
Classification of Repeated Measurement Data
Using Growth Curves and Neural Networks

Department of Mathematics, Linköping University

Kasper Andersson

LiTH-MAT-EX–2022/23–SE

Credits: 30hp

Level: A

Supervisor: Martin Singull
Department of Mathematics, Linköping University

Examiner: Dietrich von Rosen
Department of Mathematics, Linköping University

Linköping: 2022

Abstract

This thesis focuses on statistical and machine learning methods designed for se-
quential and repeated measurement data. We start off by considering the clas-
sic general linear model (MANOVA) followed by its generalization, the growth
curve model (GMANOVA), designed for analysis of repeated measurement data.
By considering a binary classification problem of normal data together with the
corresponding maximum likelihood estimators for the growth curve model, we
demonstrate how a classification rule based on linear discriminant analysis can
be derived which can be used for repeated measurement data in a meaningful
way.

We proceed to the topics of neural networks which serve as our second method
of classification. The reader is introduced to classic neural networks and rele-
vant subtopics are discussed. We present a generalization of the classic neural
network model to the recurrent neural network model and the LSTM model
which are designed for sequential data.

Lastly, we present three types of data sets with an total of eight cases where
the discussed classification methods are tested.

Keywords:
Repeated Measurement Data, Sequential Data, Growth Curve Model, Lin-
ear Discriminant Analysis, Neural Network, Recurrent Neural Network,
LSTM

URL for electronic version:
-

Andersson, 2022. iii

Sammanfattning

Den här uppsatsen introducerar klassificeringsmetoder skapade för data av ty-
pen upprepade mätningar och sekventiell data. Den klassiska MANOVA model-
len introduceras först som en grund för den mer allmäna tillväxtkurvemodellen
(GMANOVA), som i sin tur används för att modellera upprepade mätningar
på ett meningsfullt sätt. Under antagandet av normalfördelad data så härleds
en binär klassificeringsmetod baserad på linjär diskriminantanalys, som tillsam-
mans med maximum likelihood-skattningar från tillväxtkurvemodellen ger en
binär klassificeringsregel för data av typen upprepade mätningarn.

Vi fortsätter med att introducera läsaren för klassiska neurala nätverk och rele-
vanta ämnen diskuteras. Vi generaliserar teorin kring neurala nätverk till typen
"recurrent" neurala nätverk och LSTM som är designade för sekventiell data.

Avslutningsvis så testas klassificeringsmetoderna på tre typer av data i totalt
åtta olika fall.

Nyckelord:
Upprepade Mätningar, Sekventiell Data, Tillväxtkurvor, Linjär Diskrimi-
nantanalys, Neurala Nätverk, "Recurrent" Neurala Nätverk, LSTM

URL för elektronisk version:
-

Andersson, 2022. v

Acknowledgements

First of, I want to thank my supervisor Martin Singull for giving me the oppor-
tunity to write about this topic.

I also want thank David for all the gym sessions, Filip for all the group projects
and Axel for all the "kaffepauser".

Then, finally, I want to thank my mother for all the support I got throughout
my studies.

Andersson, 2022. vii

Contents

1 Introduction 1
1.1 Outline of the thesis . 1
1.2 Purpose of this Thesis . 2

2 Theory 3
2.1 Mathematical Theory . 3
2.2 Statistical Theory . 4

3 Statistical Learning 7
3.1 The General Linear Model . 7

3.1.1 A Univariate Linear Model 7
3.1.2 The General Linear Model 9
3.1.3 The General Hypothesis 11

3.2 The Growth Curve Model . 12
3.3 Linear Discriminant Analysis . 15

3.3.1 Deriving a Classification Rule 16
3.3.2 Linear Discriminant Analysis for Growth Curves 18

3.4 Neural Networks . 19
3.4.1 Introduction - Feedforward Neural Networks 19
3.4.2 Optimization . 22
3.4.3 Some Issues with Neural Networks and how to Tackle Them 25
3.4.4 Recurrent Neural Networks and LSTM 29

4 Results 35
4.1 Simulated Data . 36

4.1.1 Case 1 . 36
4.1.2 Case 2 . 38
4.1.3 Case 3 . 38
4.1.4 Discussion - Simulated Data 42

Andersson, 2022. ix

x Contents

4.2 Radiation Data . 42
4.2.1 Case 4 - Control Group vs 25-50r 43
4.2.2 Case 5 - Control Group vs 75-100r 43
4.2.3 Case 6 - Control Group vs 125-150r 46
4.2.4 Discussion - Radiation Data 46

4.3 Weather Data . 48
4.3.1 Case 7 - One station . 48
4.3.2 Case 8 - Two stations . 48
4.3.3 Discussion - Weather Data 50

5 Ending Discussion 53
5.1 General Discussion . 53
5.2 Further Work . 54

Chapter 1

Introduction

This chapter intend to give the reader a brief introduction of this thesis. We
give a short summary of each chapter which hopefully further encourage the
reader to take interest in the relevant topics.

1.1 Outline of the thesis

Chapter 1 introduces the reader to each topic of this thesis and give a brief
introduction to the topic of sequential and repeated measurements data.

Chapter 2 serves as a collection of relevant definitions and theorems which will
be applied in Chapter 3, where the statistical algorithms are presented.

Chapter 3 is the main chapter of this thesis and serves as a collection of all
applied statistical algorithms. First of, the reader is introduced to the general
linear model which is a multivariate generalization of the classic multiple linear
regression model. We give a short introduction to some of the statistical models
which are incorporated in the general linear model and how they are used to
perform statistical analysis. Then we further generalize the general linear model
to the growth curve model which is used to study sequential data characterized
as repeated measurements. We then proceed to derive our first classification
method based on linear discriminant analysis, where we obtain a binary classi-
fication rule based on estimated growth curves. Then, we introduce the reader
to neural networks, some of their properties and how to further develop neural
networks to contain a recurrent structure designed for sequential data.

Andersson, 2022. 1

2 Chapter 1. Introduction

Chapter 4 collects all of the results from applying the statistical algorithms.
The reader is presented to five cases where the statistical algorithms has been
used and compared on different data sets. The first three cases uses simulated re-
peated measurement data while the last two cases uses temperature data where
we deviate from the design of repeated measurements.

Chapter 5 gives a short review of what we have done and discusses how one
can further develop the presented statistical algorithms. We focus on how to
develop the growth curve model to work on more general problems than those
presented in chapter 3 and 4.

1.2 Purpose of this Thesis
Statistical analysis of sequential data differs from the one on non-sequential data
by the fact that order of observation matters [6]. In practice, this means that
one cannot assume independence between observations in the data, that is

ppxi`1|xiq ‰ ppxi`1q

for some probability distribution p. Two examples of this is weather temperature
observed once per day and stock prices updated each time a trade agreement has
been fulfilled. Another example is medical data of child growth where multiple
children has been observed and studied at the same age during their youth so
that potential outliers can be observed early on and helped. When we have mul-
tiple subjects observed at the same time points, eventually split into different
groups, we refer to this as repeated measurements design, or simply repeated
measurements.

This thesis aims to introduce some classic classification algorithms and further
generalize these algorithms so that repeated measurements can be studied in a
meaningful way.

Chapter 2

Theory

Although most theory will be presented when it’s needed to give the reader a
complete view of how to apply the statistical algorithms which will be discussed
later, some mathematics would remove focus from relevant theory if it were to
be presented together with the statistical algorithms. This chapter will serve as
a collection for mathematical tools falling under this category and the chapter is
split into two parts. One part where pure mathematics is presented and another
part where relevant statistical definitions are collected.

2.1 Mathematical Theory
Definition 2.1. [9] The Kronecker product between two matrices A “ paijq P

Rmˆn,B “ pbijq P Rpˆq is denoted A b B and is defined by the block matrix

A b B “

¨

˚

˝

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

˛

‹

‚

P Rmpˆnq.

The Kronecker product between two matrices can be seen as a generalization of
the outer product between two vectors and will be utilized when we introduce
the matrix normal distribution for the multivariate models.

Definition 2.2. [9] The Hadamard product between two matrices A “ paijq

and B “ pbijq, both in Rmˆn, is denoted A d B and is defined by the matrix

A d B “

¨

˚

˝

a11b11 . . . a1nb1n
...

. . .
...

am1bm1 . . . amnbmn

˛

‹

‚

P Rmˆn.

Andersson, 2022. 3

4 Chapter 2. Theory

The Hadamard product, often referred to as the element-wise matrix product,
is of practical usage when data needs to be processed with separate routines but
merged for a final result. It will be used when we discuss optimization methods
relevant for the neural networks.

Definition 2.3. The vectorization of a matrix A “ pa1, . . . ,akq P Rrˆk is
denoted vecpAq and defined by the column vector

vecpAq “

¨

˚

˝

a1
...
ak

˛

‹

‚

P Rrk.

The vectorization of a matrix, together with the Kronecker product, will be
convenient to use when we consider the matrix normal distribution and how it
relates to the multivariate normal distribution.

Theorem 2.1 (Extended Cauchy-Schwarz Inequality). [13] Let x : p ˆ 1
and d : p ˆ 1 be vectors and let B be a positive definite matrix. Then

px1dq2 ď px1Bxqpd1B
´1

dq (2.1)

with equality if and only if x “ cB´1d or d “ cBx for some constant c.

Corollary 2.1.1. Under the same conditions as in Theorem 2.1 we have

max
x ‰ 0

px1dq2

x1Bx
“ d1B

´1
d (2.2)

Proof : The maximum is attained by inserting x “ cB´1d and expanding.

Remark : Due to the fact that c can be any constant, we can, without loss of
generalization, simply ignore it by setting c “ 1 when applying the result.

2.2 Statistical Theory
Definition 2.4. A random variable X is normal (Gaussian) distributed, with
mean µ and variance σ2 if its pdf is given by

fpx|µ, σq “
1

σ
?
2π

e´
px´µq2

2σ2 , x P p´8,8q (2.3)

and we denote this by X „ Npµ, σ2q. For X „ Np0, 1q we denote P pX ă cq as
Φpcq.

2.2. Statistical Theory 5

A natural generalization of Definition 2.4 is the multivariate normal distribution,
which occurs when we treat multiple normal variables at the same time.

Definition 2.5. A random vector x : p ˆ 1 is multivariate normal dis-
tributed, with mean µ : p ˆ 1 and positive definite covariance matrix Σ : p ˆ p
if its pdf is given by

fpx|µ,Σq “ p2πq´p{2|Σ|´p{2exp
ˆ

´
px ´ µq1Σ´1px ´ µq

2

˙

(2.4)

and we denote this by x „ Nppµ,Σq.

