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Abstract

Collision detection and response is one of the most di�cult areas

in simulation of multibody systems� Two known approaches� the

impulse�based method and the force�based �penalty� method�

can be applied for multibody simulation in Modelica� The impulse�

based method requires instantaneous modi	cation of some vari�

ables� but such modi	cation is not always possible in Modelica�

The force�based method leads to sti
 ODE� which can be han�

dled by solvers used with Modelica� We suggest a new way to

express the penalty coe�cients� The force�based method� how�

ever� requires computation of penetration depth which is time�

consuming�

We also suggest a method that combines the distance between

bodies and the penetration depth into a single quantity used for

force computation�

Calling external functions is a preferable method integrate

collision detection algorithms with practical physical models�

since body geometry is stored externally� We describe an in�

terface with collision detection tool SOLID�
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1 Introduction

In mechanical systems certain machine elements usually interact with each
other. When a mathematical model of such a system is designed, the inter-
actions between the parts can be divided into the two following categories:

� Mechanical joints are used for definition of permanent constraints of
motion.

� Mechanical contacts are almost instantaneous, typically short-time
interactions caused by non-penetration contact forces arising between
the bodies in the model. The forces occur when the body surfaces
touch each other.

Two major phenomena occur in mechanical contacts:

– friction contacts (causing static or dynamic friction forces) and

– collision contacts (causing collision response forces).

Computation of contact forces is a difficult task. The bodies might
move in a complicated way, and they might have a complex geometry.
When at some instant they touch each other, penetration of the bodies
should be prevented. There is a tradeoff between efficiency and accuracy.
One of the goals of Modelica simulations is interactivity, therefore the com-
putation should have at least the same speed as the processes in the real
mechanisms. There exist accurate methods for contact force computation
based on finite element methods and other methods using subdivision of
bodies into very small fragments. Currently these cannot run at interactive
speed.

The most accurate and realistic methods used in mechanical simula-
tions of contacts are developed in the area of mechanical analysis called
tribology. This theory contains equations that take into account the hydro-
dynamic properties of the lubricant that occurs between bodies. Contact
forces appear already when bodies have some distance from each other.
These forces are caused by compression and decompression of the lubri-
cant.

One of the difficulties with the computation of contact forces is the vari-
ety of surface geometries. For certain kinds of surfaces (plane, spline of 2nd
order) there exist collision checking methods and approaches to calculate
the forces that arise. Such systems in general use higher order polynomials
to compute forces from geometrical relations. Theory and applications of
contact situations are discussed, for instance, in [16].

An accurate method (e.g. a FEM method) for contact force compu-
tation requires that the surfaces of two colliding bodies are covered by a
mesh, and that the relevant contact force is computed for each point on
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the mesh. The resulting force is then found by integrating of all the forces
acting on the contact surface. Experiments with contact computation of
rolling bearing models [5] show that this method is accurate, but requires
tremendous computing resources.

However, many simulation applications do not require extreme accu-
racy. Their goal is to demonstrate qualitative characteristics of the behav-
ior, not numerical ones. Therefore in many cases additional assumptions
are taken into account, that may reduce accuracy, but provide high sim-
ulation speed. Often different assumptions lead to different computation
methods but to the same (or nearly the same) computation results. In that
case this it makes no major difference for the application what assumptions
and methods were used.

The Multibody System (MBS) library in Modelica[14] is used for me-
chanical model simulation. Currently this library supports simulation of
models with rigid bodies and joints. Friction occurring in the joints can op-
tionally be taken into account in the models. However, collision detection
and collision response is not supported. As a result, the mechanical parts
may penetrate each other freely during simulation. This significantly de-
crease the realism of mechanical simulations. The simulation results might
even be wrong.

The goal of this report is to identify the ways to add collision response
to mechanical simulation models based on MBS.

Our approach to modeling collisions is based on combining several
components. In order to do that, collisions between bodies should be de-
tected, collision response should be evaluated, and this response should in
some way affect the simulation. Therefore the following basic components
of collision simulation models have been identified:

� Mechanical models use certain classes describing physical bodies.
Mechanical models including collision response force should extend
these classes to describe colliding physical bodies. Such bodies should
be distinguished from non-colliding bodies.

� There should be a routine that can detect collisions in the simulated
mechanisms and can return detailed information regarding collision
parameters, such as collision points and their velocities.

� A special routine should calculate the collision response from col-
lision parameters. The collision response is calculated as force and
torque applied to the point of collision at the colliding body (or bod-
ies). Alternately, this routine might change the velocity of the bodies
or some other model variables. This component seems to us the most
problematic and controversial, since there exist many approaches to
collision response computation which require different input infor-
mation and may produce quite different numerical results.

Each of these three components should have an interface that allows re-
placing its implementation without doing major redesign of the other com-
ponents. In particular, the collision detection package as well as the force
computation functions should be easily replaceable when necessary.
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Figure 1: The overall architecture of mechanical simulation models for
computing collision detection and response.

The overall architecture of mechanical simulation models with collision
detection and response is presented in Figure 1.

This report reflects ongoing research and development. Therefore some
fragments of work related to this report will be done in the future. The
structure of the report and the relation between its parts is shown in Figure
2.

The two major collision models used in the simulation are impulse-
based and force-based models. Both assume that the bodies are rigid. The
impulse-based approach uses collision impulses between the bodies (Sec-
tion 2). The force-based approach computes a non-penetration force (Sec-
tion 3). A traditional variant of the force-based approach is the penalty
method which assumes that bodies in contact behave like objects connected
by a spring. We consider these methods in application to Modelica. A new
method for computing force from penetration depth is given in Section 4.
There is a number of common properties of collision detection tools (Sec-
tion 5). A the particular tool, SOLID, is used for finding the penetration
depth (Section 6). Section 7 illustrates how the routines for computing the
forces are integrated with mechanical models in Modelica.

2 Impulse Model

A standard way of handling collisions in mechanics is based on the linear
momentum preservation law.
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Figure 2: The structure of the report.

2.1 Impulse and Velocity Equations

The following notation is used in the equations below:

� ma, mb – masses of bodies A and B;

� va, vb – velocity vectors of bodies A and B before the collision; v�a,
v�b – the velocity vectors of the bodies after the collision;

The movement of a body is described as movement of its center of
mass (linear velocity) and rotation of the body around its center of mass
(angular velocity). The linear momentum is the mass multiplied by the
linear velocity. The total linear momentum of a system consisting of
bodies A and B is preserved if there is no external impact. This is also true
for colliding point masses and it can be expressed by the equation

mava �mbvb � mav
�

a �mbv
�

b�

In order to describe the collision further, we need to build a collision plane
and the vector �n which is normal to the collision plane.

The change of the projections of the velocities of point masses on �n can
be expressed using the restitution coefficient �:

� �
v�a � v�b
vb � va

�

In the case of absolutely elastic collision � � �. In the case of abso-
lutely non-elastic (completely damped) collision � � �. Actual physical
values of � always belong to the interval � � � � �. Experimental mea-
surements show that the restitution coefficient � depends mainly on material
properties of bodies A and B.

The object B can be rigidly attached to the inertial system. It can be a
static obstacle, such as a ground plane or a wall attached to the ground. In
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this case (mb ��� vb � �), the equations for point masses are simplified,
and they yield the following equation:

v�a � ��va�

Before collision

After collision

m m

mm

V V

V V

a

a

a

a

b

b

b

b

A

B time

X

Figure 3: One-dimensional collision of two point masses A and B.

A B

Figure 4: Two-dimensional collision of two point masses A and B. The
collision plane is shown as a dashed line.

The simplest case of one-dimensional collision is shown in Figure 3.
The cases of two- or three-dimensional collision are similar. The trajectory
of collision of point masses in 2D is shown in Figure 4.

However, when bodies collide (see Figure 5), the collision points differ
from the center of mass, which should be taken into account.

Several assumptions (see e.g. [10, 19]) are taken into account when the
law of linear momentum preservation is used for physics-based simulation:

� Collision duration is negligible.

� There exists just one point of collision.

� The colliding bodies don’t move during the collision.
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Figure 5: Two dimensional collision of bodies A and B.

� No other forces than collision force act on the bodies.

� The impulse gives instantaneous change to the linear and angular
velocities of the colliding objects.

