or not it
misses the deadline.

We have also validated our causal models by com-
paring the symbolically projected behavior generated
by the delivery plans, with the behavior they generate
in the robot simulator and crosschecked the behavior
of the simulated with the real robot in a shorter series
of experiments. The predictions for the time needed to
perform a single navigation task (taking about 1 to 2
minutes) are often off by 10 to 20%. These inaccura-
cies are mainly due to the high variances in navigation
behavior. Because the grain size for time in everyday
activity (deadlines, when people leave and come back,
etc.) is in the range of minutes the accuracy of our
predictions is more than sufficient.

Related Work

Due to space limitations we cannot give a detailed ac-
count of all aspects of related work. Related work com-
prises research on reasoning about action and change,
probabilistic planning, numerical simulation, and qual-
itative reasoning.

(AF94) gives an excellent and detailed a discussion
of important issues in the representation of temporally
complex and concurrent of actions and events with-
out considering probabilistic information. (HMG95)
presents a framework for representing probabilistic in-
formation, and exogenous and endogenous events for
medical prediction problems. They consider smaller
problems and do not have to generate context-specific
causal models.

Planning algorithms, such as sNLP (MR91), have
been extended in various ways to handle more ex-
pressive action models and different kinds of uncer-
tainty (about the initial state and the occurrence and
outcome of events) (e.g. (KHW95; DHW94)). These
planning algorithms compute bounds for the prob-
abilities of plan outcomes and are computationally
very expensive. They also abstract away from the
rich temporal structure of events by assuming dis-
crete atomic actions and ignore various kinds of un-
certainty. Partially observable Markov decision pro-
cesses (POMDPs) focus on choosing optimal actions
under uncertainty (KCK96). So far approximation
algorithms for POMDPs are computationally too ex-
pensive to be applied to state spaces as large as ours
(PRY5).

Work in qualitative reasoning has researched issues
in the quantization of continuous processes and fo-
cussed among other things on quantizations that are
relevant to the kind of reasoning performed. (Hen73)
points out the limitations of discrete event represen-
tations and introduces a very limited notion of con-

tinuous process as a representation of change. He
does not consider the influence of multiple processes on
state variables. (Hay85) represents events as histories,
spatially bounded, but temporally extended, pieces in
time space, and proposes that histories which do not
intersect do not interact. In Forbus’ Qualitative Pro-
cess Theory (For84) a technique called limit analysis is
applied to predict qualitative state transitions caused
by continuous events. Also, work on simulation often
addresses the adequacy of causal models for a given
range of prediction queries, an issue that i1s neglected
in most models used for Al planning.

Conclusion

To improve the perfomance of robot action planners we
must equip them with better and more realistic models
of the robots’ behavior and the physics of the world.
This paper has described a causal model of the behav-
101 exhibited by the mobile robot RHINO when running
concurrent reactive plans for performing office deliv-
ery jobs. The model represents the temporal structure
of continuous control processes, several modes of their
interferences, and various kinds of uncertainty. The
model is used in FPPD (BM97), a plan revision tech-
nique that can, with high probability, forestall proba-
ble situation-specific execution failures based on ran-
domly projecting a small number of execution scenar-
108.

We believe that the use of detailed models of au-
tonomous robot behavior together with plan revision
techniques such as FPPD will enable us to implement
control systems for service robots that perform on av-
erage better than they possibly could without planning
and that avoid categories of behavior flaws that can-
not be avoided by most other planning systems (see
(BM94)).

Our future work on developing causal models of
robot behavior will focus on optimization, learning
causal models, and modeling other interesting pro-
cesses such as map building, searching for objects, vi-
sion routines, and manipulation actions.

References

J. Allen and G. Ferguson. Actions and events in inter-
val temporal logic. Technical Report 521, University of
Rochester, Computer Science Department, 1994.

M. Beetz, W. Burgard, D. Fox, and A. Cremers. Inte-
grating active localization into high-level control systems.
submitted to Robotics and Autonomous Systems, 1998.

M. Beetz and D. McDermott. Improving robot plans dur-
ing their execution. In Kris Hammond, editor, Second
International Conference on Al Planning Systems, pages
3-12, Morgan Kaufmann, 1994.

M. Beetz and D. McDermott. Fast probabilistic plan de-
bugging. In Proceedings of the 1997 European Conference
on Planning, pages 777-777, 1997.

D. Draper, S. Hanks, and D. Weld. Probabilistic planning
with information gathering and contingent execution. In
K. Hammond, editor, Proc. 2nd. Int. Conf. on Al Plan-
ning Systems. Morgan Kaufmann, 1994.

T. Dean and M. Wellmann. Planning and Control. Mor-
gan Kaufmann Publishers, San Mateo, CA, 1991.

D. Fox, W. Burgard, and S. Thrun. The dynamic win-
dow approach to collision avoidance. ITEFE Robotics €
Automation Magazine, 4(1):23-33, March 1997.

K. Forbus. Qualitative process theory. Artificial Intells-
gence, 24:85-168, 1984.

P. Hayes. The second naive physics manifesto. In J. R.
Hobbs and R. C. Moore, editors, Formal Theories of the
Commonsense World, pages 1-36. Ablex, Norwood, NJ,
1985.

G. Hendrix. Modeling simultaneous actions and continu-
ous processes. Artificial Intelligence, 4:145-180, 1973.

S. Hanks, D. Madigan, and J. Gavrin. Probabilistic tem-
poral reasoning with endogenous change. In Proceedings
of the 11" Conference on Uncertainty in Artificial Intel-
ligence, pages 777777, 1995.

Leslie Pack Kaelbling, Anthony R. Cassandra, and
James A. Kurien. Acting under uncertainty: Discrete
bayesian models for mobile-robot navigation. In Proceed-
ings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 1996.

N. Kushmerick, S. Hanks, and D. Weld. An algorithm for
probabilistic planning. Artificial Intelligence, 76:239-286,
1995.

D. McDermott. A reactive plan language. Research Re-
port YALEU/DCS/RR-864, Yale University, 1991.

D. McDermott. Transformational planning of reactive
behavior. Research Report YALEU/DCS/RR-941, Yale
University, 1992.

D. McDermott. An algorithm for probabilistic,
totally-ordered temporal projection. Research Report

YALEU/DCS/RR-1014, Yale University, 1994.

D. McAllester and D. Rosenblitt. Systematic nonlinear
planning. pages 634-639, 1991.

R. Parr and S. Russell. Approximating optimal policies
for partially observable stochastic domains. In Proc. of
the Fourteenth International Joint Conference on Artifi-
cial Intelligence, 1995.

S. Thrun, A. Bicken, W. Burgard, D. Fox,
T. Frohlinghaus, D. Hennig, T. Hofmann, M. Krell,
and T. Schimdt. Map learning and high-speed navigation
in RHINO. In D. Kortenkamp, R.P. Bonasso, and
R. Murphy, editors, Al-based Mobile Robots: Case studies
of successful robot systems. MIT Press, Cambridge, MA,
1998. to appear.

