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ABSTRACT
Previous research has shown that many students struggle with
solving small concurrency problems after their first course on con-
currency. A possible reason for this is that students do not have
a suitable mental model of the semantics of the underlying pro-
gramming language, and are therefore not able to properly reason
about the program’s behavior. One way to help students learn con-
currency and improve their mental model is through the use of
visualization tools. Progvis is one such visualization tool that is
not only aimed at concepts related to concurrency, but also pro-
vides an accurate visualization of more fundamental concepts to
illustrate how they interact with concurrency. In previous work,
the authors of Progvis performed a small-scale evaluation of the
tool, and highlighted some areas of improvement. In this paper,
we address these shortcomings by improving the memory model
visualized by Progvis and implementing a model checker. We also
evaluate Progvis on a larger scale by incorporating it into a course
on concurrency and operating systems, which allows assessing
whether using Progvis aids students in learning concurrency. The
results indicate that Progvis (with our improvements) is successful
in helping students realize how concurrency interacts with more
fundamental concepts, and that students find it useful in helping
them understand the content of the concurrency assignments.

CCS CONCEPTS
• Applied computing→ Education; • Software and its engi-
neering→ Model checking; • Human-centered computing
→ Visualization systems and tools; • Theory of computation→
Concurrency.
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1 INTRODUCTION
The ability to work with concurrent programs, which we refer to as
concurrent programming, is an increasingly important skill in order
to be able to utilize the many cores available in modern systems.
Furthermore, as the non-deterministic behavior of concurrent pro-
grams requires reasoning about their behavior rather than testing,
Kolikant [11] argues that learning concurrency is also useful for
developing students’ formal reasoning skills which are applicable
in other contexts. Previous work has shown that students strug-
gle with solving simple concurrency problems [24]. One possible
reason for this is that students are not yet proficient enough with
fundamental concepts and are thus not able to reason properly
about the concurrent program. One set of such skills that are cen-
tral to concurrent programming is scope, mutation, and aliasing,
which students have been found to struggle with in their first three
years of studying CS [8].

Many tools have been proposed to aid students in learning con-
current programming. One such example is Progvis [26], which not
only focuses on concurrency, but also how concurrency interacts
with more fundamental concepts. In the paper where we intro-
duced Progvis, we also conducted a small pilot study with eight
students, and noted that Progvis assumed a too strong memory
model which prevented it from detecting data races. In this paper,
we aim to address this shortcoming by implementing an improved
memory model that more accurately depicts the behavior of concur-
rent programs. To complement the improved memory model, we
also implement a model checker to help students verify the correct-
ness of concurrent programs. Lönnberg et al. [20] notes that this
has the additional benefit of providing students with an example
that illustrates why an incorrect program could fail. Finally, we also
expand the scope of the aforementioned pilot study by integrating
Progvis into a course on concurrency and operating systems to find
whether it has any impact on students’ learning. As such, we aim
to answer the following research questions:
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RQ1 How can the memory model in Progvis be improved to be
more accurate while remaining easy to visualize in a way
that is easy for students to understand?

RQ2 Towhat extent do students find Progvis helpful when solving
lab assignments on concurrent programming?

RQ3 To what extent does using Progvis help students learn con-
current programming?

The remainder of this paper is structured as follows: Section
2 provides a brief introduction to the relevant parts of concur-
rency, followed by related works in Section 3. We then present
our improvements to Progvis in detail in Section 4, followed by a
description of the method used to evaluate Progvis in Section 5.
Finally, we present the results in Section 6, discuss the results to
answer the RQs in Section 7 and conclude the paper in Section 8.

2 BACKGROUND: CONCURRENCY
In this paper we work with concurrency using the shared-memory
model (as opposed to e.g., message-passing). In this model, a concur-
rent program consists of one or more threads that execute concur-
rently. Threads associated with the same process share memory and
are thereby able to communicate. As such, when writing concurrent
programs it is important to consider the semantics of memory ac-
cesses as described by thememory model. The simplest and perhaps
the most intuitive memory model is sequential consistency [13]. In
this model, one can consider the memory accesses made by each
thread to happen in some non-deterministic, global order. As such,
it is enough to consider all interleavings of the operations from dif-
ferent threads and ensuring that none of them lead to any undesired
results.

While sequential consistency is convenient due to its simplicity,
it is costly to implement in hardware and disallows many types of
optimization by the compiler. Because of this, many languages and
processors use a weaker memory model. One such model is the C
memory model [2], which is the one we will mainly consider in this
paper. In this model, memory accesses are unordered in general.
This means that while it is still possible to consider interleavings
of operations from different threads, each thread may have its own
view of memory. As such, to ensure that stores from one thread are
visible to another thread, it is necessary to impose an ordering to
the relevant memory accesses, either by using atomic operations, or
one of many synchronization primitives such as locks, semaphores
and condition variables. Failure to protect access to shared memory
constitutes a data race, the behavior of which the C standard leaves
undefined.

3 RELATEDWORK
In this section we present an overview of related works. First, we
focus on works related to teaching and learning concurrency in
general. We then introduce tools that aim to help students to learn
concurrent programming.

3.1 Teaching and Learning Concurrency
As mentioned briefly in the introduction, Kolikant [11] argues that
learning concurrency is an entry-point into amore formal, academic
culture of CS. This culture focuses on using computational models
to reason about the behavior of programs, which is important when

working with concurrent programming since the inherent non-
determinism makes it infeasible to use only empirical methods (e.g.,
ad-hoc testing by students or unit tests) to test concurrent programs
for correctness. This transition between an informal user culture
and a formal academic culture can also be seen in the work by
Lönnberg et al. [18, 19], who investigated students’ approaches to
developing concurrent programs. They found approaches ranging
from trial and error and coding to understand which corresponds to
the informal user culture to adapting a known technique and adapt
known solution which corresponds to a more formal, academic
culture of CS.