A derivation of the equations we use here is available in [17]. Assuming
that pa and pb are points of collisions, xa and xb are positions of the centers
of mass, and � is the angular velocity of the body, the velocities of the
points can be found as

�pa � va � �a � �pa � xa� and �pb � vb � �b � �pb � xb��

the relative velocity is defined as vrel � �n � � �pa � �pb�,
and the restitution coefficient is expressed as � � �v�rel�vrel.
Also, the angular momentum of two colliding bodies is preserved:

Ia�a � Ib�b � Ia�
�

a � Ib�
�

b

where I is inertia tensor.
The collision impulse J is the change of momentum. Knowing the

velocities of the bodies before the collision, the point of collision, and the
restitution coefficient we can find the velocities after the collision. These
velocities can for each body be expressed from

�v�a � va�ma � J and �v�b � vb�mb � �J

���a � �a�Ia � ra � J and ���b � �b�Ib � rb � J
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where ra � pa � xa is the position of the collision point relative to the
center of mass of body A.

In order to find J some algebraic manipulations are needed. If we ig-
nore the angular velocities J can be expressed as

J � ��� � ��vrel��m
��
a �m��b �

But if we care about correct angular velocities, the expression becomes
more complex [17]:

J �
��� � ��vrel

m��a �m��b � �n � �I��a �ra � �n��� ra � �n � �I��b �rb � �n��� rb
�

2.2 Simulation Using an Impulse-Based Model

In order to use the impulse-based approach, the computational model should
assume that collision takes place if the distance between the closest features
of two bodies is less than some threshold T .

Some systems [19] are constructed so that

� The exact time of collision (if it happens at some instant between two
time frames) is not computed.

� Penetration is avoided by choosing a safe time step (�t) and estimat-
ing the maximum speed (vmax), so that T 	 vmax�t.

Nevertheless, if penetration occurs (because of erroneous estimations)
the time step should be changed and some backtracking in the solution
process must be performed. Of course, this requires fine-grained control
over the differential equation solver that is used for numerical simulation.

Other systems [17] search for exact time of contact, using the method
of bisection. The time interval normally used in the solver is divided to two,
and the contact is searched in one of two smaller time intervals. This sub-
division continues until some tolerance boundary is reached. This requires
even more control over the solver.

The collision plane for disjoint objects is defined as follows. We assume
that bodies consist of such features as vertices, edges and faces. If one of
the colliding features is a face, this face is used as a collision plane. If
vertices or edges are the closest features, the shortest line between them is
used as a normal to the collision plane.

The situation in which a body is resting on a surface is treated as a
constraint (giving an additional equation) or as series of micro-collisions
(as proposed in [10]).

Since the velocity is not continuous in the impulse-based model, it is
not very appropriate for use with traditional ODE solvers. Actually, the
continuous integration process in the solver should stop at the instant of
collision and resume with the new velocity, as it is done, for instance, in
Modelica.
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An alternative approach is based on writing a system of non-differentiable
equations and applying a Newton method specially devised for such equa-
tions [15]. This method has successfully been applied for body impact with
friction by Johansson and Klarbring [6].

Variations of the same impulse-based model [10] can describe rolling,
sliding, resting and bouncing. This mathematical model has been com-
bined by Zhang [19] with collision detection algorithm I COLLIDE [7] to
form an ODE-based simulation tool. This model, however, assumes that
between the collisions the objects have ballistic trajectories, i.e. they are
not constrained by revolute and translational joints.

2.3 The Impulse-Based Approach and Modelica

Modelica has capabilities for modeling the impulse-based collision response
algorithm.

The Modelica language, like some other modeling and simulation tools,
has support for instantaneous change of some variable values during simu-
lation. This change might happen at special simulation steps, called events.
At these events the continuous integration (i.e. the process of solution of
the system of differential and algebraic equations) stops, specific equations
valid for this event are solved, variables obtain new values, and then the in-
tegration continues. This is the way Modelica carries out hybrid modeling,
where both continuous and discrete behavior of the system are described in
the same model.

In a simple mechanical model, described in Modelica, it is possible to
change the velocity variable v when some condition triggers an event.

The when statement may contain a call to collision detection routine.
When collision happens, Modelica event occurs. The angular and linear
velocity of bodies can be measured and instantly changed at specific points
in time (events) during the simulation. In this case the integration stops, the
initial conditions for velocity are changed, but all other variables keep their
values as they were before the collision. The continuation of the simulation
is completely consistent from the point of view of the MBS library.

We illustrate this possibility with two examples: a bouncing ball and a
simplified pendulum.

2.4 Bouncing Ball Example

The bouncing ball example illustrates a model constructed using explicit
equations defining 1D movement and collision.

The model below describes a bouncing ball falling down from the height
of 10 meters. When the ball reaches the ground, the condition x<0 becomes
true, an event is triggered, the exact instant of this event is automatically
found, and the variable v gets the new value -�*v. The ball rises from the
ground and falls down again. The plot of the height x is shown in Figure 6.

model BouncingBall "bouncing ball, 1-D model"
Real v "velocity";
Real x (start=10) "height";
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Figure 6: The height of the bouncing ball computed using the impulse
model.

parameter Real g=9.8;
parameter Real eps=0.8 "restitution" ;

equation
der(v)=-9.8; // permanent acceleration
der(x)=v; // velocity
when (x<0) then // when ball crosses the ground level
reinit(v,-eps*v); // the velocity is re-initialized

end when;
end bouncingBall;

2.5 Colliding Pendulum Example

It is also possible to use the when and reinit statements in the MBS
library context.

The pendulum example (see Figure 7) illustrates the use of the MBS
library for a model with impulse-based collision response. The state vari-
able q in this model is the angle of the revolute joint of the pendulum, and
the model makes an assumption that the velocity (which changes instanta-
neously at the moment of collision) is proportional to the angular velocity
of the change of this state variable. This assumption is wrong in the more
complicated cases.

The trajectory of the pendulum end is depicted in Figure 8. The change
of the angle of rotation R��q is shown in Figure 9.
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model Pendulum
"Impulse-based model of collision of pendulum end with an obstacle"
Inertial i;
RevoluteS R1(n={0,0,1},q(start=1));
BodyBase M1 (m=50,rCM={0,0.5,0},I=[0,0,0;0,0,0;0,0,0]);
Bar B (r={0,1,0});
parameter Real restitution=0.5;
parameter Real obstacle_x = 0.5 " x coordinate of obstacle";

equation
connect(i.b, R1.a);
connect(R1.b, M1.a);
connect(R1.b, B.a);
when (B.r0b[1]>obstacle_x) then

reinit(R1.qd,-restitution*R1.qd);
// A problem is how to propagate this change to velocity of B

end when;
end Pendulum;

��
��
��
��

���
���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

������������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

q

0.5

X

Y

B

M1 R1

Figure 7: Simple pendulum colliding with an obstacle at pointObstaclex �
��	.
.

2.6 The Problem of Non-State Variables

There is one major difficulty in applying the impulse-based model to mech-
anisms with rotating parts.

In order to apply the impulse-based approach, the velocity should be
changed, according to the rules, v 
� g�v�, where g can be a complicated
function depending on collision details. Modelica allows only instanta-
neous change of state variables. In the MBS models, which include rotating
bodies, the linear velocity is not a state variable. It is a dependent variable
that can be computed from state variables. There are only two ways to
handle with this difficulty:

� Restructure the model so that velocities become state variables, and
apply impulse-based approach to this model.

� Re-initialize the state variables q in such a way (q 
� f�q�) that
the corresponding velocities change (v � g�v�) according to the
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Figure 8: Trajectory of the endpoint of a simple pendulum colliding with
an obstacle at point Obstaclex � ��	

Figure 9: Angle of rotation of a simple pendulum colliding with an obsta-
cle. The restitution coefficient is � � ��	. The collision happens when the
angle reaches R1.q=
� arcsin�Obstaclex� � ����.

impulse-based approach. The difficulty is to find the function f from
g.

2.7 Restructuring the Model of Colliding Double Pendulum Ex-
ample

It is possible to use a kinematic loop in order to restructure the double
pendulum example (see Figure 10).

We can use kinematic loops, i.e. loops in the structure of the multibody
model. In particular, the double pendulum model with 2 revolute joints
(containing 2 state variables) (Figure 10(a)) can be replaced by a closed
kinematic loop with 2 prismatic joints (with state variables), one rotational
joint necessary for cutting kinematic loops, and 2 revolute joints (without
state variables) (Figure 10(b)) .
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Both models (a) and (b) result in the same motion when no collisions
occur, but they use different state variables. The Modelica model for the
construction in Figure 10(b) is given below. The connection diagram of
this model is shown in Figure 11.

