Check for
Updates

Using Model-Checking and Peer-Grading to Provide Automated
Feedback to Concurrency Exercises in Progvis

Filip Stromback
Department of Computer and
Information Science
Linkoping University
Linkoping, Sweden
filip.stromback@liu.se

ABSTRACT

Previous research has shown that even though many students are
aware of overarching problems with concurrency, they are less suc-
cessful in addressing any issues they have found. This implies that
the students have not yet developed a mental model that describes
the behavior of concurrent systems with enough accuracy. One
way to help students explore the non-determinism of concurrent
systems and thereby develop their mental model is through the use
of visualization tools. One example of such a tool is Progvis, which
provides students with a detailed visualization of the program state,
and allows students to single-step individual threads to explore
the program’s behavior in a concurrent environment. One problem
with this type of tools is that they are not able to provide feedback
on whether or not a proposed solution is correct, which limits their
percieved usefulness.

To increase the percieved usefulness of Progvis, we extended
it with a system that utilizes model-checking and peer-grading to
provide automated feedback to students. Our hopes were that this
would encourage students to further use Progvis to practice con-
current programming. The system was used during two years in a
course on concurrency and operating systems. This made it possible
to utilize the experiences from the first year to further improve the
system for the second year. Overall, the students expressed that
they found our additions helpful. Additionally, we observed a slight
increase in usage in the second year compared to the first year,
which suggests that the improvements in the second year increased
students’ motivation to some extent.

CCS CONCEPTS

+ Applied computing — Education; - Human-centered com-
puting — Visualization systems and tools; » Theory of computa-
tion — Concurrency.

KEYWORDS

concurrency, synchronization, visualization, model checking, peer
grading, gamification, undergraduate, computer science education

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACE °23, January 30-February 3, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9941-8/23/01.
https://doi.org/10.1145/3576123.3576125

Linda Mannila
Department of Computer and
Information Science
Linkoping University
Linkoping, Sweden
linda.mannila@liu.se

Mariam Kamkar
Department of Computer and
Information Science
Linkoping University
Linképing, Sweden
mariam.kamkar@liu.se

ACM Reference Format:

Filip Strombéck, Linda Mannila, and Mariam Kamkar. 2023. Using Model-
Checking and Peer-Grading to Provide Automated Feedback to Concurrency
Exercises in Progvis. In Australasian Computing Education Conference (ACE
’23), January 30-February 3, 2023, Melbourne, VIC, Australia. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3576123.3576125

1 INTRODUCTION

Many students struggle with learning concurrency. Previous re-
search has shown that while most students are aware of concur-
rency issues in a program, many fail to address them adequately [12,
14]. Similarly, others have found that many students fail to synchro-
nize small concurrent programs during the final exam in a course
on concurrency [19]. This likely means that students have not yet
developed a mental model that adequately describes the behavior
of concurrent programs. As in many other areas, this requires time
and practice. However, the non-deterministic nature of concurrency
complicates this process since it makes it difficult to empirically
test whether one’s mental model is correct or not. This makes stu-
dents more reliant on feedback from teachers, which in turn makes
self-study more difficult. The non-determinism also means that
the abstractions used to describe concurrent concepts are quite
different compared to those used in sequential programming [20],
which further complicates self-study.

One way to help students develop their mental model in spite of
the additional complexity is to show students a notional machine
by using a visualization tool such as Progvis [21]. While these tools
are useful to illustrate the behavior of concurrent programs, they
do not solve all problems that students face. Even though visual-
ization tools make it easier for students to find concurrency issues
and understand why they occur, they are often not able to provide
feedback regarding whether a particular solution is free from con-
currency issues or not. Some visualization tools (e.g., Progvis [22]
and ConEE [17]) contain model-checkers that are able to help stu-
dents by finding interleavings that cause the program to misbehave.
These act as examples that illustrate why the solution is incorrect.
However, even if model-checkers are a step in the right direction,
they still rely on the existence of a test program. This means that
model-checkers are not able to verify the correctness of abstrac-
tions in general, just like it is not possible to test the correctness
of sequential abstractions without a suitable test suite. This means
that students still have to rely on teachers for feedback to some
extent, even if visualization tools and model-checkers improve the
situation. As previously mentioned, this makes self-study more
difficult and thus less efficient for students.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576123.3576125
https://doi.org/10.1145/3576123.3576125
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576123.3576125&domain=pdf&date_stamp=2023-01-30

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

To help students receive feedback in areas where visualizations
and model-checkers are lacking, we extended Progvis with a system
that combines peer-grading with the automatic model-checking to
provide better (semi-)automatic feedback to students with the aim
of reducing students’ need to rely on teachers’ feedback. Our hopes
were that the improved automatic feedback would also encourage
students to use the system to a larger extent, and thereby spending
time developing their mental models. For further encouragement,
students were also awarded points for interacting with it, and the
top students were displayed on a leaderboard. This paper describes
the iterative design of the system during a period of two years.
During this two-year period, the system was evaluated in an un-
dergraduate course on concurrency and operating systems. This
allowed us to examine how students used the system and thereby
further inform the future development of the system.

The remainder of this paper is structured as follows: Section 2
presents related work and introduces Progvis in more detail. Section
3 then presents an overview of the course in which we used the
system. Sections 4 and 5 then describes our system in each of the
two years, how students used it, and a short discussion of the results.
Finally, we present a conclusion in Section 6.

2 RELATED WORK

This section provides an overview of related work in the area
of teaching and learning concurrency in general, followed by an
overview of tools that aim to help students. Finally, we provide a
more detailed introduction to Progvis, which we use in this paper.

2.1 Teaching and Learning Concurrency

Much research exists on the topic of teaching and learning con-
currency. One example is Kolikant [7, 9], who studied high-school
students and found that students had difficulties with identify-
ing the required synchronization goals. Once they were identified,
students generally managed to arrive at a solution. Lawson and
Kraemer [11] studied a similar problem in the same context and ad-
ditionally found that students sometimes use sleep functions rather
than proper synchronization mechanisms to address concurrency
issues. As mentioned in Section 1, yet others have studied students’
performance in an undergraduate context. Both Lawson et al. [12]
and Lewandowski et al. [14] found that students were generally
aware of concurrency issues, but were not always able to address
the issues in a suitable manner. Similarly, Strombéck et al. [19]
found that most students were able to find concurrency issues in a
piece of code on their final issues, but less than half the students
were able to produce a correct solution.