As computational models are important when working with con-
current programming, students’ experiences of them have also been
studied. Ben-Ari and Kolikant [4] found that students’ difficulties in
learning concurrency can be classified into three categories: 1) the
failure to understand the concept of a model (e.g., by inventing new
operations), 2) make incorrect assumptions about the model (e.g.,
assuming ordering of certain unordered operations), and 3) having
problems with coordination (e.g., not finding problematic scenar-
ios). Other studies have focused on incorrect assumptions about
the computational model. For example, Strömbäck et al. [25] stud-
ied student solutions to concurrency problems and found 10 types
of such assumptions, related to four broad categories the memory
model, the C language, synchronization primitives and concurrent
aspects of other abstractions (e.g., data structures). Since some of the
incorrect assumptions were not related to concurrency, but rather
to more fundamental concepts, these results highlight the impor-
tance of students having solid foundations when working with
concurrent programming. One such set of skills are scope, aliasing
and mutation, which Fisler et al. [8] found students in their second
and third years to have difficulties with. Additionally, Haglund et al.
[9] argue that these fundamental skills are also important to under-
stand and utilize abstractions in programming. Thus, similarly to
the reasoning of Kolikant [11], since learning concurrency requires
students to understand fundamentals, it might also have a positive
impact on the understanding of other CS subjects.

Additionally, many have studied common mistakes to concur-
rency questions. For example, Kolikant [10, 12] found that the stud-
ied high-school students had problems identifying synchronization
goals, but were able to solve the problem once the goals were iden-
tified. Lawson and Kraemer [14] reached similar conclusions by
using similar problems, but also found that students sometimes
use sleep functions to address concurrency issues instead of syn-
chronization primitives. Others have studied similar problems in an
undergraduate context. Both Lawson et al. [15] and Lewandowski
et al. [16] studied a question involving selling cinema tickets and
found that while students are generally aware of the concurrency
issues, they are often unable to address them adequately. Strömbäck
et al. [24] studied a problem involving synchronizing a simple data
structure with similar results. In this case, the authors hypothesized
that some incorrect solutions were due to lacking fundamental
skills, in particular related to scope and aliasing.

3.2 Tools for Teaching Concurrency
A number of tools have been developed to help students learn con-
currency. While there are many tools that illustrate concurrency
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concepts in isolation, we will focus on tools that connect these
concepts to some form of code as the focus of this paper is concur-
rent programming. One set of such tools utilize static analysis to
help students and teachers to find errors in concurrent programs.
Eraser [6] is one such example that uses the lock-set algorithm to
identify data races in C programs. Another example is the Spin
model checker. While it was not designed with education in mind,
Ben-Ari [3] found it simple enough to be usable in teaching. An-
other similar set of tools collect execution traces and visualize them
to help students understand why an error occurred. This is done
by Eludicate [7], which lists relevant events from the trace to illus-
trate how the execution of different threads are interleaved, and
how this affects the behavior of the program. Another example is
Atropos [17], which uses dynamic dependency graphs to include
data dependencies between threads in the visualization to clearly
illustrate potential data races and other synchronization issues.

Another approach to visualize concurrent programs is to present
the user with the current state of all threads and let the user decide
which thread should execute next, and is thereby able to explore
different interleavings. One benefit of this approach is that it re-
quires students to actively engage with the visualization, which
Sorva [23, ch. 11] shows is beneficial for learning. Two examples of
such tools are The Deadlock Empire1 and ConEE [22]. The Dead-
lock Empire presents the user with pre-made pieces of code in C#
and asks them to find an interleaving that causes a particular error.
ConEE supports arbitrary programs in a custom language, and also
has the ability to automatically find concurrency errors through
exhaustive testing. Both of these tools use a simple data model
due to their focus on concurrency. It is therefore not possible to
explore how concurrency interacts with other concepts, such as
scope, references and aliasing.

Progvis [26] is a visualization tool similar to ConEE and The
Deadlock Empire, where students control the program execution.
It aims to improve on existing tools by also providing a rich data
model that encompasses many of the more fundamental concepts
in addition to those relevant to concurrency. In addition to the rich
data model it supports visualizing arbitrary programs in a subset of
C. This means that students are able to modify example programs
to try to solve concurrency errors found within or visualize custom
programs, which is not possible in, for instance, The Deadlock
Empire. Furthermore, even though supporting C adds complexity
to Progvis, it has the large benefit that students do not need to learn
a custom language to use the tool, as is the case with ConEE and the
Spin model checker. Finally, compared to the tools based on static
analysis and execution traces, the ability to actively engage with the
visualization in Progvis is something that Sorva [23, ch. 11] argues
is beneficial for learning. As mentioned in the introduction, one
shortcoming of Progvis, and many other tools, is that it visualizes
programs in a sequentially consistent memory model [26], which
is not accurate according to the semantics of C and many other
languages.

4 IMPROVEMENTS TO PROGVIS
This section describes our improvements to Progvis. First and fore-
most, we addressed the issues mentioned in our previous paper [26],

1https://deadlockempire.github.io/

namely that Progvis visualizes programs using a sequentially con-
sistent memory model and therefore does not report data races.
We also implemented a model checker to help students find inter-
leavings that cause the program to misbehave. This helps students
to validate their understanding of the computational model as it
allows Progvis to highlight problematic interleavings that students
may have failed to consider. Our additions to Progvis are available
at https://storm-lang.org/.

4.1 A Weaker Memory Model and Detection of
Data Races

A large benefit of sequential consistency is that it is easy to visualize
and explain. Since all operations have a global order, the notion
of a unique global state at any point in time is possible. Progvis
uses this notion to visualize concurrent programs by pausing each
thread after each statement and providing a visual representation
of the global scope at that point in time. The user is then able to
take the role of a scheduler and decide which thread to execute
next. Whenever the selected thread has executed a statement, it is
paused yet again, and the global state is updated. The user is thus
able to explore different interleavings of the program through their
scheduling decisions.

While sequential consistency is convenient in many regards, it
does not accurately reflect the semantics of the C memory model.
Since Progvis is aimed at students who are novices at concurrent
programming, our aim is to implement a memory model that is
as simple as possible, yet able to accurately describe the behavior
of synchronization primitives (i.e., locks, semaphores and condi-
tion variables) and sequentially consistent atomic operations (i.e.,
relaxed atomics are considered out of scope). In this context, the
difference from sequential consistency is that concurrent access to
shared data is not well-defined. In particular, two or more threads
that access the same data and at least one access is a store, is consid-
ered a data race, which is undefined according to the C standard [2].
As such, data races must be avoided using the available synchro-
nization primitives or atomic operations.

