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Linköping studies in science and technology. Dissertation, No. 1159

Printed by LIU-TRYCK, Linköping, Sweden, 2008.
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Abstract

Bioinformatics involves storing, analyzing and making predictions on mas-
sive amounts of protein and nucleotide sequence data. The thesis consists
of six papers and is focused on proteins. It describes the utilization of bioin-
formatics techniques to characterize protein families and to detect patterns
in gene expression and in polypeptide occurrences. Two protein families
were bioinformatically characterized - the membrane associated proteins
in eicosanoid and glutathione metabolism (MAPEG) and the Tripartite
motif (TRIM) protein families.

In the study of the MAPEG super-family, application of different bioin-
formatic methods made it possible to characterize many new members lead-
ing to a doubling of the family size. Furthermore, the MAPEG members
were subdivided into families. Remarkably, in six families with previously
predominantly mammalian members, fish representatives were also now
detected, which dated the origin of these families back to the Cambrium
”species explosion”, thus earlier than previously anticipated. Sequence
comparisons made it possible to define diagnostic sequence patterns that
can be used in genome annotations. Upon publication of several MAPEG
structures, these patterns were confirmed to be part of the active sites.

In the TRIM study, the bioinformatic analyses made it possible to sub-
divide the proteins into three subtypes and to characterize a large number
of members. In addition, the analyses showed crucial structural depen-
dencies between the RING and the B-box domains of the TRIM member
Ro52. The linker region between the two domains, denoted RBL, is known
to be disease associated. Now, an amphipathic helix was found to be a
characteristic feature of the RBL region, which also was used to divide the
family into three subtypes.

The ontology annotation treebrowser (OAT) tool was developed to de-
tect functional similarities or common concepts in long lists of proteins
or genes, typically generated from proteomics or microarray experiments.
OAT was the first annotation browser to include both Gene Ontology (GO)
and Medical Subject Headings (MeSH) into the same framework. The com-
plementarity of these two ontologies was demonstrated. OAT was used in
the TRIM study to detect differences in functional annotations between the
subtypes.

In the oligopeptide study, we investigated pentapeptide patterns that
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were over- or under-represented in the current de facto standard database
of protein knowledge and a set of completed genomes, compared to what
could be expected from amino acid compositions. We found three pre-
dominant categories of patterns: (i) patterns originating from frequently
occurring families, e.g. respiratory chain-associated proteins and translation
machinery proteins; (ii) proteins with structurally and/or functionally fa-
vored patterns; (iii) multicopy species-specific retrotransposons, only found
in the genome set. Such patterns may influence amino acid residue based
prediction algorithms. These findings in the oligopeptide study were uti-
lized for development of a new method that detects translated introns in
unverified protein predictions, which are available in great numbers due to
the many completed and ongoing genome projects.

A new comprehensive database of protein sequences from completed
genomes was developed, denoted genomeLKPG. This database was of cen-
tral importance in the MAPEG, TRIM and oligopeptide studies. The new
sequence database has also been proven useful in several other studies.
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Chapter 1

Introduction

In Chapter 1, I will describe fundamental biological concepts (section 1.1)
that are needed to understand the methods, results and discussions in the
thesis. The aim of the rest of the chapter is to put the field of bioinformatics
into a perspective, but already here you can think of bioinformatics as
the science of storing, processing, analyzing and making predictions on
biological information in general, and molecular biology in particular.

1.1 Fundamental molecular biology concepts

The central dogma of molecular biology [1] describes the flow of biological
information from deoxyribonucleic acid (DNA) via ribonucleic acid (RNA)
to the synthesized protein (Figure 1.1). It is a very simplified view of
the informational processes in molecular biology. Nevertheless, it is an
appropriate level for systemizing sequence analysis. DNA can be viewed
as the blueprint of an organism; it is a sequence of the nucleotide bases
adenine (A), cytosine (C), guanine (G) and thymine (T). Every cell in an
organism has the same DNA sequence. The DNA is divided into a set of
chromosomes, all stored in the nucleus of the cell. Each chromosome has a
set of genes which encodes the proteins. The genes are often divided into
coding regions (exons) and non-coding regions (introns).

To make a protein the cell first copies the gene, by transcribing the
gene region into an RNA sequence. Transcribed RNA is processed in order
to remove the introns. The mature transcript is denoted mRNA. The
protein is synthesized in the ribosome by generating a new type of sequence
consisting of 20 different types of amino acid residues. The residues in the
protein-coding region of an mRNA are encoded by a sequence of nucleotide
triplets, denoted codons. The four letter code of nucleotides can form 64
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Figure 1.1. The central dogma of molecular biology. Describes the flow of
information from DNA (the blue print) via mRNA (copies of instructions) to the
protein (the functional entity). The information only flows in one direction.
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different three-letter codons. The translation code is degenerated since
only 20 codons would be needed to encode all residue types. Consequently
each amino acid residue is represented by one or more codons. After its
synthesis, the protein sequence is folded into a functional entity, having a
specific enzymatic activity or structural property. These descriptions of the
fundamental concepts in molecular biology are an oversimplification of the
processes going on in the cell; there are many exceptions and additions to
what is outlined here. Furthermore, this thesis will mainly focus on higher
eukaryotes, and parts of the description given here can not be applied on
prokaryotic or archaeal domains of life.

1.2 Bioinformatics in general

Bioinformatics and the sister disciplines of computational biology and sys-
tems biology often overlap in their definitions. Some make a distinction
between bioinformatics, which is technique-driven, and computational biol-
ogy, which is hypothesis-driven as exemplified by the National Institute of
Health (NIH) definitions [2]:

Bioinformatics: Research, development, or application of com-
putational tools and approaches for expanding the use of bio-
logical, medical, behavioral or health data, including those to
acquire, store, organize, archive, analyze, or visualize such data.

Computational Biology: The development and application of
data-analytical and theoretical methods, mathematical model-
ing and computational simulation techniques to the study of
biological, behavioral, and social systems.

Personally, I prefer the definition from the online encyclopedia, Wikipedia [3]

Bioinformatics and computational biology involve the use of
techniques including applied mathematics, informatics, statis-
tics, computer science, artificial intelligence, chemistry, and bio-
chemistry to solve biological problems usually on the molecular
level [4].

Bioinformatics is a multidisciplinary field and one of its challenges is to
combine the different disciplines in an effective way. This is a non-trivial
task as biology is a rather inexact science in comparison to mathematics
and computational sciences. Exceptions frequently occur in biology and
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this is a complicating fact when we represent biological entities in terms
of mathematical or computer models. In order to make the models usable
in a computational sense, one often needs to simplify or make assumptions
that not always describe the biological concept correctly. However, there
is no way that we can handle the huge amounts of biological information
without using modern computational techniques.

1.2.1 History of bioinformatics

Bioinformatics tasks have been pursued long before the field got its name.
In the early days of sequencing (1950s–70s), protein and nucleotide sequence
alignments were built by hand. At that time computers cost a fortune.
However, we have seen a major shift in the field of molecular biology the
last two decades. The exponential increase of biological data (Figure 1.2)
can be ascribed new efficient technologies. Along with this followed an
increased demand for efficient processing of the large data amounts. Fortu-
nately, there was also an increased ratio between performance and cost of
computer hardware. Hence, the field of bioinformatics took a central role
in modern Life Science, which is illustrated with the exponential increase
of bioinformatics related research in Figure 1.2.

One important factor that has made bioinformatics popular is the open
source mentality. The majority of molecular databases can be used freely
(at least for non-commercial use). Furthermore, many bioinformatics appli-
cations are also free for academic use. This results in that many researchers
around the globe can access the data over the internet and benefit from
software and algorithmic developments.

1.3 Bioinformatics of different kinds

The field of bioinformatics can be subdivided into several areas, all with
individual scopes and aims. In this section, a few of them will be outlined.

1.3.1 Knowledge management

The explosion of biological data, and sequence data in particular, puts new
demands on storing data and making it usable for researchers in all corners
of the world. The semi-structured text files (often referred to as flat files)
were popular in the pioneering era and combined two tractable features;
they were readable by humans and they could easily be analyzed with text
parsing scripts. However, when the amount of data and the set of different
file formats increases two problems arise; the data fields in a flat file are

4



1.3 Bioinformatics of different kinds

Bioinformatics related publications

1970 1975 1980 1985 1990 1995 2000 2005

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Complete genomes

1970 1975 1980 1985 1990 1995 2000 2005

100

200

300

400

500

Proteins in SwissProt

1970 1975 1980 1985 1990 1995 2000 2005

0.5

1.0

1.5

2.0

2.5

x10

Published bioinformatics software

1970 1975 1980 1985 1990 1995 2000 2005

500

1000

1500

2000

2500

3000

3500

Structures in PDB

1970 1975 1980 1985 1990 1995 2000 2005

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Nucleotide sequences

1970 1975 1980 1985 1990 1995 2000 2005

1

2

3

4

5

6

7

8

9
5

x10
7

x10
4

x10
4

Figure 1.2. The increase of molecular biological data and bioinformatics
research. The number of EMBL nucleotide sequences [5] and SwissProt proteins
[6, 7] is retrieved via SRS [8–11]. The number of PDB structures [12] is obtained
from PDBs own statistics [13]. The number of complete genomes is obtained
from GOLD [14, 15]. In conjunction with the exponential increase of data, the
bioinformatics related research also grow exponentially. Here illustrated in terms
of scientific publications (PubMed [16] search term:bioinformatics) and software
(PubMed [16] search term:bioinformatics + MeSH [17] term:software).

not indexed, which results in linearly increasing search time and each data
bank needs its own parsing scripts. One solution to this was the Sequence
Retrieval System (SRS) [8, 9], which puts an index on top of the flat files.
SRS also efficiently integrated the various sources of biological data and
presented the user with a common web-based search interface. In recent
years a set of ’Nice Views’ was introduced, which represents the search
hits graphically [10, 11]. In addition, new file formats were supported (e.g.
eXtensible Markup Language (XML)). However, the major improvement
was the integration of analysis tools, in particular the European Molecular
Biology Open Software Suite (EMBOSS) [18, 19], which facilitates basic
analysis done by bioinformaticians on a daily basis (see section 1.3.2).

A second effort to handle the flat file data is Entrez at National Center
for Biotechnology Information (NCBI) [20]. Entrez is a compilation of data
banks but does not have the analysis tools integrated to same extent as SRS.
The major benefit of Entrez is the use of precalculated relations between
nucleotide sequences, proteins, structures and literature entries. However,
the informational content is mostly the same between Entrez and SRS.

Newly developed data resources have taken a more modern approach by
building their data structures on relational databases instead of flat files.
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Such an approach comes with several advantages; i) it is much easier to
keep the data non-redundant, as each type of data is stored in individual
tables, ii) an index can be automatically assigned to any field in any table,
iii) queries can be formulated to answer any question related to any combi-
nation of the data using Structured Query Language (SQL) and iv) backup
and incremental updates become easier. This comes of course with a small
drawback; the raw data format is not easily read by humans, but this can be
addressed by building a user interface on top of the database. Additionally,
some expertise in database creation and management is needed.

Ontologies – Towards a common language

To make data interchangeable between research groups and to facilitate
computational analysis, it is important to define the various concepts used
in the community. However, this is especially problematic in biology, as
the field is not very exact and the number of exceptions is much greater
compared to many other fields such as computer science, mathematics or
physics. A way of coping with this inexactness is to use ontologies or
controlled vocabularies. One example of this is Medical Subject Headings
(MeSH) [17], which is used for associating descriptive keywords and con-
cepts to entries in Medical Literature Analysis and Retrieval System Online
(MEDLINE) [21], a data bank of scientific articles in the domain of bio-
medicine which is freely accessible through PubMed [16, 20]. The hierar-
chical structure of MeSH is subject oriented and suited for finding articles
of particular interest. However, it is not suited for detailed description of
a biological process or protein function. To this end, a more detailed or-
ganization and naming convention of enzymes was introduced by Nomen-
clature Committee of the International Union of Biochemistry and Molec-
ular Biology (NC-IUBMB), denoted Enzyme Nomenclature. This system
arranges the enzymes in a four level hierarchical structure based on the
chemical reactions that they take part in.

At the dawn of genome projects, massive amounts of new genes and pro-
teins emerged and there was no systematic way of describing the biological
processes and functions. There was a long tradition of using non-descriptive
names, such as Sonic the hedgehog gene, named after a video game charac-
ter. Furthermore, parallel discoveries of the same gene in different species
lead to a range of synonyms. Michael Ashburner once summarized the
problem by stating:

Biologists would rather share their toothbrush than share a gene
name [22].
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To overcome this he founded the the Gene Ontology Consortium (GOC)
aiming at standardizing the language that was used to describe functions of
genes and gene products [23]. The Gene Ontology (GO) was initially used
by the model organism projects and made it possible to compare protein
functions and cellular processes between different species. GO has become a
de facto standard for annotation vocabularies and has set the gold standard
for Open Biological Ontologies (OBO) [24], a collection of ontologies within
biomedicine. In addition, GO is implemented in many analysis tools where
its impact on whole genome gene expression (e.g. microarrays) has been
substantial [25].

1.3.2 Sequence analysis

The central dogma of molecular biology [1] describes the flow of biological
information from DNA via mRNA to protein, Figure 1.1. It is a very
simplified view of the informational processes in molecular biology (see
discussion in section 1.3.5), but is serves as basis for systemizing sequence
analysis. The three components are described in more detail in section 1.1.
Anyhow, sequence analysis can be done on all three levels, all having their
pros and cons. The reason why this thesis is focused on the protein level
is that the proteins are the major group of cellular molecules performing
most of the functions of the cell. The DNA and mRNA molecules can be
seen as information carriers that do not possess any enzymatic activity on
their own. If we on the other hand would like to understand how, when
and why the proteins are expressed and how they are regulated, we need to
also analyze the nucleotide sequences. The information we work on is linear
(i.e. sequence of letters) and the principles are the same for the methods
we can apply, regardless of which part of the central dogma we perform the
sequence analysis on. It is only the types of questions we want to answer
and the interpretation of the results that will be different.

