
Link�oping Electronic Articles in
Computer and Information Science

Vol� �������� nr 	

Link�oping University Electronic Press
Link
oping� Sweden

http���www�ep�liu�se�ea�cis����������

Simulation and Visualization of

Autonomous Helicopter and

Service Robots

Vadim Engelson



Published on December �� ���� by
Link�oping University Electronic Press

��� �	 Link�oping� Sweden

Link�oping Electronic Articles in

Computer and Information Science

ISSN �
�����
�
Series editor Erik Sandewall

c����� Vadim Engelson
Typeset by the author using FrameMaker

Recommended citation�

�Author�� �Title�� Link�oping Electronic Articles in
Computer and Information Science� Vol� ������� nr ��
http���www�ep�liu�se�ea�cis����������� December �� �����

This URL will also contain a link to the author�s home page�

The publishers will keep this article on�line on the Internet
�or its possible replacement network in the future�

for a period of �� years from the date of publication�
barring exceptional circumstances as described separately�

The on�line availability of the article implies
a permanent permission for anyone to read the article on�line�

to print out single copies of it� and to use it unchanged
for any non�commercial research and educational purpose�

including making copies for classroom use�
This permission can not be revoked by subsequent

transfers of copyright� All other uses of the article are
conditional on the consent of the copyright owner�

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper� which were archived in Swedish university libraries
like all other written works published in Sweden�

The publisher has taken technical and administrative measures
to assure that the on�line version of the article will be
permanently accessible using the URL stated above�

unchanged� and permanently equal to the archived printed copies
at least until the expiration of the publication period�

For additional information about the Link�oping University
Electronic Press and its procedures for publication and for

assurance of document integrity� please refer to
its WWW home page http���www�ep�liu�se�

or by conventional mail to the address stated above�



Abstract

To decrease the costs and the time it takes to develop and test new products�
computer simulations are very helpful� Product models can be simulated�
and their behavior can be examined� This applies not only to hardware�
but even to software products that are composed of several components�
so that their cooperative behaviour is simulated in a virtual environment�
Some components of this environment can later be replaced by physical�
real world devices� Some other components can be just prototypes� which
are later replaced by more complex and realistic software components� In
any case the idea is to construct a model and simulate both software and
hardware before the actual production starts� In the WITAS project there
is a need to develop a system which contains helicopters� robots and various
control software and hardware� In particular there is a need to simulate the
dynamic behavior of an autonomous aircraft within a virtual environment�
There is a need to simulate a service environment� where robots can interact
with the landed helicopter�

In this report a study of object�oriented modeling of mechanical systems
using Modelica is presented with applications to autonomous helicopters
and robots� Mechanical features of an autonomous helicopter have been
modeled in order to verify the control system� As the result the control
system has been tested and tuned� However� the �ight still is not stable in
the cases when �ight mission directions change too often�

A robot which is able to grab� move� and release objects using automatic
or manual control have been modeled� The problem of inverse geometry
�and inverse kinematics� can be solved for robots using our approach� The
robot models can be controlled interactively�

The geometry and dynamic structure of these systems has been designed
in CAD tools and later integrated with control systems for steering these
devices� The simulation has been performed in Modelica�
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1 Introduction

This paper contains a study of simulation of autonomous helicopters and
service robots that has been performed in the framework of the WITAS
[15] project. That project concerns research in the area of autonomous
aircraft and other autonomous systems. One of major objectives of the
project is to investigate tasks that unmanned autonomous aircraft will be
able to solve in future. For this purpose a virtual environment is needed to
simulate these tasks and solutions. The environment includes a command
and control architecture with a system of active vision. One of the tasks for
an unmanned autonomous aircraft, e.g. a helicopter, could be to monitor
traffic situations as well as providing emergency help. The tasks of the
robots include servicing the helicopters, as well as loading and unloading
various objects to and from the helicopter.