One possible way to visualize this weak memory model is to use
execution graphs similarly to Atropos [17]. However, to keep the
simplicity of the existing visualization in Progvis we opted to keep
the serialized execution of sequential consistency and model the
non-determinism using fence instructions. Each fence instruction
represents a location where all stores performed by the current
thread are published to the other threads, and data published by
other threads become visible to the current thread. This means that
we can consider the runtime behavior of a thread as a series of
chunks separated by fence instructions. Chunks can then be viewed
as units, as any stores from one chunk are only guaranteed to be
visible to another thread after both have advanced to a subsequent
chunk. This allows us to model each synchronization operation (i.e.,
synchronization primitives and atomic operations) by considering
them to emit a suitable fence instruction. It is, however, not possible
to model the intricacies of relaxed atomics, which were considered
out of scope. For the purpose of the model checker, the implementa-
tion additionally distinguishes between acquire and release fences,
which will be introduced in detail in Section 4.2. To detect whether
a data race has occurred, we need to consider the memory accesses

https://deadlockempire.github.io/
https://storm-lang.org/
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int shared_a;

int shared_b;

struct semaphore sema;

void worker(void) { ← Wb
shared_a = 2;

shared_b = 3;

sema_up (&sema); ← W1 (release)
} ← We

int main(void) { ← Mb
sema_init (&sema , 0);

thread_new (& worker); ← M1 (release)
shared_a = 8;

sema_down (&sema); ← M2 (acquire)
shared_b = 9;

printf("A: %d\n", shared_a);

printf("B: %d\n", shared_b);

return 0; ← Me
}

Figure 1: Source code of a concurrent program used to illustrate the improvements to Progvis. Lines marked with arrows denote
operations Progvis consider to be fences. Wx denote fences in the worker function, and Mx denote fences in the main function.
The beginning (Wb and Mb) and end (We and Me) of the two functions are implicitly considered fences for convenience.

since the last fence instruction in each thread. Any stores represent
modified data that is not guaranteed to be visible to other threads.
This means that if another thread has accessed the same data (either
loading or storing), a data race has occurred and Progvis should
notify the user accordingly.

To illustrate this idea, consider the program in Fig. 1. The code
contains three operations that involve a fence (W1, M1 and M2) as
well as four implicit fences at the beginning (Wb, Mb) and end (We,
Me) of each function. As such, we can consider the code to consist
of five chunks, two in worker (Wb–W1 and W1–We) and three in
main (Mb–M1, M1–M2, and M2–Me). The main function starts by
executing the chunk Mb–M1 which initializes a semaphore and
starts a second thread. Starting a thread involves a fence as the
previous initialization must be visible to other threads. After this,
the two threads execute concurrently. The first thread executes M1–
M2 and stores 8 in shared_a, then waits for the second thread. The
second thread executesWb–W1which stores 2 to shared_a and 3 to
shared_b, then signals the first thread. In this case, the two chunks
end with fences caused by the semaphore operations. At this point,
just before the two threads execute their fence instructions we
observe that both threads have stored into shared_a, which means
that a data race has occurred. After this point, the second thread
executes its final (mostly empty) chunk W1–We and terminates,
while the first thread executes M2–Me, which stores 9 to shared_b
and loads both shared variables to print them. At this point, no data
race is detected as the second thread has not accessed either of the
shared variables since executing a fence instruction.

This model was implemented in Progvis by maintaining two sets
for each thread: one for loads, and one for stores. To populate these
sets, we modified the instrumentation of the visualized program
done by Progvis to pause the program after each statement, so that it
also tracks all memory accesses and fences. Finally, we implemented
the above-mentioned check for data races whenever Progvis pauses
the visualized program. Whenever a data race is detected any data
involved in a data race is highlighted with a red cross as shown
in Fig. 2, and a message explaining the problem is shown. As can
be seen in Fig. 2, the collected memory accesses are also used to
highlight loads and stores in the visualization. Loads are colored
green while stores are colored red. In the figure, the red background
of the two integer variables mean that the program has recently

stored data there. This is useful not only in concurrent programs,
but also to highlight the semantics of more complex statements in
sequential programs (e.g., modifying data through a pointer).

4.2 The Model Checker
The improved memory model allows Progvis to detect data races
if the user finds a suitable interleaving. While this is trivial to
do in the program in Fig. 1, it quickly becomes difficult in more
complex programs. This means that students who are still learning
concurrent programming may inadvertently fail to consider some
important interleaving, perhaps due to a misunderstanding of some
part of the computational model. Thus, we implemented a model
checker to help students find issues, and thereby also helping them
validate their understanding of the computational model. Themodel
checker is similar to that of ConEE [22] as it exhaustively checks
all possible interleavings for concurrency errors. However, since
the number of interleavings grow quickly with program size and
number of threads, we reduce the number of interleavings that are
necessary to evaluate through two observations:

(1) When using the memory model from Section 4.1 it is enough
to consider interleavings of entire chunks rather than indi-
vidual statements.

(2) Many interleavings result in the same program state. Such
interleavings can be treated as equivalent during further
exploration to reduce the search space. For example, consider
a programwith two threads, 1 and 2. Thread 1 executes chunk
A, and thread 2 executes chunks B and C. If we find that the
interleaving A, B produces a state identical to B, A, then we
can conclude that interleavings B, A, C and B, C, A must be
equivalent, and only evaluate one of them.

To utilize observation (1) we implemented a fence step operation
that advances a thread to the next fence operation rather than
the next statement (as is the case for a single step). The model
checker is then able to use the fence step operation to explore
interleavings of entire chunks rather than individual statements.
However, a naïve implementation of this operation has two issues
that need to be addressed. The first issue is that loops without fence
instructionsmay cause problems. In particular, if a loopwaits for the
value of some variable to change without proper synchronization
(which is a natural first attempt for novices), a fence step would
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Figure 2: Progvis showing an error in the program in Fig. 1. Thread 1 is about to wait for thread 2 to finish. At this point thread
1 has written to shared_a, and thread 2 has written to the variables shared_a and shared_b. This leads to a data race in shared_a,
which is indicated by a red cross.

wait indefinitely for the thread to reach a fence. We solve this by
having Progvis identify all back edges in the program execution
(i.e., jumps backwards in the code), and pause program execution
at the statement following the execution of a back edge.