One principle idea of sequence analysis is based on evolution, where
important biomolecules are conserved among organisms. If the protein
function is conserved then the protein sequence must be conserved, hence
lessons learnt from one protein can be inferred to another if the sequences
in matter are sufficiently similar. The sequence similarity can also be seen
on the nucleotide level. However, at the nucleotide level large regions of
the sequence are not coding for the protein and hence we would have more
noise in the data. For many years, the non-coding nucleotide regions were
thought of as ”junk DNA”, but in recent years these regions have been
suggested to be important in regulatory processes and have been given
much attention [26–28].
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1.3.3 Structure analysis

Although much can be learnt from sequence analysis, there are numerous
limitations of using the one-dimensional information exclusively. For in-
stance, we can not determine exactly how substrates, inhibitors, ligands,
co-factors etc interact with the protein. Neither is it possible to analyze
stability, fold or effects of mutations using the sequence only. To per-
form such analyses, we need the structure (three-dimensional coordinates
of all atoms in the protein). Obtaining the structure is a relatively hard
task and available techniques such as X-ray diffraction, nuclear magnetic
resonance (NMR) or electron microscopy usually require that the protein is
stable and can be isolated in sufficient concentration. The number of avail-
able structures in comparison to known protein sequences is very low (see
Figure 1.2). Aiming at filling the gap of proteins without structures and de-
veloping cost-effective methods, various ongoing efforts (denoted structural
genomics) try to establish structures in high-throughput manner [29–31].
The success of the structural genomics field promises much for the future
and the importance of the structural biology can never be stressed enough.
Nevertheless, proteins without known structure will dominate the field of
bioinformatics due the cost and time associated with obtaining the struc-
ture in comparison to determining the DNA and amino acid residue se-
quences. Although we will analyze some protein structures later in the
thesis, the emphasis will be on sequence analysis.

1.3.4 Text mining

The ever increasing number of publications in biomedicine provides an im-
pressive resource for extracting knowledge. However, the share amount of
new scientific literature (see Figure 1.2) makes it impossible to keep abreast
of all developments; therefore, automated means to manage the information
overload are required [32]. The challenge of analyzing this kind of infor-
mation is that the natural language used in articles is not appropriate for
processing in silico. To address this task, the field of text mining has been
applied to the discipline of molecular biology. Numerous successful studies
have shown that much can be learnt [33] and text mining have recently
become popular in the field of systems biology [32].

1.3.5 Systems biology

Systems biology can be described as a philosophy, where the gene-centered
analysis has been put aside in favor of a holistic view. The principle idea
is that we can no longer focus on only one or few genes or proteins, we
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1.3 Bioinformatics of different kinds

need a systematic view in order describe and understand the interplay of
genes, proteins, metabolites and states of the cell or tissues. The ultimate
goal may be described as determining the dynamic network of biomolecular
interactions and the field of systems biology can be summarized by the
quote of Uwe Sauer and colleagues:

The reductionist approach has successfully identified most of the
components and many of the interactions but, unfortunately,
offers no convincing concepts or methods to understand how
system properties emerge ... the pluralism of causes and effects
in biological networks is better addressed by observing, through
quantitative measures, multiple components simultaneously and
by rigorous data integration with mathematical models [34].

Usually this involves an iterative process by integrating methods from quan-
titative analysis (levels of mRNA, proteins and metabolites), determining
types and quantity of component interactions and combining heterogenous
data of various kinds (e.g. experimental data, databases, text mining and
computational models). Consequently, the requirements for performing
these types of studies in terms of time, costs, instruments, biological sam-
ples and expertise are huge. Furthermore, if all the above requirements
are fulfilled, these kind of studies usually struggles with the problem that
the number of data points is far greater than the number of observations.
Hence, it is difficult to establish which components give rise to what effect.
Nevertheless, I personally agree that in time this is the path we must fol-
low, and the methods in systems biology developed today will be of major
importance in the future. Still, the field of systems biology depends on
availability of detailed knowledge on the gene and protein level and we can
not give up the gene-centered research for many years. Hence, traditional
research is still of major importance and with mutual contributions form
the field of genetics, molecular biology, bioinformatics and systems biology,
we will obtain a better understanding of the complexity of the living cells.
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Chapter 2

Aim

The aim of the thesis was to:

• Characterize the MAPEG superfamily in order to detect new mem-
bers and determine significant sequence patterns of the subfamilies of
MAPEG.

• Characterize the TRIM protein family with focus on identifying struc-
tural features important to determine the N-terminal structure of the
disease associated protein Ro52.

• Develop a tool to analyze the knowledge associated to a long list
of gene and protein identifiers. The tool should be independent of
the type of data the user submits in order to be helpful in (but not
exclusive to) microarray and proteomics studies.

• Investigate oligopeptide motifs in large protein data sets and to char-
acterize the extremely over- and under-represented patterns in order
to understand their effects on protein structure and function.

• Develop methods that use the knowledge gained in the oligopeptide
investigation with focus on detecting regions of erroneously translated
introns in protein predictions from genome projects.

• Develop a comprehensive sequence database of the proteins from
genome projects, which was important in the MAPEG, TRIM and
oligopeptide studies.
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Chapter 3

Methods

In this chapter, the fundamental principles and methods used in the thesis
will be discussed. The methods will be discussed both on a general level and
in aspects that are important in presentation of the results in Chapter 4.
The data resources used in the thesis are also discussed.

3.1 Pairwise sequence analysis

3.1.1 Aligning two sequences

One of the most fundamental steps in sequence analysis is to compare two
sequences. In order to do this we need two things – an algorithm that
can identify the similarities (aligning the two sequences) and an evalua-
tion procedure to determine which of all possible alignments that is the
optimal one. The evaluation principles are more or less the same for all
algorithms and they are based on a scoring system, usually in the form
of a substitution matrix. The two most used scoring systems for protein
sequences are BLOSUM (BLOcks of amino acid SUbstitution Matrix) [35]
and PAM (Point Accepted Mutation) [36]. With these, each position in
the alignment is scored dependent upon the type of amino acid exchange;
identical (high score), similar (intermediate score) and mismatching (low
score). The best alignment between two sequences is the one with the
highest total score. However, finding the optimal alignment is a non-trivial
task as two sequences of lengths n and m, respectively, have nm possible
alignments. The complexity becomes far greater in reality as we also need
to handle insertions or deletions (indels) in either of the two sequences in
order to model the changes that can occur during the molecular evolution of
a sequence. Without limiting the number of insertions and deletions, which
are represented by gaps in the alignment, the number of combinations of

13



Methods

two sequences is infinite. In order to punish the introduction of gaps in
alignment algorithms, two additional parameters are used; the gap opening
cost (large and negative) and the gap extension cost (small and negative).
These parameters make it possible to explore the full search space but at
the same time discontinue search paths that accumulate a large negative
alignment score.

Global alignment

The global alignment approach tries to optimize the alignment of the shorter
(length n) of two sequences over the length of the longer one (length m).
Global alignment procedures have a high risk of introducing artificial gaps,
as they maximize the number of matching positions without taking into
account if they are adjacent or not. This method performs well for aligning
sequences of similar length, e.g. when aligning sequences of similar fold. In
the pioneering work of Needleman and Wunsch [37], a strategy called dy-
namic programming was introduced, which detects the best path through
a two-dimensional array representing all similarities between all positions
of the two sequences. It has a running time of O(nm) while allowing gaps.
The dynamic programming approach set the golden standard for how to
solve the alignment problem and most algorithms are a modification of the
Needleman and Wunsch algorithm.

Local alignment

Local alignment procedures prioritize to match a local segment and usually
do not report unaligned flanking regions. This is useful when analyzing
whether two sequences have one or more common domains. The Smith and
Waterman algorithm [38] was one of the first local alignment procedures and
is still the most accurate [39]. It is an analog of the Needleman and Wunsch
algorithm but has a designated gap penalty function, which favors local
regions rather than maximizing the overall number of matching positions
on the full length. The Smith and Waterman algorithm also has a running
time of O(nm).

3.1.2 Finding homologs in a sequence database

In traditional sequence analysis, one usually aims at finding all homologs
of a specific sequence. The principle idea of finding homologs is to align
the query sequence to every sequence in the database, and those sequences
with sufficiently high alignment scores are considered homologous. The

14



3.1 Pairwise sequence analysis

A G C E E G G Q L N Y R Q C L C R P M

seq 1

A

Y

C

Y

N

R

C

K

C

R

T

P

se
q

 
2

P                                   1  
T                                      
R                       1         1    
C     1                     1   1      
K                                      
C     1                     1   1      
R                       1         1    
N                   1                  
Y                     1                
C     1                     1   1      
Y                     1                
A 1                                    
  A G C E E G G Q L N Y R Q C L C R P M

AGCEEGGQLNYRQCLCRPM
          | .| ||  
       AYCYNRCKCRTP

 seq 1 AGCEEGGQLNYRQCLCRPM
       |.|       |.:|.||..
 seq 2 AYC-------YNRCKCRTP

YRQCLCR
|.:|.||
YNRCKCR

YRQCLCR
| +| ||
YNRCKCR

Needleman & Wunsch Smith & Waterman FASTP BLASTP

Figure 3.1. A dot plot example. The residues of the two proteins are indicated
on each axis. The positions that are identical between the two sequences are
indicated with ”1” in the left plot and as short diagonals in the right plot. The
result of the different alignment algorithms are given at the bottom. The symbol
”|” indicates identity and the symbols ”.”, ”:” and ”+” indicate similarity.

methods presented so far will scale badly, where m will be the total num-
ber of residues in the sequence database. These exhaustive search methods
are usually not an attractive approach due the growth of sequence data
(Figure 1.2) that currently outperforms the increase of computer perfor-
mance [40] (cf. Moore’s Law [41]). Instead, the field of bioinformatics has
to rely on heuristics (educated guesses). Newer methods use some kind of
initial simplified comparison to detect regions or positions in the two se-
quences that can be used as seeds to find a good alignment. This initial step
restricts the search space, but can by no means guarantee that the best so-
lution is found as most alternative solutions never becomes evaluated. Still
heuristics has proven very useful in bioinformatics.

The initial comparison can be illustrated in a typical dot plot, shown
in Figure 3.1, where the matching regions are illustrated with diagonal
fragments. An indel can be thought of as an offset between two adjacent
diagonal fragments.

FASTA

The first considerable speed improvement in local alignment methods was
the FASTP algorithm [42]. This algorithm developed for protein sequences
was later generalized to include also nucleotide sequences, denoted FASTA
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[43, 44]. In this method only a small fraction of possible paths is evalu-
ated. The seed diagonals are chosen by compiling a lookup table of offsets
and the number of matching positions. The lookup table can be built by
looking at individual positions (ktup=1) or dipeptides (ktup=2), where the
latter is considerably faster but at the cost of decreased sensitivity. Each
diagonal fragment is scored without gaps according to a scoring scheme
and by default only the five best diagonals are selected for further opti-
mization, which bounds the search space drastically. The optimization is a
modification of the Needleman and Wunsch algorithm and only takes the
surrounding residues of the diagonal fragment into account (16 by default
for ktup=2 and 32 for ktup=1) by expanding the seed diagonals and re-
scoring them according to a selected scoring scheme. The best diagonal in
the example of Figure 3.1 is enclosed by a line and has an offset of 7 in
sequence 1 and starts in Y and ends in the last R. The optimized FASTP
alignment is shown at the bottom of Figure 3.1, which illustrates the region
of the best seed diagonal, analogously with the Smith and Waterman align-
ment, but with the additional expanded flanking residues. The benefit of
FASTP is the speed it gains by evaluation only a small set of the diagonals
while the decrease in sensitivity is rather small.

BLAST

Basic Local Alignment and Search Tool (BLAST) [40] is a more popular
alignment method in comparison to FASTA. It uses a similar approach by
selecting only a small fraction of diagonal elements to be evaluated. BLAST
uses a look-up table of words (of typically length 3 for proteins) with a score
greater than the threshold T , according to a selected scoring scheme. If two
hits are on the same diagonal and within a distance A, they are used as
seeds (or high-scoring segment pairs (HSPs)) in an extension procedure
using a modified Smith and Waterman algorithm. Therefore, the principle
difference versus FASTP is that in BLAST the diagonal seeds are made out
of similar consecutive residues (words) which are not necessarily identical
as in FASTP. The T and A parameters can be set so that very few HSPs
need to be extended, and consequently a substantial increase in speed is
gained to a relatively small loss in sensitivity. The BLAST algorithm is a
bit faster and have about the same sensitivity as FASTP with ktup=2 [39].
However, as the size of sequence database increases exponentially, the speed
consideration has been the major factor making the BLAST algorithm the
most popular homology search tool.
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3.2 Multiple sequence analysis

Scores and E-values

So far we have only discussed different alignment procedures and not said
much about the scores. When comparing one sequence aligned to either
of two other sequences, the sequence pair with the highest alignment score
consists of the two most closely related proteins. However, when is a score
sufficiently high to be the result of an evolutionary conserved sequence?
In addition, which of two alignments with similar scores but of different
lengths contains the most conserved motif? In order to determine whether
a score is good or just may be caused by chance, we need some statistical
procedure to assess its reliability. The E-value is a statistical measure that
estimates the chance of having a certain score S or higher just by chance
when taking the size and amino acid residue composition of the query and
database into account [45]. An E-value of 0.001 for S is to be interpreted
as 1 of 1000 alignments would have the score S or higher just by chance.
Consequently, if only 15 hits have a higher score than S, it is very likely that
none of them is a result by chance. Most sequence search tools estimate the
E-value by normalizing the score S by the scoring scheme, gap penalties
and size of query and database; it works quite well as a rule of thumb [39].