There are many reasons why students might fail to correctly
solve this type of problems. Kolikant [10] suggests that the issue
might be that students have an alternative view of correctness,
and that they are thereby satisfied with a solution that only works
most of the time rather than all the time. Another reason could be
that the non-deterministic nature of concurrent programs makes
testing difficult. Therefore, the trial-and-error approach to develop
programs (which Lonnberg et al. [16] found was used in concur-
rency) is no longer viable. Students must therefore transition into
relying more on formal reasoning than before [8]. Additionally, the
non-determinism means that the abstractions used in concurrent

12

Filip Stromback, Linda Mannila, and Mariam Kamkar

programming leaves more situations undefined compared to ab-
stractions in sequential programming [20]. This difference from
sequential programming likely further complicates learning con-
currency. This also highlights the importance of teaching suitable
models, as highlighted by Ben-Ari and Kolikant [2].

2.2 Tools for Teaching Concurrency

To help students learn concurrency, Ben-Ari and Kolikant [2] ar-
gue for the importance of using suitable models to illustrate the
semantics of programs. One way to do this without relying on the
teacher is by using a visualization tool. A number of such tools
have been developed with the aim of aiding students’ learning of
concurrency. Eludicate [4] is one such example. It allows capturing
and examining dynamic execution traces of Java programs, and
thus allows students to examine how the execution of different
threads interleave. Another similar, but more advanced approach
is used by Atropos [15]. It also relies on dynamic execution traces
of Java programs, but also visualizes data dependencies between
threads, which makes it easier to infer the synchronization goals
of the program. As both these tools are based on execution traces,
the ability for students to explore different interleavings at will is,
however, limited.

Another approach that gives the user more control is taken by
tools such as The Deadlock Empire!, ConEE [17] and Progvis [21].
These tools all draw inspiration from visualizations of sequential
programs and allow students to single-step the execution of each
running thread. Students are thereby able to explore different in-
terleavings at will, and they may thereby experiment and validate
their understanding of many concepts. This does, however, come
at a cost. Namely that students need to actively explore many inter-
leavings in order to find out whether their program is correct or not.
This is utilized in The Deadlock Empire to engage students through
gamification: the tool contains a number of pre-defined programs,
each of them containing some form of defect. The student is then
asked to find an interleaving that exposes the defect, and causes
the program to misbehave. ConEE [17] is similar, but allows visu-
alizing arbitrary programs written in a custom language. It also
has the ability to exhaustively search through all possible inter-
leavings, which allows automatic feedback in the form of whether
or not the program was correct. Progvis [21] is similar to ConEE,
but rather than using a custom programming language, it allows
visualizing arbitrary programs in a subset of the C language. To be
able to provide an effective visualization of programs written in C,
Progvis has the ability to visualize more complex data structures
compared to The Deadlock Empire and ConEE. A large benefit of
including a rich visualization of data is that it allows students to
explore how concurrency interacts with other, more fundamen-
tal, programming concepts. Recent improvements to Progvis [22]
have further improved the accuracy of Progvis’ visualizations, and
added a model-checker similar to that in ConEE to allow automatic
detection of concurrency issues in the visualized programs.

There are additionally a number of tools that aim to find con-
currency errors in programs rather than focusing on visualizing
them. One example is Eraser, which Choi and Lewis [3] used to
identify data races in students’ solutions to concurrency problems

!https://deadlockempire.github.io/

https://deadlockempire.github.io/

Using Model-Checking and Peer-Grading to Provide Automated Feedback to Concurrency Exercises in Progvis ACE °23, January 30-February 3, 2023, Melbourne, VIC, Australia

Thread 1

main(...)
| X
f(.__)(_I value
xl_‘ count@
int (X **x) {

(*x)->value = 2;
return (*x)->count;

DRIDDDn

Figure 1: Progvis visualizing a simple program involving
pointers and a small data structure. Variables with a red
background have just been written to, and variables with a
green background have just been read from.

in C. Another example is the Spin model checker, which Ben-Ari
found to be simple enough to be usable in teaching even though it
was designed for professionals [1]. As with ConEE, the Spin model
checker uses a custom language, Promela.

2.3 Progyvis

As mentioned previously, Progvis is a visualization tool for concur-
rent programs [21]. Its focus is not only on concurrency in isolation,
but also on how concurrency interacts with other more fundamen-
tal concepts, such as pointers and scope. Progvis achieves this by
providing a detailed visualization of the program’s state and al-
lows students to single-step threads individually to observe how
different interleavings affect the correctness of the program. The
representation of the fundamental concepts is inspired by visual-
ization tools aimed at introductory courses, such as UUhistle [18],
Python Tutor [6] and Jeliot [13]. This representation is shown in
Fig. 1, where Progvis visualizes a small program that modifies a
data structure through a pointer to a pointer.

Since some of these fundamental concepts are known to be diffi-
cult, their inclusion will most likely cause some initial confusion
for students. For example, Fisler et al. [5] found that students strug-
gle with scope, mutation and aliasing in their second and third
years of undergraduate studies. As we have found in our previous
work [19] it is, however, vital for students to understand how these
concepts interact with concurrency. For example, it is not possible
to determine which variables need to be protected by locks without
identifying which variables are shared, which is in turn not possi-
ble without understanding how the scoping rules and parameter
passing work in both sequential and concurrent programs.

Since its creation, Progvis has also gained the ability to detect
and report data races, and to automatically find interleavings that
cause the program to fail using a model-checker [22]. The model-
checker uses a transition system to verify that none of the many
possible interleavings of the visualized program cause the program
to fail (e.g., causing a data race or some other crash). It is thus
able to verify whether or not a program as a whole is free from
concurrency issues. Because of this, the model-checker is not able
to verify whether some abstraction (e.g., a set of functions that
implement a data structure) follows its specification. To achieve

13

this, the model checker also needs a test program that uses the
abstraction in a suitable manner. With the help of this test program,
the model-checker is then able to verify that the abstraction behaves
according to the expectations of the test program for all possible
interleavings. The quality of the feedback from the model-checker
for this purpose thus depends on the quality of the test program.
The model-checker is described in detail in [22].

3 CONTEXT: THE COURSE

The improvements to Progvis described in this paper were eval-
uated for, and tested in an undergraduate course on concurrency
and operating systems given at Linkoping University. The course is
given at the end of the second year of a three year bachelor program
in computer science. It consists of three parts: a set of lectures, a
set of computer lab assignments, and a final exam. All students
have previously attended a course that covers the theory behind
operating systems. As such, the lectures in the course focuses on
concurrent programming in the shared memory model after a brief
introduction of the C language (students are already familiar with
C++ from prior courses). The main focus of the course is the com-
puter labs where students implement a number of system calls in
the educational operating system Pintos.? The students first imple-
ment the system calls open, close, read and write for managing
file and console I/O. These can be implemented by utilizing existing
code in Pintos, and they do not require the students to consider con-
currency. In the next part of the computer labs, students implement
the system calls wait and exec (exec in Pintos is equivalent to fork
followed by exec in POSIX). This requires students to synchronize
the execution of multiple processes using semaphores. After this,
students synchronize the existing file system implementation using
locks to ensure that multiple processes can safely access the same
files and directories. This part also involves implementing a reader-
writer lock to allow multiple processes to read the contents of the
same file concurrently, but disallowing writes to occur concurrently
with other operations. Finally, students make sure that the system
calls are secure by validating that any pointers passed to the system
calls refer to valid memory in a region accessible by the process.
This part does not involve concurrent programming.