The second issue is that all interleavings need to be visible to
the model checker. A naïve implementation that pauses execution
immediately before a fence operation fails in cases where the oper-
ation immediately after the fence could wake a thread. For example,
consider a program where two threads are executing. Thread 1
is paused before a fence instruction just before releasing a lock,
and thread 2 is waiting for the lock to be released. In this case, a
naïve fence step of thread 1 would cause it to release the lock and
then execute the remainder of the chunk, without allowing for the
possibility that thread 2 executes its chunk before thread 1. While
this is not a problem for data race detection, it may prevent the
model checker from detecting other problems (e.g., crashes). To
allow thread 2 to execute its chunk before thread 1, the implementa-
tion distinguishes between acquire and release fences (acquire and
release fences are also supported). An acquire fence is emitted for
operations that may wait for some event (e.g., lock_acquire), and
a release fence is emitted for operations that may wake a sleeping
thread (e.g., lock_release). Using this information, we solve this
problem by making fence steps starting from a release fence halt
execution before the next statement rather than the next fence.
Similarly, threads that have been sleeping (e.g., waiting to acquire a
lock) are also halted before the next statement in a similar manner.
With these modifications, the fence step allows the model checker
to explore all interleavings of chunks in the program. The fence
step operation was also exposed to users through a new button in
the interface to help navigate larger programs (the second button
from the left of the bottom of each thread in Fig. 2).

To utilize observation (2) above to avoid exploring redundant
interleavings, we model the visualized program as a transition sys-
tem [1, ch. 2]. A transition system can be seen as a graph where
each node represents a unique state reachable by the program and
each edge represents some action that alters the state. In the model
checker such an action corresponds to advancing a single thread
using a fence step. By associating each unique program state with
exactly one node in the graph, situations where different interleav-
ings result in the same state are trivially detected as nodes with

more than one incoming edge. Furthermore, paths starting from
the initial state in the graph correspond to possible interleavings.
We can thus check the program for correctness by exploring each
edge at least once. This ensures that we traverse all reachable states
while excluding redundant interleavings. As an additional benefit,
this scheme also ensures that (infinite) loops are handled correctly
and efficiently.

To illustrate the behavior of the model checker Fig. 3 contains
a transition system corresponding to the behavior of the program
in Fig. 1. Each node (numbered 1–18 for clarity) corresponds to a
state reachable by the program. In the figure, the state is presented
as two lines of text. The first line lists all running threads (T𝑥 ), and
the operation each thread is about to execute. M𝑥 and W𝑥 mean
that the corresponding fence is about to be executed, while M𝑥 ’
and W𝑥 ’ mean that the operation after the fence marker is about
to be executed. The second line lists the values of all variables in
the program. Here, a and b correspond to shared_a and shared_b
respectively.

Initially, as indicated by node 1, a single thread (T1) is about
to execute the main function (Mb). At this point, the values of
shared_a and shared_b are both zero and the semaphore is unini-
tialized. Since only one thread is active, the only possibility is to
advance the program to state 2 by fence stepping this thread. This
causes the thread to initialize the semaphore and pause before fence
M1. Again, the only option is to fence step this thread as no other
threads have been started. In state 3, however, the first thread has
just started a second thread (T2) that is about to execute worker
(Wb). As such, there are two possibilities to advance the program
from state 3: either fence stepping T1 or T2. At this point we can see
that program execution diverges. If T1 is executed first, program
execution eventually ends in state 18, while if T2 is executed first
program execution eventually ends in state 14. Neither of these
states have any outgoing edges, which means that all threads have
terminated (as indicated by Me and We). A graph that diverges in
this manner corresponds to a program that has non-deterministic
behavior. This is not necessarily a problem in and of itself, and
is therefore not considered an error. If one of the final states are
considered invalid in the context of the program, it is possible to
use assert statements to verify some particular behavior. In this
case, however, the problem is due to a data race, which is detected
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T1=Mb
a=0, b=0, sema=-

initial

T1=M1
a=0, b=0, sema=0

T1=M1’, T2=Wb
a=0, b=0, sema=0

T1=M2, T2=Wb
a=8, b=0, sema=0

T1=M1’, T2=W1
a=2, b=3, sema=0

T1=M1’, T2=W1’
a=2, b=3, sema=1

T1=M1’, T2=We
a=2, b=3, sema=1

T1=M2, T2=W1
a=8, b=3, sema=0

T1=M2, T2=W1’
a=8, b=3, sema=1

T1=M2, T2=We
a=8, b=3, sema=1

T1=M2’, T2=W1’
a=8, b=3, sema=0

T1=Me, T2=W1’
a=8, b=9, sema=0

T1=Me, T2=We
a=8, b=9, sema=0

T1=M2, T2=W1
a=2, b=3, sema=0

T1=M2’, T2=W1’
a=2, b=3, sema=0

T1=M2’, T2=We
a=2, b=3, sema=0

T1=Me, T2=W1’
a=2, b=9, sema=0

T1=Me, T2=We
a=2, b=9, sema=0

1: 2: 3: 4:

5: 6: 7:

8:

9:

10:

11: 12: 13:

14: 15: 16: 17: 18:

T1 T1 T1
T2

T2

T2

T2

T2

T2

T1

T1

T2

T1

T1

T1

T2
T2

T1

T1

T2

T1

Figure 3: The behavior of the program in Fig. 1 modeled as a transition system. The first line in each node list the running
threads (Tx) and the operation each thread is about to execute: W𝑥 and M𝑥 denote that the corresponding fence is about to be
executed. W𝑥 ’ and M𝑥 ’ denote that the operation after the fence is about to be executed. The second line contains the value of
all variables in the program. Edges correspond to advancing the corresponding thread using a fence step (horizontal for T1 and
vertical for T2).

when states 5 and 7 are reached. Finally, the graph has been slightly
simplified for readability. Whenever thread T1 reaches fence M2,
the implementation does not know if the thread has to wait for the
semaphore to be signaled. As such, the thread is technically paused
once at M2, and again by the semaphore if it has to wait. These
situations would result in an additional state which is not shown
in Fig. 3 to improve readability.