3.2 Multiple sequence analysis

A protein family is defined as a group of related proteins, and usually they
also have the same or similar function. In this section, we will expand
the reasoning of pairwise sequence analysis to multiple sequence analysis.
While pairwise analysis can be applied on the problem of finding homologs,
it cannot (by itself) be used to draw conclusions for a family of sequences.
To this end, we need to take all the members of a family into account
in order to characterize sequence signatures caused by similarity in fold,
membrane topology, residues participating in active site or ligand binding
etc. One objective of protein family characterization on the sequence level
is to determine which regions that are important for the protein family
(conserved by some property) and which regions that are not. By aligning
all member sequences in one big alignment, we can detect regions that are
important in all or a majority of the sequences, rather than looking at
similarities between only pairs of sequences.

3.2.1 Multiple sequence alignment

The time complexity of finding the optimal multiple sequence alignment
(MSA) is O(mn), where m is the typical length of a sequence in the protein

17



Methods

family and n is the number of members to align. This can be done by ex-
tending the idea of the two-dimensional dynamic programming procedure
into an n-dimensional, collectively referred to as simultaneous alignment
methods. Following the reasoning of pairwise alignment methods, it comes
natural that these exhaustive alignment methods are not at all practical
and the need for good heuristics is even more important in MSA algo-
rithms. The alternative to simultaneous methods is progressive methods,
which can collectively by described by the following steps; i) determine a
distance matrix by some pairwise similarity measure (e.g. pairwise align-
ment score), ii) determine a guidance tree from the distance matrix and iii)
iteratively align one sequence to the others by starting with the two most
similar sequences (taken from the guidance tree) and ending with the evolu-
tionary most distant sequences. The basic idea of the progressive approach
is that by starting with the most confident data, we minimize the chance
of introducing errors that will propagate through the iterative process.

ClustalW

In 1994 one of the first and most popular MSA methods was published, de-
noted ClustalW [46]. It had its roots in the progressive Feng and Doolittle
method from 1987 [47]. The two major issues of the progressive approach
are the local minimum problem and the choice of parameter settings. The
focus in ClustalW was on the latter where the parameter weights are ad-
justed based on empirical knowledge and biological reasoning, during the
progress of the alignment algorithm. The justification of this procedure is
that as long as identities are dominating the alignment most fixed scoring
schemes will find a sufficiently accurate solution. However, when only few
identities are present the importance of non-identical positions becomes
imminent and another scoring scheme would be more appropriate. Fur-
thermore, gaps will not occur randomly and are more likely to occur in
regions without regular secondary structure elements (i.e. in loops). The
algorithm also gives lower gap opening costs for existing gaps and higher
gap opening costs to the surrounding residues in order keep the existing
gaps and not introduce new ones. The adjusted weights are derived from
the branch length of the guidance tree. The guidance tree in ClustalW
is built by the neighbor-joining method [48], which is good at estimating
individual branch lengths and coping with unequal evolutionary rates in
different lineages. Taken together, this procedure tends to keep regions of
biological importance aligned and introduce gaps only in regions that are
less critical for fold or function.
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3.2 Multiple sequence analysis

Program Year Accuracy Time (s)
Simprot BAliBASE

ClustalW [46] 1994 0.789 0.702 22
Dialign2.2 [51] 1999 0.755 0.667 53
T-Coffee [52] 2000 0.836 0.735 1274
POA [53] 2002 0.752 0.608 9
Mafft FFT-NS-2 [54] 2002 0.839 0.701 1
Muscle [55] 2004 0.830 0.731 4
Mafft L-NS-i [50] 2005 0.865 0.758 16
ProbCons [56] 2005 0.867 0.762 354
Dialign-T [57] 2005 0.775 0.670 41
Kalign [58] 2005 0.803 0.708 3

Table 3.1. Table shows the evaluation of different MSA methods. The Sim-
prot [59] and BAliBASE [60] are two evaluation sets for assessing the quality of
MSA algorithms, where BAliBASE consists of manually currated MSAs of nat-
urally occurring proteins and Simprot consists of fictive sequences based on an
evolutionary model. The running times are normalized to Mafft FFT-NS-2, which
is the fastest of the methods. Details can be found in [49]. ClustalW was for long
the golden standard but in recent years many new methods have been published
which are both faster and more accurate.

Newer methods

From the mid-nineties until 2002, ClustalW [46] was one of very few alter-
natives on the market. Its popularity set the golden standard but in recent
years many new algorithms have become available and most of them are
both faster and more accurate [49]. A summary of their performance is
shown in Table 3.1, where Mafft L-NS-i [50] is the best method of those
with short calculation times. However by the time of the analysis in Pa-
per I, for which ClustalW was used, these newer software packages were not
yet published or proven to be of any significant improvement in comparison
to ClustalW.

3.2.2 Evolutionary analysis

Analysis from a molecular evolutionary perspective, e.g. the development of
a protein family, is complicated because we seldom have historical samples.
Instead, we need to rely on reconstructions from the current sequence data.
A typical approach to characterize a protein family from an evolutionary
perspective is to use an MSA and calculate a distance matrix of it. This
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distance matrix can be used as basis for constructing an evolutionary tree.
Much can be said about evolutionary methods and their interpretation but
in this thesis it will only be discussed on a very general level. Two members
of a protein family, which once was a single gene, can be the result of two
events; either a speciation (the separation into two different species) or a
duplication within a species. If a speciation has occurred, the two genes
are referred to as orthologs and if a duplication has occurred, they are
referred to as paralogs. The information about orthologs can be used to
date a protein family back to the speciation. If members of a protein
family have orthologs only in mammals we can say that the protein family
is not older than the separation of mammals and birds (about 310 million
years ago) [61], which is a quite recent event in an evolutionary perspective.
On the other hand, if orthologs are found in both eukaryotes and bacteria
(which were separated about a billion years ago) [62] it is very old and is
probably a part of a more fundamental biological process.

In Paper I, we use the Neighbor-Joining method [48] implemented in
ClustalX [63]. This method weights the lengths of the branches and it is
possible to obtain reliability estimates of the branching order by applying
a bootstrap procedure [64]. Bootstrapping is a computationally intensive
method, which in phylogenies involves sampling the columns from the MSA
with replacement. Hence, each bootstrap sample (tree) will have a different
set of sampled sites, of which some sites might be sampled twice or more
while others are not included. This procedure thus gives a number of dif-
ferent trees, each based upon a different data set. Branches (or groups) are
considered confident if they have the same leaves in most of the bootstrap
trees and are usually determined by a threshold of 90% or 95%.

3.2.3 Finding homologs using multiple sequences

The problem of detecting homologs to a protein family using a pairwise
alignment technique is that our query sequence might not be the best rep-
resentative. Probably no single member is good enough to represent all
the sequences belonging to the family, and a single search strategy would
lead to bias towards finding only hits similar to our query sequence. When
detecting members of a family it would be better to weight properties that
are in common for all members to be more important, properties that are
observed occasionally should be considered less important and properties
that never have been observed should be ignored. Such a strategy can be
applied if the information in the MSA of the protein family can be imple-
mented in the homology search algorithm.
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>seq1
GARFIELDISAFATCAT
>Seq2
LASAGNEMAKESACATFAT
>Seq3
AFATCATTHATLIKESSLEEP

Alignment:
Seq1 --GARFIELDISAFATCAT--------------
Seq2 LASAGNEMAKESACATFAT--------------
Seq3 ------------AFATCATTHATLIKESSLEEP

Pattern: A-[CF]-A-T-[CF]-A-T

ELDISAFATCAT----
ESACATFAT----
--AFATCATT

Figure 3.2. Prosite patterns. From the MSA of this sequence family it is
possible to build a pattern that detects all members. Patterns of known active
sites or motifs of ligand binding sites is found in the Prosite database [65]

Patterns and profiles

A simple form of including data from several sequences is to use patterns or
regular expressions. An example of a family of three sequences is illustrated
in Figure 3.2. From the MSA we can build a pattern that finds all three
sequences using the signature A-[CF]-A-T-[CF]-A-T, where the brackets
represent a set of allowed residues (either C or F). This method is used in the
Prosite database [65–67], which also handles arbitrary residues (X), exclude
residues ({R} = not R), repeats, repeat intervals and any combination
of these. This generalization of the query is more sensitive than using a
pairwise alignment search strategy, but it is limited by the fact that if we
have not yet seen a certain possible residue at a position we will miss those
members also in the feature. Furthermore, it is difficult to determine an
appropriate level of detail of the pattern that is both specific and sensitive.

A more sophisticated approach is to weight the preferred residues at
each position. From an MSA it is possible to derive a scoring matrix for
the protein family by scoring the residues at each position by the number
of times they have been observed. A further improvement is to include
substitution matrix information and background frequencies, which results
in a family specific scoring scheme, denoted profile. This approach has
proven to be orders of magnitude better than pairwise alignment algorithms
[68] and the increased sensitivity makes new unknown family members more
likely to match. This kind of sequence models are also found in the Prosite
database [65].

Aligning a sequence to a profile is not very different from performing
a pairwise alignment. Roughly, the only difference is that instead of a
substitution matrix of 20x20 residues we use a scoring matrix of Lx20 where
L is the length of the family. Further improvements may be obtained by
allowing position-specific gap cost, analogously to ClustalW (section 3.2.1).

Profiles are preferably used for modeling domains where the there is a
built-in length constraint. However, patterns are sufficient (or better) for
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capturing the biological signal in a few situations. These signals usually
consists of 10–20 conserved residues at different positions in the sequence
as for catalytic sites of enzymes, sites for attachment of prosthetic groups,
metal ion binding sites, cysteine bridges and regions involved in binding an-
other molecule (ADP/ATP, GDP/GTP, calcium, DNA and protein). Pro-
files and patterns can be used together, where the profile can be used to
detect the domain and the patterns can be used to locate the active site
within the domain.

PSI-BLAST

The requirement for performing profile-based search procedures is an MSA
compiled of relevant sequences. The retrieval of seed sequences for the
MSA is usually based on standard pairwise homology search with a query
sequence. This protocol was implemented in an automated fashion in
Position-Specific Iterated (PSI)-BLAST [40]. The method performs an or-
dinary BLAST search as a first step. The resulting hits above a certain
cutoff are used in building an MSA and an accompanying profile. The pro-
file (with increased sensitivity) is used in a new search generating a new
hit list. Again, the second hit list is used in building a new profile. This
iterative process is pursued until the algorithm converges and no new se-
quences are found. The algorithm can be run in a semi-automatic mode
were the user can intervene with the hit list by including members below
cutoff and exclude non-members above cutoff in order to increase specificity
in the following iteration. Every profile iteration takes just a little more
time than an ordinary BLAST search. The total amount of iterations leads
to a total running time which is many times more than an ordinary BLAST
search and the method is therefore sometimes not applicable to a problem
for the same reasons as for the Needleman/Wunsch and Smith/Waterman
algorithms (section 3.1.1). However, the gain of sensitivity usually justifies
the use of it.

Hidden Markov Model (HMM)

The Prosite profiles described above are intuitive and the reasoning is based
on empirical knowledge. The effectiveness relies on expert knowledge about
the family and the handcrafted design approach, which can be partly au-
tomated [65–67]. An alternative approach is to use HMM methods. They
rely on probability theory; hence, rigorous mathematic algorithms can be
applied. The technique was initially used in speech recognition but was
proven very effective in modeling protein family domains [69, 70]. In this
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Figure 3.3. HMM topology. Squares indicate match states (modeling con-
sensus positions in the alignment). Diamonds indicate insert states (modeling
insertions relative to consensus). Circles indicate delete states (modeling deletions
relative to consensus). The arrows indicate state transitions.

thesis we will refer to these profile HMMs as HMMs, although HMM gen-
erally includes a much wider scope than presented here.

The Prosite profile model is a matrix representation of residue frequen-
cies and gap costs for a domain. An HMM models the same information
by a graphical representation of the states and transitions that fits the se-
quence to the model, Figure 3.3. The match state is a direct analog of the
column (or position) in the MSA and the insert states are used for ”extra”
residues in sequence to be fitted relative to the consensus sequence. The
delete states are used to stretch a sequence in order to fit it to the model,
i.e. when gaps need to be inserted relative to the consensus sequence. A
transition (arrow) represents the move from one state to another in the
topology graph. Within each state all possible events are given a probabil-
ity (e.g. a match state has assigned probabilities for all the 20 amino acid
residues). The transitions from one state to another is also given proba-
bilities, typically a higher probability is given to a move from one match
state to the next match state than to a move from one match state to an
insert or delete state. A transition from a match state to an insert state
corresponds to the gap opening cost in a profile (or substitution matrix)
and the transition from one insert state to itself corresponds to the gap ex-
tension cost. The HMM method can handle any type of scenario of fitting
a sequence to the domain model, which is represented by taking different
paths through the topology. However, the path with the largest product
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of probabilities is the optimal one and this can be calculated by dynamic
programming.

Software packages are available for the different HMM-related tasks.
These tasks can be to build (or train) an HMM using an MSA of a domain as
input, align one or several sequences to the domain or to search a sequence
database for domain regions matching the HMM. The two most widespread
packages are Sequence Alignment and Modeling System (SAM) [71] and
HMMER [72], the latter is used in Paper II. HMMER is also the package
utilized in the Pfam domain database (see section 3.3.2).