�����������
�����������
�����������

�����������
�����������
�����������

������������
������������
������������

������������
������������
������������

����
����
����
����

XR1.q

R2.q

Y

�����
�����
�����
�����

X

Y

R1.q

R2.q

P1.q

P2.q

(a) (b)

obstacle_y=
-0.3

Figure 10: Double pendulum (a) combined with additional joints to form a
kinematic loop (b).

Figure 11: Double pendulum model with kinematic loop, graphical presen-
tation.



14

model Pendulum
parameter Real obstacle_y=-0.3;
output Real x;
output Real y;
output Real dist;
parameter Real restitution=0.5;
BodyV M1 (mass=50,r={0.5,0,0},

Shape="box", Size={1,0.1,0.1});
BodyV M2 (mass=50,r={0.5,0,0},

Shape="box", Size={1,0.1,0.1});
RevoluteCut2D rc;
// some objects presented in the diagram are omitted here

equation
x=P1.r0b[1];
y=P2.r0b[2];
dist=obstacle_y-y; // positive when collided.
when (dist>0) then

reinit( P2.qd, -restitution * P2.qd);
// change in linear velocity of the prismatic joint
end when;
// connections presented in the diagram are omitted here

end Pendulum;

When simulated and visualized, this model demonstrates a correct bounc-
ing behaviour.

The difficulties with this approach are:

� Each body in the multibody system requires a special kinematic loop,
which leads to a huge number of additional objects.

� It is difficult to find correct components for the loop, since all poten-
tial degrees of freedom should be taken into account and analyzed.

� Computations with kinematic loops easily reach singularity points
where solvers cannot find an appropriate solution (in the case above
this happens when the angle R2.q crosses 0).

2.8 Using Dependencies Between State Variables and Body Ve-
locities

Computing the dependencies between the state variables and body veloc-
ities can be difficult. It should be noted that in a tree-like structure of a
multibody system, the collision of a body in one node can cause the change
of velocities in all joints between this body and the ”root” of the tree. The
technique for this propagation of velocities has been developed in [11] as
well as [12] (p. 146). This is a sequential algorithm based on sending three
”test impulses” through the links of the multibody system. It would seem-
ingly be hard to implement the algorithm in the connection-based MBS
model.

2.9 Limitations of the Impulse-Based Method in Modelica Mod-
els

MBS-based models might contain static objects, free floating objects, and
multibodies (objects consisting of several bodies connected by revolute and
prismatic joints).
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The impulse-based approach can easily be used in MBS-based models
if the impact of collision on other bodies in the system is negligible.

For instance, a system of free-flying bodies, which collide with the
walls of some volume, and which may also collide with robot manipula-
tors. The collisions affect the free flying bodies, but they do not affect the
robot.

Currently, this restricts applicability of the impulse-based model for
dynamic analysis. If an appropriate solution to the problems mentioned in
Sections 2.8 and 2.7 is found, collision processing can be added to arbitrary
MBS models.

3 The Force Model of Collision

An alternative approach to collision processing in mechanical systems is
based on the force and torque model of collision. We assume that colliding
bodies penetrate and that a separation force is caused by this penetration.
This force tries to prevent further penetration and to separate the colliding
bodies.

It is well known that during the collision a relatively large force occurs
between the two colliding bodies for a very short period of time. The value
and the direction of the force can be approximately computed for each sim-
ulation time step. The following properties of the collision force should be
taken into account:

� The collision force and collision torque acting on an object is zero if
the object does not collide.

� Between the start of collision and the end of collision a force is acti-
vated that prevents further penetration.

� If an ideal collision is modeled (collision of points masses), the re-
sulting velocities after the collision are given by the law of preserva-
tion of linear momentum.

� A contact force acting on a body resting on a horizontal platform
compensates for the gravitational force applied to the body. There-
fore such an object does not move (its vertical acceleration and ve-
locity is zero).

In practice it is important that the force is differentiable and the total
mechanical energy of the system is consumed (not produced) during the
collision. Some energy is transformed to the thermal energy.

In order to balance the required accuracy and available computational
power of Modelica simulations, we derived the following rules for colli-
sion force computation (some of the terms are discussed in the following
sections):

� The collision force acting on a body is zero if the body does not
penetrate with any other body.
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� If body A penetrates body B, collision forces are created to act on
the objects A and B and are applied at the point of contact on each
body. The force is directed so that A and B are pushed away from
each other due to this force. The direction of this force corresponds
to the shortest displacement that can separate the bodies.

� The magnitude of the force is proportional to the depth of penetration
of A and B. This depth is the length of the shortest displacement that
can separate the bodies. This corresponds to the model of spring and
damper, inserted between the bodies. The bodies are rigid, but the
spring and the damper are not rigid. This also corresponds to the
physics of collisions between elastic and homogeneous (isotropic)
bodies.

These rules regarding the computation of collision force contain several
terms that will be further discussed, clarified and refined.

3.1 Penetration

We assume that A and B are defined using a description of their surfaces,
which separate their inner volume from the outer world. Objects with this
property are also called also orientable manifolds. In practice such surfaces
are described as a set of connected triangles (or arbitrary polygons). In
this case the bodies are called polytopes. More complex surfaces can be
described as spline surfaces, e.g. NURBS.

Formally, two objects A and B penetrate each other if the volume of
their intersection is larger than zero. This is equivalent to the statement that
at least one point on the surface of body A occurs within body B. However,
in practice, the volumes are not computed. The geometrical description of
bodies A and B is normally considered by collision detection software as
a so-called ”triangle soup”, i.e. a set of arbitrarily placed triangles in 3D.
The bodies A and B penetrate if some of their triangles intersect1. In some
cases the collision detection software assumes that the considered bodies
are convex ones (i.e. any line between the points belonging to the body
belongs to the body).

3.2 The Bodies and Their Shells

Perfectly rigid bodies do not penetrate each other during contacts. How-
ever, in practice physical bodies always penetrate a distance which is a
small fraction of their size. When more accurate results are necessary, and
a more complicated computation model are used, bodies are subdivided into
small fragments and the penetration between these fragments is considered.

The collision methods normally assume that the depth of penetration is
negligible in comparison with the size of the body.

We can also consider a body Ashell which is A augmented with all the
points at a distance less than �shell from A (see Figure 12). Impulse based

1It might happen that the bodies A and B just touch each other. In this case the volume
of intersection is zero and the collision force is zero.
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Figure 12: Penetrating shells of objects A and B.

systems take the geometries of A and B into account and consider that
collision takes place if Ashell and Bshell intersect. The bodies A and B are
never allowed to intersect in the models using this approach. Here the value
�shell is used as a threshold.

In our force-based model, the geometries of Ashell and Bshell can be
taken into account instead of A and B. Collision occurs if Ashell and Bshell

intersect. The forces generated due to the collision response are so large
that the time when A and B intersect is negligible.

3.3 The Point of Contact

The point of contact can be defined in many different ways. The naive
definition states that this is the point where two bodies touch each other the
very first time (at the first instant of collision). Such a definition is only
good for very short-duration contacts. If the bodies have longer contacts
(i.e. the separation force should be computed during several time steps),
then the point of the very first contact can differ from the point of contact
a few steps later. An example of such a behaviour is two bodies colliding
and then keeping sliding contact. In this case the point of the first contact
cannot be used for evaluation of contact force for the next steps.

Collision detection software packages usually do not find the point of
the first contact. The collision detection functions just determine a point
which belongs to the intersection of the objects A and B if they collide. If
the objects do not collide, the closest pair of their points can be determined.
Obviously, these points may become irrelevant for further computation in
the case of a long duration contact between the bodies.

A good integral (average) point of collision would be the center of vol-
ume of the intersection between the bodies A and B. The geometry of an
intersection can, however, be quite complex. Finding the volume is a com-
putationally intensive task. The volume cannot, in general, be found at all
if the body geometry is stored by the collision detection software just as
”triangle soups” (since the soup is composed of a set of triangles with zero
thickness, it has no volume, and intersection of two soups has no volume.)
Finding the center of the volume does not help in finding the direction of
the collision force.
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3.4 Direction of Force

The direction of the collision force can be determined in several different
ways. For a short contact it would be natural to define the direction of
the collision force as opposite to the velocity of the contact point, i.e. the
point of the first touch between the bodies. However, for reasons that are
similar to the above mentioned approaches, this does not work well for long
contacts.

For accurate determination of force direction, a mesh based on collid-
ing surfaces is constructed, and a normal vector to the surface in each mesh
point is used as local force direction. The resulting force direction is then
found by integrating the vectors of all the forces acting on the contact sur-
face.