In the implementation in Progvis each node contains a list of
threads that are ready to execute and a string representation of the
entire program state. This includes a hierarchical representation of
all (global and local) variables in the program as well as memory
accesses performed by each thread, and the next operation to be
executed by each thread. The model checker is then implemented
as a graph search. First, a node corresponding to the initial state of
the program is created. The model checker then finds a node with
an unexplored edge (i.e., a node where a thread is ready to execute
but no corresponding edge exists in the graph), and advances the
program to that state through a series of fence steps. Then, a fence
step corresponding to the unexplored edge is performed and the
resulting state is recorded. If this state does not already exist in the
graph, a new node is created. Finally, a new edge is added to the
graph, and the process of finding unexplored edges is repeated. If
an error is found at any time during this process it is reported and
the user is presented with a visualization of the interleaving that
caused the error. Otherwise, if all edges are successfully explored,
the model checker reports success.

5 METHOD
In addition to our proposed improvements to Progvis, we also
aim to expand the short-term evaluation made by the authors
of Progvis [26]. In particular, we evaluate whether using Progvis
aid students in learning concurrent programming by integrating
Progvis into a course on concurrency and operating systems in the

year 2022 and compare students’ performance on the final exam to
previous years.

5.1 The Course
The course on concurrency and operating systems is given during
10weeks towards the end of the second year of a three-year bachelor
program in computer science at Linköping University. The course
consists of six lectures and a series of computer lab assignments.
The lectures briefly introduce C programming (as students have
previously mainly worked in C++), and then focus on concurrency
as students are expected to be familiar with operating system theory
from a previous course. The main focus of the course is on the lab
assignments, where students work in pairs and implement a number
of system calls in the educational operating system Pintos.2

As can be seen from Fig. 4, the lab assignments are expected to
be solved during the first 8 weeks of the course. During this time,
students have two or three 2-hour sessions scheduled in a computer
lab with a TA and are thus able to ask questions and demonstrate
their solutions. Week 9 is a self-study period where students have
time to prepare for the exam in week 10. The content and order of
the lab assignments has remained the same for the last four years
(2018–2021), and were as follows:
Introduction to C: Familiarizes students with programming in C

through two basic assignments.
Basic system calls: Introduces the mechanisms behind system

calls by implementing two simple system calls.
File I/O: Implements the system calls open, close, read and write

using an existing file system implementation. The focus is
therefore on implementing a per-process table for storing
file descriptors.

Stack initialization: Involves writing code to initialize the exe-
cution stack of newly created processes to allow passing
command-line parameters to the main function.

2http://www.scs.stanford.edu/07au-cs140/pintos/pintos.html

http://www.scs.stanford.edu/07au-cs140/pintos/pintos.html
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Figure 4: Overview of the structure of the course. The assignments in bold were added to integrate Progvis into the course, and
the assignment marked with a dagger (†) was removed. It is possible to use Progvis in assignments marked with an asterisk (*).

Process creation: In Pintos, a new process is created by creating a
new kernel thread and letting that thread load the executable.
The original thread thus needs to wait for the new thread to
complete in order for errors and process IDs to be propagated.
Students typically solve this using a semaphore.

Process management: Implements a global data structure that
stores all running processes for later use.

Waiting for processes: Uses the data structure from process man-
agement to implement the system call wait to allow waiting
for processes to exit. Again, students typically solve this
using a semaphore.

Synchronization: Ensures that no data races exist in the existing
file system implementation, and in the table implemented
in process management. This involves identifying critical
sections and protecting them using locks.

Reader-writer lock: Implements a reader-writer lock to allowmul-
tiple processes to read from the same file concurrently, while
ensuring mutual exclusions for processes writing to a file.

Safe system calls: Ensures that processes are not able to pass
invalid data to system calls and crash the kernel. This mainly
involves verifying that pointers refer to valid memory.

Even though the structure of the labs have been the same since
2018, someminor changes have been made. Most notably the course
was given remotely the years 2020 and 2021 due to the ongoing
pandemic. Additionally, the instructions for the assignments were
re-structured in 2019. This did, however, only change the wording
and the order in which information was presented, not the assign-
ments themselves. Furthermore, Progvis was available to students
(without our additions) in years 2020 and 2021. It was, however,
not possible to use it to visualize the lab assignments since Pintos
contains constructs that are not supported by Progvis. Thus, using
Progvis requires creating a small, external program that illustrates
the relevant parts from Pintos.

Usage of Progvis was integrated into the course in 2022 by re-
placing the assignment stack initialization with two assignments
where students solve synchronization problems in a small program
external to Pintos. This means that students are able to use Progvis
to visualize the program, but also that they are able to focus on
the task at hand since they do not have to familiarize themselves
with the code in Pintos. To keep these assignments relevant, they
were designed to resemble the upcoming assignment that would be

solved inside the Pintos codebase. While it was possible to compile
and test these programs with standard command-line tools, the as-
signment encouraged students to use Progvis. The new assignments
were as follows:
Introduction to semaphores: Involves adding a semaphore to

synchronize a program similar to the situation encountered
in the process creation assignment. The program is similar to
the second task from [26].

Introduction to synchronization: Involves using locks to syn-
chronize a program similar to a part of the file system imple-
mentation in Pintos. It requires synchronizing both global
variables and members of a data structure.

We also added a stand-alone program to allow students to test
their implementation of the reader-writer lock assignment in Progvis.
In this case, however, using Progvis was presented as an option
rather than encouraging it to be used. This modification was done
in 2021, but the improvements to Progvis (Section 4) were not
available until 2022.

A final difference between the years is the gradual introduction of
a bank of optional concurrency problems. In 2021, students had the
ability to view and solve concurrency problems from an online bank
of problems (using Progvis). Each problem simply asked students to
find concurrency errors in a piece of code. Only five students used
the system 2021. The next year, 2022, this system was improved
using the model checker to allow automatically checking if the
submitted solution was correct. Even though points for the final
exam were awarded for using the system to a certain extent, only
eight students participated in 2022. Due to the few participants in
both years, we consider the details of this system to be out of scope
for this paper.