During both years Progvis was available for students to use and
the assignment that involved creating a reader-writer lock pre-
sented Progvis as a way to debug the implementation in isolation.
Due to limitations in Progvis it was, however, not possible to vi-
sualize the entirety of Pintos, and therefore few students used it
voluntarily. In the second year, two new lab assignments were added
to introduce semaphores and locks in Progvis. These assignments
asked students to synchronize a small piece of code that resembled
what they would later encounter in Pintos.

Many students experience the lab assignments as very time-
consuming, partially due to the large size of the Pintos codebase
and the scope of the assignments compared to prior courses, but also
due to the difficulty of debugging concurrency- and memory issues.
A part of these struggles might be due to the need to transition to a
more formal approach to programming as mentioned by Kolikant
[8]. The course ends with a final exam which contains questions

Zhttp://www.scs.stanford.edu/07au-cs140/pintos/pintos.html

http://www.scs.stanford.edu/07au-cs140/pintos/pintos.html

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

A: Upload ‘

Teacher (or student) |

Problem bank

m————

Figure 2: Overview of the peer-grading system added to
Progvis during the first year.

where students are given a piece of code, and asked to identify and
eliminate any concurrency issues in the code.

The final part of the course is a final exam. The focus of the exam
is two or more assignments where students are asked to synchronize
a small piece of C code. This style of questions is similar to the
questions that were used in the pilot study of Progvis [21], and those
used in the system introduced in this paper. The years studied in
this paper are 2021 and 2022, and due to the ongoing pandemic the
course was taught remotely in 2021.

4 THE FIRST YEAR

The system used in the first year was developed and evaluated be-
fore the improved memory model and the model-checker were avail-
able in Progvis. As such, Progvis was not able to provide automatic
feedback on whether students’ solutions contained concurrency
errors or not at the time. Therefore, the goal of the first version
of the system was to utilize peer-grading to provide this type of
feedback without relying on a teacher. To encourage students to
use the system, and thereby increasing the likelihood of students
receiving feedback, we added gamification elements to the system.
In particular, students were awarded points for attempting to solve
problems and for finding concurrency issues in other students’ solu-
tions. Our hopes were that the ability to get feedback on problems,
coupled with the points awarded would motivate students to use
Progvis to explore concurrency and thereby also developing their
mental model of concurrency.

The design of the first iteration of the system is illustrated in
Fig. 2. As can be seen in the figure, the system was designed around a
central problem bank. Each problem consisted of a small concurrent
program written in the C language. The teacher first uploaded a
set of such problems, which we refer to as initial problems, to the
problem bank (step A in Fig. 2). Each of these initial problems
contained some concurrency errors that students would later be
asked to identify and fix (i.e., the same type of problems used in
[21]). Students were also able to upload initial problems if they
wished to receive feedback on their own code.

Students were then able to browse the problem bank to find
problems to solve. Problems were solved in two steps. First, the
system presented the student with a visualization of the program
and asked them to find an interleaving that exposes a concurrency
error in the program (step 1 in Fig. 2). If the student succeeded to find
such a problematic interleaving, they were then asked to modify
the program to fix the error they found (step 2 in Fig. 2). During
the latter step, students had the ability to modify the code in the

14

Filip Stromback, Linda Mannila, and Mariam Kamkar

operating system’s default text editor, and they could visualize their
proposed solution in Progvis as they saw fit. Students who were
unable to find a problematic interleaving in step 1 could indicate
that they believed the code to be correct by clicking a button.

Two pieces of data were recorded by the system for each problem
a student attempted to solve. If the student managed to find a prob-
lematic interleaving, the system recorded the interleaving and what
type of error the interleaving would expose (e.g., assertion, use after
free). If the student believed the code to be correct, this fact would
also be recorded, but no interleaving would be recorded. If a student
proceeded to fix the issues they found, their modified version of the
problem would be submitted back to the problem bank (as indicated
in Fig. 2) as an improved problem. The improved problems were
treated almost exactly like initial problems by the problem bank:
other students were able to browse them and attempt to find er-
rors in them as for initial problems. The distinction between initial
problems and improved problems exists to allow the author of a
problem (both to initial- and improved problems) to easily find and
view any improvements made by other students. The author of
the problem was also able to view a visualization of any problem-
atic interleavings found by other students. This information was
also shown to all students who had solved the particular problem.
Thus, the feedback provided by the system was twofold: first, the
system would provide problematic interleavings that the original
author might have failed to consider, and second, it provided sug-
gestions for how to solve any issues present. These suggestions
for further improvements could then further be peer-graded in a
similar manner.

Since this approach relies on students using the system for peer-
grading to work, it is important to motivate students to use the
system. To achieve this, points were awarded for interacting with
the system, and the ten students with the highest scores were
displayed on a leaderboard in the system. To reward tasks that
provide feedback to other students, the number of points awarded
for different tasks were based on the task’s value from a peer-
grading perspective. For example, if a student finds an error in
another student’s problem, this provides valuable feedback to the
author of the problem, and is thus rewarded with a comparatively
large number of points. On the other hand, declaring a problem as
being correct provides comparatively little value as this might be
incorrect, and since the system was unable to verify the correctness
of such statements. As such, points were awarded for solving other
students’ problems as follows:

e Finding an error in a problem: 5 points
e Uploading an improved problem: 2 points
e Declaring a problem as being correct: 1 point

To disallow students collecting points by submitting similar solu-
tions to the same problems, the system only accepted one solution
that highlighted a particular issue for each problem. For example,
only one solution that caused an assertion would be accepted. Ad-
ditionally, to encourage students to submit correct solutions the
author of a problem received points based on the peer grading as
follows:

o Author of a problem declared as correct: 2 points
o Author of a problem someone finds an error in: 1 point

Using Model-Checking and Peer-Grading to Provide Automated Feedback to Concurrency Exercises in Progvis ACE °23, January 30-February 3, 2023, Melbourne, VIC, Australia

4.1 Results From the First Year

Out of the the 85 students who signed up to the computer lab
assignments in the first year, 78 solved at least one of the lab assign-
ments, 11 students signed in to the system at least once (i.e., 13%
of the students who signed up), and 5 students were active in the
sense that they found at least one error (the other students might
have viewed problems, this would not be visible in our data). The
timestamps revealed that one of the students was only active in
the weeks before the retake exam, and not during the course itself.
Each of the active students found between 7 and 14 errors (11.4
on average), and uploaded between 3 and 11 improved problems
to the problem bank (7.4 on average). However, only one student
attempted to find an error in an improved problem. In this case
they correctly concluded that the improved problem was correct.