3.5 Penetration Prevention Model

In our approach the collision force is computed using the assumption that
it prevents further penetration of the bodies. The computations during the
contact are not dependent on the duration of the contact. The method can
handle both short collision times (the collision force causes termination of
collision soon after it starts) and long collision times (the collision force
compensates some other forces and therefore the contact can take an indef-
initely long time).

If the objects A and B collide, body A forces body B out (pushes it
away) from its interior. We assume that the bodies behave as elastic and
isotropic media. Therefore the direction of this force should be such that B
is pushed out in the shortest possible way. Therefore the shortest separa-
tion vector should be chosen. The shortest separation displacement is the
shortest of all displacements of body B that if applied to B, will cause the
bodies to separate.

We formulate the definition in mathematical notation:
Assume that S is a set of all vectors in R�. If �m � S, we define B��m�

as the body B being displaced according to the vector �m. The distance
between the closest points of bodies A and B is d�A�B�; these closest
points are PAB � A and PBA � B. The set of translation vectors that can
separate B from A is SAB � f�m � S j A 	 B��m� � 
g. The shortest
separation vector �c � SAB is the shortest vector in the set SAB .

The separation force is applied at the corresponding closest points. The
force F in direction �c is applied to the body B at the point PBA; it pushes
out body B from body A. The opposite force �F in direction ��c is applied
to body A at the point PAB , and pushes body A away from B. The ways to
evaluate the magnitude of F from �c are discussed in the next section.

Our method works best if a single vertex (with some surrounding sur-
face fragments) of body B penetrates in the middle of a face of body A.
The forces are directed so that this vertex PBA (PBA � B) is pushed away
by the force directed as a normal to the face (see Figure 13). Note that the
2D examples are given just for illustration; the actual software works with
3D models.
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Figure 13: Collision geometry in the simple case: a single vertex of B is
located within A.
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Figure 14: Collision geometry in the case of a sharp angle.

The approach works well even if the center of mass of B is far away
from PBA (see Figure 14). In this figure body B�c� is oriented the same
way as body B. Note that due to the force being applied to point PBA body
B will actually rotate during the collision.

In the case of vertex–to–vertex collisions (see Figure 15) the algorithm
computes the shortest direction, c (the vertical direction in this case) and
ignores the longer one (c�). Such collisions, however, are rather rare, espe-
cially if the penetration depth is much smaller than the size of the bodies.

In the case of two–vertices–to–plane collision (a box resting on the
ground) the force is applied to the deeper vertex of the box (see Figure
16). This force raises the box up, and another vertex of the box becomes
the deepest one. After some interaction the box and the platform separate,
or the box will be lying on the platform. The collision forces compensate
for the force of gravity.
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Figure 15: Collision geometry in the case of several vertices penetrating.
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Figure 16: Collision geometry in the case of collision of two vertices and a
horizontal platform.

4 Computation of the Force from Penetration Mea-
surement

The source of collision forces is in the following physical phenomenon.
Initially, the bodies are compressed with each other and therefore deformed.
This deformation causes reaction force and restitution (restoration) of the
shapes. The bodies therefore separate from each other. This phenomenon
can be modeled in different ways. The traditional approach is to model it
as a spring with a damper.

At each instant during the collision the force values should be com-
puted. The collision duration is very small, the velocity of objects changes
rapidly during the collision, and the forces needed to change the velocity
can be very large.

The experiments with various approaches to the computation of the col-
lision force F have been done in the following stages:

� An equation for F with some unknown coefficients is chosen.

� A series of simulations is performed to find the dependency between
the coefficients, the body velocity before the collision, and the veloc-
ity after the collision.

� The inverse dependency between the velocities and the coefficients
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is computed.

� Since the velocities can be computed using the law of conservation
of linear momentum and the restitution coefficient, the coefficients
for F can be found.

� An equation for F with known coefficients is available for computa-
tion.

The experiments describe a collision of a point mass and a static obsta-
cle. Therefore we do not prove that F is appropriate for collisions in all
cases. However it can serve as an approximation of the force in the broader
set of cases.

The formula for F can be found from the laws of dynamics. During the
collision (� � t � � ) the velocity changes from v��� � v� to v��� � v�.
The acceleration could be computed from the force divided by mass. The
acceleration, however, should not be constant during the collision. The
actual dependency can be expressed asZ �

�
F �t� dt � m�v� � v�� �

This definition, however, cannot be used for modeling the force in a
dynamic simulation since the time � is not known at the start and during
the collision. Furthermore, if some other forces are applied to the body, the
collision can go over to a stable contact. In this case � � ��.

τ

V’

V0

Penetration

Acceleration

Velocity

time

Figure 17: Collision depth, velocity and acceleration in case of elastic col-
lision.

Figure 17 displays what might happen with penetration depth, velocity
and acceleration during the collision time in the case of an elastic collision.

Penetration reaches some maximum value and returns to the zero value.
The speed gradually changes from v� to v�. The acceleration and force
either immediately, or gradually, achieve the minimal value, and later return
to zero at the time � .

In the case of a non-elastic collision (Figure 18), the penetration depth,
velocity and acceleration become zero after the time � . If the body has a
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Figure 18: Collision depth, velocity and acceleration in case of non-elastic
collision.

non-elastic collision with a horizontal platform, and gravity is present, the
penetration (directed downwards) is slightly more than zero, and the col-
lision force (directed upwards) is slightly below zero, which compensates
for the gravity force (directed downwards).

The following notation will be used below:

� F �t� — collision force during the collision between a body and a
fixed immovable obstacle.

� k�K� q — collision coefficients, they will be used in further compu-
tations.

� x�t� — penetration depth.

� v�t� � �x�t� — speed of change of the penetration depth.

� m — mass of the object penetrating the obstacle.

4.1 Constraints on Force Equations

The following constraints should be used in order to derive the equation for
the force magnitude.

� Conditions at the start of the collision (constraints C�)

– F ��� � � — the force should be zero at the start of the colli-
sion.

– x��� � � — the penetration depth should be zero at the start of
the collision.

– v��� � v� 	 � — the actual speed is known at the start of the
collision.

� During the collision (C�)
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– F �t� � � — the force should always push the object away from
the obstacle.

– x�t� 	 � — the penetration depth is positive (the object pene-
trates the obstacle).

– v�t� — the speed is reduced to zero and, probably, to negative
values.

� If no external force act on the colliding body (or this force is negligi-
ble), it behaves exactly according to the impulse law (C�):

– The time when collision ends is � .

– F ��� � � — the force should be zero at the end of the collision,
and after that.

– x��� � � — the penetration depth should be zero at the end of
the collision.

– v��� � v� � v� � ��v� � � — the speed at the end of
the collision can be predicted using the restitution coefficient
� � � � �.

� If a constant external force Fext acts on the colliding body, it either
behaves as above or, in case Fext is large enough, the body rests on
the obstacle, and the collision never ends (C�):

– limt�� F �t� � �Fext — the collision force should compen-
sate the external force.

– limt�� x�t� � xrest 	 � — the penetration depth should sta-
bilize at some value.

– limt�� v�t� � � — the body rests, i.e. it does not move any-
more.

There can be many definitions for F satisfying these equations and re-
lations. However, in most cases, the difference between these definitions
(i.e. difference between the overall effect they cause) is negligible in com-
parison with the effect caused by the constraints. In practice, the definition
for F is sometimes not motivated by physics, but rather by numeric analy-
sis. It is chosen such way that overall result of collision matches physical
laws (i.e. preservation of impulse, and preservation of energy). In addition
it should be chosen so smooth that numerical methods used in simulation
are able to handle with such function.

In the following sections we investigate appropriate variants for the def-
inition of F .

In Section 4.2 we check whether F can be a polynomial of time.
In Section 4.3 we investigate F as a linear function of penetration depth.
In Section 4.4 we prove that if F is a function of penetration depth, it

cannot satisfy the condition v� � ��v�, � � �, i.e. cannot model non-
elastic collision.

In Section 4.5 we make a conclusion that F should depend on the pene-
tration depth and velocity. We investigate here the coefficients of elasticity
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and damping for F depending on the penetration depth and velocity. We
need to find these coefficients from given restitution coefficient �.

In Sections 4.6 and 4.7 two methods for finding these coefficients ap-
proximately, are given.

4.2 Definition of the Collision Force Using a Polynomial of Time.

The simplest kind of expression that could satisfy the constraints C� and
C� is a polynomial. In this section we demonstrate that F �t� should not be
a polynomial of order 2, but it can be a polynomial of order 3.