5.2 Data Collection and Analysis
Two types of data were collected to evaluate Progvis: answers to a
questionnaire, and students’ performance on their final exam. The
questionnaire was sent to students by e-mail after their final exam
with the aim of assessing students’ impressions of using Progvis
during the lab assignments. As such, the questionnaire contained
three questions, one for each assignment where Progvis could be
used. Each question consisted of two parts. The first part asked if
the student used Progvis to solve that lab. If the student answered
yes, they were also asked to assess how helpful they found Progvis
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in helping them understand the assignment on a 4-point Likert
scale. At the end of the questionnaire the students were also asked
for general feedback about Progvis.

To investigate whether using Progvis aids students’ learning of
concurrent programming we collected student answers from the
final exam from different years, and compared students’ perfor-
mance in 2022 to previous years. Since all exams are required to be
published in Sweden it was not possible to use the same question
for multiple years. However, the structure of the exam has remained
the same since 2018, again with the exception of years 2020 and
2021 due to the remote teaching mandated by the pandemic. To
compare students’ performance on exams with a similar structure,
we include the years 2018, 2019, and 2022 in our comparison. The
two-year gap between 2019 and 2022 means that any differences
might be due to other changes in prior courses. We therefore also
include year 2021 in the comparison in spite of the remote exam.
We do not, however, include year 2020, as the swift transition to
remote teaching gave students little time to prepare for the new
structure of the exam. All exams were conducted digitally, either
in computer labs on campus, or remotely. Students were able to
compile and test the code in the exam, but points were not deducted
for solutions that did not compile. It was not possible to use Progvis
during the exam.

Exams in years 2018, 2019 and 2022 all consisted of two theoret-
ical questions and a number of practical questions. The practical
questions involve fixing concurrency errors in a piece of code. At
least one of these questions scaffold the process of finding and
fixing any concurrency issues in the code similarly to our previous
work [24]. The questions first provide an example of how the code
may behave incorrectly and ask students to explain the reason for
this behavior. After that, students are asked to highlight critical
sections in the code, and then to use synchronization primitives
to eliminate the concurrency issues. The remaining practical ques-
tions involve atomic operations and any topics that are not covered
by the larger, scaffolded question(s). For this paper, we select prac-
tical questions that 1) scaffold the process of finding errors, and
2) involve some kind of data structure that needs synchronization.
Requirement 2 is to allow analyzing the placement of the synchro-
nization primitives similarly to the pilot study of Progvis [26].

The remote exam in 2021 consisted of two parts. The first part
consisted of a single scaffolded, practical question as described
above. The second part then gave students two possible solutions
to the concurrency issues in part 1. One of them was correct and the
other was faulty, but students were only told that they had different
strengths and weaknesses. Students were then asked to pick one of
the solutions and write a small essay outlining any problems in the
selected solution. They were also asked to describe any changes
needed to their submitted solution in order for it to be correct.

All collected answers were analyzed using the same process as
in the pilot study of Progvis [26]: we examined whether or not each
answer was correct (i.e., if the solution follows the specification,
and has no data races), and whether the used synchronization
primitives were declared at an appropriate location. In the questions
selected for analysis all synchronization primitives would ideally be
declared inside the available data structure (similarly to tasks 2–4 in
[26]). For the answers to the question from 2021, we included any
modifications described in part 2 when considering the correctness

of the solution. Finally, we compared the number of correct answers
and correctly declared synchronization primitives between 2022
and the prior years. Since these numbers represent a number of
answers, they follow a Bernoulli distribution and we therefore use
Boschloo’s exact test [5] to compare them. To verify the assumption
that themeasurements follow a Bernoulli distribution, we compared
the Boschloo tests to non-parametric Mann-Whitney U-tests [21],
which do not make assumptions about the distribution of the data.

6 RESULTS
This section presents the results from integrating Progvis into the
course described in Section 5.1. First we present the results from
the questionnaire regarding students’ impressions of using Progvis.
Then we present the results from the analysis of the answers to the
final exams in the different years.

6.1 The Questionnaire: Students’ Impressions
Forty percent (31 of 77 students) responded to the questionnaire.
The responses are presented in Fig. 5 and show that approximately
two thirds of the respondents used Progvis for the two assignments
which encouraged using Progvis, and only one third used Progvis
for the reader-writer lock assignment where Progvis was only pre-
sented as an option. All students who used Progvis answered that
they found it helpful to understand the assignment to at least some
extent, and a majority answered either fairly much (option 3) or
very much (option 4).

Seventeen students also provided additional, written feedback
about Progvis. Even though the question were worded neutrally
(i.e., do you have any additional feedback?) all but two answers
were positive towards Progvis. The first non-positive answer stated
that they were unsure how to use it for the labs as they often
managed to solve the synchronization issues, but got stuck on other
parts of the assignment. The second stated that they were unsure
if they had the time to learn Progvis since it was not introduced
in detail during lectures. Additionally, one of the students that
were positive to Progvis stated that they used it to visualize some
examples, but then opted to not use it during the lab assignments to
prepare themselves for situations where visualization is impractical.
Finally, one student explicitly highlighted the usefulness of the
model checker.

Some answers also highlighted some minor issues that could
be addressed. One student noted compatibility problems on some
Linux platforms. Another student highlighted not being able to
include multiple files, and thereby visualizing larger programs as
an issue. Furthermore, one student noted that they had problems
in creating their own examples to visualize, likely due to Progvis
only supporting a subset of the C language. Finally, one student
highlighted a potential improvement to the introduction to synchro-
nization assignment to make it better illustrate some issues. We
will discuss these comments further in Section 7.2.

6.2 Students’ Performance
Using the criteria from Section 5.2, we selected a total of 7 questions
(2 from 2022, and 5 from prior years) to collect data from. We use
the notation Q<year>-<number> to refer to these questions (e.g.,
Q2022-1 is the first question from 2022). While we are unable to
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Figure 5: Summary of students who used Progvis to solve the new assignments (left), and to what extent these students found
Progvis helpful in aiding their understanding of the assignment (right).

reproduce the questions in full due to space constraints, we provide
a brief summary of the questions below, and include them in full in
the supplementary materials for this paper.