When searching a sequence database with Prosite profiles and HMMs,
both present the hitlist in terms of scores and E-values. The performance of
Prosite profiles and HMMs is dependent on the quality of the input MSA.
If the MSA has badly aligned regions, noise or errors will be included in
the model and severely affect the method negatively.

3.2.4 Discrimination of sequences

The single and multiple sequence analyses described so far are used to
collect similar sequences and to extract their common properties. The
aim and methods are slightly altered for protein superfamilies (i.e. proteins
with similar fold that not necessarily have the same function) and for multi-
domain protein families. Once the members are aggregated, it is possible
to gain additional information by detecting discriminating features that
distinguish the different subfamlies. This can be done by modeling the
sequences as vectors, where each element is a numerical feature derived from
its characteristics in the respective position in the MSA. The numerical
features can be of various types, e.g. Kyte and Doolittle hydrophobicity
values [73] (Paper I), secondary structure scores, amphipathicity (Paper
II) and conservation scores.

Principal Components Analysis (PCA)

Principal components analysis PCA [74] is a method for classifying and
discriminating by reducing dimensions and the method is part of a dis-
cipline called multivariate data analysis (MVDA). The fundamental idea
is to represent data in a lower dimension while keeping the most descrip-
tive information (Figure 3.4). By mathematical terms, it is defined as an
orthogonal linear transformation using the variance in each variable to re-
trieve a new coordinate system. The first principal component is the vector
in the multidimensional input space that describes the data best in a least
square sense. All principal components will go through the average point.
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Figure 3.4. Principal Components Analysis (PCA). (A) The three-
dimensional coordinate system x1, x2, x3 and the four data points. (B) The new
coordinate system in two dimensions using the first and second principal compo-
nents (PC) as axes.

Each observation (data point) is then projected onto the first principal
component. The projection distance on the first principal component can
be thought of as the residual error if the data is represented in only one
dimension. The second principal component is selected to be orthogonal
to the first and a two-dimensional plane can be formed with the first and
second principal components as axes. The data can be easily viewed and
interpreted in this new coordinate system. Clusters of observations in the
new coordinate system represent subclasses and the discriminative features
can be mapped by the weights of the principal components back to the
input space. Any number (less then or equal to the dimensionality of the
input space) of principal components can be used and the more principal
components we generate the better they will fit the data. However, using
more than three principal components makes it difficult to visualize and
the risk of over-fitting the data is increased for every additional compo-
nent, as we may include information of non-representative members. The
latter problem can be solved using cross-validation. It is recommended to
scale and mean-center the input data in order to obtain good separability
and to avoid bias of certain variables.

Novel methods using principal components analysis (PCA) in protein
sequence analysis were presented in the mid-nineties [75, 76]. PCA is not
of the same central importance in bioinformatics as HMMs and Support
Vector Machines (SVMs), which usually are better at capturing biologi-
cally important features. However, PCA can be very useful in explorative
analyses (unsupervised clustering) when nothing is known about possible
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Figure 3.5. Using SVM to separate classes. In input space the two classes (a
and b) is not linearly separable. By mapping the input data via the kernel function
〈x1, (x1 − x2)2〉, the two classes become linearly separable in feature space.

subfamily classification. In paper II, we used unaligned sequences repre-
sented by vectors of their hydrophobic moment and could by this method
detect three distinct subfamilies not yet discovered with MSA-based meth-
ods.

Support Vector Machines (SVMs)

SVMs have been used in many areas of bioinformatics including protein
function prediction, protease functional site recognition, transcription ini-
tiation site prediction and gene expression data classification [77]. The
SVM approach is very different from that of PCA. Instead of reducing the
dimensions of the input space, one usually uses a nonlinear mapping of the
data into a higher dimension called feature space. The principle idea is
that if it is not possible to do a linear separation of two classes in the input
space, this will become possible if we blow up the dimensions using a kernel
function (Figure 3.5). Roughly, a kernel function is a similarity measure
that by some means includes the dependencies between input variables. In
SVM classification we determine the optimal hyperplane in feature space
that separates two classes, which is obtained by training on a set of exam-
ples. By knowing the class belongings in the training set, the SVM can
capture the most important features (i.e. support vectors) that distinguish
one class from the other. Besides the classification problem, SVMs can be
used in regression (fitting data to a function) and to estimate a distribution
(one-class problem).

The kernels used in mapping input space to feature space can be of
various kinds (e.g. dot product, polynomial and radial base function) [78].
In two cases we will not benefit from moving into higher dimensions; i) when
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number of data points ¿ number of features and ii) when both number of
data points and number of features are large [79]. The latter case becomes
true in Paper V. In these two cases, we will do equally well or better with
a linear kernel, i.e. it is sufficient to calculate the optimum weights of the
elements of the input vector. The significantly shorter calculation times
obtained with a linear kernel in comparison to nonlinear alternatives will
therefore favor the simpler form.

Generalizability can be described as the ability of a model to correctly
classify data that has not been used during training. If we learn many
details in the training data (e.g. when almost all training examples be-
come support vectors), we might be able to classify all training examples
correctly. Nevertheless, if the data we actually want to classify only have
a few common features of all the features in the input space, they will
be incorrectly classified because the method emphasizes individual details
rather than common properties. Therefore, we have a tradeoff between the
number of support vectors (ability to classify difficult data points correctly)
and generalizability (ability to classify data points correctly, which we have
not yet seen).

The SVM methodology is based upon the principles of learning the-
ory, which includes mathematical theorems on how to calculate the best
separating plane as fast as possible and to obtain generalizability (avoid
over-fitting) [78]. Two widely used software packages are SVMlight [80,81]
and LIBSVM [82,83]. A linear version of LIBSVM is used in Paper V.

3.3 Databases and data resources

3.3.1 Sequence databases

The primary source of bioinformatic data is the protein and nucleotide se-
quences. In this thesis, all analyses are performed with the protein sequence
in focus and in this section the core set of resources are described.

UniprotKB

UniProt Knowledgebase (UniProtKB) [6, 7] is the universal resource of all
available proteins and it is divided into two parts: SwissProt and Trans-
lated EMBL (TrEMBL). SwissProt is administrered by European Bioin-
formatics Institute (EBI) and Swiss Institute of Bioinformatics (SIB) and
is often referred to as the current de facto standard of protein knowledge.
The SwissProt section of UniProtKB consists of only well-documented and
manually curated protein sequences. Entries in SwissProt are frequently
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updated with respect to new findings. Hence, SwissProt sequences are
often used as seeds when creating a predictive model.

TrEMBL holds the protein sequences of all protein coding sequences
(CDSs) in the European Molecular Biology Laboratory (EMBL) nucleotide
sequence database. Entries in EMBL can be posted by any researcher and
the entries are in general posted with only limited additional information
besides the sequence, and seldom or never are the entries updated. Hence,
TrEMBL is SwissProt’s opposite in being a non-curated repository of all
available translations of nucleotide sequences.

RefSeq

NCBI’s reference sequence database (RefSeq) is a resource of complete and
incomplete genomic, RNA and protein sequences [84]. Its sequence content
is recruited from GenBank [85] but is made non-redundant. The RefSeq
staff classifies each entry according to its quality and performs manual cu-
ration. Furthermore, they perform a range of algorithmic checks on the
sequences, which results are used for prioritizing sequences that need man-
ual investigation. The RefSeq database includes all types of organism and
is a good reference set for finding reliable information and can be thought
of as the SwissProt counterpart for messengerRNA.

Ensembl

Ensembl is a database of eukaryotic genome-centered information [86, 87].
It started with the completion of the human sequencing project [88, 89]
but is currently (October 2007) including 35 species [90]. The complete
genomic sequence of an organism only consists of raw nucleotide sequences
of the chromosomes, and it is made useful first after that the individual
regions are annotated (assigning descriptive features to the nucleotide co-
ordinates). Manual annotation of these regions takes enormous amounts of
time, but much can be learnt from predictions of automated annotations.
The Ensembl database is built by an automatic annotation pipeline [91,92]
that predicts various types of feature in the sequence. Its core focus is on
genes and their transcripts. All known genes, mRNAs, ESTs and proteins
are mapped down to the genomic level, which is a more reliable approach
than making ab initio predictions by analyzing signals in the original se-
quence [93, 94]. A deeper discussion of the topic is found in Paper V.
Ensembl provides a browser interface [95], which enables users to zoom in
on regions of interest and view their transcriptional landscape. In addi-
tion, the database is available in either flat file format or relational MySQL
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database format [96] and is accessible via Perl application programming
interface (API) and through the BioMart interface [97, 98], which handles
batch queries in a range of various input and output formats.

3.3.2 Protein family databases

Pfam

The Pfam protein family database [99, 100] contains more than 9000 fam-
ilies (release 22, July 2007). The protein families are modeled according
to their domains and are represented by profile-HMMs (section 3.2.3). All
data are available either through the web interface, in flat file format or as
a MySQL relational database [96]. Each family is created from a manually
curated MSA, denoted seed alignment. An HMM is built on the seed align-
ment and the model is iteratively calibrated to determine a score value
that mediates detection of the member sequences but does not result in
an overlap with other families. The same setup is then used for scanning
UniProtKB, which results in the full alignment. Each family has a docu-
mentation page summarizing the links to other family databases, external
resources and relevant citations. The HMMs can be downloaded and used
locally with the HMMER package [72], as in Paper II.

The HMM approach of Pfam is one of the most effective ways of mod-
eling protein families but suffers from one disadvantage; the one-to-one
relationship between fold, domain and function is not appropriate for all
families. In order to adress this, the concept of clans was introduced, which
groups related families in a hierarchical manner [101].

Prosite

The Prosite database [65–67] consists of profiles and patterns, both de-
scribed in detail in section 3.2.3. The Prosite entries are well documented
and provide a good starting point when searching information about a fam-
ily.

Interpro

Various additional databases provides resources on protein families, do-
mains and functional sites (e.g. PRINTS [102], ProDom [103], SMART
[104], TIGRFAMs [105], PIRSF [106], SUPERFAMILY [107], Gene3D [108]
and PANTHER [109]). These databases (including Pfam and Prosite)
are all hierarchically integrated into InterPro [110], which provides a nice
overview of existing types of family models. InterPro is used to annotate
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UniProtKB on a regular basis via the InterProScan software [111,112]. The
current release of InterPro contains more than 13 000 entries and covers
over 78% of UniProtKB proteins [110]. InterProScan can be used locally
(e.g. for genome annotation) or via a web interface. Furthermore, InterPro
links to additional external databases, including relevant literature refer-
ences, and the database is of major importance in bioinformatics.

3.3.3 Identifiers and annotation data banks

The variety of databases and levels of sequence data (organism, genomic,
genes, gene names, transcripts, proteins etc) results in a myriad of identi-
fiers. Some of the problems associated with this multiplicity are already
discussed in section 1.3.1. In order to combine various types of data banks
and to transfer the results from one tool to another (as in Paper III), we
need meta data resources that can be used in mapping identifiers and to
pre-compute annotations.

Every database needs internal identifiers in order to control introduc-
tion, updates and deletion of entries. These can also be used for cross-
references between databases. Consistency is needed in order to accurately
combine or map identifiers between different resources. One such meta
resource is the International Protein Index (IPI) [113], which combines
UniProtKB [6, 7], Ensembl [86] and RefSeq [84] entries. Entries in these
databases that represent the same gene or protein are assigned a common
IPI identifier.

Merging identifiers is not only crucial for transferring data between
analysis tools; it is also of importance in annotation analysis. An annota-
tion is a mapping between descriptive information and a gene or protein
identifier. Hence, if the identifier and annotation sets are not compatible,
the descriptive information cannot be retrieved.

The Gene Ontology Annotation (GOA) project [114, 115] annotates
UniProtKB entries [6, 7] and includes both manual investigations and au-
tomatically derived annotations. High quality manual annotations require
much time of expert personnel, while automatic approaches tend to be in-
exact, but can be used in high-throughput procedures. Remarkably, GOA
has made an impressive effort in building a framework for retrieving high-
quality automatically derived annotations using a range of reliable pre-
dictive and inferring procedures. As of July 2007, GOA released over 20
million annotations, to more than 3 million proteins. These can easily be
incorporated in various databases and analysis tools, largely due to efforts
like IPI [113].
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3.4 Statistics and evaluation

3.4.1 The multiple comparison problem

Typical predictions in the field of bioinformatics are made on large data sets.
Classical statistics is intended for small samples and the classical p-value
is not always appropriate without certain precautions or adjustments. In
statistical hypothesis testing, we form a null hypothesis and an alternative
hypothesis. A test is called significant if we can reject the null hypothesis
in favor of the alternative hypothesis. A typical criterion for a test being
significant is that we can reject the null hypothesis with a calculated risk,
i.e. a p-value of 5% implies that we have a 5% error of falsely rejecting the
null hypothesis. This type of error is called a false positive or Type I error,
denoted by α. The p-value describes the False Positive Rate (FPR) and
when performing a test n=10 000 times we would expect to have 500 false
positives (α x n). In bioinformatics, the features we want to predict usually
occur very seldom (e.g. mutations, clustering of genes on a chromosome,
participation in a few of many thousands cellular processes etc). In such
cases, if only 50 of the 10 000 features are truly positive; we will make
10 false positive predictions for every positive feature that we predicted
correctly. That is, if we want to detect 10 correct positive features we will
have a total error of 91% among those called significant (100/(10+100)).
This phenomenon is denoted the multiple comparison problem.