One can further generalize Definition 2.5 to the so called matrix normal distri-
bution.

Definition 2.6. A random matrix X : p ˆ n is matrix normal distributed,
with mean M : p ˆ n, positive definite row-covariance matrix Σ : p ˆ p and
positive definite column-covariance matrix Ψ : n ˆ n if its pdf is given by

fpX|M,Σ,Ψq “ cp,nexp
ˆ

´
1

2
tr

`

Σ´1pX ´ MqΨ´1pX ´ Mq
1
˘

˙

(2.5)

where cp,n “ p2πq´pn{2|Σ|´n{2|Ψ|´p{2, trp¨q is the trace and we denote this
distribution by X „ Np,npM,Σ,Ψq.

Remark 1 : We can define the matrix normal distribution for a matrix X „

Np,npM,Σ,Ψq with Definition 2.5 by considering its vectorization vecpXq „

NpnpvecpMq,Ψ b Σq.

Remark 2 : As the names suggest, the row-covariance matrix Σ and the column-
covariance matrix Ψ in Definition 2.6 characterizes the covariance for the p rows
and n columns respectively for a corresponding matrix X „ Np,npM,Σ,Ψq. De-
pending on the literature we are referring to, we might choose to model X as
n ˆ p and the corresponding distribution would be X „ Nn,ppM1,Ψ,Σq where
the matrix dimensions would change accordingly.

Example 2.1. A common statistical model usually contains n independent p-
dimensional observations xi, i “ 1, . . . , n under the assumptions of equal mean,
equal covariance (homoscedasticity) and normal distribution. If we choose to
put our observations as columns in a data matrix X : pˆn, this could be mod-
eled as X „ Np,npµ11

n,Σ, Inq or vecpXq „ Npnp1n bµ, In bΣq where 1n : nˆ1
is a vector filled with ones and In : n ˆ n is the identity matrix. If we instead
choose to put our observations as rows, the corresponding model would be given
by X : n ˆ p, X „ Nn,pp1nµ

1, In,Σq or vecpXq „ Nnppµ b 1n,Σ b Inq.

Chapter 3

Statistical Learning

3.1 The General Linear Model
This section is devoted to statistical models that can be written on the form

Y “ XB ` E, (3.1)

where Y : n ˆ p, X : n ˆ pq ` 1q, B : pq ` 1q ˆ p and E „ Nn,pp0, In,Σq.
The matrices B and Σ are unknown parameter matrices, X is a known design
matrix and we assume that n ą pq ` 1q ` p. The model (3.1) is known as
the general linear model [26] and we devote the following two subsections to
represent some of the statistical models included in it. We finish the section
with a test for making inference about (3.1) before we move forward to the
more general GMANOVA model.

3.1.1 A Univariate Linear Model
Consider (3.1) but with only one response variable (p “ 1). We refer to this as
the univariate linear model, which we denote as

y “ Xb ` e (3.2)

where y “ pY1, . . . , Ynq1 is the response vector, X “ px1
1, . . . ,x

1
nq1 is the design

matrix, b is the parameter vector and e „ Nnp0, σ2Inq is the random error.
Alternatively, we might write this as Yi „ Npxib, σ

2q, i “ 1, . . . , n. We give
a short review of two types of statistical models represented by (3.2), namely,
multiple linear regression and the one factor ANOVA.

Andersson, 2022. 7

8 Chapter 3. Statistical Learning

Multiple Linear Regression

Now consider (3.2) where all input variables are continuous. The first column
of the design matrix X is filled with ones corresponding to an intercept term
and all other elements corresponds to observations of our input variables. This
gives us the multiple linear regression model

¨

˚

˝

Y1

...
Yn

˛

‹

‚

“

¨

˚

˝

1 x11 . . . x1q

...
...

. . .
...

1 xn1 . . . xnq

˛

‹

‚

¨

˚

˚

˚

˝

b0
b1
...
bq

˛

‹

‹

‹

‚

`

¨

˚

˝

E1

...
En

˛

‹

‚

,

where Ei „ Np0, σ2q, i “ 1, . . . , n. Our goal with multiple linear regression is to
fit a hyperplane in Rq used for predicting new values in R, i.e., our estimated
model will be on the form of

ŷ “ b̂0 ` b̂1x1 ` . . . ` b̂qxq

or simply x1b̂, where b̂ is our estimator of b. By minimizing the residual
y ´ Xb̂ one can show that the best estimator b̂ in terms of least squares is
given by pX1Xq

´1
X1y and an unbiased estimator of σ2 is given by

σ̂2 “
py ´ Xb̂q1py ´ Xb̂q

n ´ q ´ 1
“

y1pI ´ XpX1Xq
´1

X1qy

n ´ q ´ 1

where pX1Xq
´1 can be assumed to exist as we are working under the condition

of n ą q ` 1, which ensures that X1X is of full rank [13].

To validate the use of our estimated linear equation x1b̂ in order to predict our
response variable y we consider the hypothesis

H0 : b1 “ . . . “ bq “ 0

vs.
HA : At least one bi ‰ 0.

(3.3)

ANOVA

Analysis of variance (ANOVA) is the study of statistical methods for compar-
ing means of groups of continuous observations where the groups are defined by
levels of factors [2]. Again consider (3.2) but this time with all of our predictors

3.1. The General Linear Model 9

as categorical and that all our variables in X are dummy variables.

In the one factor ANOVA model we have responses Yij “ µi ` eij “ µ` τi ` eij
together with a sum-to-zero constraint

řg
i“1 τi “ 0 to handle the overparame-

terization introduced by including τi, where τi is our non-random but unknown
factor for group i “ 1, . . . , g, eij „ Np0, σ2q and we want to test

H0 : µ1 “ . . . “ µg

vs.
HA : At least one of the group means differ from the other

or equivalently,

H0 : τ1 “ . . . “ τg “ 0

vs.
HA : At least one τi ‰ 0.

(3.4)

The one-factor model can be interpreted as that we have g treatments that we
want to test, ni subjects per group and one treatment per group. Before the
treatments take place we assume that every subject has the same mean value µ
and a random error eij . The question we are interested in is if the treatments
have effect on the subjects, or equivalently, if the group means differ between
the groups after the treatment, i.e., is one of the τi ‰ 0.

3.1.2 The General Linear Model

We now generalize the theory about ANOVA and multiple linear regression by
considering the full general linear model by relaxing the condition p “ 1. In
practice this means that we allow more than one response variable per sample
in our regression model, and that we have multivariate factors in our ANOVA
model.

The density for the general linear model is given by

fpY|B,Σq “ p2πq´
np
2 |Σ|´

n
2 e´ 1

2 trppY´XBqΣ´1
pY´XBq

1q (3.5)

and under the assumption n ą p ` pq ` 1q, which ensures that pX1Xq
´1 is well

defined, it can be shown that

10 Chapter 3. Statistical Learning

pB “ pX1Xq
´1

X1Y,

pΣ “
1

n
pY ´ XpBq1pY ´ XpBq

are the corresponding maximum likelihood estimators (MLE’s) [13].

Multivariate Linear Regression

We consider the multiple linear regression model but this time with p response
variables per sample. The multivariate linear regression [13] model is given by

¨

˚

˚

˚

˝

Y11 Y12 . . . Y1p

Y21 Y12 . . . Y2p

...
...

. . .
...

Yn1 Yn2 . . . Ynp

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

1 x11 . . . x1q

1 x21 . . . x2q

...
...

. . .
...

1 xn1 . . . xnq

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

b01 b02 . . . b0p
b11 b12 . . . b1p
...

...
. . .

...
bq1 bq2 . . . bqp

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

E11 E12 . . . E1p

E21 E12 . . . E2p

...
...

. . .
...

En1 En2 . . . Enp

˛

‹

‹

‹

‚

or more compactly written

Y “ XB ` E.

For every column in Y we have the linear relationship

yi “ Xbi ` ei P Rnˆ1

where bi and ei is the i:th column of B and E respectively. The covariance for
the error terms ei are given by covpei, ejq “ σijIn and for the rows epiq of E it
holds that covpepiqq “ Σ and covpepiq, epjqq “ 0 when i ‰ j.

Shortly, these covariances means that only the variables from the same subject
are correlated, the variation and correlation for the predictor variables x1, . . . xq

is given by Σ and that different samples are independent.

Just as for the multiple linear regression model we often want to test if the
coefficients are significant. The difference now is that we are testing the columns
bi, i “ 1, . . . , p of B instead of scalar coefficients as in (3.3). The standard
hypothesis to check if any of the predictor variables are of use is given by

H0 : b1 “ . . . “ bp “ 0

vs.
HA : At least one bi ‰ 0.

(3.6)

3.1. The General Linear Model 11

MANOVA

We consider the same setup as we had in the univariate ANOVA but now we
generalize it to the multivariate setting. In the one factor MANOVA model
we have responses Yij “ µi ` eij “ µ ` τi ` eij together with a sum-to-zero
constraint

řg
i“1 τi “ 0, where τi is our non-random but unknown factor and

eij „ Npp0,Σq and we want to test

H0 : τ1 “ . . . “ τg “ 0

vs.
HA : At least one τi ‰ 0.

(3.7)

3.1.3 The General Hypothesis

We now present a general hypothesis for the four tests (3.3), (3.4), (3.6) and
(3.7). Since all of the models can be written in the form of the general linear
model, we can formulate a general hypothesis for all of them instead of treating
them one by one. The hypothesis of interest is given by

H0 : CB “ 0

vs.
HA : CB ‰ 0,

(3.8)

where C : m ˆ pq ` 1q is known and m ď q. For instance, if we want to test
(3.6), then C will take the form of an q-dimensional identity matrix but with
an additional column 0 : m ˆ 1 at start, that is

C “ r0, Iqs “

¨

˚

˚

˚

˝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

˛

‹

‹

‹

‚

. (3.9)

We can test (3.8) by considering

V “ npΣ “ Y1pI ´ XpX1Xq
´1

X1qY,

W “ pB1C1pCpX1Xq´1C1q
´1

CpB,

where V is the sum of squares under the full model and W is the sum of squares
under H0. The likelihood ratio test for (3.8) is based on the statistic

12 Chapter 3. Statistical Learning

Λ “
|V|

|V ` W|

and the asymptotic distribution for Λ is approximately given by

P

ˆ

´pn ´ q ´
1

2
pp ´ m ` 1qq ln Λ ě z

˙

« P
`

χ2pfq ě z
˘

`
γ

ν2
`

P
`

χ2pf ` 4q ě z
˘

´ P
`

χ2pfq ě z
˘˘

(3.10)

where z equals to the observed valued of ´pn ´ q ´ 1
2 pp ´ m ` 1qq ln Λ, f “

pm, γ “
pmpp2

`m2
´5q

48 and ν “ n ´
p´m`1

2 [21] [24]. This means that we reject
(3.8) at a significance level α if (3.10) is less than α.