The most complex part of the project includes design of control systems
working in several layers. Note that our description below covers just a little
fragment of the WITAS software systems and related research activities,
which can be found in [15]. The control system for the autonomous vehicle
is organized as software tools in three layers (see Figure 1):

� A deliberative layer produces plans, e.g. a plan of movement.

� A reactive layer produces responses when certain events happen.
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Figure 1: Layers of a simulation architecture for autonomous vehicles.

� A process layer gets information from sensors and produces signals
for mechanism actuators (e.g. motors).

The mechanical model is placed ”under” these layers. Depending on
the environment either a mathematical model of the mechanism is linked to
the control system software, or a real physical device in the laboratory or
on the field is used as a mechanical model. In order to test and verify the
control system the mathematical model and the real device should respond
to actuators in the same way and give the sensors the same answer.

Therefore, it is necessary to enhance the realism of simulations in order
to verify the correctness of the control systems.

This can be done in different ways; in the case of flying and moving
mechanisms it is quite important to take the dynamics of the mechanisms
into account. Initially the models were represented as point masses. Since
the dynamics can be simulated in Modelica[7] we designed the correspond-
ing models of the helicopter and the robot in this language.

The assemblies contain many components that move and rotate in cer-
tain ways. This information has been extracted [5, 4] from CAD models
designed in the SolidWorks tool [14] and glued with other Modelica code.
Simulation has been performed using the Dymola tool [2], the multibody
system library[6], together with online and offline visualization and inter-
active control[4].

The report contains a description of the helicopter model (Section 2)
and the robot model (Section 3). Conclusions are given at the end of these
sections.
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2 Helicopter modeling

The helicopter model consists of two major parts:

� A control system [13] written in Ada (later translated to C). This
control system has been initially tuned with a simplified helicopter
model [11, 12] described using explicit motion equations.

� A mechanical dynamic system modeled in Modelica where the major
part of the code is generated automatically by the SolidWorks–to–
Modelica translator.

These parts communicate with each other via function calls.

2.1 The control system

The part of the control system which communicates with the Modelica
model is the process layer. This system takes the plan (helicopter mission)
as commands expressed in a language FCL (Flight Command Language).
Typical commands in this language look like FLY-TO- POINT(x,y,z,v,p)
or LAND()where (x,y,z) are space coordinates of a mission point, v is
the required velocity, p is the required precision. The command FLY-TO-POINT
means that the control system will try to steer the vehicle to a specified point
so that the magnitude of velocity is v. Each command is considered as exe-
cuted as soon as the vehicle occurs at a distance less than p from the target
point. Then the next command is requested from the upper layer of the con-
trol architecture. For testing purposes the test sequence of FCL commands
is just read from an input file.

X

Z

Y

O

X

Z

Φ
Θ

Ψ

F

Y

Figure 2: The origin (O) frame and the body-fixed (F) frame.

In order to describe the architecture of the control system, the coordi-
nate frames (Figure 2) should be considered. The origin coordinate frame
O corresponds to the ground, inertial system. The body-fixed coordinate
system, F is attached to the main part of the helicopter. The relation be-
tween these systems is determined by the position of the helicopter and its
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rotation around each axis. The rotation angles �, � and � are yaw, roll and
pitch rotations around the Z , X and Y axes correspondingly.

������������
������������
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������������
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�������

�������
�������
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X
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Center of mass

Figure 3: Positions of the forces Frotor and Ftail on the helicopter. The
angle �x is the deviation of the rotor plane from the X axis.

The magnitude of two forces (Frotor and Ftail) and values of two angles
(�x and �y) are delivered to the helicopter model by the control system (see
Figure 3). The force Frotor is a lifting force applied to the main rotor of the
helicopter. The rotor is located above the center of mass of the helicopter.
The rotor is tilted to the angle �x around the local Y axis and angle �y
around the local X axis. Finally, Ftail is the force created by the tail rotor.

The control system switches between different modes. A switch hap-
pens when the execution of a new command starts, or the helicopter position
or rotation reaches a certain value (i.e. reaches a threshold value and cause
an internal event). Each mode has a specific feedback loop which maps
current position, velocity and rotation to new force magnitudes and angle
values. Rules defining these modes are described in [13, 8].