Since we only have evidence of one student having explored
other students’ improved problems, we focus on the 15 problems
uploaded by the teacher, which are shown in Table 1. The column
correct shows that only three solutions indicated that an initial
problem was correct. These were made by two students: one student
initially answered that problems 1 and 3 were correct, but later
found an error in problem 1. The other student initially answered
that problem 3 contained an error, but later found an error there. The
column found error contains the number of students that found at
least one error. The next column, no. of errors, contains the number
of errors found. In most cases the numbers in these columns are
equal, which means that most students only found one type of
error. Some students did, however, find multiple types of errors in
problems 4, 7, 12, and 15. Finally, the column improved contains
the number of improvements submitted to each problem. There
was only one instance where a student submitted more than one
improvement to a problem (to problem 7). We can also see students
submitted an improvement after finding an error in 70% of all cases.
The only problems students did not submit an improvement to were
problems 14 and 15. For problem 14 this is likely because it uses
atomic operations, which are only covered briefly in the course.
Problem 15 was covered in detail during a tutorial session with
TAs, which is likely why no students felt it necessary to submit a
solution to it.

To assess the quality of the solutions we manually graded the
37 improved problems after the end of the course. We found 8 im-
provements that were incorrect in some way. These were distributed
between 6 of the problems as follows:

Problem 3: One student attempted to solve the issue in this prob-
lem by using atomic operations to implement a lock. The only issue
was that they did not use an atomic store to release the lock.

Problem 4: One student acquired a lock but forgot to release
it. This particular issue was not visible in this case as the correct
location of the release operation would have been at the end of the
main function.

Problem 7: Two of the submitted improvements to this problem
were incorrect. One failed to wait for the other thread to complete,
which was caught by an assertion in the code. The other included an
unnecessary lock to protect data already protected by a semaphore.

Problem 8: One of the submitted improvements altered the se-
mantics of the wait function by using a global semaphore. The main
function was modified to compensate for the altered semantics.

15

Table 1: Overview of the usage of the system in the first year.

j2]

Ef g

<t v b3 L
3] o T b=l o
= = =] S) =
g . s 5 S F

A¢ | Description O B Z 5
1 | Shared global 1 5 5 5
2 | Shared by pointer 0 5 5 4
3 | Global, no threads 2 4 4 1
4 | 2-thread array summation 0 5 6 4
5 | Bounded buffer, single r/w 0 4 4 2
6 | Bounded buffer, multi r/w 0 3 3 1
7 | Task 1 from [21] (wait forathread) | 0 4 6 5
8 | Task 2 from [21] (spawn and wait) 0 3 3 3
9 | Task 3 from [21] (bounded buffer) 0 2 2 2
10 | Task 4 from [21] (future) 0o 3 3 3
11 | Variant of problem 4 0o 2 2 1
12 | Waiting for a thread 0 3 4 3
13 | Transaction in a bank 0 3 3 3
14 | Linked stack using atomics 0 1 1 0
15 | Dining philosophers 0 1 2 0
Total 3 48 53 37

Problem 9: One student solved the concurrency issues in this
problem by protecting the usage of the data structure rather than
the data structure itself, contrary to a comment in the code.

Problem 10: One of the two incorrect improvements failed to
account for the fact that two threads could try to get the value from
a future object concurrently. This could cause their implementation
to deadlock. The situation required for the deadlock to occur could,
however, not happen in the way the future was used in the provided
test program. The other incorrect improvement failed to wait in
some cases.

4.2 Discussion of Results From the First Year

Since a majority (29 of 37) of the submitted improvement were cor-
rect, this suggests that the visualizations in Progvis aided students
when developing their improvements, similarly to the conclusions
of previous work [21]. However, the incorrect improvements for
problems 8, 9, and the first incorrect improvement for problem
10 highlight a shortcoming of the system. These improvements
were technically correct in the sense that they did not contain any
concurrency issues when used with the provided example. They
did, however, not follow the specification of the data structure as
specified by the problem (provided as comments in the code, sim-
ilarly to [21]). As such, this type of problem would not be found
by a model-checker unless a more sophisticated test program was
provided. This type of issue with concurrent aspects of abstractions
has previously been highlighted as a possible cause for mistakes
when solving concurrency problems [20]. As such, this is one of the
problems we aimed to solve in the second iteration of the system.
Furthermore, as the ability to interpret a specification and construct
suitable test cases is also a valuable skill, we aimed to let students
practice writing this type of tests as well in the second iteration of
the system.

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

Another observation is that only one student seems to have at-
tempted to find errors in other students’ improved problems. This
is unfortunate, as it means that students will not get feedback on
their improved problems, which in turn reduces the usefulness of
the system. One reason for this might be because most improved
problems were indeed correct, and that students thus quickly real-
ized that it was usually fruitless to try to find errors in improved
problems. Another detail that probably reinforced this belief was
that improved problems were labelled “Solution to X” (where X
was the name of the initial problem).

A final issue was that only 5 of the 85 registered students used
the system actively. There are many possible reasons for this. Since
many students experience the lab assignments in the course as very
time-consuming, this could be due to a perceived lack of benefits
given the time investment required to use the system. Even though
Progvis was used during the lectures, it could also be due to a lack
of integration into the course, causing students to fail to realize
its relevance. Sadly, the lack of students who actively use the sys-
tem also makes the system less attractive to use, as it reduces the
possibility of receiving feedback from peers.

5 THE SECOND YEAR

In preparation for the second year, we used the observations from
the first year (Section 4.2) to revise the system and create a second
iteration of the system. Since most improved solutions were cor-
rect, we opted to shift the focus of the peer-grading from assessing
whether or not the code contained concurrency errors to whether
or not the implementation of some abstraction (e.g., the implemen-
tation of a data structure) followed the specification of its interface.
This change was further motivated by the fact that the authors
of Progvis implemented the model-checker in Progvis [22] before
development of the second version began. As the model-checker
allowed Progvis to automatically assess whether a particular pro-
gram contained concurrency errors or not, the previous approach
of using peer-grading to achieve the same goal became redundant.
Shifting focus to assessing whether an implementation follows
a specification does, however, not have the same problem as the
model-checker is not able to assess this aspect automatically with-
out a suitable test suite.