There are ways of dealing with this. One such method is the Bonferroni
correction, which can be approximated by dividing the Type I error with
the number of tests performed (α/n). However, this correction is much
too conservative and often results in no significant features at all [116], i.e.
we have neither false nor true positives for the adjusted p-value of 5 · 10−6.
Another method is to adjust the test in order to control the False Discovery
Rate (FDR). While FPR determines the rate of making false positive in
each test (i.e. the error accumulates for every performed test), the FDR is
the rate for which we include false positives among those we call significant.
If we have a method that allows an FDR of 5% and we want to detect 10
of the positive features, then the expected total error among those we call
significant will be 5%. In Paper III, we use an FDR-based method called
q-value [117] in order to address the multiple comparison problem when
testing if a gene list is significantly enriched of annotations in a branch of
GO or MeSH, where many branches are tested.
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Truly
positive negative

Predicted
positive TP FP
negative FN TN

Table 3.2. Table shows the relationship between truly positive and negative items
and the prediction outcome.

3.4.2 Evaluation and assessments procedures

There are several ways to assess the performance of a prediction algorithm.
In this section, we will describe a few of them that can be applied to binary
classification. We define the items we want to detect as truly positives and
the remainder are denoted truly negatives. We can then form the following
four parameters for the outcome of the prediction algorithm on the two-
class data set:

• TP - true positives, the number of correctly predicted truly positive
items.

• TN - true negatives, the number of correctly predicted truly negative
items.

• FP - false positives, the number of truly negative items that are pre-
dicted to be positive.

• FN - false negatives, the number of truly positive items that are
predicted to be negative.

The relationships between these parameters are illustrated in Table 3.2. A
good algorithm detects many positive features (it has high sensitivity or
recall) and generates few false positives (it has high specificity or preci-
sion). Using the parameters above, we can form the following performance
measures for recall and precision.

Recall =
TP

truly positive
=

TP

TP + FN

Precision =
TP

predicted positive
=

TP

TP + FP

And from recall and precision we can form a joint performance measure:

F-score =
2 x precision x recall

precision + recall
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Generally, both recall and precision cannot be optimized at the same time.
In the extreme, if the complete data set D is predicted positive we will have
a maximum recall of one but simultaneously many FP and consequently
a very low precision. A method that allows no FP and consequently has
the maximum precision of one, will result in low recall and the method will
only detect the most common positive features.

The FPR and FDR, described in section 3.4.1, can also be expressed in
the terms of TP, FP, TN and FN:

FPR =
FP

truly negative
=

FP

FP + TN

FDR =
FP

predicted positive
=

FP

TP + FP

In Paper III, we wanted to control the number of errors made on those
predicted to be positive (controlling FDR), while in Paper V we expected
to have many true negatives and hence used FPR to control the number of
errors. However, excluding any of the TP, FP, TN and FN parameters may
lead to an unbalanced estimation of the performance [118]. Two typical
balanced assessment methods are accuracy and the Matthews’ correlation
coefficient (MCC) [119] defined by:

Accuracy =
correct pred.

full data set
=

TP + TN

TP + FP + TN + FN

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

A predictive algorithm is often tuned in either direction to mirror the asso-
ciated cost and risk of making a prediction error. This can be exemplified
by an algorithm that predicts nuclear power plant failures, where we would
allow many false alarms (FP) in favor of actually detecting the true power
plant failures (TP). A counter example would be an algorithm that detects
tax dodgers. Each suspected tax dodger needs to be checked in a costly
manual investigation. If too many FP are allowed, the unpaid tax and fines
of the true tax dodgers (TP) will not cover for the expenses of the investi-
gations. In this latter case, a priority on precision would be preferred.

A frequently used assessment method is to illustrate the receiver oper-
ating characteristics (ROC) [120], which shows the recall as a function of
FPR (Figure 3.6). Perfect performance would be if we have a recall of one
and a FPR of zero, corresponding to the upper left corner. If we have no
discriminative performance at all (e.g. random guessing), it would give a
point on the diagonal from the lower left to the upper right, denoted line of
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Figure 3.6. The receiver operating characteristics (ROC) curve. The
plot shows recall (TPR) as function of type I error (FPR). A perfect predictor
detects all true positives and no false positives, indicated in the upper right. In
practice, these two categories can not be optimized simultaneously.

no discrimination. A point above the diagonal corresponds to a good clas-
sification result. The recall and FPR metrics are based on ratios and are
therefore especially useful when the distribution of positives and negatives
is skewed [121]. Due to the insensitivity of the distribution, it is possible to
choose cutoffs or parameters on one data set and still expect similar perfor-
mance on another data set with different distribution. In contrast, F-score,
accuracy and precision metrics will change if the distribution is altered.
Furthermore, the ROC is separated from the cost context. Hence, we could
set the cutoff according to an accepted number of errors. In paper V, we
use ROC on skewed data to set the cutoff based on the accepted number
of error and the size of the data set.
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Chapter 4

Present investigation

This chapter summarizes the findings in the papers, including some recent
updates of the current knowledge. In the thesis, bioinformatic techniques
have been used for characterization of protein families and detection of
patterns in gene expression and in polypeptide frequencies. Papers I–II
describe protein family characterization. In Paper III a tool to analyze
gene lists was developed. This tool has been used in Paper II. Papers IV–
V describe the investigation of oligopeptide pattern occurrences and how
these can be used in detection of proteins that contain translated introns.
Paper VI documents the genome sequence database that has been used in
several studies including Papers I, II and IV.
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Paper I Characterization of the MAPEG
superfamily

The membrane associated proteins in eicosanoid and glutathione metabo-
lism (MAPEG) superfamily was first discovered in 1999 [122] and includes
six protein families of higher eukaryotes: 5-lipoxygenase-activating protein
(FLAP), leukotrine C4 synthase (LC4S), microsomal glutathione transfer-
ase (MGST)1–3 and prostaglandin E synthase (PGES) and additional
groups of prokaryotic origin. The MSA of the human members and rat
MGST1 in Figure 4.1 shows the four transmembrane alpha helices known
to accommodate the common fold of the superfamily [122, 123]. The pro-
teins are membrane bound and in eukaryotes, MAPEGs are located in the
endoplasmic reticulum (ER) and/or nuclear membrane. Furthermore, glu-
tathione transferase activity has been assigned a central property for a
majority of the members.

In our study we made an extensive search in UniProtKB [6], NCBI non-
redundant (known to be extensively redundant [124]) and GenomeLKPG
(Paper VI) for new MAPEG members and we found over 130 different
proteins, of which only 56 were previously listed in Pfam [99,100]. Among
the new members we found fish representatives for six of the major fam-
ilies of MAPEG, which dates the origin of these families back to before
the occurrence of early vertebrates. We also detected two distinct prokary-
otic subfamilies, featuring representative proteins from Escherichia coli and
Synechocystis sp., respectively. A third, not well-defined, cluster of bacte-
rial proteins was also discovered. The cellular role of MAPEG in bacteria
is yet to be determined (no literature on the subject is found, December
2007) and no new bacterial member has been deposited in SwissProt since
the publication of Paper I. However, one of the biological processes as-
signed to eukaryotic glutathione S-transferase (GST) is to participate in
detoxification of endogenous and exogenous electrophilic compounds and,

Family Pattern
FLAP P-A-A-F-A-G-x(0,1)-L-x(0,1)-Y-L-x(2)-R-Q-K-Y-F-V-G-Y

LC4S G-P-P-E-F-[DE]-R-[IV]-[FY]-R-A-Q-[AV]-N-[CS]-[ST]-E-Y-F-P

MGST1 E-R-V-R-R-[ACG]-H-x-N-D-[IL]-E-N-[IV]-[IV]-P-F-[FLV]-[AGV]-I

MGST2 V-[ST]-G-[APS]-[LP]-[DE]-F-[DE]-R-x-F-R-A-x(0,1)-Q-x(0,1)-N-[CNS]-[ALV]-E

MGST3 F-N-C-[AIV]-Q-R-[AGS]-H-[AQ]-[NQ]-x(2)-E-x(2,3)-P

PGES M-Y-[AIV]-[IV]-A-[IV]-I-T-G-Q-[IMV]-R-L-R-[KR]-K-A-x-A-N

Table 4.1. Diagnostic patterns of MAPEG members from Paper I. The
patterns are described according to the Prosite pattern convention (section 3.2.3).
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AL5AP_HUMAN     MD--QETVGNVVLLAIV--TLISVVQNGFFAHKVEHESRTQNG---------------RS
LTC4S_HUMAN     MK------DEVALLAAV--TLLGVLLQAYFSLQVISARRAFRV---------------SP
MGST2_HUMAN     MA------GNSILLAAV--SILSACQQSYFALQVGKARLKYKV---------------TP
MGST3_HUMAN     MAVLSKEYGFVLLTGAA--SFIMV---AHLAINVSKARKKYKVE--------------YP
MGST1_HUMAN     MVDLTQVMDDEVFMAFASYATIILSKMMLMSTATAFYRLTRKVFANPEDCVAFGKGENAK
MGST1_RAT       MADLKQLMDNEVLMAFTSYATIILAKMMFLSSATAFQRLTNKVFANPEDCAGFGKGENAK
PTGES_HUMAN     MPAHSLVMSSPALPAFLLCSTLLVIKMYVVAIITGQVRLRKKAFANPEDALRHG----GP

AL5AP_HUMAN     FQRTGTLA----FERVYTANQNCVDAYPTFLAVLWSAGLLCSQVPAAFAG-LMYLFVRQK
LTC4S_HUMAN     PLTTGPPE----FERVYRAQVNCSEYFPLFLATLWVAGIFFHEGAAALCG-LVYLFARLR
MGST2_HUMAN     PAVTGSPE----FERVFRAQQNCVEFYPIFIITLWMAGWYFNQVFATCLG-LVYIYGRHL
MGST3_HUMAN     IMYSTDPENGHIFNCIQRAHQNTLEVYPPFLFFLAVGGVYHPRI-ASGLG-LAWIVGRVL
MGST1_HUMAN     KYLRTDDR----VERVRRAHLNDLENIIPFLGIGLLYSLSGPDPSTAILHFRLFVGARIY
MGST1_RAT       KFLRTDEK----VERVRRAHLNDLENIVPFLGIGLLYSLSGPDLSTALIHFRIFVGARIY
PTGES_HUMAN     QYCRSDPD----VERCLRAHRNDMETIYPFLFLGFVYSFLGPNPFVAWMHFLVFLVGRVA

AL5AP_HUMAN     YFVGYLGERTQSTPGYIFGKRIILFLFLMSVAGIFNYYLIFFFGSDFENYIKTISTTISP
LTC4S_HUMAN     YFQGYARSAQLRLAPLYASARALWLLVALAALGLLAHFLPAALRAALLGRLRTL------
MGST2_HUMAN     YFWGYSEAAKKRITGFRLSLGILALLTLLGALGIANSFLDEYLDLNIAKKLRR-------
MGST3_HUMAN     YAYGYYTGEPSKRS--RGALGSIALLGLVGTTVCSAFQHLGWVKSGLGSGPKC-------
MGST1_HUMAN     HTIAYLTPLPQPN-------RALSFFVGYGVTLSMAYRLL-KSKLYL-------------
MGST1_RAT       HTIAYLTPLPQPN-------RGLAFFVGYGVTLSMAYRLL-RSRLYL-------------
PTGES_HUMAN     HTVAYLGKLRAPI-------RSVTYTLAQLPCASMALQILWEAARHL-------------

AL5AP_HUMAN     LLLIP
LTC4S_HUMAN     -LPWA
MGST2_HUMAN     ---QF
MGST3_HUMAN     ---CH
MGST1_HUMAN     -----
MGST1_RAT       -----
PTGES_HUMAN     -----

Figure 4.1. MSA of the MAPEG superfamily. The sequences are FLAP
(AL5AP), LC4S (LTC4S), MGST1–3 and PGES (PTGES) from human and
MGST1 from rat. The common fold of the superfamily is shown by the four
hydrophobic alpha helices (grey rectangles) and the corresponding hydrophobicity
plot [73] (bottom). The diagnostic patterns in table 4.1 are blue boxed.

consequently, this may be true also for bacteria [125].

Structures of membrane proteins are difficult to obtain and by the time
of Paper I only a low-resolution (6 Å) structure was available [123], which is
not sufficient to determine the active sites. However, our extensive sequence
analysis revealed signaturing patterns for all of the eukaryotic families (Ta-
ble 4.1) and we suggested that these regions are part of the active site.

In recent years, high resolution structures have become available [126–
128], which allow mapping the diagnostic patterns onto the structure.
MAPEG proteins form homotrimers (Figure 4.2A) where glutathione is
located between adjacent chains. Figure 4.2B shows the conserved motif of
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Figure 4.2. MAPEG trimer and the active site of LC4S. (A) The struc-
ture of MAPEG shows that each monomer consists of four transmembrane helices
(cylinders) and an additional helix at the C-terminus. The glutathione (cyan) at
the active site is located between two adjacent monomers. (B) The structural el-
ements of the diagnostic patterns of LC4S with the completely conserved residues
in orange. The distances between the glutathione and the neighboring side chains
R51, N55 and E58 from chain A and Y50 and Q53 from chain C are between 2
and 4 Å.

LC4S in detail where the majority of the completely conserved residues (or-
ange) of the pattern are in a vicinity of 2–4 Å from the bound glutathione.
The LC4S pattern is located in the second helix and surprisingly, due to
the organization of the monomers, both sides of the helix are part of the
active site. Similarly, the pattern of MGST1 could also be mapped onto
the monomeric structure (Figure 4.3A). The monomeric structure shows
the transmembrane regions in red, the loops in green and the region of the
pattern in blue which overlaps with glutathione.