Q2022-1 The data structure in this question represents a train track.
Each track is divided into segments, and only one train is al-
lowed to be present in each segment. The data structure also
contains a function to output a visual representation of the
track to standard output. The question asks to synchronize
access to the segments, and to ensure that the print function
outputs a consistent state of the data structure.

Q2022-2 The program in this question rasterizes a line-drawing
into a bitmap. Multiple threads are used to speed up the ras-
terization process. A function for rasterizing a single scanline
is provided. Since scanlines are independent of each other
(which is explicitly stated) the student only needs to syn-
chronize a shared data structure to ensure that each scanline
is rasterized once, and that they are outputted to standard
output in the correct order.

Q2021-1 The data structure in this question manages a pool of
threads that handle requests in a hypothetical web-server.
When the data structure is created, a specified number of
threads are created. Work submitted to the data structure
is then handled by one of these threads. When the data
structure is destroyed, all threads shall be terminated. The
question asks the student to synchronize all these operations.

Q2019-1 The program in this question simulates two hypothetical
robots that mix drinks to customers. The program contains
a data structure that represents a shared inventory of ingre-
dients, and the question asks students to ensure that access
to the inventory is properly synchronized.

Q2019-2 The data structure in this question is a future-object that
allows threads to wait for some value that will become avail-
able at some point in the future. The question is similar to
the fourth task from [26], but scaffolds the process of finding
problems in further detail.

Q2019-3 The program in this question computes the value of a
function 𝑓 (𝑥) for all values 0 < 𝑥 < 𝑛 and stores them in
an array. As in Q2022-2, this involves ensuring that each
value is computed exactly once using a shared data structure.
The order in which the elements are stored is, however, not
important as they are stored in an array.

Q2018-1 The data structure in this question stores a number of
strings. It allows sequential insertion and random removal
of elements. The insertion fails if the data structure is full,
while removal shall wait for an element to be added. The
question asks students to synchronize these two operations.

Table 1 contains the results of analyzing the answers to these
seven questions for correctness (i.e., if they work according to the
specification and are free from data races). Some answers to Q2022-
1 stated that they did not consider the print function to be a part of
the question and therefore did not synchronize it, even though one
of the examples explicitly highlighted a problem with the output.
Since this interpretation might be widespread, the column marked
with a dagger (†) ignores the print function entirely when assessing
correctness.

As can be seen in Table 1, the number of correct answers varies
between 10% (Q2022-1) and 69% (Q2019-1). This is true even for
questions from the same exam. For example, 69% of students an-
swered correctly to Q2019-1 while only 26% answered correctly to
Q2019-2. The Boschloo tests show a number of differences between
2022 and prior years, but all of these are cases where students in
2022 performed worse compared to prior years. The exceptions to
this result is the alternate correctness criteria for Q2022-1. All differ-
ences that the Boschloo test found significant, the Mann-Whitney
U-test also found significant and vice versa.

Table 2 presents the number of solutions that incorrectly declared
the synchronization primitives globally. The table shows that fewer
students declared the synchronization primitives globally in 2022
(3% and 4% respectively) compared to all prior years. Furthermore,
the Boschloo tests show that the results from 2022 are significantly
lower than all prior questions except Q2019-2. As with the tests for
the correctness, the cases found to be significant using the Boschloo
test were also significant using the Mann-Whitney U-test and vice
versa.

7 DISCUSSION
In this section we discuss the improvements to Progvis and the
results in order to answer the research questions. Each of the three
subsections below aims to answer RQ1–RQ3 respectively.
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Table 1: Comparison of the number of correct answers between year 2022 and prior years. The question marked with a dagger
excludes issues with the print function. Significant results are marked with an asterisk.

Question Q2022-1 Q2022-1† Q2022-2
𝑛 67 67 67

Question 𝑛 Correct 10% 63% 28%
Q2021-1 68 22% 𝑝 = 0.0852 𝑝 < 0.0001* 𝑝 = 0.4298
Q2019-1 68 69% 𝑝 < 0.0001* 𝑝 = 0.4677 𝑝 < 0.0001*
Q2019-2 68 26% 𝑝 = 0.0187* 𝑝 < 0.0001* 𝑝 = 0.8760
Q2019-3 57 37% 𝑝 = 0.0006* 𝑝 = 0.0045* 𝑝 = 0.3273
Q2018-1 67 55% 𝑝 < 0.0001* 𝑝 = 0.4104 𝑝 = 0.0017*

Table 2: Comparison of the number of students who incor-
rectly placed synchronization primitives at a global scope
between year 2022 and prior years. Significant results are
marked with an asterisk.

Question Q2022-1 Q2022-2
𝑛 67 67

Question 𝑛 Global 3% 4%
Q2021-1 68 22% 𝑝 = 0.0010* 𝑝 = 0.0033*
Q2019-1 68 16% 𝑝 = 0.0117* 𝑝 = 0.0386*
Q2019-2 68 9% 𝑝 = 0.2293 𝑝 = 0.4149
Q2019-3 57 26% 𝑝 = 0.0002* 𝑝 = 0.0007*
Q2018-1 67 19% 𝑝 = 0.0027* 𝑝 = 0.0093*

7.1 Improvements to Progvis
As described in Section 4 we implemented two improvements to
Progvis with the aim of further improving its accuracy and useful-
ness. The first improvement improves the accuracy of the mem-
ory model by implementing a weaker memory model that allows
Progvis to detect data races (Section 4.1). This is important as stu-
dents might otherwise be led to believe that sequential consistency
holds in general, which previous work [25] found evidence for.
The proposed memory model allows modelling the behavior of
common synchronization primitives and sequentially consistent
atomics, while remaining simple to explain to students and sim-
ple to visualize in Progvis. It is, however, a simplification of the C
memory model and it is therefore not able to model more advanced
concepts such as relaxed atomics. We believe this is a good trade-off
as Progvis is aimed at introductory courses on concurrency.