2.2 Mechanical model of the helicopter

The mechanical parts of the helicopter model (see Figure 4) has been de-
signed in SolidWorks [14]. There are eleven parts in the model. The kine-
matic skeleton for the moving parts of the model is shown in Figure 5. The
Modelica connection diagram of the helicopter is shown in Figure 6.

The major parts are the main body of the helicopter, the main rotor,
the tail rotor, left and right landing gears, and the door. There exist minor
parts, which were convenient to define for debugging of the model and in-
tegrating with the robot model. The ”reference cylinder” and load platform
are attached to the main body. Three intermediate parts used for rotation
are inserted between the main body and the rotor. All the parts are consid-
ered as rigid bodies. They are connected by rigid, revolute (rotational) and
prismatic (translational) joints.

The size of the helicopter used in the project is ���� ���� ��� m. The
weight is about 50 kg.

The mechanical part of the helicopter is just one of components in the
helicopter model. There exists a set of components which cannot be de-
fined just by drawing in the CAD tool. In Modelica these components are
connected to the mechanical part by ten MbsCutB connectors.
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Figure 4: Helicopter model designed in SolidWorks.

This connector is a data structure which contains position and rotation
of a coordinate frame attached to the mechanical part in question at some
point. In addition, this connector contains variables defining the force and
the torque that can be applied to this point. They are denoted as pentagons
on the leaves of the Modelica connection diagram (Figure 6)

The components used in the model are the following:

Springs in the landing gears. A spring and a damper is inserted between
the landing gear and the helicopter. This models the flexibility of the
landing gear necessary for soft landing.

Motors for rotating the rotors and the door. These motors have a refer-
ence angle which changes with constant or varying velocity. A feed-
back torque is applied to the main and tail rotors according to the
current and desired angular position and velocity:

t � k�qref � q	� d 
q�

where q is the current angle, qref is the reference angle, k and d are
feedback coefficients, t is the resulting torque.

Cabin floor contacts. Four MbsCutB connectors are placed on the floor
of the helicopter. These can be used in order to attach a load to the he-
licopter. If a load has the corresponding four MbsCutB connectors,
some attraction force is set up between the points at the helicopter
floor and the points at the load.
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Figure 5: Kinematic skeleton of the helicopter. Five revolute joints, two
prismatic joints and one rigid joint are used.

Ground contacts. There are four ground contact point specified for land-
ing gears. There exist two points (front and rear) for each gear. A
force is created as soon as a contact point is close enough to the
ground (otherwise it is zero). The force is defined as a sum of hori-
zontal friction force and vertical collision force.

F � ��f�S
�

bny	 � ��f�S
�

bnx	 � ��f�S
�

bnz	

f� � c�s� s�	 � dvy

f� � cfricvx

f� � cfricvz

where

� Sb is the current rotation matrix of the contact connector on the
landing gear.

� nx� ny� nz are unit vectors.

� �vx� vy� vz	 is the current velocity of the contact connector rel-
ative to the ground.

� s is the current height of the landing gear contact point relative
to the origin.

� s� is the height of the ground level relative to the origin. It is
a constant if a flat ground is modeled. Otherwise it is a value
defined externally as function s��x� z	.

� c and d are spring and damping coefficients for collision with
the ground. We use here a simplified force-based collision model.
More advanced models have been designed later, see [3].

� cfric is the coefficient of the friction constant preventing the
helicopter from sliding after landing.
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Figure 6: Modelica connection diagram of the mechanical part of the heli-
copter.

Just after a landing, if four such forces are applied to the landing
gears of the helicopter, these forces compensate the gravity force and
the helicopter stays on the ground. Guessing the right values of the
coefficients is a difficult tasks. This has been done by trial and error.
In order to achieve naturally looking movements during the landing:
c � ���� d � ���� cfric � ��.

There are some other components that can be easily attached to the
model

Load. A load of appropriate size can be attached to the floor of the heli-
copter. The force between the load and the floor is modeled by stiff
springs.