3.2 The Growth Curve Model
We are now going to further generalize the general linear model (3.1) by in-
cluding time regressors in the model, which will be used to model repeated
measurement data.

The growth curve model, also known as the generalized multivariate analysis of
variance model [23] (GMANOVA) or the bilinear regression model [26], is given
by

Y “ ABC ` E, (3.11)

where Y : p ˆ n is the response matrix, A : p ˆ q is the within-group design
matrix, B : qˆk is the parameter matrix, C : kˆn is the between-group design
matrix and E „ Np,np0,Σ, Inq is the random error. We also assume that q ď p,
rankpCq ` p ď n and Σ : p ˆ p to be positive definite. Note that we now have
transposed our model compared to (3.1), i.e., the columns in Y are now the
individual p-dimensional responses and the columns of E are now independent.
We have also replaced the notation of our design matrix X to C. This is done
to be consistent with the literature we are working with.

The standard set up is that p is the number of time points we have observed
our n samples and we assume that the mean value µi for each of the k groups
is a polynomial in time t of degree q ´ 1, that is

µi “ b1i ` b2it ` . . . ` bqit
q´1, i “ 1, . . . , k. (3.12)

3.2. The Growth Curve Model 13

If we compare (3.11) to the general linear model in the previous section we can
see that the main difference, besides that we have transposed our model and
changed index notation, is that we have post-multiplied (3.1) with the within-
group design matrix A, which takes the form

A “

¨

˚

˚

˚

˝

1 t1 . . . tq´1
1

1 t2 . . . tq´1
2

...
...

. . .
...

1 tp . . . tq´1
p

˛

‹

‹

‹

‚

(3.13)

to model the 3.12. Furthermore, we have that Y „ Np,npABC,Σ, Inq, so the
density function for the growth curve model is given by

fpY|B,Σq “ p2πq´
pn
2 |Σ|´

n
2 e´ 1

2 trpΣ´1
pY´ABCqpY´ABCq

1q.

It can be shown that if A and C are of full rank (q and k), then the MLE’s are
given by

pB “ pA1S
´1

Aq´1A1S´1YC1pCC1q
´1

, (3.14)

pΣ “
1

n
pY ´ ApBCqpY ´ ApBCq1, (3.15)

where S “ YpI ´ C1pCC1q
´1

CqY1 [16].

The general hypothesis for the GMANOVA model is given by

H0 : GBH “ 0

vs.
HA : GBH ‰ 0,

(3.16)

where G : r ˆ q, r ď q,B : q ˆ k and H : k ˆ t, t ď q. Under the assumption of
G and H having full rank, we can use the statistic

Λ “
|GpA1S

´1
Aq´1G1|

|GpA1S
´1

Aq´1G1 ` GpBHpH1RHq
´1

H1
pB1G1|

,

where

R “ pCC1
q´1 ` pCC1

q´1Y1
´

S´1 ´ S´1ApA1S
´1

Aq
´1

A1V
´1

¯

YC1pCC1
q´1,

S “ YpI ´ C1pCC1qCqY1,

14 Chapter 3. Statistical Learning

Figure 3.1: Samples for the patients in treatment group 75-100r (black curves),
mean value at each time (black circles) together with two growth curves fitted,
one with a quadratic time regressor included (red) and one without (blue). The
quadratic growth curve matches the mean value almost perfectly throughout
the whole treatment while the linear growth curve deviate noticeable already at
day 2 (t “ 3).

to test (3.16) [14]. By defining T as

T “ ´pn ´ k ` q ´ p ´
1

2
pr ´ t ` 1qq ln Λ, (3.17)

one can show that the asymptotic distribution for T is approximately χ2prtq
[14] which means that for large n, we reject H0 in (3.16) at a significance level
α if

T ą χ2
αprtq. (3.18)

Example 3.1. Danford et al. [1] analyzed the results of patients being exposed
to different levels of radiation, see Table 3.1. By studying the mean value of the
third group (75-100r) we can observe a small quadratic growth over time which
is illustrated in Figure 3.1. It may thus be interesting to test if a quadratic term
is needed based on all of the available data. Using (3.11) gives us

3.3. Linear Discriminant Analysis 15

Y “
`

y1 . . .y45

˘

, A “

¨

˚

˝

1 t0 t20
...

1 t10 t210

˛

‹

‚

,

B “

¨

˝

b01 b02 b03 b04
b11 b12 b13 b14
b21 b22 b23 b24

˛

‚, C “

¨

˚

˚

˝

11
6

11
14

11
16

11
10

˛

‹

‹

‚

.

The hypothesis of interest is to test if the last row of B is equal to zero. This
can be done using (3.16) with G “ p0, 0, 1q and H equal to the identity matrix,
resulting in the hypothesis

H0 : pb21, b22, b23, b24q “ 0

vs.
HA : pb21, b22, b23, b24q ‰ 0,

(3.19)

and by estimating B using (3.14) as

pB “

¨

˝

111.93 93.01 119.16 146.60
15.52 13.06 17.94 9.56
´0.60 ´0.56 ´0.95 ´0.311

˛

‚

The relevant test variable can now be calculated using (3.17) to be T “ 17.85636,
which should be compared to the asymptotic distribution (3.18). At a signifi-
cance level 1%, we have that T ą χ2

0.99p1 ¨ 4q “ 13.28 and thus, we reject H0 in
(3.19).

3.3 Linear Discriminant Analysis
We are now going to study our first classification procedure, namely linear
discriminant analysis (LDA), which allocates observation into predetermined
groups. The allocation rule is a function of measurements that maximizes the
separation between the groups relative to the within-group variability [13]. We
are going to work under the assumption of normal data, that the groups have
same covariance Σ and that there only exists two predetermined groups, i.e.,
we have a binary classification procedure. This is illustrated in Figure 3.2.

There are essentially two ways to derive the classification rule of two-group
LDA. One based on decision theory and the likelihood ratio rule [7] [13] and

16 Chapter 3. Statistical Learning

Table 3.1: Data of 45 patients split into 4 groups. One control group without
any radiation exposure and three groups at increasing level of radiation. Each
patient was observed before the treatment took place and then repeatedly over
10 days.

Patient Before
radiation Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Controls
1 191 223 242 248 266 274 272 279 286 287 286
...

...
...

...
...

...
...

...
...

...
...

...
6 15 22 24 24 38 41 46 62 62 79 74

25-50r
7 53 53 102 104 105 125 122 150 93 127 132
...

...
...

...
...

...
...

...
...

...
...

...
20 205 234 260 269 274 282 282 290 298 304 308

75-100r
21 181 206 199 237 219 237 232 251 247 254 250
...

...
...

...
...

...
...

...
...

...
...

...
35 156 186 198 201 205 210 217 217 219 223 229

125-150r
36 201 202 229 232 224 237 217 268 244 275 246
...

...
...

...
...

...
...

...
...

...
...

...
45 246 257 269 280 289 291 306 301 295 312 311

another based on Fisher’s work [3] [13] which we will present here. Consider a
sample x0 and two groups π1 and π2 representing the populations Nppµ1,Σq

and Nppµ2,Σq respectively. The task is to classify x0 to either π1 or π2. The
classification rule is based on the idea that we are trying to find a vector a so
that the the ratio

pa1µ1 ´ a1µ2q2

a1Σa
(3.20)

is maximized. We are essentially trying to maximize the between-group variabil-
ity relative to the within-group variability for the linear combinations a1µ1 and
a1µ2. As we will show, by considering the condition of equal misclassification
rate for the two groups, all what’s left to do is to choose a decision constant K
such that we classify x0 to π1 if a1x0 ą K and to π2 otherwise.

3.3.1 Deriving a Classification Rule
Consider a sample consisting of two groups, π1 of size n1 and π2 of size n2, with
corresponding population distributions Nppµi,Σiq and parameter estimators x̄i,
Si, i “ 1, 2. Let x0 be a new observation that belongs to one of the two groups
and let

Sp “ ppn1 ´ 1qS1 ` pn2 ´ 1qS2q{pn1 ` n2 ´ 2q

3.3. Linear Discriminant Analysis 17

be the pooled sample covariance for the two groups. Now consider the maxi-
mization of (3.20) using the sample data, we get

max
â‰0

pâ1x̄1 ´ â1x̄2q2

â1Spâ
“ max

â‰0

pâ1px̄1 ´ x̄2qq2

â1Spâ

(2.2)
“ px̄1 ´ x̄2q1S

´1
p px̄1 ´ x̄2q

where â “ S´1
p px̄1 ´ x̄2q.

To decide K we’ll work under the condition that the probabilities of misclassi-
fication shall be equal. We have

P pclassify x0 to π1|x0 P π2q “ P pa1x0 ą K|x0 „ Nppµ2,Σqq

“ 1 ´ P pa1x0 ď K|a1x0 „ Nppa1µ2,a
1Σaqq

“ 1 ´ Φ

ˆ

K ´ a1µ2
?
a1Σa

˙

“ Φ

ˆ

´K ` a1µ2
?
a1Σa

˙

(3.21)

and in the same way we can calculate

P pclassify x0 to π2|x0 P π1q “ Φ

ˆ

K ´ a1µ1
?
a1Σa

˙

. (3.22)

By setting (3.21) equal (3.22), K can be calculated as ´K`a1µ2 “ K´a1µ1 ô

K “ 1
2a

1pµ1`µ2q. Now, by replacing a,µ1 and µ2 with samples estimates â, x̄1

and x̄2 we get

K̂ “
1

2
â1px̄1 ` x̄2q “

1

2
px̄1 ´ x̄2q1S

´1
p px̄1 ` x̄2q

and thus, we have the classification rule

Classify observation x0 to

#

π1, if px̄1 ´ x̄2q1S
´1
p x0 ą 1

2 px̄1 ´ x̄2q1S
´1
p px̄1 ` x̄2q,

π2, otherwise.