Initially let us assume that F �t� is a polynomial (of time t) of order 2.
In this case x�t� must be a polynomial of order 4. This can be written as

x�t� � a� � t a� � t� a� � t� a� � t� a�


We invoke the symbolic Mathematica equation solver (Solve[]) in
order to check whether and under which conditions the constrains can be
satisfied.

Solve� f x��� � �� x���� � v�� x
����� � ��

x��� � �� x���� � v�� x
����� � �g�

f v�� a�� a�� a�� a�� a�� �g
�

The Mathematica solver finds one solution only. In this solution v� � �v�.
Now we check whether F �t� can be a polynomial (of time t) of order

3. Therefore x�t� is a polynomial of order 5.
The definition for x is now

x�t � � a� � t a� � t� a� � t� a� � t� a� � t� a�


The symbolic Mathematica solver is invoked for the following equation
system:

Solve� f x��� � �� x���� � v�� x
����� � ��

x ��� � �� x���� � v�� x
����� � �g�

f a�� a�� a�� a�� a�� a�g
�

The solution is

x�t� � t v� � � t� �v� � v��

��
� � t� �� v� � � v��

��
�
t� �� v� � � v��

��

The force can be found from the acceleration expression:

F�m � �x�t� �
��� t� �v� � v��

��
��� t �� v� � � v��

��
�
�� t� �� v� � � v��

��

Given the collision duration � as well as the velocity v� before the collision
and v� after the collision, the simulation model can apply the appropriate
collision force F � m�x. However, this approach does not work for bodies
resting on the obstacle (condition C�) since any polynomial x�t� goes to
infinity when t�� and it is impossible to have limt�� x�t� � xrest
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4.3 A First Order Linear Collision Force Model (Spring Model)

Traditional penalty methods are based on a linear dependency between the
collision force and the penetration depth. Therefore the collision model
considered here assumes that the force F depends on x�t� as follows.

F �t� �

�
�Kx�t�� if x�t� 	 �

�� if x�t� � �

where K is a positive constant, called penalty coefficient. Physically this
corresponds to a stiff spring, temporarily placed between the objects during
the collision. The expression �Kx�t� corresponds to an ideal spring. The
expression contains x�t� in the first power only. Therefore this method is a
first order linear model.

For brevity of the solution, K might be replaced by another positive
constant, q�m. In this case, taking into account the constraints C� and C�,
the system of equations (assuming that no external forces are acting on the
colliding bodies) appears as follows:

F �t� � �q�mx�t�

F �t� � m�x�t�

�x��� � v�

x��� � �

This results in the equation

�x� q�x � �

which has a solution

x�t� �
v� sin qt

q

The velocity is

�x�t� �
v�q cos qt

q

When the collision ends (i.e. x�t� � � giving qt � 
) the velocity �x�
�q�
is equal to �v�.

This means that the resulting velocity does not depend on the mass, and
does not depend on the penalty coefficient in front of x�t�.

But what we need is �x � v� � ��v�, � � �.
Therefore the simple penalty-based model above is not good in the gen-

eral case (� � �) and another model should be chosen.

4.4 A Collision Force Model Based on Position

Below we shown that for collision force models that are based on position
only, the resulting contact models are purely elastic. Force depending on
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position is F �t� � �p�x�t��. In the same time F �t� � m�x�t�. Therefore
we consider further the equation

�x� p�x� � �

where p is positive during the collision. We define �x � y�x�. This results
in

�x �
dy

dt
�

dy

dx

dx

dt
� �x

dy

dx
� y

dy

dx
�

The initial equation can be rewritten now as

y
dy

dx
� p�x� � � �

If all parts of the equation are integrated, the result is (C is an unknown
constant) Z

y dy �

Z x

�
p�u� du � C �

The first component is transformed:Z
y dy � y��� � �x��� �

We know that at the start of the collision x��� � � and �x��� � v�. The
equation should be valid at t � �, and substitution gives

v���� �

Z �

�
p�u� du � C �

Now C is found as C � v����. The equation with the replaced C is

�x��� �

Z x�t�

�
p�u� du � v���� �

We know that at the end of the collision t � � , and x��� � �. Substitution
gives:

�x������ �

Z x���

�
p�u� du � �x������ �

Z �

�
p�u� du � v���� �

or simply �x���� � v�� . From we can conclude that either �x��� � v� � �x���
or � �x��� � v� � �x���. But we know that p is positive, therefore �x�t� �
�p�x�t�� � �. We conclude that �x decrease and since � 	 � and �x��� 	 �,
the only equation valid is � �x��� � v� � �x���. Therefore v� � �v�, which
means that the collision was purely elastic �� � ��.

4.5 Collision Force Model Based on Spring and Damping

Since the definitions for collision force discussed above are not good enough
for our collision model, some other factor should be taken into account. The
goal is to reduce the magnitude of the velocity at the end of the collision.
The velocity should be smaller during the last instant of the collision, and
larger during the first instant. Then the magnitude of the velocity at the
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end the of collision can be reduced. Therefore some factor is needed that
gradually changes during the collision. The speed of penetration �x is an
appropriate variable, since it gradually changing from one value to another
for the duration of the collision.

First, consider what can be done with the original expression F �
�Kx. We know that F ��� � F ��� � �. The velocities differ: �x��� ��
�x���. Therefore the velocity (or any expression based on velocity) cannot
be added to �Kx.

Another operation that can be applied to �Kx is multiplication. Our
hypothesis is that a function H is applied to �x and the result is multiplied
by �Kx, i.e. F �t� � �KH� �x�x.

The equation F � ��Kx produces a correct F for the case where the
restitution coefficient is � � �. This function H should be equal to 1 in the
case of e � �. Therefore it is convenient to represent H�u� as ��G�u�. But
H is a function of velocity, therefore (if we choose the simplest alternative)
H � ��k �x. The complete expression is F �t� � ����k �x�Kx. Since K is
a constant and body mass m is a constant it is possible to replace K by Km
(for brevity of the solution). The equation is then F �t� � ���� k �x�Kmx.

The model can be expressed as a system of equations:

F �t� �

�
��� � k �x�t��Kmx�t�� if x�t� 	 �

�� if x�t� � �

F �t� � m�x�t�

�x��� � v�

x��� � �

The first two equations are reduced to �x � If�x 	 ������k �x�t��Kx�t�� ��.
The function G� �x� � k �x is called a damping factor. In practice it is

often chosen as a linear function. However, in order to provide differentia-
bility of F other functions are used too. One topic of our future research
is to find such a smooth function F that ODE integration algorithms can
safely use it as an external function during continuous integration.

The above equation can be solved numerically by Mathematica. The
values of v��K� k have been chosen and v�tend� has been computed, where
tend is some instant after the collision is finished.

When t 	 � (after the collision) F � � and therefore v�t� � v���.
Therefore also v�tend� � v��� � v�.

When v� � � and k � � the resulting velocity v� changes in the follow-
ing way:

If K � �, v� � ���	�����;
If K � ����, v� � ���	����	;
If K � ��	, v� � ���	�����.
Similar effect appears for other values of v� and k. Therefore v� almost

independent of K . In the rest of the discussion we assume that K � �.
The resulting restitution coefficient � can be computed from the so-

lution of the equation as � � �v��v�. The values of v� and k affect �,
therefore we will write further � as a function, ��v�� k�.
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How can we find an appropriate k depending on the velocity v� at the
start of the collision and the known restitution coefficient � of the material
?

First we notice that � resulting from the solution does not change if we
multiply v� by some number and divide k by the same number.

Proof: Assume x(t) is a solution of the system. Consider y�t� � px�t�
(where p is a constant). Then �y � p �x, therefore �y��� � p �x��� � pv�
and �y��� � p �x��� � pv�. We compute �y from the equation:

�y � p�x � �p�� � k �x�Kx � ��� � �k�p� �y�Ky

Therefore y is a solution for the equation �y � ��� � k�p �y�Ky
with the start condition �y��� � pv� . The restitution coefficient is
��v�� k� � �v��v� � � �x���� �x��� � �� �x���p��� �x���p� � � �y���� �y��� �
��pv�� k�p�.

Now we can check the properties of ��v�� k� in order to extract k�v�� ��.
It is hard to do without having an explicit equation relating these values.
This equation is too complex to be solved symbolically. Therefore numeri-
cal experiments have been done. Since ��v�� k�=��v�k� �� (using the above
result) it is enough to consider the function ��u� ��, where u � v�k.