To shift the focus to how well an implementation follows its
specification, problems were split into three parts: an implementa-
tion, a test, and a reference implementation. As was the case in the
first year, each of the three parts consisted of a piece of C code. The
implementation contained an implementation of some abstraction,
typically a data structure. The expected behavior of the abstraction
was documented in comments alongside each of the abstractions’
functions. This implementation was initially incorrect (e.g., by lack-
ing synchronization altogether). The test then contained code that
used the abstraction through its interface, and thereby tested some
of its behavior. Combining the test with the implementation makes
it possible to utilize the model-checker to check whether the be-
haviors tested by the test exposes some concurrency issues in the
implementation or not. The test was also incomplete initially, and it
typically only illustrated basic usage of the data structure without
making any effort to exercise more interesting behaviors of the
implementation. This basic usage was, however, typically enough

16

Filip Stromback, Linda Mannila, and Mariam Kamkar

Problem bank

[l: Does the test expose errors in the implementation?]

4% i Yes No
= [2a: Find the error]
23 ¥ [2b: Improve the test]

[3a: Improve the impl. j ‘

Figure 3: Overview of the system added to Progvis during the
second year.

to expose some issue in the incomplete implementation. The final
part, the reference implementation, contained a known good imple-
mentation of the abstraction. This implementation would never be
shown to students, but was only used to validate whether or not
the test was correct using the model-checker.

The illustration in Fig. 3 shows how these three-part problems
were used in the system. Similarly to the first year, the teacher first
uploaded a set of problems to the problem bank (step A in Fig. 3).
Students were then able to browse the problems in the problem
bank and select one to solve. In the second year, problems were
solved differently depending on whether the test exposed errors
in the implementation or not (step 1 in Fig. 3). Problems where
the model-checker found that the test exposed an error in the
implementation were solved similarly to the first year: the student
would first be shown a visualization of the program, and asked
to find an interleaving that exposes an error (step 2a in Fig. 3).
One difference from the first year was that studens did not have
the option to indicate that they believed the implementation to be
correct, since the model-checker had verified that this was not the
case. After finding a problematic interleaving, the student would
then be asked to improve the implementation to fix the error by
modifying it in the operating system’s default text editor (step 3a
in Fig. 3). When the student believed they had fixed the issue they
found, they could submit their improved implementation back to
the problem bank. As a part of this process, the system used the
model-checker to verify that the improved implementation fixed
all errors exposed by the test. The results of this verification were
presented to the student before submitting their solution, but they
had the option to submit regardless of whether errors were found
or not.

Problems where the test did not expose any errors in the imple-
mentation were solved differently. In this case, the student would
simply be asked to improve the test to make it expose an error in
the implementation (step 2b in Fig. 3). During this step, the student
was able to use the visualizations in Progvis to explore the impact
of their improved test. Before submitting the improved test to the
problem bank, the system used the model-checker to verify 1) that
the improved test actually exposed an error in the implementation,
and 2) that the improved test did not expose an error in the ref-
erence implementation. If the improved test exposed an error in
the reference implementation, the test would be considered invalid

Using Model-Checking and Peer-Grading to Provide Automated Feedback to Concurrency Exercises in Progvis ACE °23, January 30-February 3, 2023, Melbourne, VIC, Australia

and it would therefore not be possible to submit. In this case, the
student would not be allowed to submit their improved test unless
it successfully exposed an error in the implementation.

As in the first year, the improved problems were uploaded back
into the problem bank along with any problematic interleavings
found in step 2a. The system kept track of the relation between the
improved problem and the original problem that it improved upon
so that the author of the original problem would be able to easily
find and view any improvements. In this way, the author of the
problem would be able to receive feedback on their problem, either
in the form of an improved test that highlighted some problem
in the improved implementation, or in the form of an improved
implementation that fixed some error exposed by the test.

To motivate students to use the system and thereby provide
feedback to their peers, students were again awarded points for
interacting with the system. The top ten students were displayed on
a leaderboard in the system. Again, the number of points awarded
for each task was determined based on the value of the task from
a peer-grading perspective, particularly in areas where the auto-
grader would not be able to provide automated feedback. As such,
a student who provides an improved implementation that correctly
solves the issues exposed by the test is awarded with a compara-
tively large number of points since it provides an example of how
problems can be solved. Similarly, improving a test so that it exposes
new issues is rewarded with even more points, since this type of
feedback is valuable for the author of the problem to highlight parts
of the semantics that they might have not understood properly. As
such, points were awarded as follows:

e Finding an error (step 2a): 10 points

e Submitting an improved implementation (step 3a): 10 points

e Submitting an improved implementation that solves all is-
sues exposed by the test (step 3a): 50 points

e Improving a test so that it exposes an error in the implemen-
tation (step 2b): 100 points

To avoid the risk of a student intentionally submitting faulty
solutions to earn more points, the full points listed above were only
awarded if a student found an error in, or improved upon another
students’ problem. To not entirely discourage iterative refinement
on one’s own problems (e.g., fixing an error just exposed by an
improved test), students were awarded a third of the points in the
list above for these cases.

Finally, to further integrate the system into the course, Progvis
was used during two of the computer labs in the course. Further-
more, students who collected more than 400 points before the final
exam were awarded with bonus points corresponding to 3% of the
maximum score on the final exam.

5.1 Results From the Second Year

We observed a slight increase of students who used the system in the
second year compared to the first year. This year, 90 students signed
up to the computer lab assignments and 85 of them solved at least
one of the lab assignments. Furthermore, 15 of these students signed
in to the system at least once (i.e., 17% of the students who signed
up). Out of these, 10 students were considered active as they found at
least one error. They found between 1 and 13 errors (8.1 on average).
Eight out of these students submitted at least one improvement.

17

‘ 1: Spawn and wait }—»@ X7 O—>D—>© x4
7

O
X6
‘ 2: Future ‘

\Qw D\‘@xs

X3

O~ =0
‘ 3: Bounded buffer /%D—»@x4
“OST-O

X3
‘ 4: Array summation)Dﬂo D
e X7 @ X5

Figure 4: Overview of the usage of the system during the sec-
ond year. Squares and rectangles represent problems where
the test exposes an error in the implementation. Circles rep-
resent problems where the associated test does not expose
an error in the implementation. Problems with a gray back-
ground were uploaded by the lecturer.

These 8 students submitted between 7 and 13 improvements (9.5 on
average). Due to the added complexity of splitting problems into
test and implementation, only five initial problems were uploaded
to the problem bank this year. All of them were adapted from
problems used in the first year. In spite of the lower number of initial
problems, students found 81 errors in total, three of which were
cases where the same student found different types of errors in the
same problem. Furthermore, a total of 73 improved implementations
were submitted which means that 90% of students who found an
error submitted an improved implementation.