Ground level height. The height of the ground level can be defined by
a table or by an external function which contains the geometry of
the ground. This gives the possibility to model a landing failure if
the landing point is on a slope. However if a ”mountain” appears
between two mission points, the control mechanism cannot prevent
collision, since there is no built-in collision avoidance model.

Wind. Additional constant, random or customized forces and torques in ar-
bitrary directions can be applied in order to destabilize the helicopter.
This way wind and turbulent air flows can be modeled.
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2.3 The Integration of the Helicopter Control System and the
Helicopter Mechanical System

The mechanical system (the Modelica model) and the control system (the
C or Ada model) have their own loops for finding solutions of arising me-
chanical and control equations. The control system uses an Euler method
and fixed time steps (0.01 seconds).

The mathematically correct way of integration of Modelica model with
sampled, discontinuous, external signal is using a when sample(...)
statement. This statement triggers an event, updates the variables, and
restarts integration each time an event occurs. Unfortunately, integration
restart takes too much time, and computation time will be non-realistically
large in this case. However, the control system is designed so that its output
values change smoothly. Therefore we use external functions directly.

In order to synchronize the solvers special interface routines have been
developed. One iteration of the control system loop might correspond to
many iterations of the mechanical system loop. The time in the control
system increments by a fixed value at every solver step. The time values
used in the solver steps in the mechanical system are dependent on the
used solver. We found that an adaptive solver should be used, since other
solvers lead to simulation failure (see below). Therefore, the time steps
might vary. Simulation code generated by Dymola tool for the Modelica
model of helicopter contains a number of solver iterations. During each
iteration the external functions are called as follows:

� A solver step starts.

� Modelica simulation calls an external function that obtains the most
recently saved values for forces and angles. These values were saved
in the memory buffer during one of the previous steps.

� According to the equations of mechanics, the current helicopter ac-
celeration, velocity and position is determined.

� The Modelica simulation calls an external function with the current
helicopter position, the current time and other variables as parame-
ters.

� If the modeled time in Modelica simulation code is larger than or
equal the modeled time in the control system, the control system
takes the parameters of the helicopter and evaluates new forces and
angles that should be applied to the helicopter. New forces and angles
are stored in the memory buffer. Also, the control system advances
its time.

It is also possible to move the first call of the external function to the
end. Since Modelica language specification does not explicitly define the
order of evaluation of external functions, this order can be controlled indi-
rectly by adding artificial dependencies between function calls. In this case
the compiler attempts to reorder the sequence of the calls. For instance if
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two equations a � f��b	 and c � f��a	 are specified, and b is a known
variable, f� will be called first. This is not a safe way, however, and should
be used with care.

Additional uncertainty arises since functions in Modelica can be called
many times at different solver iteration steps with ”trial” time which can
go forward and backward. In our simulations we made a simplification
and used the largest reached time value and ignored all new simulated time
values which were less than the largest one.

t 3

t1

2t

c

c

c

c
interaction with controller(sends and gets new values)

solver iteration

CPU time

simulation time

iteration of solver,

last received values are considered as constants

Figure 7: An approach to sampling values at regular simulated time inter-
vals from an external source. The solver iterations are represented as small
black boxes. As soon as the time corresponding to the iteration is larger
than t� (the same applies to t�, t�, etc.), a value is read from the external
source.

In the solver the external function for retrieving the data from the con-
troller is called at each iteration of the solver, and different values of time

are given to this function. As soon as time becomes larger than the commu-
nication instant, e.g. t� at iteration s�, the controller is called and returns
values (forces and angles). These values either remain constant until the it-
eration s�, or smoothly change (using one of several smoothing approaches)
as described below.

The solvers of ordinary differential equations, in particular those used
with Modelica simulation code, require that all external functions during
continuous integration are differentiable up to n-th order (where n � � is
the order of the numerical integration method used in the solver).