Various plots for ��u� ��, ���� � u � ��� have been obtained using
Mathematica. We found two ways to approximate this function, using a
fraction-based and a polynomial-based approximation.

4.6 Fraction-Based Approximation

By looking at the plots we guessed that ��u� �� � ���u � ��. Assum-
ing that ��u� �� � ���u � �� the value of k can be extracted. Since
��v�k� �� � ���v�k � ��, we can extract k � ���v���v�� k��� ����v�� k�.
This expression with required � can be inserted into the original equation:

F �t� � ��� � ����v��required�� ���required� �x�t��Kmx�t�

This equation is solved numerically. It appears that now the resulting �
differs from the required one by at most 0.093, which, we believe, is fairly
good approximation. This precision does not depend on v�, m and K .

4.7 Polynomial-based Approximation

The plots do not resemble a polynomial function. However if an exponen-
tial expression is used as the argument, i.e. the function ���s� � ��es� �� is
plotted, the plot resembles a cubic polynomial of s. Four ”typical” points of
the curve have been guessed, and a fitting cubic curve going through these
points

���s� � a�s
� � a�s

� � a�s� a�
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is found using Mathematica. How to find s? The equation ���s� � n has
three solutions which can be expressed in algebraic form. Some of them
are complex numbers with nonzero imaginary part. Some solutions do not
belong to the piece of the curve we consider now. The appropriate solution
is denoted as s�n�. The computations show that s can be chosen as one of
the three solutions of the cubic equation above:

s�n� � ���������
��������� � �������� i

T
�

�

���	����� � ������	 i� T
�

�

where

T � ���������	�������������n�����������
p��������� � n

p
�������� � n

Computations show that the imaginary part of the expression is zero.
According to the definition of ��

��v�� k� � ��v�k� �� � ���ln�v�k��

Therefore k can be expressed as

k �
�

v�
es���v��k��

Again k is inserted into the original differential equation system. When
the equation

F �t� � ��� �
�

v�
es��required� �x�t��Kmx�t�

is solved for ����� � � � ����� and the resulting � is found, the
absolute value of the difference between required and resulting restitution
is always less than 0.05. Smaller deviation can probably be achieved by
choosing another set of four or five points for interpolation.

Polynomials of order 5 and higher (requiring six interpolation points)
cannot be used for interpolation in this method because there is no way to
express the inverse function (i.e. find the root symbolically).

5 Collision Detection Software

5.1 General Properties of Collision Detection Software

Collision detection is widely used in simulation of multibody systems, in
design of virtual environments, and in general 3D graphics. Given coor-
dinates of two or several bodies, collision detection functions determine
whether the objects share common points in space, and if they are close
enough, determines the distance between them. Each time when collision
is examined, the three steps are performed:
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Choice of candidates for collision. On this stage the bodies that cannot
collide due to simple geometrical relations between them are re-
jected. This selection is based on bounding boxes of the bodies. A
bounding box is usually a good approximation of body position and
size. It is easy to compute the bounding box from body geometry.
There exist efficient algorithms [7] to check whether any bounding
boxes in the 3D space intersect.

The bounding boxes are always axis-aligned. Static bounding boxes
are computed when the body geometry is specified. They preserve
their size and move when the body is moving. Dynamic bounding
boxes are determined from the geometry, position and the current
rotation angle of the body, and they are more accurate.

Low-level collision detection and distance determination. When bound-
ing boxes of a pair of bodies intersect, the components (features) of
the bodies are checked for intersection. It is easy to check whether
triangles intersect, and find the distance between them. There exist
methods for more complex features, such as spline surfaces. How-
ever it can be difficult to define a body using such surfaces in a con-
sistent way. Also, collision detection for complex surfaces might be
time consuming.

If the bodies are disjoint, the low-level collision detection algorithms
find the distance between the closest features of the objects. They
also determine the closest points on these features.

In the bodies intersect, the algorithms determine a pair of features
that intersect.

Response handling In order to compute reaction forces more detailed geo-
metrical information about the collision is necessary. Often the colli-
sion detection package cannot provide the information that is needed,
for instance, the penetration depth, collision plane, time of collision,
collision volume and area of collision surface.

Sometimes this information is available, but just for certain time
steps.

6 Using SOLID for Collision Detection

We chose SOLID [3] as collision detection package for our experiments. In
this section we discuss

� Using SOLID interface functions (Section 6.1) and difficulties in ob-
taining correct collision plane (Section 6.2).

� How geometry of bodies is specified when SOLID is used with Mod-
elica (Section 6.3).

� How the shortest separation vector (defined in Section 3.5) is com-
puted using SOLID callback function (Section 6.4). The shortest sep-
aration vector defines direction and magnitude of penetration depth.
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The penetration depth is then used for computation of collision force
(Section 4).

6.1 Using SOLID interface functions

When SOLID is used the following steps are performed:

� Object shapes are created. There exist predefined primitive shapes
(box, cone, cylinder and sphere). A complex shape can be con-
structed from one or several so called polytopes. Each polytope is
a point, a line, a triangle, a tetrahedron, a convex polygon or a con-
vex polyhedron. Polytopes are always defined by list of coordinates
of all their vertices.

� The bodies are created (instantiated) based on the corresponding shape.
There can be several bodies of the same shape.

� The collision detection is performed for each time frame. In order
to describe the state of the bodies at each time frame, their rotation,
translation and scaling factor are specified. The tool uses frame co-
herence when determines collision, i.e. it reuses information about
the state of the bodies from the previous time frame.

� Collision details in SOLID are obtained using a callback function.
Each time when collision between a pair of bodies is detected (i.e.
the bodies penetrate already), some user-defined callback function is
called.

� If the current state of the bodies will be used in a future step (for
closest feature determination) it should be stored by function call
dtProceed().

� The function dtTest() is called in order to check all pairs of the
bodies and it calls the callback function in case of collision.

� The callback function written by the library user obtains data about
the colliding features as parameters.

6.2 Collision Plane Definition Problem

For physics-based simulation the ”smart response” option of SOLID is
used. When collision is detected, the closest pair of points of the objects at
placements from the previous time frame is reported by the callback func-
tion. In mathematical notation, assume that the time frame t�� is analyzed
and objects A�t�2 and B�t� were disjoint, and objects A�t��� and B�t���
penetrate. The closest points PA�t�B�t� and PB�t�A�t� are obtained as param-
eters by the callback function.

According to the SOLID author recommendations[4], vector defined by
these two points can serve as approximation to the normal to the collision

2The notation A�t� means body A at time frame t.
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plane. The direction of the collision force can be set as equal to the direction
of this normal vector.

This approach, however leads to some difficulties when the objects
move during the collision and continue to be in the penetration for several
time steps.

Assume that the bodies A�t�i� andB�t�i� are disjoint when i � � and
then intersect for i � �� ����m. The points PA�t
i�B�t
i� cannot be obtained
for i � �� ����m. Therefore we cannot obtain the collision plane. On the
other hand, the point PA�t�B�t� cannot be used for finding the collision plane
for i � �� ����m since the plane could change during the collision.

time=t

time=t+1

(c)

(b)

(a)

M

N

N

N

time=t+2

Figure 19: Variations of the collision plane during the collision

Figure 19 demonstrates how the collision plane (that should be perpen-
dicular to the vector of the object separation force) can change during the
collision. In Figure 19(a), at time step t the objects are disjoint. In figure
19(b) at time step t � � the objects start to intersect, and this fact is no-
ticed by SOLID. The package finds the position of the closest features at
the previous time frame (t) and determines the collision plane, as well as
normal vector to this plane, N . Finally, in Figure 19(c) at time step t � �
the positions of the bodies have changed and the actual collision plane has
changed too. The vector M should be used instead of N .

Our solution to this problem is presented in Section 6.4.

6.3 Geometry Specification

In order to transmit geometry specifications used in mechanical modeling
in Modelica to SOLID user interface functions, two ways have been chosen.
Modelica bodies may have a predefined shape such as box, cone, cylinder,
sphere, etc. These shapes correspond to predefined objects in SOLID (box,
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cone, cylinder and sphere). Alternatively, Modelica bodies may have cus-
tom geometry, described using some external format.

When a SolidWorks to Modelica translation is performed, STL[1] is
currently used as a file format for geometry description. This format con-
tains triangles with coordinates of their vertices as well as normal vectors.
This representation is translated into a collection of SOLID triangles to
form a shape.

6.4 Detailed Handling of Collision Response

Our force-based approach to contact handling requires obtaining collision
points, separation force direction, and penetration depth from collision de-
tection software.