In the second year there were many cases where students further
improved other students’ problems. As such, the table view of stu-
dents’ interactions used to summarize the results of the first year is
not suitable for the data from the second year. Instead, we illustrate
the students’ interactions with the five initial problems in Fig. 4.
Each shape represents a problem in the problem bank. Rectangles
with labels in them represent the five original problems submitted
by the teacher. For all of these problems, the test exposed errors in
the implementation. Improved problems are represented by squares
and circles. Squares represent problems where the test exposes
errors in the implementation, and circles represent problems where
the associated test does not expose any errors. Shapes with gray
background are problems (initial or improved) submitted by the
teacher. To aid the readability of the figure, identical symbols are
merged into one as indicated by the notation XN.

From Fig. 4 we can see that 70 out of the 73 improvements to
implementations solved all issues exposed by the corresponding
test (i.e., all but 3 arrows from squares or rectangles point to circles
in Fig. 4, one in each of problems 2, 4 and 5). This is not surprising
in and of itself, as the students were notified about the correctness
of their solution before submitting it. However, the fact that 81

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

errors were found, and 70 correct improved implementations were
submitted means students managed to correctly fix the error they
found in 86% of cases. Furthermore, we were pleasantly surprised
to see that three students submitted improvements to tests that
successfully exposed problems in other students’ solutions. We
were initially worried that this might be too difficult for novices,
which is why the teacher submitted improved tests in cases where
student-submitted improved implementations were incorrect.

Since all but three implementations were correct in the sense that
the test program no longer exposed any errors in them, the errors
in the improved implementations were due to not accounting for
additional threads or some aspect of the abstraction. One example
of this is the topmost sequence of improvements to problem 2 in
Fig. 4. The first improvement failed to consider that it should be
possible to retrieve the value from a future more than once, and
the implementation would deadlock in such cases. The improved
test submitted by the teacher illustrated this issue by attempting
to retrieve the value twice (this case was intentionally omitted in
the initial version). The student then improved the implementation
once again. This time the implementation was almost correct. A
value of zero was used to indicate the absence of a result, and as
such the implementation would not work if a zero was posted in
the future. This issue was highlighted by the next improved test
submitted by the teacher, and subsequently fixed by four students.
Another example is the two incorrect improved implementations
submitted to problem 3. Both of them only considered the case
where one thread added values and another thread removed values
(as was the case in the initial test), but failed to account for the fact
that multiple threads might add or remove values concurrently. As
such, the improved tests all spawned another thread that added
values to highlight this issue. As indicated in the figure, this issue
was then fixed by multiple students.

Finally, to evaluate students’ impressions of the system, we also
sent a survey to the 15 students who had signed in to the system
at the end of the course. We received 5 responses, out of which
one noted that they did not use the system after signing in once.
The remaining four responses were positive towards the system,
highlighting the extra opportunities for practice, the benefit of the
two types of improvements, and problems that caused use-after-
free errors. The responses also highlighted that the documentation
regarding what types of synchronization primitives were available
were lacking and could be improved. They also noted that it was
difficult to browse the problem bank when it was filled with many
improvements to the same problem, which was the case towards
the end of the course.

5.2 Discussion of Results From the Second Year

By comparing students’ usage of the system in the first year (Ta-
ble 1) to the usage in the second year (Fig. 4) we can see that the
number of submissions without concurrency issues remained high.
From Fig. 4 we can also see that more students improved on other
students’ problems, and thereby giving other students feedback
on their submitted improvements. One reason for this could be
that the title of improved problems was changed from “Solution
to X” to “Improvement to X” in order to better reflect that the
improved problems were not necessarily correct. We do, however,

18

Filip Stromback, Linda Mannila, and Mariam Kamkar

believe that the main reason for the improved engagement was
that the three-part problems provided more opportunities to iter-
atively improve the problems. As previously mentioned, this can
be seen in a number of places in Fig. 4, where both the teacher
and students provided improved tests that exposed new errors in
an improved implementation. When this happened, the author of
the improvement found the improved test, and were thus able to
further improve their implementation to fix the new errors that
were exposed. In the example for problem 2 as mentioned above,
this happened three times before no new errors were found in the
implementation.

As mentioned previously, we were also pleasantly surprised to
find that students attempted and managed to find errors in other
students’ improved implementations. Finding errors in an imple-
mentation in this way is an important skill when working with
larger concurrent programs, and it is therefore worthwhile to prac-
tice this skill. As can be seen in Fig. 4, the second iteration of the
system managed to engage at least a few students to practice this
skill. As an additional benefit, these students also provided valuable
feedback to their peers in areas where feedback from the model-
checker is lacking.

The usage of three-part problems might also be a reason for the
slight increase in usage from the first year to the second (alongside
the allure of receiving bonus points on the final exam). This type
of problems allow students to look at correctness from a different
perspective. Instead of treating correctness as the absence of con-
currency errors in a particular program, students need to consider
whether or not their implementation mirrors the semantics that
are described by the abstraction they are implementing. This is
something that we have previously found students to struggle with
when solving concurrency problems [20], and is thus also an aspect
that is worthwhile to illustrate. Furthermore, the combination of
the model-checker and peer-grading used in the system means that
students both get immediate feedback on whether they have made
progress towards a correct solution or not (i.e., if they have fixed
all current errors in the implementation, or if their improved test
found new errors), and they eventually receive feedback from their
peers regarding whether their improved implementation still have
inconsistencies compared to the specification (where the model-
checker is unable to provide feedback). As the system relies on
model-checking and peer-grading, this can be achieved without
teacher or TA intervention, at least if enough students use the
system regularly.

Even though the usage of the system increased slightly in the
second year, the number of students who used it actively was still
lower than we had hoped (11% of students who signed up for the
lab assignments). As mentioned in Section 4.2, many students expe-
rience the lab assignments in the course as very time-consuming.
This is likely a large reason for the low usage of the system: only stu-
dents who managed to solve the lab assignments relatively quickly
perceived that they had time to spare to engage with the optional
assignments in the system. Another reason for the low usage could,
of course, be that students do not find the system valuable. This is,
however, likely not the main issue since the few students who an-
swered the survey were positive towards the system. Furthermore,
the slight increase in the number of students who used the system

Using Model-Checking and Peer-Grading to Provide Automated Feedback to Concurrency Exercises in Progvis ACE °23, January 30-February 3, 2023, Melbourne, VIC, Australia

indicates that the second iteration of the system is at least better at
engaging students compared to the first version.