Therefore all input data should be smoothed using one or several splines
connected together. Three variants of smoothing were tried: initial discon-
tinuous signal (Figure 8(a)), continuous (Figure 8(b)), and signal with con-
tinuous first derivative (Figure 8(c)). The last one is constructed by gluing
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t1 t 2 t 3

input function
value

time

t1 t 2 t 3

input function
value

time

t1 t 2 t 3

input function
value

time

(a)  discontinuous
       signal

     signal

(c) signal with
continuous first
derivative

(b) continuous

Figure 8: Three variants of smoothing data in an external function. The
circles represent the values obtained at sampling times t�, t�, t�. Since
an external function should not be discontinuous, one of three smoothing
algorithms is performed.

together two second order polynomials and one constant interval. Despite
of these variations the numerical results and simulation performance were
roughly the same in all three cases. Therefore we made a conclusion that
a discontinuity of the input data does not affect the solver1 substantially in
our model.

We have a hypothesis regarding an accurate approach to the co-simulation
of the control system and the mechanical system. If the control system uses
a fixed-step explicit equation solver, the mechanical system should use the
same, fixed-step explicit equation solver, with probably smaller step size.
In practice, however, the mechanical system is quite complicated, therefore
the time step for it should be extremely small in order to use an explicit
method and obtain a solution that converges. Computation time will be
non-realistically large in this case.

1We use the DASSL solver[10] implementation in the Dymola tool[2].
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2.4 Helicopter Visualization

The helicopter visualization is obtained by the MVIS tool. The following
properties were particularly useful for visualization:

The mission lines. The points used in the flight specifications in the Flight
Command Language (mission points) are shown as boxes in space,
connected by straight lines. Helicopter normally should fly along the
lines and turn near the boxes. It is easy to see cases when the flight
deviates from the mission lines.

Figure 9: Trajectory of the tail rotor of the helicopter.

Helicopter trajectory. The trajectory of some part of helicopter is shown
on the screen and compared with the mission line. If the main part of
the helicopter is observed, the line describes the general path of the
flight (see Figure 10). If the tail rotor position is observed, stability
of helicopter rotation can be visually assessed (see Figure 9).

Shadow. The shadow from the helicopter is a projection of its parts on the
ground plane. It helps to determine exact position of the helicopter
in the horizontal direction.



12

Figure 10: The whole trajectory compared to the mission path.

2.5 Conclusions on Helicopter Simulation and Visualization

The helicopter modeling, simulation and visualization project was the first
large model obtained by the SolidWorks–to–Modelica compiler. It turned
out to be possible to change the design of the helicopter in the CAD tool
and rapidly produce a corresponding Modelica model.

The generated model can be conveniently connected to other, non-generated
components, such as landing, ground model and load model. This added
some more complexity to the set of equations to be solved.

The mechanical model of the helicopter was initially simulated sepa-
rately from the control system. This is necessary in order to validate po-
sition of the center of mass with respect to the rotors, as well as to test
functionality independent of the controller (e.g. landing). The model be-
haves as expected, and the solver computes the movements quite fast (10
seconds of flight is modeled using 5 seconds of CPU time2)

When the model is connected to the external control system, various
problems arise, both instability and performance problems. The trajectory
of the flight, the success of mission, and the time it takes to perform the
simulation depends on many aspects of the model and its simulation.

In many cases the mission was performed successfully, i.e. all the
points were visited, the flight was stable, and the helicopter landed in a nor-

2Here and in further experiments we were using a 266 MHz Pentium II-based computer
without graphic card, with 128 MB RAM.
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mal vertical position at the landing point. Simulation time has been close
to the real time (30-50 seconds of CPU time is necessary for simulation of
30 seconds of flight).

The simulation currently fails in the following three cases:

� The control system loses control over the horizontal position of the
helicopter and cannot steer it to the target position. The helicopter
flies away from the target.

� The control system loses control over the vertical or/and rotational
position of the helicopter. It chaotically applies various forces and
angles, but the helicopter falls down anyway.

� The adaptive solver takes too small integration steps so that the sim-
ulation takes 30 times more than the real time, i.e. 1 minute of flight
is modeled using 30 minutes of CPU time.