In our approach we currently consider the worst case assumption. In
the worst case the computation of the collision may need many time steps
(frames). During such a long collision process the separation force direc-
tion may change. It is also possible that the contact never ends.

Assume that the collision between the objects A and B is detected at
time frame t. In order to find the shortest separation vector �c (as defined in
Section 3.5) we use a search algorithm.

The algorithm is implemented as two nested loops. In the external
loop the length for �c is chosen. Initially a very small estimated c� is
chosen3. The value of ci is incremented at each loop iteration, so that
ci � �� � ��ci��. The value c� should be chosen so that it is negligi-
ble in comparison with a typical penetration depth. The value � should be
small if high accuracy is required. The reasonable choice interval for � is
��� � � � ���. Smaller values of � give a slower and more accurate search
process.

C0

C

C
C

0

1

2

m

m

m1<=m<=8

Figure 20: Sequence of trial vectors c�� c�� etc.

In the nested internal loop (over variable m) the direction for �cim is
chosen. In order to sweep through all possible directions the 27 vectors
ci�� ���� c

i
�	 are found. These vectors have components �xm� ym� zm�, where

each of the components can be -1, 0 and 1. The vector (0,0,0) is excluded
from the list. All the direction vectors are normalized and then multiplied

3Here and in the rest if Section 6 the superscript should be regarded as an index, not as
an exponent representing the power operation.
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by the current length, i.e. ci. As a result, the vectors �cim� � � m � �� are
obtained. A 2D variant (8 vectors) is shown in Figure 20.

There is no way to ask SOLID directly about the distance and the clos-
est points of two bodies. However, if the bodies penetrate it is possible to
make a request about the closest points in the previous step. We use the
following way around this problem.

The algorithm checks if bodies A and B��cim� (i.e. B displaced by �cim)
are disjoint or penetrate. If they are disjoint then routine dtProceed() is
used in order to store object’s position. Again the positions of A and B are
passed to the package. The dtTest routine finds that they intersect, and
therefore the callback routine delivers to the algorithm the closets points
between the bodies A and B��cim�. These points can be referred as P

A�B� �cim�

and P
B� �cim��A

. The vector between the points is referred as �dim.
If there is at least one vector that makes the bodies disjoint in the set

of vectors �cim� � � m � ��, the external loop of the algorithm stops. The
internal loop should find the most appropriate vector if several are avail-
able. We know that all �cim that made the bodies disjoint are slightly longer
than necessary. All these vectors can be shortened by some distance. This
distance is the length of projection of the vector �dim on �cim. The length of
projection is pm � �cim

�dim�j �cimj, and the m giving the largest projection
should be chosen.

A1

A2

A3

B1

B2

B3
B�C1�

B�C2�

B�C3�

B�C4�

B�C5�

P�B�C5�,A�

P�A,B�C5��

P�B�C4�,A�
P�B�C3�,A�

P�B�C2�,A�

S1 S2
S3

Figure 21: Computation of the shortest separation vector

The inner loop of the algorithm can be demonstrated graphically in the
two-dimensional case as in Figure 21. It shows the body Awith vertices A�,
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A�, A�. The body B has vertices B�, B�, B� as well as some other vertices
that are currently ignored. The current separation vector length ci (in the
following we skip the index i) is chosen as jS�S�j, i.e. the length of the
vector from S� to S�. There are eight vectors �c�� ���� �c� of the same length.
In this demonstration just five of them will be discussed (�c�� ���� �c�). Other
vectors are currently ignored. These vectors (�c�� ���� �c�) are not shown in the
picture. Instead, the results of the displacements of the body B according
to these vectors are shown: B�c��� ���� B�c��. These displaced bodies are
shown with dashed lines. The collision detection algorithm finds that B�c��
intersects A, but the other bodies B�c��� B�c��� B�c��� B�c�� are disjoint
with A. For each disjoint object pair the collision detection algorithm finds
the closest points:

� For B�c�� and A the closest points are P �B�c��� A� and A� (vector
�d�).

� For B�c�� and A the closest points are P �B�c��� A� and A� (vector
�d�).

� For B�c�� and A the closest points are P �B�c��� A� and A� (vector
�d�).

� ForB�c�� andA the closest points are P �B�c��� A� and P �A�B�c���
(vector �d�).

The vectors �di are shown in the picture as thin solid lines. The longest
of the vectors �di is �d�. Therefore the direction of the separation vector is
�c� � �S�S�. The length of the actual shortest separation vector is shorter
than jS�S�j. The projection of �d� on �c� is subtracted from jS�S�j. The
result is jS�S�j. This is the penetration depth used in the computation of
collision force.

6.5 Special Cases for Speedup of the Search

The algorithm we consider for finding the penetration depth is rather slow.
It can be greatly optimized if we know that all the bodies are convex, that
during the collision only one single vertex (PB) of body B is within A,
and for all features of B the face FA is the closest face. With such an
assumption it is enough to move the vertex (together with the body B) to
the closest face of A, i.e. FA.

Finding the closest face can be optimized. The object A consisting of
faces F �

A� ���� F
M
A can be divided during a preprocessing stage to interior

regions R�
A� ���� R

M
A (one region per face) in such a way that for all the

points in the region Ri
A the face F i

A is the closest one (see Figure 22). These
regions are sometimes called pseudo Voronoi regions [19]. Preprocessing,
however, can be a difficult problem.

The Figure 23 demonstrates a case where this assumption is violated.
When vertex PB is moved to the closest face F�

A, the bodies are still pene-
trating.
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Figure 22: The closest face can be found in advance.
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Figure 23: Collision involving several vertices

The algorithm can be made more exact (and slow) by adding more loops
for fine-grained search and more steps in the outer loop. Some hints can be
given to the algorithm in order to choose the initial approximation.

6.6 Combining Penetration Depth and Distance

The collision response computations based on the impulse model (Section
2) utilize the distances between the bodies in a different way. The bodies
are considered as intersecting if the distance between their closest features
is less than a certain threshold. It is not very accurate model either, since
the bodies start to interact when they are still at some distance from each
other. The impulse-based algorithms do not allow the bodies to intersect at
all. This is done either by estimating the maximum velocity and choosing
an appropriate time step, or by reducing the time steps before the moment
of collision. The approach based on a distance threshold can be combined
with our force-based model.

In this combined approach we could use both the penetration depth and
the distance between the bodies in the computation of forces. The vector �x
used for collision force definition can be defined as described below.

For instance, the vector �x used for computation of the force (see Figure
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Figure 24: Combined approach to evaluation of �x.

24) can be defined as

� �x � � if d 
 T ,

� jxj � T � d and �x is directed as �d if d � T and objects are disjoint,

� jxj � T but its direction is undefined if d � � (degenerate case which
should almost never happen),

� jxj � T � jcj and �x is directed as �c if the objects intersect,

where

� d is the current distance between the two closest features of the two
disjoint objects.

� �d is the vector between the closest points on the two disjoint objects.

� T is the threshold, chosen depending on the average velocities and
computation time step.

� �c is the penetration depth and direction.

The SOLID tool does not evaluate the distance between the bodies (jdj)
if they do not collide during the next time frame. However, an “artificial”
collision at additional fake time frame can be added and the distance can be
found. In future other collision detection packages such as I COLLIDE [7]
can be used for this purpose.

7 Applications Using the Force-Based Model

This section presents examples of models using the force-based collision
model in Modelica.

The first examples use the MBS library but do not use any collision
detection package. The last example uses the MBS library, the collision
detection tool SOLID, as well as some gluing classes.
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7.1 Pendulum Collision with an Obstacle

This pendulum is the same mechanical construct as the one described in
Section 2.5, Figure 7. For finding the magnitude of the force it uses the
equation derived in Section 4.6. It is possible to choose the penalty coeffi-
cientK (discussed in Section 4.6), which is stored in the variable penalty
in the code below, arbitrarily large:

� If K � ��� the collision appears too weak and the penetration is
non-realistically large.

� If ��� � K � ��� a soft collision occurs.

� If ��� � K � ���� a hard collision occurs.

� If K 	 ���� this makes the integrators unstable.