We can simplify the notation for the classification rule by defining
Lpx0|x̄1, x̄2,Spq “ â1x0 ´ K̂. This results in

Classify observation x0 to

#

π1, if Lpx0|x̄1, x̄2,Spq ą 0,

π2, otherwise.
(3.23)

18 Chapter 3. Statistical Learning

(a) Raw data. (b) Data projected onto discriminant (solid line)
and seperated (dashed line).

Figure 3.2: Illustration of the LDA procedure of a two-dimensional data set that
consists of two groups.

3.3.2 Linear Discriminant Analysis for Growth Curves
We are now going to apply the classification rule derived for LDA to the growth
curves discussed in (3.2). The growth curve model, is given by

Y “ ABC ` E,

where Y : p ˆ n is the response matrix, A : p ˆ q is the within-group design
matrix, B : qˆk is the parameter matrix, C : kˆn is the between-group design
matrix and E „ Np,np0,Σ, Inq is the random error. In the two-group model,
i.e., k “ 2, this reduces to

py1, . . . ,yn1
, . . . ,yn2

q “ Apb1,b2q

ˆ

11
n1

0
0 11

n2

˙

` E

or simply, a sample x0 : p ˆ 1 belongs to one of the two populations

π1 : x1 “ Ab1 ` e,

π2 : x2 “ Ab2 ` e,

where e „ Npp0,Σq.

Now, let pB “

´

b̂1, b̂2

¯

and pΣ be the MLE’s (3.14) for the growth curve model
and let’s replace the parameters in the standard LDA classifier (3.23) with the
MLE’s. We get

Lpx0|Ab̂1,Ab̂2, pΣq “ pAb̂1 ´Ab̂2q1
pΣ´1x0 ´

1

2
pAb̂1 ´Ab̂2q1

pΣ´1pAb̂1 `Ab̂2q

3.4. Neural Networks 19

which gives us a classification rule for the GMANOVA model

Classify observation x0 to growth curve

#

π1, if Lpx0|Ab̂1,Ab̂2, pΣq ą 0,

π2, otherwise.

3.4 Neural Networks

We shall now leave LDA and look at our next type of classification method,
namely neural networks. Studying neural networks, often referred to as deep
learning, gives us a large collection of prediction methods which can be used
both for classification and regression problems.

Neural networks are essentially data transformers that make affine transforma-
tions of data and then apply non-linear functions so that the data eventually
gets linearly separable. We train the network by adjusting the parameters in the
network, often with gradient-based learning methods, so that the predictions it
assembles (ŷi) matches the true values (yi) as close as possible. What close
means in this context is not well defined, but it comes down to empirical risk
minimization of a risk function defined by a function L, which we refer to as
the loss function. When we are working with regression problems we often use
the squared error as our loss function, while discrete cross-entropy is commonly
used for classification [7].

As we shall see, we are not going to limit ourselves to assumptions about the
parameters, distribution of data or that there are only two groups as we did for
LDA in Section 3.3, and this will give us a more general prediction framework
to work with. However, this results in a less statistical elegant method without
closed form solutions and we will rely on finding local minima using iterative
optimization methods.

3.4.1 Introduction - Feedforward Neural Networks

A feedforward neural network, which we mostly will refer to as neural network
or FNN, takes an labeled input vector x P Rp and defines an output fpx;θq :“ ŷ
where θ are the parameters. The goal is to adjust θ such that the neural net-
work can predict the input x so that the output ŷ matches the true value y as
good as possible.

20 Chapter 3. Statistical Learning

In a one hidden layer network, the i1:th output variable is given by

ŷi1 “ vi10 `

p1

ÿ

k“1

vi1kzk “ vi10 `

p1

ÿ

k“1

wi1k f
´

wk0 `

p
ÿ

j“1

wkjxj

¯

loooooooooooomoooooooooooon

zk

, (3.24)

where f is the activation function, zk is the k:th output from the hidden layer,
wkj and vi1k are the weights for respectively layer and wk0 and vi10 are the biases.
This is illustrated in Figure 3.3 for a neural network with p “ 10 predictors and
p1 “ 20 hidden variables and a single output. Note that bias in this scenario
refers to the fact that without any input, the prediction will be biased towards
the bias term. It does not represent statistical bias.

The output from a one hidden layer neural network can be more compactly
written by considering a matrix-vector notation. Let a :“ Wx ` w0 and apply
f entry wise to each element of a. Then, (3.24) can be written as

a “ Wx ` w0, (3.25)
z “ fpaq, (3.26)
ŷ “ Vz ` v0. (3.27)

This procedure can be generalized to arbitrary many layers by repeating (3.25)
and (3.26) for additional weights before considering a final output (3.27). This
is illustrated in Figure 3.4 for a neural network with three hidden layers.

The activation functions in the hidden layers are needed to ensure that our
FNN has the capability to classify non-linear separable data, since a FNN which
only relies on affine transformation is only capable of classifying already linear
separable data [5]. One can think about this as an arbitrary amount of linear and
affine transformations of a vector x, which never will result in a mapping fpxq

where f is any non-linear function. Two historically commonly used activation
functions are

σspxq “
1

1 ` e´x
psigmoidq

and

tanhpxq “
ex ´ e´x

ex ` e´x
phyperbolic tangentq.

3.4. Neural Networks 21

Figure 3.3: Illustration of a one hidden layer feedforward neural network with
10 input variables, 20 nodes in the hidden layer and one output variable.

Although the two functions solves the problem of separability, it is recommended
in modern FNN to use the ReLU function

ReLUpxq “ maxt0, xu prectified linear unitq

to avoid vanishing gradient effects while updating (training) the network [12]
[5], which we will discuss later. Note that in classification tasks, such as image
classification, the sigmoid function or its corresponding multivariate version

fpxiq “
exi

ř

i“1 e
xi

psoftmaxq

is still standard to use in the output layer to get a probabilistic interpretation
of our outputs.

One of the things that make neural networks powerful is that networks with hid-
den layers provide a universal approximation framework, which is based on the
universal approximation theorem [10]. In context of neural networks, this mean
that a network with a linear output layer and at least one hidden layer with any
"squashing" (sigmoid, tanh etc.) or ReLU activation function can approximate
any continuous function on Rn arbitrary well, from one finite-dimensional space

22 Chapter 3. Statistical Learning

Figure 3.4: A three hidden layer feedforward neural network with a more general
presentation.

to another [5] [20]. This result also holds for function mappings between finite
discrete spaces [5].

In practice, the universal approximation theorem states that a large enough one
hidden layer neural network is able to represent any function we are trying to
learn. However, there is no guarantee that our training algorithm will manage to
adjust the parameters of the neural network properly, neither does the theorem
specify on how large the network has to be nor can we be sure that the training
samples contain all information for complete generalization. Nevertheless, the
theorem provides us an important result of the capacity of neural networks in
general.

3.4.2 Optimization

As we are applying non-linear activation functions to our affine transformations,
the convexity of our functions quickly disappears. This, together with the large
amount of parameters neural networks often are built upon, makes it infeasible
to find minima of the loss function with analytical methods. A classic example
of this is LeNet-5 (1998) [18] with 60000 parameters, which was used for classi-
fication of the MNIST data set. Another neural network design which has been
influential in the deep learning community, also used for image classification, is
AlexNet (2012) [17] with 60 million parameters.

The substantial non-linearity in neural networks makes it easy to understand
that we have to rely on iterative methods to find local minima when we tune the

3.4. Neural Networks 23

parameters θ. The parameters should be chosen such that the empirical risk
R becomes as small as possible. The empirical risk is computed as the average
loss or cost of predicting yi with ŷi, that is

Rpθq “
1

n

n
ÿ

i“1

Lpŷi,yiq, (3.28)

where L is the loss function for each sample i “ 1, . . . , n and we refer to this
training process as empirical risk minimization [5].

Gradient Descent

The general approach to minimize R is to use the gradient-descent method,
which most optimization algorithms for neural networks are based on. The
gradient-descent method updates the parameters as

θpnewq “ θpoldq ´ γ∇θR,

where γ is the step size, also known as the learning rate. The gradient-descent
method is based on the idea that if γ is sufficiently small, then it holds that
Rpθpnewqq ă Rpθpoldqq as long as ∇θR ‰ 0.

The process of calculating the gradient in a neural network is referred to as
back propagation since the derivatives are calculated by applying the chain rule,
starting backwards with the predictor variables yi1 . By considering equation
(3.24) with a squared error loss function, the loss for a single output variable ŷ
in the i:th sample is given by

Li “ Lpŷi, yiq “ pyi ´ ŷiq
2 “

´

yi ´
`

w0 `

p1

ÿ

k“1

wkfpwk0 `

p
ÿ

j“1

wkjxijq
˘

¯2

and the corresponding back propagation equations are given by

BLi

Bwkj
“ ´2

`

yi ´ ŷi
˘

wkf
1
`

wk0 `

p
ÿ

j“1

wkjxij

˘

xij ,

BLi

Bwk
“ ´2

`

yi ´ ŷi
˘

f
`

wk0 `

p
ÿ

j“1

wkjxij

˘

,

(3.29)

24 Chapter 3. Statistical Learning

which results in the final updating rule

w
pt`1q

kj “ w
ptq
kj ´

γ

n

n
ÿ

i“1

BLi

Bw
ptq
kj

,

w
pt`1q

k “ w
ptq
k ´

γ

n

n
ÿ

i“1

BLi

Bw
ptq
k

,

at the t:th iteration. Alternatively, we can consider a general loss function
L (cross entropy etc.) and formulate a more compact notation of the back
propagation equations. Let aik “ wk0 `

řp
j“1 wkjxij and zik “ fpaikq as in

(3.25) and (3.26). Then (3.29) can be written as

BLi

Bwkj
“

BLi

Bŷi

Bŷi
Bzik

Bzik
Baik

Baik
Bwkj

,

BLi

Bwk
“

BLi

Bŷi

Bŷi
Bwk

.

Variations of Gradient Descent

A common variation of the gradient-descent method is the mini-batch stochas-
tic gradient descent method (SGD). SGD makes a stochastic approximation of
the true gradient while training the neural network. This means that randomly
chosen subsets, so called mini-batches, of the whole training set are used to ap-
proximate the true gradient, which is also where the name of the method comes
from [7]. In practice, SGD results in less accurate but much faster iterations
than standard gradient descent.

A common problem with the gradient based methods is that the gradient oscil-
lates through the level curves of the function being minimized and the only way
to prevent this is to adjust the learning rate. This is one of the more trouble-
some problems to tackle when training neural networks since there is no exact
rule of how to set the learning rate and it is often guided by previous experience.
One way to overcome this is to adapt the learning rate to the current iteration
using adaptive learning methods [5], such as RMSprop and Adam.