The following factors affect the failures:

Control system simulation step size. The step size in the original model
was 0.01 sec. Variations of this value (0.02, 0.03) sometimes caused
failures, sometimes removed the failures.

Mechanical system solver step size. Larger steps typically causes less sta-
bility and faster simulation.

Mechanical system solver precision. Larger precision threshold caused less
stability and faster simulation.

Mechanical coefficients. A number of unknown coefficients were guessed,
such as density of material, speed of rotation of the rotors, weight of
the rotors, etc. Small changes of these coefficients affect the failures.

Mission properties. Sharp corners of the mission line and short distances
between the points caused failures. Actually all the failures occurred
in the case of very short flights (less than 30 seconds), and typically
due to small distance between mission points (less than 20 m). All
experiments with larger missions were much more successful. How-
ever they were not so spectacular for visualization and not so con-
venient for validation. From this we conclude that the model has no
enough time to react properly to the often changes in the prescribed
flight direction.

As a result of the simulation some errors in the control system were
identified. Some coefficients used in this system were adjusted. Therefore
the goal of the experiments was partially achieved. However the mechani-
cal model is certainly too simplified. Currently the interaction between the
helicopter and the air is modeled by a single lifting force. More accurate
models should be created including aerodynamic properties of rotor blades.
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3 Robot Modeling

A study of service robots based on modeling and simulation was initiated
in the framework of the WITAS [15] project. The major objective of the
project was to predict tasks that a service robot-manipulator cooperating
with unmanned autonomous aircraft will be able to solve in the future. The
service tasks that the robot will perform in the future can, for instance be
the following:

� Refueling the helicopter.

� Loading and unloading of cargo.

� Exchange of components of the helicopter.

� Minor repairs.

The initial plans contained a study of cooperation and interaction be-
tween a service robot and a helicopter. However in a typical situation the
task of the robot can be described as ”to take some load from one con-
tainer and to place it to another container”. A helicopter can serve as one
of these containers. The position and rotation of the containers are known
to the control system of the robot. Finally the robot modeling problem was
formulated the following way:

� Input:

– Given positions of containers (later also slots) and their identi-
fiers, such as c1 or c2.

– Given a sequence Robot Command Language (RCL) commands
(missions), such as MOVE(c1,c2).

– Given a virtual robot constructed in SolidWorks[14].

� Output:

– Torques applied by the motors in order to perform the mission,
for instance, to grab a load from container c1 and move it to
container c2.

– The movement trajectory of the robot and all its joints when the
mission is performed.

3.1 Mechanical Part of the Robot and the Load Model.

The mechanical part of the robot model was initially designed in Solid-
Works and then automatically translated to Modelica. The model contains
seven rigid bodies with six rotational joints between them. There is a mo-
tor controlled by the control system at each joint. In addition, the robot is
placed on a mobile platform. The mobile platform is located on the ground
(floor) and has two translational joints. All the joints are steered by motors,
which are controlled by the controller. The platform can reach any point on
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the plane. From the platform the robot can reach any point in the volume
� � �m above the center of the platform.

The robot can interact with the load. Loads represent spare parts or
cargo. The load is a cube of size 0.1 m in each dimension. There are three
connectors on the grip of the robot, which correspond to three connectors
on the load. When the grabbing mode is turned on, three stiff springs-and-
dampers are activated between the grip and the load. After some interaction
the robot keeps the load firmly in its manipulator.

The load has a simplified model of collision detection with the ground.
When the load reaches the ground, and some of the vertices of the load
occur under the ground a stiff spring-and-damper is activated and pushes
the vertex away from the ground. After some interaction the load rests still
on the ground.

3.2 Environment Model

Figure 11: A virtual environment includes a robot, load (a small cube) and
two containers.