The desired restitution coefficient (variable e) almost matches the actual
restitution (variable eres). The computation error was �e�eres��eres �
���	.

model Pendulum
Inertial i;
RevoluteS R1(n={0,0,1},q(start=1));
BodyBase M1 (m=50,rCM={0,0.5,0});
Bar B (r={0,1,0});
ExtForce EF1 "collision force";
parameter Real penalty=50000;
parameter Real e=0.5 "desired restitution, 0<e<1";
parameter Real obstacle_x = 0.5 " x coordinate of obstacle";
Real depth "penetration depth";
Real depvel "penetration velocity";
Real k "velocity coefficient for penalty";
Real force_magnitude "magnitude of collision force";
output Real x "x of pendulum end";
output Real y "y of pendulum end";
output Real eres "resulting restitution coef" ;
output Real v0(start=9.999) "velocity at start of collision.";
// Need start value just to avoid zerodivision
output Real vout "velocity at the end of collision";

equation
connect(i.b, R1.a);
connect(R1.b, M1.a);
connect(R1.b, B.a);
connect(B.b, EF1.b);
x=B.r0b[1];
y=B.r0b[2];
depth = B.r0b[1]-obstacle_x; // The obstacle equation.
// B.r0b[1] is the x coordinate of the pendulum end.
depvel= -B.vb[1];
when (depth>0) then v0=depvel; end when;
when (depth<0) then vout=depvel; end when;
eres=vout/v0;
k=(1-e)/(e*v0); // approximation derived for typical k
force_magnitude=
if (depth>0) then (1 + k*depvel)*penalty*depth
else 0;

EF1.fb={force_magnitude,0,0};
end Pendulum;
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7.2 Pendulum Resting on an Obstacle after the Collision

This section describes an experiment with the same model as above, but
modeling the situation when the pendulum is bouncing and is finally resting
on the obstacle, see Figure 25.

The only equation replaced in this model is

depth = -B.r0b[2]-0.4; // The obstacle equation.
// B.r0b[2] is the y coordinate of the pendulum end.

where -0.4 is the position of the obstacle.
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Figure 25: Pendulum resting on an obstacle after the collision.

The result (assuming that K � 	����) is shown in Figure 26. It demon-
strates a collision with small penetration. If the penalty K is set to ��	 the
value of the Y coordinate of the pendulum end practically never becomes
less than -0.4 in this experiment.

Figure 26: Height of the endpoint of the pendulum resting on an obstacle
after the collision.

7.3 Interfacing to a to Collision Detection Package

The Modelica model interfaces with a collision detection package through
function calls. The mechanical simulation based on MBS sends the current
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positions of all bodies to the collision package (CP) and receives vectors of
forces and torques that occur due to collisions.

Since the number of bodies can be large, and the data should be send
to the collision package at once, and received at once, all the variables
needed are packed into the two-dimensional arrays collisionInput
and collisionOutput.

The function doCollide accepts the array collisionInput as an
argument and returns the array collisionOutput as a result.

The example below demonstrates a purely elastic collision, but can also
be extended for different restitution coefficient values. Also, the example
demonstrates free flying bodies, but it can be extended for arbitrary con-
structions that use MBS, consisting of bodies, joints and additional external
forces and torques.

function doCollide "Function to be called to obtain the collision force"
input Integer bodies "number of bodies";
input Real collisionInput[bodies,27] "position and other data";
output Real collisionOutput[bodies,6] "forces and torques";

external
end doCollide;

model BodyME "Body that participates in collision and can be visualized"
extends MbsOneCutA;
parameter Real id;
parameter Real r[3]={0, 0, 0} "Vector from cut A to center of mass [m]";
parameter Real mass=0 "Mass of bar [kg]";
parameter Real I11=0 "(1,1) element of inertia tensor [kgmˆ2]";
// other inertial tensor elements are skipped for brevity
parameter Real r0[3]={0, 0, 0} "Origin of visual object.";
parameter Real nx[3]={1, 0, 0} "Vector in x direction.";
parameter Real ny[3]={0, 1, 0} "Vector in y direction.";
parameter Real Material[4]={1, 0, 0, 0.5} "Material properties";
parameter Real parmStlIndex=0 "Index of STL file";
parameter Real noCollision=0 "0 if the body participates in collisions";
Real collisionInput[26] "position and other data";
Real collisionOutput[6] "force and torque";
output Real StlIndex "Index of STL file";
BodyME2 ME2(r=r,mass=mass,

II=[I11, I12, I13; I12, I22, I23; I13, I23, I33])
"A help class - wrapper for physical body model";

MbsOneCutB collResp;
VisualMbsObject B(r0=r0,nx=nx,ny=ny,Material=Material);

equation
connect(a, ME2.a);
connect(a, collResp.b);
connect(a, B.a);
StlIndex = parmStlIndex;
B.fa = {0, 0, 0};
B.ta = {0, 0, 0};
collisionInput=cat(1, { id,

B.shape, B.Form, B.extra, parmStlIndex, noCollision},
B.size, B.rxvisobj, B.ryvisobj,
B.rvisobj, Sa[1,:], Sa[2,:], Sa[3,:]);

collisionOutput=cat(1, collResp.fb, collResp.tb);
end BodyME;
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model minibox "An MBS construction containing a single body"
// This construction can be extended and contain
// more complex model consisting of bodies and joints

parameter Real nx[3]={1, 0, 0};
parameter Real ny[3]={0, 1, 0};
parameter Real id;
Real ac[24]; Real th[6];
MbsCutA a(across=ac, through=th);
SubInertial I(nx=nx, ny=ny);
BodyME box_1(r={0, 0, 0},I11=0.133333,I22=0.133333,I33=0.133333,

I12=0,I23=0,I13=0,mass=1,
r0={0, 0, 0},nx={1, 0, 0},ny={0, 1, 0},
Material={0.8, 1.0, 0.8, 1.0},
parmStlIndex=20,id=id);

equation
connect(a, I.a);
connect(I.b, box_1.a);

end minibox;

model IntegratedBox "A glue class representing a free flying element bx"
extends MbsOneCutA;
parameter Real id;
minibox bx(id=id);
FreeCardan2S free;

equation
connect(a, free.a);
connect(free.b, bx.a);

end IntegratedBox;

model world
IntegratedBox ib1(id=1) "free flying box no. 1";
IntegratedBox ib2(id=2) "free flying box no. 2";
IntegratedBox ib3(id=3) "free flying box no. 3";
IntegratedBox ib4(id=4) "free flying box no. 4";
Inertial I(g=0) "The roor of the MBS tree";
parameter Integer bodies=4;
Real wholeInput [bodies,27];
Real wholeOutput [bodies,6];

equation
connect(I.b, ib1.a) ;
connect(I.b, ib2.a) ;
connect(I.b, ib3.a) ;
connect(I.b, ib4.a) ;
ib1.bx.box_1.collisionInput=wholeInput[1,:];
ib2.bx.box_1.collisionInput=wholeInput[2,:];
ib3.bx.box_1.collisionInput=wholeInput[3,:];
ib4.bx.box_1.collisionInput=wholeInput[4,:];
ib1.bx.box_1.collisionOutput=wholeOutput[1,:];
ib2.bx.box_1.collisionOutput=wholeOutput[2,:];
ib3.bx.box_1.collisionOutput=wholeOutput[3,:];
ib4.bx.box_1.collisionOutput=wholeOutput[4,:];
wholeOutput=doCollide(bodies,time,wholeInput);

end world;

Figure 27 demonstrates dynamic visualization of collision between four
free flying cubes. The lines represent the trajectories before and after the
collision. Figure 28 contains a plot of forces acting on the first box. The
three components (X , Y , Z) of the force are represented by three curves.
Two major collisions occur at time 1.0 and 1.3. The trajectories of four
bodies (projected on the X axis) are displayed in Figure 29. Initially two
boxes move towards the zero point, and all four bodies are separated after
the collision occurs.
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Figure 27: Dynamic visualization of collision between four free flying
cubes. The lines represent the trajectories before and after the collision.

8 Conclusion

In this report we attempt to find ways to connect MBS-based models written
in Modelica with collision detection and response routines. We also derive
the equations and the coefficients that can be used as collision response
functions.

As the first step in this direction different collision response models
were identified and experiments with Modelica simulations were performed.
We demonstrate that an impulse based approach for non-trivial models re-
quires a new library that includes equations for propagation of impulses into
joints. This new library can become a topic for new research and experi-
mentation. The force-based (penalty) approach can work with any MBS
models, however the performance and stability should be further studied.
Our currently used force model is continuous, but actually not differen-
tiable at the time of the start and the end of collision. This may cause
problems for the ODE solvers because these require that all equations are
differentiable. In future models with differentiable force should be derived
and used for simulation.
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Figure 28: The forces acting on the first box. The three components (X , Y ,
Z) of the force are represented by three curves.

Figure 29: The trajectories of the four bodies projected on the X axis.
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