The second improvement was to implement a model checker
(Section 4.2) to help students find errors in their programs. As it
also provides an example of an interleaving that causes the error it
lets students validate their understanding of the execution model,
as mentioned by Lönnberg et al. [20]. For example, a student who
believes that acquiring a lock prevents all other threads from ex-
ecuting [25] will likely not explore interleavings that break this
assumption. In such cases, the model checker can help by providing
an example that illustrates that the assumption is incorrect. While
the model checker is useful, it is not a silver bullet. Similarly to unit
testing, it needs a test program that suitably exercises the concur-
rent behavior of the code to test, or it might fail to find some errors.
Furthermore, the model checker only assesses that the program
works as intended, not the quality of the solution. It is therefore

not a replacement for manual grading and feedback. Finally, it is
worth mentioning that the model checker is only able to verify
relatively small programs, otherwise the number of states become
large enough for verification to take a substantial amount of time.

With the addition of these features, Progvis matches or exceeds
the functionality of the existing tools mentioned in Section 3.2. In
addition to providing an interactive visualization of concurrent
execution like ConEE [22] and The Deadlock Empire, it also visual-
izes a rich data model. The improved memory model adds further
accuracy to the visualization by detecting and reporting data races.
To our knowledge, Progvis is the only tool that models this kind of
undefined behavior. Furthermore, the addition of the model checker
means that Progvis, similarly to ConEE, Eraser [6] and the Spin
model checker [3], is able to automatically detect errors, and pro-
vide visuals that help students understand the cause of the error,
similarly to Atropos [17].

7.2 Students’ Impressions
Since the number of respondents to the questionnaire were fairly
low (40%) the results should be interpreted with some care. This is
especially true since respondents were self-selected, which means
that the results might be biased towards students who were positive
to Progvis. The answers to the questionnaire showed that approx-
imately two thirds of students used progvis when encouraged to
do so, and that all of these students found it to help their under-
standing of the assignments. For the last assignment, reader-writer
lock, where Progvis could be used but was optional, only about one
third of students used Progvis. Since this assignment appears late
in the course it could mean that students were already comfortable
enough with the material to solve it on their own. Another pos-
sibility is that, similar to one of the free-form answers, students
were stressed towards the end of the course and did not want to
spend time on anything but writing code that directly contributed
to solving the assignment (even though Progvis might have saved
time).

While the feedback from the students were generally positive,
they highlight some areas that could be further improved. In partic-
ular, the worries about Progvis taking much time to learn could be
addressed by slightly expanding the many visualizations in Progvis
already performed during lectures to also show the simplicity of
loading programs, and a slightly more thorough explanation of the
model visualized by Progvis. This concern, alongside difficulties
with creating examples and visualizing programs in multiple files,
could also be addressed by providing better and easily accessible
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documentation. For example, it is possible to visualize programs
spanning multiple files, but it is not apparent how to do so since
include statements are currently ignored.

7.3 Students’ Performance
Comparing the number of correct solutions between 2022 and prior
years showed some significant differences, mainly that students
2022 performed worse than prior years. However, the large varia-
tion in the number of correct answers, even within the same exam,
suggests that the questions were not equally difficult. For exam-
ple, 69% of answers to Q2019-1 were correct, while only 26% of
answers to Q2019-2 were correct. This can also be seen for 2022,
where 63% of students solved a large part of Q2022-1 correctly,
even though only 10% managed to solve the issue with the print
function. Another cause of this variation are differences in prior
courses. This is particularly relevant here, as students in 2022 took
their introductory courses remotely during their pandemic, which
likely has some effect (either positive or negative) on their learning.
To minimize this difference, it is most relevant to compare years
2021 and 2022, which is made difficult due to the remote exam in
2021. Because of all these factors we find these results inconclusive.

In spite of the above-mentioned problems, the results show that
students were significantly more likely to declare their synchro-
nization primitives correctly (inside the data structure) in 2022
compared to prior years, with the exception of Q2019-2. Since
more students declared their synchronization primitives globally
in Q2019-1 and Q2019-3, this could be because the test program to
Q2019-2 creates and uses multiple instances of the future object.
This is only done in one other question, Q2022-1. As such, this could
mean that students realize the problem with global synchroniza-
tion primitives more often when an example is provided. However,
this benefit seems to not be significant in 2022, since the differ-
ence between Q2022-1 and Q2022-2 was not significant. Finally,
the improvement in 2022 could also be due to a modification in
a prior course. We do, however, believe this to be unlikely since
the difference between 2022 and 2021 was large (22% vs. 3% and
4%), and the difference was significant for all prior years (except
Q2019-2).

As such, the results are a strong indication that Progvis does
help students learn some aspect of concurrent programming. Since
more students succeeded in correctly associating synchronization
primitives with the protected data, their mental models of either the
synchronization primitives, or the semantics of the programming
language have improved. Both of these aspects were highlighted
as important by Strömbäck et al. [25]. Furthermore, Fisler et al. [8]
have shown that students struggle with concepts such as scope,
mutation and aliasing, which are vital when working with con-
currency. As such, these results could mean that students have
improved their understanding of these particular concepts by using
Progvis. Finally, Haglund et al. [9] argue that this type of concepts
are important in other areas, such as abstraction. This means that
Progvis might be useful in other contexts as well.

8 CONCLUSION
In this paper, we have addressed the shortcomings in Progvis we
highlighted in our previous work [26] by implementing a memory

model that more closely resembles the intricacies of the C memory
model, and covers the concepts that are typically covered in intro-
ductory courses on concurrency. While the proposed model is not
able to encompass all intricacies of the C memory model, it has the
benefit of being easy to explain to students, and easy to visualize.
We also implemented a model checker into Progvis, which allows it
to automatically find concurrency errors in the visualized program
that students might otherwise have missed, and provide an example
to illustrate why the error occurs. As with many other automatic
tools, this requires adequate tests to produce reliable results.

This paper also evaluates Progvis in a larger scale compared
to [26]. The results from this evaluation suggest that approximately
two thirds of students used Progvis when encouraged to do so, and
that most of these students found that it helped them understand
the assignment. The results regarding students’ ability to correctly
solve concurrency problems were inconclusive due to large varia-
tions in student performance. The results did, however, show that
significantly fewer students incorrectly declared synchronization
primitives in a global scope in the year 2022, which suggests that
using Progvis helps students at least in this regard.
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