The operating environment consists of two or more containers (see Fig-
ure 11). Containers represent helicopters, or storehouses with spare parts
or cargo. Each container has an identifier and it contains three or more slots
which have their identifiers. Containers are constructed as open boxes (ap-
proximately ��� � ��� � ��� m) with the top and front wall missing. The
slots have fixed positions within the containers. The load can be placed at
the slots or removed from them. We assume that all the containers in the
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simulated world are standardized, i.e. the slots have fixed position. The
position and rotation of container is known to the control system.

3.3 Scenario for Load Movement

Step Platform Manipulator Grabbing Terminate if

0 origin home off immediately
1 source home off Dplatf � �

2 source source off Dmanip � �

3 source source on Dgrab � �

4 target home on Dplatf � �

5 target target on Dmanip � �

6 target target off immediately
7 origin home off Dplatf � �

Table 1: Steps of scenario for moving a load from source to target.

The scenario for load movement is shown in the Table 1. The controller
switches from one step to another when certain conditions become true. At
each step specific target values for the actuators are specified. The platform
motors can move on the plane between the origin position, source and target
container. Every container has a reference point where the platform should
be located. The actuators for the platform compute force necessary to move
the platform in needed direction.

SLOT 1 s

s

SLOT N

d

-

arms

container

center of robot platform,

container reference point

Figure 12: Container with three slots. View from above.

The manipulator can be in three positions: home, source slot and target
slot position. In the home position the grip is at a position about 1 m above
the ground. The slot positions are shown in Figure 12. The slot position for
each slot (relative to the container reference point) is known from the con-
tainer geometry. However since the robot has six revolute joints, the inverse
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geometry problem should be solved in order to move the grip to the nec-
essary position and rotation. We discuss our solution to inverse geometry
problem in Section 3.4.

The grab flag turns on and the stiff spring between the manipulator grip
and the load, modeling a magnet-based manipulator.

The termination conditions are defined by functions Dplatf , Dmanip

and Dgrab. If the difference between required value and actual state (angles
of the revolute joints, position of the prismatic joint, length of the spring)
is close to zero, and its derivative is close to zero, we consider that the
required value is reached. It appeared to be difficult to derive appropriate
values for � for each case. Therefore the termination condition is computed
”visually” by the user, and he or she can interactively control the simulation
by giving an order to shift to the next step of the plan.

The plan is implemented as an array in Modelica, and the value of vari-
able for indexing the array is obtained via a graphical user interface (GUI)
input function.

In order to get the new value from the GUI, a sampling method is used:

when sample (0, 0.1) then
step=infun(...)

end when;

Every 0.1 seconds the integration stops, a new value from the GUI is
obtained, and integration restarts with a possibly different target value for
the new step according to Table 1. If the value from the GUI is still old,
no variable change occur, and therefore the integration restart does not take
much time from the solver.

3.4 The Inverse Geometry Problem

Objects in the simulated world can be easily located using three Cartesian
coordinates, and their rotation is defined by additional three angles. When
robot links are connected by revolute joints, the position and rotation of the
grip of the robot is defined by six angles. The inverse geometry problem in
our case is finding such angles of the robot joints, so that the grip is located
at the required position (in Cartesian coordinates) and the required rotation.

3.4.1 The Inverse Robot in 2D

The 2D case is illustrated in Figures 13 and 14. In Figure 13 a manipulator
(direct robot) is shown. It has two motors, two bars (links) and the tip. The
position of the tip (X�Y ) is defined by the angles A and B. Therefore we
call such model a direct robot.

The inverse geometry problem is to determine values for A and B from
the given X and Y . For this purpose the model depicted in the Figure 14
has been constructed. The angles (joints) A and B are free now. In addition
a revolute joint appears at the tip. Two prismatic bars with actuators are
added to the model. One bar moves along the X axis. Another bar is
attached to the first one and moves along the Y axis. The positions of these
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Figure 13: Direct kinematics model for two links with two revolute joints.
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Figure 14: Inverse kinematics model for two links with two revolute joints.

bars define the (X�Y )–position of the robot tip. The angles at the revolute
joints A and B can be obtained. This model is called an inverse robot.