In contrast to what has been observed for other MAPEG members,
FLAP has not been shown to possess enzymatic activity or to be function-
ally modulated by glutathione. It is known that it activates 5-lipoxygenase
via physical interaction but it is not understood how [129]. In Figure 4.3B,
the homotrimer of FLAP shows the monomers colored according to Fig-
ure 4.2A. The inhibitor MK-591 binds to the region corresponding to the
active site of MGST1 and LC4S, while the signifying pattern of FLAP
(as chosen in Paper I) is located on the outside of the trimer facing the
hydrophobic core of the membrane.

Intriguingly, postulating that the diagnostic pattern (blue) is important
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Figure 4.3. MSGT1 monomer and FLAP trimer. (A) The red regions
of MGST1 correspond to the hydrophobic transmembrane passages while green
corresponds to the cytosolic (top) and lumen (bottom) hydrophilic loops. Blue and
purple shows the region of the diagnostic pattern determined in paper I, where the
purple region indicates an overlap with the hydrophobic region. The glutathione
(yellow) fits well into the pocket of the diagnostic pattern of MGST1. (B) FLAP
does not have enzymatic activity but is known to activate 5-lipoxygenase. The
process is inhibited by MK-591 which is shown as spheres (cyan). However the
pocket where the inhibitor binds is not part of the diagnostic pattern (blue) of
FLAP which region is faced to the membrane interior.

for the physical interaction with 5-lipoxygenase, it is interesting to investi-
gate the possible effects on this region due to the binding of the inhibitor.
In Figure 4.4, a region (orange) in close vicinity of both the diagnostic
pattern and the inhibitor of FLAP is part of an alpha helix in the corre-
sponding region of LC4S. This region is also a conserved and specific motif
(QSTPGxxFGKR) of the FLAP family, which is located immediately up-
chain of the diagnostic pattern. Hence, it is likely that these two adjacent
sequence motifs are responsible for the interaction between FLAP and 5-
lipoxygenase. If so, the abolished physical interaction might be due to the
possible loss of helical structure upon binding the inhibitor MK-591.

Our suggestion that the diagnostic patterns presented in Paper I are
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A  B

Figure 4.4. Structural comparison of inhibited FLAP and LC4S. The
purple colored helices indicate the regions corresponding to the diagnostic pattern
of FLAP and the blue helix indicates the region of the MGST1 and LC4S diag-
nostic patterns (Paper I). The orange region is a conserved motif in FLAP which
corresponding region is helical in LC4S (A). When FLAP is bound to the inhibitor
MK-591 this region is not helical (B).

part of the active sites has been confirmed upon the publication of the
structures of MGST1 [126] and LC4S [127]. FLAP is a protein without
enzymatic activity, which had no overlap between our pattern and the
site of inhibition in the structure [128]. However, if our FLAP-pattern is
extended to include another conserved motif that is located immediately
upchain of the one we presented earlier, it overlaps with a region that
may be structurally affected by the inhibitor. Hence, the predictions of
active sites we made before the high resolution structures were known still
holds, and in addition, the extended FLAP-pattern may provide valuable
information on the physical interaction between FLAP and 5-lipoxygenase
that is yet to be characterized.
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Paper II TRIM, Ro52 and the RBL region

The TRIM protein family is defined by the N-terminal domain organization,
which consists of a RING domain followed by one or two B-box domains
and a coiled-coil region (Figure 4.5) [130,131]. The B-box is always of type
2 if only one copy is present and in the case of two B-boxes, the first one
is always of type 1, followed by a B-box of type 2. Due to the modular
structure the family is also denoted RING/B-box/coiled-coil (RBCC). The
TRIM proteins are involved in various cellular processes including apopto-
sis, cell cycle regulation and viral response and the conserved N-terminal
domain architecture has been suggested to be implicated in E3-ligase ubiq-
uitination [131]. The region between the RING and B-box, denoted RING
- B-box linker (RBL), is disease associated in at least two members of the
family; TRIM5α [132] and Ro52. The latter of these is investigated in
Paper II and the Ro52-RBL is known to have a Sjögren syndrome disease-
associated autoantigenic epitope [133]. The RBL region is also known to
be important for the stability of the RING-B-box region and features a
completely conserved aspargine. The aim of Paper II was to characterize
the RBL region and to determine whether the RBL region is more tightly
associated to the RING or the B-box. By calculating the hydrophobic mo-
ment of the RBL region and performing PCA we determined three distinct
subtypes of TRIM proteins, denoted A, B and C.

The RING and B-box domains bind Zn2+ and each type of domain is
characterized by a unique ligand-binding pattern. The residues that bind
the ligands are either cysteines or histidines. The RING domain has a
well-defined C3HC4 pattern, while the B-box motifs are modeled slightly
different in Pfam [99–101], Paper II and SwissProt [6, 7] depending on

RING B-box
 type 2

CC sets of various

     domains
B-box
 type 1

RBL

Figure 4.5. Domain organization of TRIM proteins. TRIM proteins con-
tain a RING, one or two B-box domains and a Coiled-coil region (CC). If a protein
only has one B-box it is of type 2 and if it has two B-box domains the first one is of
type 1 and the second is of type 2. The region of interest in Paper II is the linker
between the RING and B-box domains, denoted RING - B-box linker (RBL).
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Figure 4.6. Subtype sequence logos of RING, RBL and B-box. (A) Pfam
models of RING and B-box used in Paper II to find the boundaries of the RBL
region. (B) The subtypes discovered in Paper II, which were based solely on the
RBL region. (C) the subtypes of the B-box domain according to sequence feature
annotations in SwissProt [6, 7].

which subfamily it is trained on (Figure 4.6). The B-box model in Pfam
(Figure 4.6A) is trained on both type 1 (C6H2) and type 2 (CHC3H2).
However, the Pfam model is biased towards the latter because B-box type
2 is always present in TRIM proteins and it is therefore more frequent in
comparison to type 1. The RBL type A, defined in Paper II, occurs in
TRIM proteins having a B-box type 1, while subtypes B and C correspond
to proteins that only have a type 2 B-box.

A few differences of the non-Zn2+ binding sites in the RING and B-
box are observed. In type A proteins, a completely conserved amino acid
triplet motif Leu-Pro-Cys is observed at the site of the third cysteine in
the RING domain. Furthermore, there is a completely conserved glycine
in the RBL region and the otherwise hydrophilic B-box domain features a
well conserved hydrophobic alanine between the second and third cysteine.
Type B proteins also contain completely conserved triplet motifs; Cys-Gly-
His that includes the third and fourth ligand-binding sites of the RING
and Arg-Pro-Asn in the RBL region. Furthermore, glutamate seems to be
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Figure 4.7. The amphipathic helix of the RBL region. (A) Helical wheel
models based on the Kyte and Doolittle scale [73]. The asparagine (N), which is
conserved in all RBL subtypes, is used as index reference. (B) Structural model
of the RBL region in type B proteins. The conserved triplet arginine, proline,
asparagine N-terminally of the helix is colored blue, the hydrophobic region is red
and the hydrophilic is green.

preferred two positions downchain of the first histidine of the B-box type
B. RING type C resembles that of type B, but their RBL regions are very
different. The unclassified proteins in Paper II seem to be of type A/1,
with respect to the conserved ligand-binding pattern of the B-box domain.

Although the differences in the RBL region of type A, B and C are diffi-
cult to quantify, they seem to be of crucial importance, especially between
type B and C, which flanking regions are more similar than the correspond-
ing RBL region. In paper II, we discovered that an amphipathic α-helix
is present in all subtypes of the RBL region. The sequence motifs of the
three subtypes are different, however all possess similar amphipathic char-
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Figure 4.8. Model of RING domain and RBL region of Ro52. The
completely conserved triplet (Arg-Pro-Asn) of the RBL-B is exposed on the surface
(shown in blue, bottom left) and the amphipathic α-helix of the RBL is located at
the bottom right, showing the hydrophobic core in red and the hydrophilic exterior
in green.

acteristics (Figure 4.7A). In Figure 4.7B, a structural model of RBL-B is
shown with the side chains colored according to their hydrophobicity.

Taxonomic studies using the GenomLKPG sequence database (Paper
VI) showed that type A, B and C proteins are found in mammals, opos-
sums, birds and frogs; type A is also found in fish and sea urchins. Type
B proteins, including Ro52, are more frequent in mammals than type A,
while type C is predominantly distributed among primates. This suggests
that subtype A is the oldest form of TRIM proteins and subtype C is the
youngest. Interestingly, the older type 1/A B-box is not present in all
TRIMs in contrast to the younger type B/C/2 B-box. Hence, if the dual
B-box motif is a result of domain duplication it seems likely that the type
A/1 B-box has been lost later on in proteins that contain only the type
B/C/2 B-box. Taking both the sequence and the taxonomical analysis in

44



Paper II TRIM, Ro52 and the RBL region

consideration, it seems likely that the difference in type A proteins com-
pared to the others is due to the B-box type A/1 domain.

The TRIM subtypes were also investigated for bias in functional anno-
tation using the Ontology Annotation Treebrowser (OAT), a tool described
in Paper III. Nine of the 25 functionally annotated human, rat and mouse
type A proteins were significantly associated to the cytoskeleton (p-value
< 0.01). Type B proteins had a significant enrichment of annotations to
nucleic acid binding activity (p-value <0.01) for 7 of 33 annotated proteins,
where Ro52 is part of that group although it is known that it does not bind
DNA [134]. There was no overlap between the type A and type B proteins
for these two annotation terms. Although most members are not associated
to these annotations, it could indicate a difference in functionality between
the two types. Unclassified proteins show some bias towards DNA-binding
and regulation of transcription, but for type C proteins no enrichment of
annotations was observed other than metal binding, a feature common to
all TRIM proteins.

From the results of the bioinformatic and biophysical characterization
of the N-terminal domains in Paper II, it was concluded that the RBL
region of TRIM type B proteins was more closely connected to the RING
in comparison to the B-box. A simulated docking of the RING and RBL
region is shown in Figure 4.8, where the hydrophobic side chains of the
RING and amphipathic helix of the RBL are directed towards the core of
the model, which supports the increased stability that is observed for the
RING and RBL when expressed together in comparison to when they are
expressed separately.
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Paper III OAT:
Ontology Annotation Treebrowser

Life science research does not longer only apply to single-gene problems,
and we have seen a shift towards the systems biology approach that implies
that many thousands of biomolecules are considered at once (section 1.3.5).
The explosion of sequence-related data (section 1.2.1) and development of
methods for high-throughput analysis (e.g. microarrays and proteomics)
have resulted in a new challenge within the life science discipline. Due to
the complexity of biological processes, systemic analyses frequently result
in long list of genes or proteins that are considered important. Putting
the problem of accurately isolating the important biomolecules aside, the
information associated with the resulting list is still massive and it is a
challenge to understand what the genes in the list do and to conclude
their common properties. There is evidently a need of systemizing and
condensing the huge amount of knowledge and this issue is addressed by
a number of tools, including our own development Ontology Annotation
Treebrowser (OAT) (Paper III). A list of these tools are found at the web
site of GO [135], all using GO [23,25] in one aspect or another. Furthermore,
numerous tools provide analysis of gene lists and the association to scientific
literature or MeSH [17] (discussed in Paper III). These two ontologies are
described in more detail in section 1.3.1.

The purpose with OAT was to develop a tool to analyze annotations
associated with a list of genes or proteins in an exploratory way. The
simplistic user interface and the web server environment enable easy access
to all the various resources available online. The use of OAT is described
in three steps (Figure 4.9); i) submit a list of gene or protein identifiers and
choose a list of annotation sets, ii) browse the annotations in the ontology
tree and choose the interesting branches and the level of details and iii)
summarize the annotations and gene identifiers as a table of web links for
further investigation. At each level of detail, the enrichment of annotations
is illustrated by the number of gene identifiers and annotations that are
found in the branch. Using binomial distribution, we perform a statistical
test to check whether the number of annotations is large enough to be
significant. As discussed in section 3.4.1, the multiple comparison problems
of using classical hypothesis testing comes into play and we addressed this
by calculating the q-value, which is the False Discovery Rate (FDR)-analog
of the p-value.

The major novelty of OAT was the incorporation of both MeSH and
GO in the same tool, which allowed us to compare the two ontologies from
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Figure 4.9. OAT user example. The top window shows the query form where
the user enters the whitespace-separated gene list and selects among ontology
and annotation sets. The lower left window shows the browsable tree. The first
number within brackets is the number of annotations in the branch; the second
is the number of genes. On the right hand side, enclosed by parentheses, a p-
value and a q-value are shown for having that many or more annotations. The
lower right window shows the report page listing the ontology term, p-value, q-
value, gene identifiers grouped by the internal representation of OAT identifier,
and origin of annotation (database or article and name of annotation set).
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Figure 4.10. Complementarity of MeSH and GO. The bar diagrams show
the probability mass function of common and unique annotations for MeSH and
GO. The probability mass functions for unique annotations are clearly shifted
to the right compared with annotations in common. Consequently, more unique
annotations than common ones are expected. Data shown is for 721 randomly
collected genes with annotations to MeSH (left) or GO (right). The assessment of
annotations was made by mapping the terms to UMLSr [136].

a gene list/annotation perspective. Using GO annotations, a gene or a
protein can be studied in terms of its function or process it is involved in,
while MeSH has a wider scope and associates the genes and proteins to
biomedical literature references that usually provides much more in-depth
knowledge than the GO annotation. One may suspect that the annotations
of the two ontologies are overlapping as GO annotations might be derived
from knowledge published in scientific literature and vice versa, but in Pa-
per III we prove them to be highly complementary. Figure 4.10 shows the
distribution of common and unique terms between 721 randomly collected
gene identifiers.