The RMSProp [8] (Root Mean Square Propagation) algorithm adjusts regular
gradient descent by scaling the learning rate γ proportionally to the gradient.
Let δ « 0 for numerical stability, ρ P r0, 1q be the decay rate and initialize a

3.4. Neural Networks 25

vector r “ 0. Then, for each iteration,

rpnewq “ ρrpoldq ` p1 ´ ρq∇θR d ∇θR,

θpnewq “ θpoldq ´
γ

δ `
?
r

d ∇θR,
(3.30)

where the root is taken component-wise. Looking at the individual components
of θpnewq in (3.30), we have

θ
pnewq

i “ θ
poldq

i ´ γ

˜

gi

δ `
a

ρri ` p1 ´ ρqg2i

¸

,

where gi denotes the i:th component of the gradient ∇θR. The RMSProp al-
gorithm scales the updating values so that the components of ∇θR with larger
values get scaled more than those with smaller values. In practice, this normal-
izes each direction of how the empirical risk R is updated, and thus, we have
less oscillation. RMSProp together with standard gradient descent is illustrated
in Figure 3.5.

The Adam (Adaptive moment estimation) algorithm [15] aims to improve RM-
SProp by including momentum [22], which is designed to accelerate learning
where the curvature of the loss surface is high [5]. Let γ and δ be as before,
let ρ1, ρ2 P r0, 1q be the decay rates and initialize t “ 0 and vectors r “ s “ 0.
Then, for each iteration, update t “ t ` 1 and

spnewq “
ρ1s

poldq ` p1 ´ ρ1q∇θR

1 ´ ρt1
,

rpnewq “
ρ2r

poldq ` p1 ´ ρ2q∇θR d ∇θR

1 ´ ρt2

(3.31)

and then update θ as in (3.30). Furthermore, r and s is being normalized to
prevent divergence in early iterations [15].

3.4.3 Some Issues with Neural Networks and how to Tackle
Them

A common problem with optimization of neural networks is overfitting, which
means that the parameters that results in a low empirical risk on the training
data does not generalize well to unseen test data. This is simply illustrated
with polynomial regression, see Figure 3.6. Deciding the overall structure of a
neural network, which we refer to as the architecture of the network, is not a

26 Chapter 3. Statistical Learning

Figure 3.5: Illustration of how the standard gradient descent algorithm (black
lines) moves on the level curves of a three-dimensional function towards the
minimum, compared to the RMSProp algorithm (red lines). RMSProp tries to
normalize the gradient to avoid the "zig-zag" pattern which often occurs with
the gradient descent algorithm.

3.4. Neural Networks 27

Figure 3.6: Fitting two different models to the same training data (black dots).
A linear regression model (red curve) of degree one and a local polynomial model
(blue curve) which tries to smoothly fit all points. When we try to predict the
value of a new observation (green dot) we can observe that both of the models
will be way off. The linear model will off due to underfitting and the smooth
fitted model will be off due to overfitting.

straightforward task. In general, the choice of architecture in a neural network
for a specific task is guided by background knowledge and experimentation [7]
[5].

Regularization

One way to tackle overfitting is with regularization. In general, regularization
is any modification to a statistical algorithm designed to reduce the test error,
possibly at the cost of increased training error [5]. A standard regularization
technique is to add a norm penalty Ω to the empirical risk (3.28) so that the
new risk function is given by

R̃pθq “
1

n

n
ÿ

i“1

Lpŷi,yiq ` λΩpθq, (3.32)

where λ P r0,8q is the regularization parameter. The usage of (3.32) enforces
the parameters to be small while minimizing R̃, which often reduces overfitting

28 Chapter 3. Statistical Learning

(a) Before drouput. (b) After dropout.

Figure 3.7: Illustration of dropout regularization. which randomly zeros out
(drops) nodes together with their weights in the neural network

to some extent. In general, the effect of regularization is that we make a trade
of increased statistical bias and decreased variance, hopefully to make the test
error lower.

Another type of regularization is dropout [25], which randomly zeros (drops)
nodes in a neural network. Dropout is performed by multiplying each node z

plq
i

in layer l with b
plq
i „ Bernoullippq, where p P p0, 1q. The obtained weights Wplq

train

is multiplied with p so that the final weights are given by W
plq
test “ pW

plq
train, which

is done to ensure that the expected output during testing is the same as the one
during training. Dropout regularization is illustrated in Figure 3.7.

One can think about dropout as training each sample on a different neural
network, and then we average the final result. Note that if we have in total N
nodes in the neural network, then there is 2N possible network architectures to
train with, so for a network with 100 nodes in total, we already have 2100 ą 1030

different networks to use. Alternatively, we can see dropout as a type of data
augmentation where we create new data by adding noise to the current samples
[5].

Parameter Initialization and Scaling Inputs

The parameters of a neural networks has to be initialized before training can
take place. Starting with all weights equal to zero results in ∇θR “ 0 and
the optimization algorithm will be stuck. On the contrary, starting with too
large values on the parameters often results in poor solutions [7]. In practice,
we initialize biases to zero and the weights with either a uniform distribution

3.4. Neural Networks 29

U r´α, αs or a normal distribution Np0, σ2q, where α and σ2 is close to 0 [5].
A popular method is to use normalized initialization [4] which initializes the
weights as

w
plq
ij „ U

˜

´

c

6

nplq ` npl`1q
,

c

6

nplq ` npl`1q

¸

,

where nplq and npl`1q is the number of nodes connected by the l:th layer, respec-
tively. For instance, the deep learning library Keras uses normalized initializa-
tion as default weight initialization for most neural networks.

It is also important to scale the input variables to avoid learning issues [7]. To
see this, consider a neural network with n input variables such that x1 P r´L,Ls

and xi P r´l, ls, i “ 2, . . . , n, where L " l. A single output from the layer would
equal to a :“ w0 `w1x1 ` . . .`wnxn for corresponding weights wi, i “ 0, . . . , n.
Due to the differing size between L and l, it would hold with a high probability
that a « w1x1 before training and thus, we would have a vanishing effect of the
variables x2, . . . , xn, which in practice would result in slow learning and eventual
numerical issues. To avoid this, it is a common procedure to standardize the
input variables so they have mean zero and standard deviation one [7] [19].

3.4.4 Recurrent Neural Networks and LSTM

In the previous section has it always been assumed that the neural networks has
been of type feedforward which means that the networks contain no cycles. In
practice, this means that we always send our data x forward in the network, or
alternatively, deeper into a long chain of functions. We are now going to drop
the assumption of no cycles and focus on recurrent neural networks.

Recurrent neural networks is a large class of neural networks that are designed
to process sequential data. What differs sequential data from non-sequential
data is that we cannot assume independence between individual data obser-
vations. Some examples of sequential data are weather data, text documents,
speech recordings and financial data.

A feedforward neural network can only map a single input to output, while a
recurrent neural network can map a history of inputs to each output over time.
Each hidden layer is updated in a similar way for the recurrent networks as in
the forward case but with the addition of information passed from the previous
time step, which is illustrated in Figure 3.8. The i1:th output variable from a

30 Chapter 3. Statistical Learning

(a) Folded recurrent
neural network.

(b) Unfolded recurrent neural network.

Figure 3.8: Illustration of standard recurrent neural network design.

recurrent neural network at time t can be formulated as

ŷ
ptq
i1 “ vi10 `

p1

ÿ

i“1

vi1i f

¨

˝uj0 `

p
ÿ

j“1

uijx
ptq
j `

p1

ÿ

k“1

wikh
pt´1q

k

˛

‚

loooooooooooooooooooooooomoooooooooooooooooooooooon

h
ptq

i

, (3.33)

where f is the activation function, xptq
j is the j:th predictor variable and h

ptq
k is

the the k:th output from the hidden layer, each at time step t. Furthermore, vi1i,
uij and wik are the corresponding weights between the layers and vi10 and uj0

are the bias weights. Alternatively, we can consider a matrix-vector notation as
we did for (3.24) and write (3.33) as

aptq “ Uxptq
` Whpt´1q

` u0, (3.34)

hptq “ fpaptqq, (3.35)

ŷptq “ Vhptq
` v0. (3.36)

If we are working with a classification task and are in need of a probabilistic
interpretation of the output, we can simply apply a sigmoid or softmax function
to (3.33) and (3.36).

One problem with recurrent neural networks is that the long term dependencies
that we are trying to learn easily vanishes. To see this, we can consider a single
yptq output variable an look at the corresponding backpropagation equation for

3.4. Neural Networks 31

the wik variables. Computing BL
Bwik

for the m:th sample ŷ
ptq
m at time t gives us

BL
ptq
m

Bwik
“

BL
ptq
m

Bŷ
ptq
m

Bŷ
ptq
m

Bh
ptq
mi

Bh
ptq
mi

Bwik
. (3.37)

The problem arises when we evaluate Bh
ptq

mi

Bwik
since h

ptq
mi is a function depending

on wik, but also of hpt´1q

mi which itself is a function depending on the same wik.

Evaluating Bh
ptq

mi

Bwik
provides

Bh
ptq
mi

Bwik
“ f 1

´

a
ptq
mi

¯

˜

hpt´1q ` wik
Bh

pt´1q

mi

Bwik

¸

“
Bh

ptq
mi

Ba
ptq
mi

˜

B`a
ptq
mi

Bwik
`

Ba
ptq
mi

Bh
pt´1q

mi

Bh
pt´1q

mi

Bwik

¸

“
B`h

ptq
mi

Bwik
`

Bh
ptq
mi

Bh
pt´1q

mi

Bh
pt´1q

mi

Bwik
,

where B
`

Bwik
denotes that we are taking the explicit derivative with respect to

wik once possible and a
ptq
mi “ uj0 `

řp
j“1 uijx

ptq
mj `

řp1

k“1 wikh
pt´1q

mk . As we can

see, Bh
ptq

mi

Bwik
depends on itself but from an earlier phase. Continuing with the

evaluation of Bh
ptq

mi

Bwik
yields

Bh
ptq

mi

Bwik
“

B
`h

ptq

mi

Bwik
`

Bh
ptq

mi

Bh
pt´1q

mi

Bh
pt´1q

mi

Bwik

“
B

`h
ptq

mi

Bwik
`

Bh
ptq

mi

Bh
pt´1q

mi

˜

B
`h

pt´1q

mi

Bwik
`

Bh
pt´1q

mi

Bh
pt´2q

mi

Bh
pt´2q

mi

Bwik

¸

“
B

`h
ptq

mi

Bwik
`

Bh
ptq

mi

Bh
pt´1q

mi

˜

B
`h

pt´1q

mi

Bwik
`

Bh
pt´1q

mi

Bh
pt´2q

mi

˜

B
`h

pt´2q

mi

Bwik
`

Bh
pt´2q

mi

Bh
pt´3q

mi

´

. . .
¯

¸¸

“
B

`h
ptq

mi

Bwik
`

Bh
ptq

mi

Bh
pt´1q

mi

B
`h

pt´1q

mi

Bwik
`

Bh
ptq

mi

Bh
pt´1q

mi

Bh
pt´1q

mi

Bh
pt´2q

mi

B
`h

pt´2q

mi

Bwik
`

Bh
ptq

mi

Bh
pt´1q

mi

Bh
pt´1q

mi

Bh
pt´2q

mi

Bh
pt´2q

mi

Bh
pt´3q

mi

´

. . .
¯

“

t
ÿ

α“1

˜

t
ź

β“α`1

Bh
pβq

mi

Bh
pβ´1q

mi

¸

B
`h

pαq

mi

Bwik
.