3.4.2 Alternative Solutions

Generally, the inverse geometry problem can be solved by trigonometric
computations in 3D, and requires complete information about the kinemat-
ics of all the links (i.e. the positions of the joints and their types). The
inverse geometry problem is a special case of the inverse kinematics prob-
lem where movement of a point in Cartesian coordinates should be mapped
to the change of angles in revolute joints. The inverse geometry problem
is solved by finding a Jacobian, which describes the relations between the
changes. It might appear that the solution is missing or that the process of
solution reaches a singularity point.
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3.4.3 The Inverse Robot in 3D.

In our approach we use a kinematic loop in order to obtain necessary values
for the inverse geometry. For this purpose a corresponding model of the
inverse robot is created from original (direct) robot model. This model has
the same geometry as the original robot, but is controlled in a different way.

Figure 15: The inverse robot with additional bars has a kinematic loop.
Required position of the tip is set up by the three scale bars (for X , Y , and
Z).

The direct robot has six revolute joints with state variables. The inverse
robot (Figure 15) has five revolute joints without state variables and one
revolute joint RevoluteCut3D3. instead. These joints connect the links
from the base to the grip. In addition three prismatic joints with state vari-
ables are added, and their movement is visualized by three bars. The refer-
ence position of the prismatic joints (scale bars for X , Y , and Z position)
can be controlled interactively, just like the motors MotorX and MotorY in
Figure 14.

The inverse geometry problem is solved in the following way. Initially
all the joints stay in the home position. The user interactively specifies
reference positions for the three orthogonal, consequently connected bars.
Actuators apply forces to the bars causing these to move to the specified
position. Since the inverse robot grip is attached to the last bar, all the joints

3The model RevoluteCut3D is a model of a revolute joint with one rotational degree
of freedom. In the MBS library[2, 6] when kinematic loops occur such a joint model should
be used instead of the usual revolute joint model RevoluteS.
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of the robot move correspondingly. Finally the grip reaches the target and
the angles (��� ���� ��) at all the revolute joints of the robot are stored for
future use.

At this stage we do not need the inverse robot any more. We start sim-
ulation of the direct robot, which has motors attached to the revolute joints.

When the angles ��� ���� �� are used as reference angles for the joints
of the direct robot, the grip of this robot will gradually be moved to the
required position. The same angles ��� ���� �� can potentially be applied to
the joints of a physical robot.

The inverse kinematics problem is solved just as a slight extension of
the method described above. If the required position of the three prismatic
joints is given as a function of time, the corresponding values of the angles
for a certain time span can be saved, and used later in order to directly steer
the direct robot.

3.5 Conclusions on Robot Simulation

A framework for mechanical simulation of manipulators has been devel-
oped. We considered a specific manipulator (with six rotational degrees
of freedom, on a mobile platform), but the method can also be applied to
other virtual devices. We show that a simplified deliberative and reactive
layer of control for a robot can be designed using Modelica. Alternatively
to table-driven plans, the robot operation plan can also be composed of a
set of connected primitive plan steps.

Currently the plan is hard-coded in the Modelica model. As an alterna-
tive, it can be obtained from the interactive environment during simulation,
or read from an input file. In this way programmable virtual robots can be
modeled.

If inverse and a direct robot are integrated into the same simulation it
is possible to give robot commands which include Cartesian coordinates.
This greatly simplifies construction of the movement plan.

The disadvantages with our approach are that it can under certain cir-
cumstances be rather slow, and can, just as other methods, reach a point of
singularity. Also, it is difficult to handle cases when the required position
is out of reachable space for the robot.

The advantage is that the same model (or a model with small and well-
defined modifications) can be used both for the direct and the inverse kine-
matics.
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Johan Parmar[8] developed early variants of helicopter models in Mod-
elica and integrated them with the controller written by Erik Skarman [13].
Tommy Persson ported this controller from Ada to C++.
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[5] Håkan Larsson, Translation of 3D CAD Models to Modelica, Master
Thesis, LiTH-IDA-Ex-99/30, IDA, Linköping Univ., Sweden, March
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