The MeSH annotations is derived in-house by mining PubMed [16, 20]
entries to obtain the connection between a gene or protein identifier and
the MeSH term. The problem with creating annotations in this way is that
a scientific article might not necessarily describe only one gene. If multiple
genes are described in the same article, it cannot be stated which gene is
associated with a specific MeSH term. Indirectly, the MeSH term that is
associated with one of the genes may also be valid for another gene in the
same article. At least, by the argument that if they are mentioned in the
same article there should also be an observed biomedical association be-
tween them. However, these types of annotations may become inexact and
can also be due to negative association (e.g. ”in this paper we show that
gene A is not co-regulated with gene B”). Nevertheless, it is important to
separate indirect annotations from direct annotations. We therefore sepa-
rated MeSH annotations that are derived from articles dealing with only
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one gene from those that deal with multiple genes. Articles dealing with
more than five genes were discarded in order to avoid unspecific annota-
tions. Thus, we arrived at one annotation set built on single gene articles
and one set built on articles of 2–5 genes.

The peer-reviewed scientific articles in PubMed represent the summary
of current knowledge and we would not like to exclude this exhaustive
resource of knowledge. However, two issues must be pointed out; i) old
articles can be outdated and erroneous, as in the case of Ro52 that has been
described as DNA binding, an association that later on turned out to be
wrong [134], and ii) the use of MeSH is intended to describe what an article
is ”about”, which is a weaker association criterion than GO’s is a and part of
relationships. In the current release of OAT there is no information about
how old the article is that the annotation is based on. Each annotation can
be checked manually by accessing the PubMed entry, but there is currently
no systematic way to exclude older articles. It would be possible to collect
this information when generating the MeSH annotations. However little is
known about how incorrect older articles might be. Although, it might be
tractable to have some kind of weighting scheme that corresponds to the
likeliness of an annotation to be correct. Currently, the reliability of MeSH
annotations is only quantified by the number of times a connection between
a gene and a descriptive MeSH term has been made. Such a reasoning
seems scientifically sound, assuming that parallel observations of several
individual research groups make the association more reliable than if it has
been observed only once. In GO, the annotations are categorized based
on the type of evidence ranging from inferred from electronic annotation
(IEA), which is considered not very reliable, to traceable author statement
(TAS), which is one of the most strongest types of evidence. The evidence
codes are currently not utilized in OAT. However, as these provide valuable
information they should be implemented in future releases.

49



Present investigation

Paper IV Characterization of oligopeptide
patterns in large protein sets

Sequence analysis is frequently used either to infer function (by homology)
or to determine sites in the sequence that are of importance for structure or
function. In both cases, the sequence is analyzed with respect to a protein
family. Such biased analyses are of major importance in bioinformatics but
are not suitable for drawing general conclusions on the occurrence of pat-
terns in full sequence databases. In Paper IV, we investigated all proteins
regardless of their family membership instead of using a protein family cen-
tered approach. Thus, aiming at characterizing oligopeptide patterns in an
unbiased and unsupervised manner.

Oligopeptide patterns have been analyzed in a range of studies including
taxonomical, functional and structural investigations [137–141] and espe-
cially in Prosite [65–67]. Hence, it is beyond doubt that short oligopeptide
patterns carry information. Consequently, many patterns are either ex-
pected to be over- or under-represented. In Paper IV, we characterized
pentapeptide patterns of four categories and focused on the 100 most ex-
treme cases in each category. The categories were:

positively selected patterns (POPs) which are the most abundant pep-
tide patterns in observed data and are found not at all or only occa-
sionally in randomized data. They are expected to contain favored
structural or functional motifs which might be associated with large
protein families. They are expected in low numbers in view of their
amino acid compositions but are in fact over-represented and must
therefore result from positive selective pressure.

negatively selected peptides (NEPs) are those with extremely low
abundance in available protein data but with high frequencies in
randomized data. NEPs are expected to result from negative selec-
tive pressure and can be explained as structurally disfavored building
blocks.

over-represented peptides (ORPs) are the most frequent kingdom-spe-
cific peptide patterns. ORPs are unique to a kingdom and might be
used as diagnostic patterns. They will cause bias in databases that
do not have equal portions of proteins from the three kingdoms.

under-represented peptides (URPs) are those with extremely low
abundance in a particular kingdom. URPs can be parts of epitopes
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Figure 4.11. Common pentapeptide patterns and relative residue com-
position. (A) The Venn diagrams show the percentage of peptide patterns com-
mon to the kingdoms in the original sequence sets (A=archaea, B=bacteria and
E=eukaryota). Only few peptide patterns are unique to a kingdom in the genome
data set. As many as 98.7% of the peptide patterns are common to two or more
kingdoms in the genome set, while the corresponding number for SwissProt is
82.3%. (B) The bar diagrams show the overall relative amino acid compositions
for each kingdom in the two data sets, ordered by their average frequencies in the
respective data set.

that are inappropriate to the kingdom or avoided for other reasons
and, as for the ORPs, this will lead to bias in protein databases.

The pentapeptide abundance was analyzed in the data sets of SwissProt [7]
and GenomeLKPG (Paper VI). On the global level we observed that only
a few percent of the patterns are unique to a kingdom (Figure 4.11A). In
the SwissProt and genome sets, 35% and 75% respectively, of the patterns
were common for all kingdoms. Hence, the number of ORPs and URPs is
expected to be low. Nevertheless, we observed an extensive overlap between
bacterial ORPs and eukaryotic URPs, where many of the proteins have
translation machinery and biosynthesis as common themes. Interestingly,
several of these patterns (and the respective proteins in which they occur)
are related to immune response activity and are suggested as therapeutic
targets (see Paper IV for details).

Several of the POPs were motifs in large protein families, especially
cytochromes in eukaryotes and bacteria. Many were also frequently anno-
tated with Zn2+ or metal binding. One may speculate that zinc ligation,
which frequently occurs in eukaryotes [142], is an important contributor
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Peptide Memory requirement

length (n) Patterns Countera Data structureb Smart encodingc

3 8 000 32 kB 88 kB 16 kB
4 160 000 640 kB 1.92 MB 320 kB
5 3 200 000 12.8 MB 41.6 MB 6.4 MB
6 64 000 000 256 MB 896 MB 128 MB
7 1 280 000 000 5.12 GB 19.2 GB 2.56 GB
8 25 600 000 000 102.4 GB 409.6 GB 51.2 GB

along integer (4 Bytes)
bA dictionary type of patterns and occurrences:

(string (n bytes)+address (4 Bytes) + counter (4 Bytes))x nbr of patterns.
c16 bit allocation of all counters.

Table 4.2. Memory requirements. The counter column gives the memory
size for storing occurrence of peptide patterns as integers of type long. The Data
structure column gives the size using a high-level dictionary data structure with
peptide pattern as key (string) and occurrences of patterns as value (integer). The
Smart encoding column gives the size using a low-level data structure by allocating
memory addresses based on the peptide pattern itself and a 16-bit encoded integer
for the number of occurrences.

to the elevated levels of the rare cysteine residue type in eukaryotes (Fig-
ure 4.11B). An additional observation of major importance was the discov-
ery that many of the over-represented patterns were exclusively found in
species-specific multicopy retrotransposons. This bias was specific for the
translations in the genome data set. Nevertheless, functional assignment is
lacking for many POPs, as well as for other categories.

A practical issue that needs to be considered when collecting the data
for the categories above is the memory requirement, which increases ex-
ponentially with the length of the peptide pattern. A traditional 32-bit
computer system, with a theoretical maximum of 4x109 memory addresses,
cannot store longer oligopeptide patterns than six, assuming we need a long
integer (4 bytes) to store the number of observations of a pattern (Table
4.2). If we want an additional high-level dictionary data type to lookup
the pattern, we need even more memory. However, it is possible to store
much more data in the memory of a 64-bit system or to parallelize the
search of patterns on a computer cluster. It is also possible to use low-level
data structures by allocating memory addresses based on the peptide pat-
tern itself and to store the integer in a sufficiently large binary structure.
As an example, an integer of max 65 535 can be stored in only 2 bytes,
while a long integer, a memory address and a sequence pattern of length
5 needs 13 bytes. Although, the low-level storage approach uses approxi-
mately 6 times less memory, it will only lead to a linear improvement, in
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contrast to the exponential increase of number of patterns used in studies
of longer oligopeptides. It is probably possible to analyze longer patterns
by utilizing computer cluster with shared memory, but the increase of pos-
sible oligopeptide patterns at those lengths outnumbers the performance
of high-end computer solutions. Fortunately, we show that from an in-
formational content perspective occurrences of oligopeptide patterns are
optimally studied at the pentapeptide level, of which only few patterns are
never observed (Paper IV). It is possible to also analyze hexapeptides but
at the cost of longer computational time. However, analyzing hexapeptides
would lead to a partitioning of the occurrences of heptapeptides into 20
subcategories of the additional sixth residue. Hence, we would analyze the
same information but at a more detailed level. Furthermore, for a majority
of the longer oligopeptides, the number of occurrences will not be sufficient
in order to make statistically reliable interpretations. This fact needs to be
considered also on the pentapeptide level. We addressed this by an initial
filtering step in order to avoid including patterns that do not exist in real
proteins but which are discovered occasionally due to possible sequencing
errors.

In summary, three major classes of pentapetides were observed: (i)
patterns widespread in a kingdom such as those originating from respi-
ratory chain-associated proteins and translation machinery; (ii) proteins
with structurally and/or functionally favored patterns, which have not yet
been ascribed a role; (iii) multicopy species-specific retrotransposons, only
found in the genome set. The three categories will affect the accuracy of
sequence pattern algorithms that rely mainly on amino acid residue usage.
Interestingly, one of the most important findings of this study is the type
(ii) category patterns that are in majority. These are not annotated in the
sequence feature tables. However, these frequently occurring POPs seem
to be of major importance since they are not expected at all. It would be
very interesting to characterize these patterns further. Methods presented
in Paper IV may be used to discover targets for antibiotics, as we identify
numerous examples of kingdom-specific antigens among our peptide classes.
The methods may also be useful for detecting coding regions of genes, an
approach we proved successful in Paper V.
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Paper V The i-score method

It is now possible to determine the complete genomic sequence of an or-
ganism at a relatively low cost [14]. The primary challenge is not longer
to obtain the complete genomic sequence. The difficulties we are faced
with are how to accurately detect the genes and the protein coding regions
within the genome. Finding the region of a gene is now fairly straightfor-
ward with an accuracy of 90% at the nucleotide level [94]. This is done
by mapping promotors and poly-A signals, EST evidence and homologous
protein sequences onto the DNA assembly. It is much harder to determine
the exact gene structure, for example regarding exon/intron boundaries
and splice variants [143]. In the human ENCODE genome annotation as-
sessment project (EGASP), it was estimated that the exact protein coding
sequence was accurately predicted only for roughly 50% of the genes [94].
In addition, as little as 2.3% of predicted exons without annotation could
be validated experimentally, indicating a high false positive rate for novel
protein predictions. In short, the following was concluded:

Unfortunately, there are very few processes in place to remove
erroneous sequences and annotations from the public databases,
so it will still take some time to get a better picture of exact
gene structures. It has to be noted that the human genome
and its annotation for protein coding genes are still works in
progress. [94]

In line with the challenge presented here, we developed the i-score method,
aiming at discriminating between a correct full length protein sequence and
a sequence containing translated introns. The principle idea of detection is
directly related to the work in Paper IV, where over- and under-represented
oligopeptides were characterized. The working hypothesis is that, due to
the selective pressure, true exons are more likely to contain over-represented
peptide patterns and less likely to contain under-represented peptide pat-
terns. Consequently, the opposite should be true for translated introns.
The i-score method represents a region, denoted window, in the amino acid
sequence using the ratios of over-/under-represented tripeptide patterns in
SwissProt. The more positions that are considered simultaneously (i.e. in-
creasing the window length), the more likely it is to encounter extreme
peptides that contain the information we need to accurately classify the
regions as intronic or exonic. This is illustrated in Table 4.3 by assessing
the 5-fold cross validation accuracy for various length of the window. How-
ever, the negative effect of choosing longer windows is that the averaging
effect results in a less exact determination of the exon/intron boundary.
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Window 20 30 40 50 70 80 100
Accuracy (%, 5-CV) 77 82 83 85 89.5 90.3 92

Table 4.3. Accuracy as a function of window size. The accuracy of detecting
translated intron sequences are retrieved using 5 fold cross-validation (5-CV). The
numbers are for windowed data and we chose a size of 80 ( 90% accuracy) to build
a model to detect regions of translated introns in full length protein sequences.

Aiming at a recall above 90%, we found that a window of 80 residues was
a good compromise between the sensitivity of detecting translated introns
and correctly assigning the extent of the unspliced intron.

We used SVM (section 3.2.4) to discriminate between intron and exon
windows. Using a sliding window approach, we defined the i-score as the
averaged estimated probability that the region is a translated intron. The
choice of using SVM techniques to solve the two class separation problem is
usually based on the attractive nonlinear properties of the kernel function.
However, the i-score method uses a linear kernel. In a sense, our approach
applies a nonlinear data manipulation already at time of preparation of the
input vector. The elements of the input vector represent the positions in the
sequence. Each element contains information on how frequently the residue
(at that position) is observed together with the residues immediately up-
and down-chain of it. Hence, the nonlinear mapping into the input vector
can be seen as a mapping from the 20-dimensional amino acid residue space
to the 8000-dimensional space of tripeptide patterns. We tested several
nonlinear kernels but obtained no improvement in comparison to the linear
kernel. This is inline with the discussion in section 3.2.4, where both the
number of data points and number of features is large.