Now, by inserting this into (3.37), we have the final derivative

32 Chapter 3. Statistical Learning

BL
ptq
m

Bwik
“

BL
ptq
m

Bŷ
ptq
m

Bŷ
ptq
m

Bh
ptq
mi

t
ÿ

α“1

˜

t
ź

β“α`1

Bh
pβq

mi

Bh
pβ´1q

mi

¸

B`h
pαq

mi

Bwik
. (3.38)

As we can see, we are multiplying a long chain of derivatives as t gets large which
in general will lead to either vanishing or sometimes even exploding gradients.
One way to overcome this is to use long short-term memory recurrent neural
networks.

Long short-term memory (LSTM)[6] networks is a type of gated recurrent neu-
ral network which are based on the idea of creating paths through time that
have gradients with elements that neither vanish or explode [5]. In a LSTM
network, we replace the standard hidden layers from a recurrent neural network
with LSTM layers that contain internal time dependent self loops in addition
to the regular recurrence. LSTM networks has the same inputs and outputs
as the hidden units in regular recurrent neural networks, but with the addition
of an internal cell state, an input gate, a forget gate and an output gate that
control the information flow in the layer and therefore even in the network. The
architecture of a node inside a LSTM layer is illustrated in Figure 3.9.

The gates in a LSTM node are all equipped with a sigmoid activation function
(σs) so that they let information flow if the gates are open (σs « 1) or they
hinder the flow if the gates are closed (σs « 0). At time step t and for the k:th
LSTM node, these gates are defined as

i
ptq
k “ σs

˜

bik `
ÿ

j

U i
kjx

ptq
j `

ÿ

j

W i
kjh

pt´1q

j

¸

(input gate),

f
ptq
k “ σs

˜

bfk `
ÿ

j

Uf
kjx

ptq
j `

ÿ

j

W f
kjh

pt´1q

j

¸

(forget gate),

o
ptq
k “ σs

˜

bok `
ÿ

j

Uo
kjx

ptq
j `

ÿ

j

W o
kjh

pt´1q

j

¸

(output gate),

where b‚

kj , U
‚

kj and W ‚

kj are the biases, input weights and recurrence weights for
each gate. The inner cell is defined as

c
ptq
k “ f

ptq
k c

pt´1q

k ` i
ptq
k σi

˜

bk `
ÿ

j

Ukjx
ptq
j `

ÿ

j

Wkjh
pt´1q

j

¸

(cell state),

3.4. Neural Networks 33

Figure 3.9: Illustration of inside the k:th LSTM node inside a LSTM layer at
time t. Arrows and gates indicates how information is allowed to flow in the
node. The black square indicates a self loop with a time delay of one time step.

where bkj , Ukj and Wkj are the biases, input weights and recurrence weights for
the input data and σi can be any squashing activation function [5]. The cell
state at time t is defined as a summation of the previous node state multiplied
with the forget gate and the transformed input multiplied with the input gate.
Previous information stays in the node only if the forget gate allows it, and the
cell gets updated with new information only if the input gate allows it. The
k:th output h

ptq
k from the LSTM node at time t can now be calculated as

h
ptq
k “ o

ptq
k σopc

ptq
k q (output),

where σo can in practice be any transforming function, even the identity [6],
but tanh is most commonly used [5]. The output works in a similar way as
the previous states. Information is read from the node only if the output gate
allows it.

Chapter 4

Results

We shall now present results from usage of our classification methods. The
task has been to perform binary classification for different data sets using the
methods discussed. We start of by using simulated data and then we proceed
to look at two examples of real world data. The simulated data and the first
set of real world data follows a classic repeated measurement design, while the
weather samples from the second set of real world data are snippets from a long
sequence of data. This means that the first and second example is designed to
fit the usage of growth curves, while the third example deviates from this.

All train and test data has been normalized using the train data. This means
that the train data has mean zero and standard deviation one and the same
holds approximately for the test data. All trainable parameters in the neural
networks has been adjusted with either the RMSprop optimizer or the Adam
optimizer, both found in the Keras package for R. Hyperparameters has been
adjusted by hand to find satisfiable results.

The results will be listed with abbreviations for all the methods. LDA4GCMq´1

stands for the Linear Discriminant Analysis classifier for Growth Curves esti-
mated using a polynomial of degree q ´ 1. FNNk, RNNk and LSTMk stands
for a one layer feedforward, recurrent or LSTM neural network with k hidden
nodes, while an underscore followed by a number l means that we have another
hidden layer with l nodes. All of the results for feedforward and recurrent neural
networks has been acquired using ReLU activation functions and all of the neu-
ral networks used a logistic sigmoid function for output. Each neural network
was trained 3-5 times with new weight initialization and the result with highest
accuracy was saved.

Andersson, 2022. 35

36 Chapter 4. Results

4.1 Simulated Data

The first task is to perform binary classification of simulated data. Each sample
has been generated independently as

yi „ Nppµi,Σq, (4.1)

where µi i “ 1, 2 are observations of the corresponding true deterministic class
fipxq at p “ 12 points evenly spaced and Σ is a covariance matrix given by

Σ “ σ2

¨

˚

˚

˚

˝

1 0.5 . . . 0.5p´1

0.5 1 . . . 0.5p´2

...
...

. . .
...

0.5p´1 0.5p´2 . . . 1

˛

‹

‹

‹

‚

,

where σ2 is some known constant. Each model was fit using a total of ntrain “ 24
samples evenly split between the two classes, and the evaluation was done using
ntest “ 500 samples evenly split. The size of ntrain was chosen small to mimic
a problematic real world situation where access to data is limited, while a large
ntest was chosen to get a true evaluation of the fitted models. All of the meth-
ods has been tested on three data models (Case 1-3) where new data has been
generated five times. This was done to ensure a fair comparison between the
methods used.

In the first case we look at polynomial data where the true models are different
but there is a high variance so that the observations by themselves are hard to
classify correctly. In the second case we keep the variance relatively high but
the true polynomial models are more similar. In the third and final case we
deviate from using a polynomial model but we lower the variance.

4.1.1 Case 1

The true models are given by

f1pxq “ 0.075x3 ´ 1.44x2 ` 7.8x ´ 5.43,

f2pxq “ 0.1x2 ´ 0.2x ` 1.1

over the interval r1, 12s and they are displayed in Figure 4.1 together with a
sample from each model, generated as (4.1) with σ2 “ 15. The growth curves
was estimated using a polynomial of degree q´1 “ 3 and results from prediction
are given in Table 4.1 and Figure 4.2.

4.1. Simulated Data 37

Table 4.1: Results for simulated data - case 1. Each row represent the used
algorithm together with the number of parameters in the model and the accuracy
for each of the five simulations. We can observe that the recurrent neural
network scores best in all of the five cases.

Method Number of
trainable parameters 1 2 3 4 5

LDA4GCM3 b: 8 Σ: 78 0,82 0,75 0,786 0,804 0,78
FNN12 169 0,826 0,808 0,816 0,75 0,766

FNN12_6 241 0,792 0,852 0,754 0,824 0,714
RNN12 181 0,86 0,864 0,854 0,866 0,82
LSTM1 14 0,5 0,614 0,746 0,5 0,676
LSTM3 64 0,724 0,682 0,718 0,63 0,704
LSTM12 685 0,806 0,798 0,79 0,854 0,738

Figure 4.1: Simulated data - Case 1. The plot represent the true models of case
1 together with a simulated sample for each group.

38 Chapter 4. Results

Figure 4.2: Range of prediction accuracy for case 1. Each bar represent the
range of accuracy for each of the tested algorithm in the five simulations. For
instance, we can observe that the RNN12 classifier seem to perform really stable.

4.1.2 Case 2
The true models are given by

f1pxq “ 2p1.3x ´ 1q4 ´ 0.08x6 ` 4.04,

f2pxq “ 2.4p1.3x ´ 1q4 ´ 0.14x6 ` 4.06

over the interval r0.6, 1.3s with σ2 “ 0.002 and they are displayed in Figure 4.3.
The growth curves was estimated using a polynomial of degree q ´ 1 “ 6 and
results from prediction are given in Table 4.2 and Figure 4.4.

4.1.3 Case 3
The true models are given by

f1pxq “ 0.1x4 ´ 0.4x3 ` 0.7x2 ´ 0.5x ` 2.5 cosp10xq,

f2pxq “ 0.1x4 ` 0.1x3 ` 0.7x2 ´ 0.5x ` 2.5 cosp9xq

over the interval r0, 2.7s with σ2 “ 1. and they are displayed in Figure 4.5. The
growth curves was estimated using a polynomial of degree q ´ 1 “ 8 and results
from prediction are given in Table 4.3 and Figure 4.6.

4.1. Simulated Data 39

Table 4.2: Results for simulated data - case 2. Each row represent the used
algorithm together with the number of parameters in the model and the accuracy
for each of the five simulations. We can observe that the most accurate classifier
differs between the five simulations.