In Figure 4.12, six typical prediction curves are shown for proteins that
are contaminated with a translated intron. The curves are easily inter-
preted, where an i-score near one represents a region likely to contain in-
tronic material and an i-score close to zero represents exonic material. The
performance of the i-score method is illustrated with an ROC curve. From
the ROC curve we can decide an appropriate i-score cutoff depending on
the size and expected distribution of translated introns and true exons (see
section 3.4.2 for discussion). With an impressive accuracy of 89% and an
MCC of 0.784 on balanced data, it will preform well also in high-throughput
procedures. This is proved on both simulated and real data sets. Using
the i-score method, it was possible to detect several doubtful protein pre-
dictions in the human genome. Interestingly, several of the translations
predicted to be of poor quality were confirmed to contain translated intron

55



Present investigation

ENSP00000267485.495-600

1 100 200 300 400 500 600 700 800 900
0.0

0.2

0.4

0.6

0.8

1.0

ENSP00000313869.320-409

1 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

ENSP00000321463.76-215

1 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

ENSP00000267484.377-481

1 100 200 300 400 500 600 700 800 900
0.0

0.2

0.4

0.6

0.8

1.0

ENSP00000314649.410-507

1 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

ENSP00000367552.285-369

1 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.12. Predictions on simulated intron inserts. Typical prediction
curves for six proteins with translated introns. The x-axis represents the residue
position in the sequence. A high i-score value (blue line) indicates that the sur-
rounding region is a translated intron. The dashed edges are regions with low
confidence and the dashed red line marks an i-score of 0.90. The violet box indi-
cates the inserted translated intron.

upon the ongoing manual curation of the human genome [144,145].
In the post-genomic era, the focus has changed from finding the genes

to determining the correct transcripts. The majority of the proteins from
the human genome project are not yet verified by human curators. In
Paper V, we presented an approach that can detect regions of proteins
that are likely to represent translations of erroneously included introns.
We proved that it performs well on both simulated and real data. We also
proved that it is useful for high-throughput approaches, since it is possible
to control the false positive rate. Our novel method can be used by manual
annotators to provide suggestions on which part of a translation that is
likely to include intronic material. It can also be incorporated into any
gene prediction algorithm. Furthermore, we recommend using our method
prior to building protein family models (e.g. Pfam/HMM [72, 99–101] or
Prosite [65–67]) in order to remove sequences containing translated introns
that would otherwise introduce noise or errors in the model.
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In absence of fossil samples, molecular phylogenetics is widely applied in re-
construction of the evolutionary history of a protein family [146]. However,
despite recent advances phylogenetic methods often suffer from incorrect
branchings and branch lengths [147]. It is often more appropriate to only
investigate the taxonomical occurrences among different phyla [61]. In such
taxonomical studies, shortcomings of evolutionary models become less evi-
dent as conclusions rely only on known events (e.g. the origin of eukaryotes,
Cambrian explosion, speciation into mammals). A tree of life based on fos-
sil evidence has been made available [61] and a schematic view is shown in
Figure 4.13.

When analyzing the spread of individual protein families among king-
doms or divisions, the bias towards well characterized proteins (e.g. Uni-
ProtKB/SwissProt [6, 7] and Pfam [99–101]) should be avoided. The so-
lution is to use the proteomes of completely sequenced organisms, which
will give a balanced picture of the occurrences of proteins. However, work-
ing with multiple complete proteome sets usually involves extensive manual
pre- or post-processing of data as no individual database currently provides
a comprehensive set of complete proteomes in a systematic way. Subsec-
tions of completed proteomes can be obtained from RefSeq [84], which
includes only a minor set of high-quality proteomes, Ensembl [86] that is
limited to eukaryotes, and the Comprehensive Microbial Resource (CMR)
[148], which includes only microbial proteomes. Taxonomical grouping of
proteins from a range of sequence databases is found in Integr8 [149]. How-
ever, several of the resources which Integr8 is based on (e.g. EMBL nu-
cleotide database [5] and UniProtKB [6,7]) have a bias towards frequently
analyzed genes and protein families, which we are trying to avoid.

A full list of completed, published and ongoing genome projects is
available via the Genomes OnLine Database (GOLD) [14, 15]. GOLD in-
cludes meta data, such as the institute responsible for the project, funding,
numbers of chromosomes and ORFs, publication details, links to species
specific database etc. Unfortunately, there is no way to systematically
retrieve the protein sequences from GOLD. The increase in number of
completely sequenced genomes (almost 700, November 2007 [15]) makes it
a very labor-intensive task to download all proteomes manually. To ac-
complish this, several servers need to be accessed. Furthermore, filename
conventions are not standardized between the servers, nor is the format
of the individual fasta files. To address this situation, we developed the
GenomeLKPG sequence database, which contains all publicly available
proteins of completed genomes. The proteins are encoded by the NCBI
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Figure 4.13. Tree of Life. This tree of life is based on paleontological evidence
[61] and can be used to date the origin of a protein family. The distances are
given in intervals. Note however that fossil records are recommended only for
minimum constraint on the timing of lineage divergence events. Full data tables
and interactive view of the tree and its evidence is found at [150].

taxonomy database [151,152], which enables easy analysis of the taxonom-
ical occurrences of proteins among kingdoms and divisions in an unbiased
manner. The database is compiled in a semiautomatic manner using FTP
crawlers and an in-house version of the NCBI taxonomy database.

The genomeLKPG database has been used in several studies. In an
enzymatic and bioinformatic characterization of the MAPEG superfamily
(Paper I) the database was used to find novel members not yet published
in GenBank. This led to a doubling of the number of members and with
the new data it was possible by taxonomical analysis to date some of the
families back to the Cambrian explosion.

In another study, oligopeptide patterns in the genomeLKPG and Swiss-
Prot databases were analyzed and we found an inherent bias of certain
patterns in naturally occurring proteins that could not be explained solely
by the residue distribution in single proteins, kingdoms or databases (Pa-
per IV). Three predominant categories of patterns were determined: (i)
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patterns widespread in a kingdom such as those originating from respira-
tory chain-associated proteins and translation machinery; (ii) proteins with
structurally and/or functionally favored patterns, which have not yet been
ascribed this role; (iii) multicopy species-specific retrotransposons, only
found in the genome set. Especially the latter category would not have
been detected without the genomeLKPG database. The three categories
might affect the accuracy of sequence pattern algorithms that rely mainly
on amino acid residue usage.

The genomeLKPG database was also utilized in a study of the linker
region between the RING and B-Box domain of TRIM proteins (Paper II).
The study revealed three distinct subtypes (A, B and C) of the linker region
based on differences in their amphipathic alpha-helix. The three subtypes
had three very distinct taxonomical patterns, where type A was found in
many species ranging from mammals, opossums, birds, frogs down to sea
urchins. Type B and C proteins were found in the same set of phyla except
fish and sea urchins. Hence, subtype A seems to be the oldest form of
TRIM proteins.

Furthermore, genomeLKPG was useful by revealing new member pro-
teins not yet included in UniProtKB in an analysis of ancient sequence
motifs in the H+-PPase family [153]. GenomeLKPG has also contributed
significantly to two ongoing studies of the medium chain dehydrogenases/re-
ductases (MDR) and BRICHOS protein families, respectively (manuscripts
in preparation).
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Chapter 5

Concluding remarks

5.1 Summary

It has been an exiting five years of research using a variety of bioinformatic
methods applied on important biological problems. The common theme
of this thesis can be ascribed patterns in protein sequences. The patterns
are ranging from short oligopeptide motifs (Paper IV), via intermediate
motif lengths of active site and diagnostic pattern recognition (Paper I),
even longer stretches containing translated introns (Paper V) and up to
full length domains (Paper II). In two of the projects the hydrophobicity
analyses have been of central importance; in the MAPEG study, the four
hydrophobic transmembrane helices are a typical signature of the super-
family and in the TRIM study, an amphipathic helix was ascribed a typical
feature of the RING - B-box linker (RBL) region.

Besides the biophysical properties, the abundance of patterns also was
an important parameter; In the MAPEG study, the abundance of represen-
tative members from fish and bacteria provided new knowledge about the
origin of the family. In the TRIM study, the abundance of the RING and
B-box domains and the RBL region was analyzed and we could determine
that the RBL region is unique to the TRIM proteins. In the oligopep-
tide study, the abundance of pentapeptide patterns was used to detect
positively and negatively selected patterns, and in the i-score method this
type of abundance was used to detect proteins containing translated in-
trons. Abundance was also the common theme of the OAT tool, which
quantified the common annotation terms of a gene list and by applying
statistics we could detect enrichments of descriptive keywords. In some
sense, the GenomeLKPG sequence database (Paper VI) also had a focus
on abundance by enabling a balanced data set of proteins that can be used
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to analyze the abundance of patterns and proteins in various species and
kingdoms.

However, the following findings are in my opinion the most important
contributions to the life science community.

MAPEG The diagnostic patterns of the LC4S and MGST1 members that
later were confirmed to be part of active sites. Possibly the FLAP
pattern will be an important factor when analyzing the yet unchar-
acterized physical interaction between FLAP and 5-lipoxygenase.

TRIM The conserved amino acid residues and the subtype identification
of the RBL-region may be of crucial importance for the interaction
and stability of the RING and B-box domains. Hence, these clues
will be central in obtaining the structure of the N-terminal domains
of the disease-associated Ro52 protein.

OAT The complementarity of MeSH and GO, which represent the current
knowledge from literature and annotation projects respectively, are
of importance in order to interpret gene lists.

Oligopeptides The identification of the three categories (large protein
families, retrotransposons in genome data sets, and abundant pat-
terns not yet assigned functional roles) will be of major importance
in pattern detection algorithms.

The i-score method The impressive performance of the method will
make it to an valuable tool in the post-processing of genome-level
protein predictions. It will help in finding regions in proteins that
need to be reannotated.

GenomeLKPG provides the first comprehensive and systematic sequence
database for analysis of proteins of completed genomes and it has
already been proven useful in various studies.
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5.2 Future studies

The work performed in this thesis is part of a bigger picture. Here I will
outline some aspects of the research that will be important in the future.

MAPEG Especially the FLAP and 5-lipoxygenase interaction would be
interesting to study. Another interesting aspect is to determine the
role of MAPEG proteins in bacteria.

TRIM It would be interesting to make further structural models of the
B-box type 1 and 2 together with the RING and the three subtypes
of the RBL region. It is also possible that additional structural clues
are obtained by the current analysis on the interaction of E3-ligase
and TRIM proteins using NMR spectroscopy.

OAT It would be nice to merge the MeSH and GO hierarchical structures
in order to make simultaneous analyses. It would also be interesting
to investigate weighting schemes for reliable MeSH annotations. Cur-
rent work is focused on designing a system that facilitates automated
updates on a regular basis and allows for easy addition of further
ontologies.

Oligopeptides The most interesting investigation would be to see if these
patterns could be explained from a structural perspective. Such an
analysis has been initiated and promising results have already been
obtained.

The i-score method This is one of the most important efforts in this
thesis. The next step would be to accommodate the standards of
reporting sequence features (e.g. GFF [154]), integrate other signals
such as splice sites and supporting evidence of Ensembl. It would also
be interesting to make ’hard’ tests together with manual curation
initiatives.

GenomeLKPG A further improvement would be to make the algorithm
fully automated and to provide a dynamic download user interface in
order to enable subsections of interest to be retrieved. It would also
be useful to develop a more application ’friendly’ version of the NCBI
taxonomy (e.g. MySQL implementation), which would enable easier
use, update and integration.
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Appendix A

Acronyms

A adenine

API application programming interface

BLAST Basic Local Alignment and Search Tool

BLOSUM BLOcks of amino acid SUbstitution Matrix

C cytosine

CDS protein coding sequence

DNA deoxyribonucleic acid

EBI European Bioinformatics Institute

EGASP the human ENCODE genome annotation assessment project

EMBL European Molecular Biology Laboratory

EMBOSS European Molecular Biology Open Software Suite

ER endoplasmic reticulum

EST Expressed Sequence Tag

FDR False Discovery Rate

FLAP 5-lipoxygenase-activating protein

FPR False Positive Rate

G guanine

GO Gene Ontology

GOA Gene Ontology Annotation

GOC the Gene Ontology Consortium

GOLD the Genomes OnLine Database
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GST glutathione S-transferase

HMM Hidden Markov Model

HSP high-scoring segment pair

IPI International Protein Index

LC4S leukotrine C4 synthase

NCBI National Center for Biotechnology Information

NC-IUBMB Nomenclature Committee of the International Union of
Biochemistry and Molecular Biology

NEP negatively selected peptide

NIH National Institute of Health

NMR nuclear magnetic resonance

MAPEG membrane associated proteins in eicosanoid and glutathione
metabolism

MCC Matthews’ correlation coefficient

MEDLINE Medical Literature Analysis and Retrieval System Online

MeSH Medical Subject Headings

MGST microsomal glutathione transferase

mRNA messenger RNA

MSA multiple sequence alignment

MVDA multivariate data analysis

OAT Ontology Annotation Treebrowser

OBO Open Biological Ontologies

ORP over-represented peptide

PAM Point Accepted Mutation

PCA principal components analysis

PDB Protein Data Bank

PGES prostaglandin E synthase

POP positively selected pattern

PSI Position-Specific Iterated

RBCC RING/B-box/coiled-coil

RBL RING - B-box linker

RefSeq NCBI’s reference sequence database
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RNA ribonucleic acid

ROC receiver operating characteristics

SAM Sequence Alignment and Modeling System

SIB Swiss Institute of Bioinformatics

SQL Structured Query Language

SRS Sequence Retrieval System

SVM Support Vector Machine

T thymine

TPR True Positive Rate

TrEMBL Translated EMBL

TRIM Tripartite motif

UMLS Unified Medical Language System

UniProtKB UniProt Knowledgebase

URP under-represented peptide

XML eXtensible Markup Language
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