Run Number of
trainable parameters 1 2 3 4 5

LDA4GCM6 b: 14 Σ: 78 0,656 0,772 0,644 0,774 0,786
FNN12 169 0,66 0,628 0,766 0,534 0,806

FNN12_6 241 0,566 0,63 0,55 0,622 0,696
RNN12 181 0,808 0,764 0,782 0,75 0,75
LSTM1 14 0,76 0,782 0,592 0,504 0,714
LSTM3 64 0,846 0,758 0,686 0,75 0,696
LSTM12 685 0,758 0,788 0,758 0,752 0,784

Figure 4.3: Simulated data - Case 2. The plot represent the true models of case
2 together with a simulated sample for each group.

40 Chapter 4. Results

Figure 4.4: Range of prediction accuracy for case 2. Each bar represent the
range of accuracy for each of the tested algorithm in the five simulations. We
observe that the RNN12 and the FNN12 classifiers performs with approximately
same accuracy when they perform as best, but that the accuracy of FNN12 seem
to be much more sensitive to the simulated data.

Table 4.3: Results for simulated data - case 3. Each row represent the used
algorithm together with the number of parameters in the model and the accuracy
for each of the five simulations. The LSTM classifiers in the bottom three rows
performed poorly compared to the other classifiers which got 1 or almost 1
accuracy in each simulation.

Run Number of
trainable parameters 1 2 3 4 5

LDA4GCM8 b: 18 Σ: 78 1 0,996 1 1 0,991
FNN12 169 1 0,998 0,994 0,998 0,998

FNN12_6 241 1 0,992 0,996 0,994 0,992
RNN12 181 1 1 1 1 1
LSTM1 14 0,584 0,618 0,536 0,624 0,71
LSTM3 64 0,674 0,672 0,59 0,572 0,574
LSTM12 685 0,704 0,658 0,608 0,678 0,624

4.1. Simulated Data 41

Figure 4.5: Simulated data - Case 3. The plot represent the true models of case
3 together with a simulated sample for each group.

Figure 4.6: Range of prediction accuracy for case 3. Each bar represent the range
of accuracy for each of the tested algorithm in the five simulations. All classifiers
but the LSTM models seem to separate the data without complications.

42 Chapter 4. Results

(a) Case 1. (b) Case 3.

Figure 4.7: Growth curves fitted to case 1 and case 3. Although the growth
curve classifier almost got 100% accuracy each run for case 3, the fitted curves
hardly resembles the true curves.

4.1.4 Discussion - Simulated Data
The results for the simulated data is relatively noisy in the sense that each sim-
ulation of data yields different accuracy for most of the classification methods,
this can be observed in Figure 4.2, Figure 4.4 and to some extent in Figure 4.6.
This noise can be explained by the relatively small sample size that was used
for fitting the models, but also by the high variance used for simulating data in
the first two cases and the low variance in case 3 where some of the methods
performed almost equally for different simulations. The LDA4GCM classifier in
case 3 performs somewhat odd since the prediction accuracy is almost perfect
even though we deviate from using a polynomial base model. Note that we
won’t be able to interpret the corresponding estimated growth curves for the
non-polynomial model, which is illustrated in Figure 4.7, so validation of using
LDA4GCM in case 3 is questionable.

4.2 Radiation Data
Next we are going to look at the data from Danford et al. [1] which we discussed
in Example 3.1 and the task of interest is to classify which group the patients
belongs to. We split the Dandford data (n “ 45) into four groups, the control
group (nc “ 6) the 25-50r group (n1 “ 14), the 75-100r group (n2 “ 15) and
the 125-150r group (n3 “ 10). We then fit our classifiers with the control group
data and the data from one of the groups exposed for radiation, using all but

4.2. Radiation Data 43

Figure 4.8: Data from the control group and the 25-50r group, together with
estimated growth curves in thick lines marked with "C" and "R" respectively.

one sample which will be used for testing, also known as leave-one-out cross-
validation (LOOCV). Full tables of classifications will be presented together
with accuracy values.

4.2.1 Case 4 - Control Group vs 25-50r

Classifiers are fit using the data from the control group and the 25-50r group.
Sample size is ntot “ 20, data distribution is p0.3, 0.7q for control and 25-50r
respectively. Data is shown in Figure 4.8 together with fitted growth curves and
results are presented in Table 4.4.

4.2.2 Case 5 - Control Group vs 75-100r

Classifiers are fit using the data from the control group and the 75-100r group.
Sample size is ntot “ 21, data distribution is p0, 286, 0, 714q for control and
75-100r respectively. Data is shown in Figure 4.9 together with fitted growth
curves and results are presented in Table 4.5.

44 Chapter 4. Results

Table 4.4: Results from classification of case 4 - control group vs 25-50r. Each
row represents one of the twenty runs, the true label of the test class and the
classification for each of the used algorithms.

Run Correct Class LDA4GCM NN11 NN22_11 RNN11 LSTM11
1 0 1 1 1 1 1
2 0 0 1 1 1 1
3 0 1 1 1 0 1
4 0 0 1 1 1 1
5 0 0 1 1 0 1
6 0 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 1 1
10 1 0 1 1 1 1
11 1 1 1 1 0 1
12 1 1 1 1 1 1
13 1 1 1 1 1 1
14 1 0 1 1 1 1
15 1 0 1 1 1 1
16 1 1 1 1 1 1
17 1 0 0 0 0 0
18 1 1 1 1 0 1
19 1 0 1 1 1 1
20 1 0 0 1 0 0
Accuracy 0.55 0.6 0.65 0.6 0.6

4.2. Radiation Data 45

Table 4.5: Results from classification of case 5 - control group vs 75-100r. Each
row represents one of the twenty-one runs, the true label of the test class and
the classification for each of the used algorithms.

Run Correct Class LDA4GCM NN11 NN22_11 RNN11 LSTM11
1 0 1 1 1 1 1
2 0 0 1 1 1 1
3 0 0 1 1 1 1
4 0 0 1 1 1 1
5 0 0 1 1 1 1
6 0 1 1 1 1 1
7 1 0 1 1 1 1
8 1 1 1 1 1 1
9 1 0 1 1 1 1
10 1 0 1 0 1 1
11 1 0 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 1 1 1
14 1 1 1 1 1 1
15 1 1 1 1 1 1
16 1 1 1 1 1 1
17 1 1 0 0 0 1
18 1 1 1 1 1 1
19 1 0 1 1 1 1
20 1 1 1 1 1 1
21 1 1 1 1 1 1
Accuracy 0.667 0.667 0.619 0.667 0.714

46 Chapter 4. Results

Figure 4.9: Data from the control group and the 75-100r group, together with
estimated growth curves in thick lines marked with "C" and "R" respectively.

4.2.3 Case 6 - Control Group vs 125-150r

Classifiers are fit using the data from the control group and 125-150r group.
Sample size is ntot “ 16, data distribution is p0.375, 0.625q for control and 125-
150r respectively. Data is shown in Figure 4.10 together with fitted growth
curves and results is presented in Table 4.6

4.2.4 Discussion - Radiation Data

Looking at the result in Table 4.4, Table 4.5 and Table 4.6 we can observe
that most of the classifiers performs really poorly. The best results was from
the LSTM11 classifier with an accuracy of 0.714 for the 75-100r data while the
worst result was as low as 0.25 using an RNN11 classifier for the 125-150r data.
It should be noted that the LSTM11 classifier with 0.714 accuracy simply clas-
sified all test data as same class, so it is questionable how good the classifier
actually is for the data used.

Looking at the plots Figure 4.8, Figure 4.9 and Figure 4.10, one can see that
the fitted growth curves are extremely close to each other and the data itself is
very spread and hard to distinguish between the separate groups. There are no

4.2. Radiation Data 47

Figure 4.10: Data from the control group and the 125-150r, together with esti-
mated growth curves in thick lines marked with "C" and "R" respectively.

Table 4.6: Results from classification of case 6 - control group vs 125-150r. Each
row represents one of the sixteen runs, the true label of the test class and the
classification for each of the used algorithms.

Run Correct Class LDA4GCM NN11 NN22_11 RNN11 LSTM11
1 0 0 1 1 1 1
2 0 1 1 1 1 1
3 0 0 1 1 1 1
4 0 1 1 1 1 1
5 0 0 1 1 1 1
6 0 0 1 1 1 1
7 1 1 1 1 0 1
8 1 1 1 1 1 1
9 1 0 1 0 0 1
10 1 0 1 1 1 1
11 1 0 1 1 0 1
12 1 1 0 0 0 1
13 1 0 0 1 0 0
14 1 0 1 0 0 1
15 1 0 1 1 1 1
16 1 1 1 1 1 1
Accuracy 0.5 0.5 0.4375 0.25 0.5625

48 Chapter 4. Results

visible patterns in the data and the groups are not separated from each other,
one may thus not expect the classifiers to perform well.

4.3 Weather Data

The last data we are going to look at is weather data provided by SMHI1 con-
taining temperature observations from different weather stations in Sweden over
a two year time period. By studying the temperature change over time we can
observe that the samples are highly correlated and that there exist a short-
term periodicity, but even that the data repeats itself on a more far-reaching
timescale. This is illustrated in Figure 4.11(a). It is also important to note that
the weather data deviates from a repeated measurement design by only consist-
ing of a long snippet of data taken from a sequence of observations. With this
in mind, the LDA4GCM classifier won’t be used for classification.

Firstly we are going to look at data from a single weather station where we try
predict the temperature change given sequential time observations. Then we
proceed to use data from two different weather stations where we try to predict
where the sample originates from.

4.3.1 Case 7 - One station

The classification task of interest is to determine if the temperature observed
in Östergötland will increase or decrease the next hour, given temperature ob-
servations of the preceding hours. More precisely, given t hours of sequential
temperature observations, we will use our discussed methods to predict if the
temperature at time t`1 either has increased or decreased compared to at time t.

The sample sizes are ntrain “ ntest “ 8760 and the distribution between the
class labels are approximately 47% for lower and 53% for higher. The data and
results are illustrated in Table 4.7 and Figure 4.11(b), respectively.

4.3.2 Case 8 - Two stations

The next task is to train our models with sequential data from two different
weather stations and then test if our models can classify to which station new
samples originates from. The stations of interest is placed in Malmö and at
Kiruna airport with an approximate 1400 kilometers distance.

1Sveriges meteorologiska och hydrologiska institut.

4.3. Weather Data 49

Table 4.7: Results for weather data - case 7. ‹, ‹‹ and ‹‹‹ corresponds to
t “ 10, 24 and t “ 100 respectively. Each row represents the classifier used,
the number of parameters in the model and the accuracy for each of the three
values of t.

Method Number of
trainable parameters t = 10 t = 24 t = 100

FNN16 193‹, 417‹‹, 1633‹‹‹ 0.718 0.731 0.744
FNN32 385‹, 833‹‹, 3265‹‹‹ 0.72 0.735 0.743
FNN64 769‹, 1665‹‹, 6529‹‹‹ 0.722 0.741 0.748

FNN64_32_16 3329‹, 4225‹‹, 9089‹‹‹ 0.73 0.735 0.733
RNN16 305 0.72 0.735 0.745
RNN32 1121 0.723 0.74 0.737
RNN64 4289 0.716 0.73 0.735
LSTM16 1169 0.711 0.717 0.738
LSTM32 4385 0.712 0.723 0.739
LSTM64 16961 0.717 0.723 0.73

(a) Short-term periodicity. (b) Long-term periodicity.

Figure 4.11: Temperature data observed over different time spans. By looking
at a shorter time span (100 hours) we can observe the daily periodicity of the
temperature, while the longer time span of approximately 12 years captures the
yearly periodicity.

50 Chapter 4. Results

Table 4.8: Results for weather data - case 8. ‹, ‹‹ and ‹‹‹ corresponds to
t “ 10, 24 and t “ 100 respectively. Each row represents the classifier used,
the number of parameters in the model and the accuracy for each of the three
values of t.

Method Number of
trainable parameters t = 10 t = 24 t = 100

FNN16 193‹, 417‹‹, 1633‹‹‹ 0,76 0,773 0,829
FNN32 385‹, 833‹‹, 3265‹‹‹ 0,757 0,79 0,848
FNN64 769‹, 1665‹‹, 6529‹‹‹ 0,758 0,809 0,861

FNN64_32_16 3329‹, 4225‹‹, 9089‹‹‹ 0.78 0,825 0,924
RNN16 305 0,76 0,789 0,775
RNN32 1121 0,769 0,814 0,761
RNN64 4289 0,766 0,815 0,768
LSTM16 1169 0,762 0,839 0,844
LSTM32 4385 0,765 0,86 0,95
LSTM64 16961 0,768 0,89 0,997

The sample sizes are ntrain “ 17411 and ntest “ 17412 and the distribution
between the class labels are approximately 50%. The data and results are
illustrated in Table 4.8 and Figure 4.12, respectively.

4.3.3 Discussion - Weather Data
All neural network models performed decently for the weather data. In case 7,
all of the neural networks got similar accuracy while in case 8, we can observe
significantly better results for the large neural network models as the sequence
length increases, especially with the LSTM models. Note again that these sam-
ples are over different time periods, and thus, we deviate from the repeated
measurement design, so the usage of growth curve modeling for case 7 and
case 8 is not well suited. On the contrary, it shows the power of classification
methods based on neural networks, although these methods encounter other
problems such as long training times and troublesome interpretation. A per-
haps more appropriate task using LDA4GCM would be if the training samples
were over same time periods each day and then test samples would be observa-
tions over the few remaining hours from the corresponding days. However, due
to the yearly periodicity of the temperature, it would probably still be hard to
fit a proper growth curve.

4.3. Weather Data 51

Figure 4.12: Temperature data observed for weather stations placed in Kiruna
and Malmö. Each point corresponds to the temperature for one of the two
stations at a given time t, and we can observe that the data consists of two long
sequences rather than multiple sequential samples.

Chapter 5

Ending Discussion

5.1 General Discussion

We have introduced, discussed different types of neural networks and applied
linear discriminant analysis to the growth curve model for binary classification
problems. The goal was to compare these methods and by looking at the re-
sults, we can conclude that LDA4GCM indeed do get comparable accuracy with
different neural networks for appropriate problems at hand, although it never
outperformed all of the other classifiers.

The results in case 4-6 demonstrates the importance of looking at the data,
as one can simply conclude from Figure 4.8, Figure 4.9 and Figure 4.10 that
separation of the different groups will be extremely hard. One should simply
not conclude that the classifiers themselves are bad, which is easily done if one
only look at result tables.

Furthermore, it’s interesting to consider the interpretability of the methods.
Although LDA4GCM got in average approximately 7.6% lower accuracy than
RNN12 in case 1, LDA4GCM only used 8 parameters to estimate the corre-
sponding curves which indeed can be used for satisfying interpretation and il-
lustration, see Figure 4.7(a). Comparing this to the RNN12 classifier with 181
parameters, which of none can be used for interpretation.

Andersson, 2022. 53

54 Chapter 5. Ending Discussion

5.2 Further Work
As mentioned earlier, the growth curve model which we have introduced is lim-
ited by the fact that we are working with a relatively low dimensional polynomial
of a prior set degree, see for instance Figure 4.7(b). Although the accuracy of the
classifier almost topped 100% each run, the interpretability is limited. When the
data follows a periodic pattern, such as a day-and-night cycle, one can modify
the within-group design matrix (3.13) for growth curves to take the form

A “

¨

˚

˚

˚

˚

˚

˝

1 sinpc11ωq cospc22ωq sinpc13ωq . . . cospc1qωq

1 sinpc21ωq cospc22ωq sinpc23ωq . . . cospc2qωq

1 sinpc31ωq cospc32ωq sinpc33ωq . . . cospc3qωq

...
...

...
...

. . .
1 sinpcp1ωq cospcp2ωq sinpcp3ωq . . . cospcpqωq

˛

‹

‹

‹

‹

‹

‚

,

where ω is a multiple of π and cij are proper chosen constants for all pi, jq “

p1, 1q, . . . , pp, qq, as demonstrated in [26]. Moreover, the growth curve model
presented in Section 3.2 is limited by using one dimensional observations. The
growth curve model given by (3.11) can be extended to higher dimensions by
considering a tensor structure for the input data by including more than one
within-group design matrix. [11] discusses and demonstrates how one can ex-
tend (3.11) and estimate the corresponding parameters using two within-group
design matrices, where the data has not only been measured repeatedly over
time, but also at different levels.

Bibliography

[1] M. B. Danford, H. M. Hughes, and R. C. McNee. On the analysis of
repeated-measurements experiments. Biometrics, 16(4):547–565, 1960.

[2] A. J. Dobson and A. G. Barnett. An Introduction to Generalized Linear
Models (4th ed.). Chapman and Hall/CRC, Boca Raton, London, New
York, 2018.

[3] R. A. Fisher. The statistical utilization of multiple measurements. Annals
of Eugenics, 8(4):376–386, 1938.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[6] A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks.
Springer Berlin, Heidelberg, 2012.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York,
2017.

[8] G. Hinton. Neural networks for machine learning. Coursera,
video lectures., 2017. https://www.cs.toronto.edu/~hinton/coursera_
lectures.html.

[9] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, Cambridge, 1991.

Andersson, 2022. 55

http://www.deeplearningbook.org
https://www.cs.toronto.edu/~hinton/coursera_lectures.html
https://www.cs.toronto.edu/~hinton/coursera_lectures.html

56 Bibliography

[10] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989.

[11] M. Singull J. Nzabanita, D. von Rosen. Maximum likelihood estimation
in the tensor normal model with a structured mean. Linköping University
Electronic Press, page 16, 2015.

[12] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to
Statistical Learning. Springer New York, NY, 2021.

[13] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis
(6th ed.). Pearson Education Limited, Harlow, 2013.

[14] C. G. Khatri. A note on a manova model applied to problems in growth
curve. Annals of the Institute of Statistical Mathematics, 18:75–86, 1966.

[15] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization.
2014.

[16] T. Kollo and D. von Rosen. Advanced Multivariate Statistics with Matrices.
Springer Netherlands, Dordrecht, 2005.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. Advances in Neural Information Pro-
cessing Systems, 25, 2012.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(86):2278–
2324, 1998.

[19] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert Müller.
Efficient backprop. Springer Berlin Heidelberg, 1524:9–48, 1998.

[20] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of
neural networks: A view from the width. CoRR, abs/1709.02540, 2017.

[21] R. J. Muirhead. Aspects of Multivariate Statisical Theory. John Wiley Sons
Inc, Hoboken, 1982.

[22] B. T. Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics,
4(5):1–17, 1964.

[23] R. F. Potthoff and S. N. Roy. A generalized multivariate analysis of variance
model useful especially for growth curve problems. Biometrika, 51:313–326,
1964.

Bibliography 57

[24] M. S. Srivastava and C. G. Khatri. An Introduction to Multivariate Statis-
tics. North-Holland, New York, 1979.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958.

[26] D. von Rosen. Bilinear Regression Analysis. Springer International Pub-
lishing, Cham, 2018.

Linköping University Electronic Press

Copyright
The publishers will keep this document online on the Internet – or its possible
replacement – from the date of publication barring exceptional circumstances.
The online availability of the document implies permanent permission for any-
one to read, to download, or to print out single copies for his/her own use and to
use it unchanged for non-commercial research and educational purpose. Subse-
quent transfers of copyright cannot revoke this permission. All other uses of the
document are conditional upon the consent of the copyright owner. The pub-
lisher has taken technical and administrative measures to assure authenticity,
security and accessibility.
According to intellectual property law the author has the right to be mentioned
when his/her work is accessed as described above and to be protected against
infringement.
For additional information about the Linköping University Electronic Press and
its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/.

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
från publiceringsdatum under förutsättning att inga extraordinära omständig-
heter uppstår.
Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ic-
kekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.
Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.
För ytterligare information om Linköping University Electronic Press se förla-
gets hemsida http://www.ep.liu.se/.

© 2022, Kasper Andersson

http://www.ep.liu.se/
http://www.ep.liu.se/

	Introduction
	Outline of the thesis
	Purpose of this Thesis

	Theory
	Mathematical Theory
	Statistical Theory

	Statistical Learning
	The General Linear Model
	A Univariate Linear Model
	The General Linear Model
	The General Hypothesis

	The Growth Curve Model
	Linear Discriminant Analysis
	Deriving a Classification Rule
	Linear Discriminant Analysis for Growth Curves

	Neural Networks
	Introduction - Feedforward Neural Networks
	Optimization
	Some Issues with Neural Networks and how to Tackle Them
	Recurrent Neural Networks and LSTM

	Results
	Simulated Data
	Case 1
	Case 2
	Case 3
	Discussion - Simulated Data

	Radiation Data
	Case 4 - Control Group vs 25-50r
	Case 5 - Control Group vs 75-100r
	Case 6 - Control Group vs 125-150r
	Discussion - Radiation Data

	Weather Data
	Case 7 - One station
	Case 8 - Two stations
	Discussion - Weather Data

	Ending Discussion
	General Discussion
	Further Work