5.3 Threats to Validity

Due to the small number of self-selected students who used the
system, the trends described in this paper should be interpreted
with some care. First and foremost, due to the fact that many stu-
dents find the course to be time-consuming, it is very likely that
only students who did not need to spend as much time on the
lab assignments found the time to use the system. As such, stu-
dents with high programming skills are likely over-represented in
this population, which means that the results regarding quality of
solutions are likely biased towards correct solutions. This is not
a problem in and of itself for the purposes of the conclusions in
this paper, as we are not interested in students performance when
solving the problems. Rather, we are interested in understanding
how students use the system, so that we can better understand if it
manages to engage students in the peer-grading, and if students
find the system valuable. Of course, the skewed cohort likely has an
impact on these aspects as well, but we do not believe these effects
to be as large as for other metrics, such as correctness.

In the second year, we observed a slight increase in the number
of students who used the system compared to the first year. While
this change is likely at least partially due to the changes in the
system, there are other possible reasons as well. As previously
mentioned, the use of Progvis was further integrated into the lab
assignments in the course in the second year. These changes led
to more students using Progvis during the lab assignments in the
second year, which likely has an impact on the number of students
who considered using the proposed system. Awarding bonus points
on the final exam likely had a similar impact as well. As such, it
is difficult to attribute the increased usage to any one of these
three factors. We do, however, believe that all of these factors are
important to consider when the goal is to encourage students to
practice concurrent programming using an approach similar to
ours.

5.4 Future Improvements

While the data suggests that the second iteration of the system
had some success in encouraging students to provide feedback to
their peers in the form of improved tests implementations, there
are areas for further improvement. First and foremost, the number
of students who used the system in the second year was still lower
than we hoped. As previously mentioned, this is likely partially
due to the time required for the lab assignments in the course, but
it is likely also affected by the degree of integration in the course
and how useful the students perceive the system to be. The two
latter aspects can be addressed by further promoting the benefits
of the system during lectures, and posting more information on the
course webpage, for example. Another approach would be to make
it mandatory for students to interact with the students to some
degree during the lab assignments. This would have the additional
benefit of providing data from more students, which would allow a
more thorough analysis than what was possible in this paper.

19

The survey from the second year also highlighted two additional
areas of improvement. As both of these issues are related to usabil-
ity aspects of the system, addressing them will likely also have a
positive impact on the number of students who use the system. The
first of these issues is the lack of good, and easily accessible docu-
mentation on certain aspects of the system. In particular, students
noted that it is not easy to find information on which synchro-
nization primitives are available, and how they are used. This was
initially not deemed necessary, as the available synchronization
primitives are the same as those used in the lab assignments, but
clear documentation on the subject is always helpful. Furthermore,
the C frontend in Progvis has some limitations that should also be
documented clearly.

The second, and perhaps largest, issue that should be addressed
is the design of the user interface students use to browse the prob-
lem bank. In the second version of the system, students selected
problems from one of two lists in a tabbed interface: one for prob-
lems where the implementation should be modified, and another
for problems where the test should be modified. As noted by some
students in the survey, these lists quickly became difficult to navi-
gate since they contained all improvements that all other students
had submitted. This approach also has the drawback that students
who start using the system later on in the course have access to
improved tests compared to students who started earlier (if they
manage to find them in the many items in the lists). To address
these problems, it would therefore be advisable to re-design this
part of the user interface. One possibility would be to separate the
process of selecting a problem into two steps. First, the user would
select which initial problem to work with. After that, the system
would only show problems that are improvements to that initial
problem (either directly or indirectly). If this approach is chosen,
the system could also require that every user attempts to solve the
initial problem before being able to view other students’ improve-
ments, thus giving all students an equal starting point regardless
of when they started using the system. Another option would be to
separate the tests from the implementations. Instead of bundling
a specific implementation with a specific test, the system could
instead maintain a set of different tests that can be applied to any
implementation to see whether the test exposes some concurrency
errors in that implementation, similarly to the approach described
by for example Wrenn et al. [23, 24]. This way, students would be
able to collaborate to create an ever-improving pool of tests that
can be applied to any students’ implementation. The model-checker
could then be used to pick relevant combinations of tests and im-
plementations that students for students to practice finding and
fixing errors in the implementations.

6 CONCLUSION

In this paper we have presented two versions of a peer-grading
system that we added to Progvis in order to encourage students
to practice their concurrent programming skills. The system aims
to do this by supplying interesting problems for students to solve,
and to provide (semi-)automatic feedback through peer-grading.
We tested the system in a course on concurrency and operating
systems over the course of two years, which allowed us to itera-
tively refine the system for the second year. We found that students

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

who used the first version of the system, which focused solely on
correctness, managed to solve the problems in the global problem
bank. However, only one student attempted to find errors in other
students’ problems. This shortcoming was addressed in the second
version of the system by relying on the model-checker to assess
correctness, and instead focus the peer-grading efforts on assess-
ing whether the implementation of an abstraction corresponded
to the intended behavior of the abstraction. This was achieved by
separating the implementation of the abstraction from the code
that tests the abstraction. The data from the second year indicates
that these changes were successful in achieving a higher level of
peer-grading, even though the number of participants were still
smaller than we had hoped. Additionally, data from the second year
revealed some areas for further improvement, mainly regarding to
how students browse the problems in the problem bank, to further
make the system easier and more rewarding to use.

In conclusion, we believe that the system described in this paper
(particularly the second version) shows a promising approach for
providing students with additional exercises that students can use
to further practice concurrent programming in addition to other,
more traditional forms of teaching where teaching staff are avail-
able. Since the system relies on model-checking and peer-grading
to give students feedback, this can be done without much extra
work from teachers, and without students having to wait for the
teachers to be available to assess their solutions. Furthermore, we
believe that the style of problems used in the second version of the
system are interesting on their own, as they are able to highlight
many subtle aspects that need to be taken into consideration in
a concurrent system. Due to the focus on the correspondence be-
tween the specification of an abstraction and its implementation,
this type of problems might be suitable in other contexts as well,
for example to practice software testing.

Finally, it is worth reiterating that the tool is not aimed to replace
other forms of teaching, such as laboratory sessions with TAs.
Rather, it is aimed to provide additional opportunities for students
to practice outside of scheduled sessions without incurring much
additional work for the teaching staff. The system presented in this
paper is freely available at https://storm-lang.org/.

REFERENCES

[1] Mordechai Ben-Ari. 2007. Teaching Concurrency and Nondeterminism with Spin.

In Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology

in Computer Science Education (Dundee, Scotland) (ITiCSE ’07). Association for

Computing Machinery, New York, NY, USA, 363-364. https://doi.org/10.1145/

1268784.1268936

Mordechai Ben-Ari and Yifat Ben-David Kolikant. 1999. Thinking Parallel: The

Process of Learning Concurrency. In Proceedings of the 4th Annual SIGCSE/SIGCUE

ITiCSE Conference on Innovation and Technology in Computer Science Education

(Cracow, Poland) (ITiCSE *99). ACM, New York, NY, USA, 13-16. https://doi.org/

10.1145/305786.305831

[3] Sung-Eun Choi and E. Christopher Lewis. 2000. A Study of Common Pitfalls
in Simple Multi-Threaded Programs. SIGCSE Bull. 32, 1 (March 2000), 325-329.
https://doi.org/10.1145/331795.331879

[4] Chris Exton. 2000. Elucidate: A Tool to Aid Comprehension of Concurrent Object
Oriented Execution. SIGCSE Bull. 32, 3 (July 2000), 33-36. https://doi.org/10.
1145/353519.343066

[5] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing
and Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Ed-
ucation (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 213-218. https://doi.org/10.1145/3017680.3017777

[6] Oscar Karnalim and Mewati Ayub. 2017. The Effectiveness of a Program Visu-
alization Tool on Introductory Programming: A Case Study with PythonTutor.

&

20

Filip Stromback, Linda Mannila, and Mariam Kamkar

CommlIT (Communication and Information Technology) Journal 11, 2 (2017), 67-76.

[7] Yifat Ben-David Kolikant. 2001. Gardeners and Cinema Tickets: High School
Students’ Preconceptions of Concurrency. Computer Science Education 11, 3
(2001), 221-245.

[8] Yifat Ben-David Kolikant. 2004. Learning Concurrency as an Entry Point to
the Community of Computer Science Practitioners. Journal of Computers in
Mathematics and Science Teaching 23, 1 (2004), 21-46.

[9] Yifat Ben-David Kolikant. 2004. Learning concurrency: evolution of students’

understanding of synchronization. International Journal of Human-Computer

Studies 60, 2 (2004), 243-268. https://doi.org/10.1016/j.ijhcs.2003.10.005

Yifat Ben-David Kolikant. 2005. Students’ Alternative Standards for Correctness.

In Proceedings of the First International Workshop on Computing Education Research

(Seattle, WA, USA) (ICER ’05). ACM, New York, NY, USA, 37-43. https://doi.org/

10.1145/1089786.1089790

Aubrey Lawson and Eileen T. Kraemer. 2020. Sidekicks and Superheroes: A

Look into Student Reasoning about Concurrency with Threads versus Actors.

In Proceedings of the ACM/IEEE 42nd International Conference on Software En-

gineering: Software Engineering Education and Training (Seoul, South Korea)

(ICSE-SEET °20). Association for Computing Machinery, New York, NY, USA,

82-92. https://doi.org/10.1145/3377814.3381706

Aubrey Lawson, Eileen T. Kraemer, S. Megan Che, and Cazembe Kennedy.

2019. A Multi-Level Study of Undergraduate Computer Science Reasoning

about Concurrency. In Proceedings of the 2019 ACM Conference on Innova-

tion and Technology in Computer Science Education (Aberdeen, Scotland Uk)

(ITiCSE °19). Association for Computing Machinery, New York, NY, USA, 210-216.

https://doi.org/10.1145/3304221.3319763

Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A Uronen. 2003. The

Jeliot 2000 program animation system. Computers & Education 40, 1 (2003), 1-15.

https://doi.org/10.1016/S0360-1315(02)00076-3

Gary Lewandowski, Dennis J. Bouvier, Robert McCartney, Kate Sanders, and Beth

Simon. 2007. Commonsense Computing (Episode 3): Concurrency and Concert

Tickets. In Proceedings of the Third International Workshop on Computing Educa-

tion Research (Atlanta, Georgia, USA) (ICER 07). Association for Computing Ma-

chinery, New York, NY, USA, 133-144. https://doi.org/10.1145/1288580.1288598

Jan Lonnberg. 2012. Understanding and Debugging Concurrent Programs through

Visualisation. G5 Artikkelivaitoskirja. Aalto University. http://urn.fi/URN:ISBN:

978-952-60-4530-6

Jan Lonnberg, Anders Berglund, and Lauri Malmi. 2009. How Students Develop

Concurrent Programs. In Proceedings of the Eleventh Australasian Conference on

Computing Education - Volume 95 (Wellington, New Zealand) (ACE "09). Australian

Computer Society, Inc., Darlinghurst, Australia, 129-138. http://dl.acm.org/

citation.cfm?id=1862712.1862732

Anna Offenwanger and Yves Lucet. 2014. ConEE: An Exhaustive Testing Tool

to Support Learning Concurrent Programming Synchronization Challenges. In

Proceedings of the Western Canadian Conference on Computing Education (Rich-

mond, BC, Canada). Association for Computing Machinery, New York, NY, USA,

Article 11, 6 pages. https://doi.org/10.1145/2597959.2597972

Juha Sorva. 2012. Visual Program Simulation in Introductory Programming

Education. Ph.D. Dissertation. Aalto University, Helsinki, Finland. http:

/Nib.tkk.fi/Diss/2012/isbn9789526046266/

Filip Strombéck, Linda Mannila, Mikael Asplund, and Mariam Kamkar. 2019. A

Student’s View of Concurrency - A Study of Common Mistakes in Introductory

Courses on Concurrency. In Proceedings of the 2019 ACM Conference on Inter-

national Computing Education Research (Toronto ON, Canada) (ICER ’19). ACM,

New York, NY, USA, 229-237. https://doi.org/10.1145/3291279.3339415

Filip Strémbéck, Linda Mannila, and Mariam Kamkar. 2021. The Non-

Deterministic Path to Concurrency — Exploring how Students Understand the

Abstractions of Concurrency. Informatics in Education 20, 4 (2021), 683-715.

https://doi.org/10.15388/infedu.2021.29

Filip Strdmbéck, Linda Mannila, and Mariam Kamkar. 2022. Pilot Study of Progvis:

A Visualization Tool for Object Graphs and Concurrency via Shared Memory.

In Australasian Computing Education Conference (Virtual Event, Australia) (ACE

"22). Association for Computing Machinery, New York, NY, USA, 123-132. https:

//doi.org/10.1145/3511861.3511885

Filip Strémbéck, Linda Mannila, and Mariam Kamkar. 2022. A Weak Memory

Model in Progyvis: Verification and Improved Accuracy of Visualizations of Con-

current Programs to Aid Student Learning. In Koli Calling *22: 22nd Koli Calling

International Conference on Computing Education Research (Koli, Finland) (Koli

2022). Association for Computing Machinery, New York, NY, USA, Article 14,

12 pages. https://doi.org/10.1145/3564721.3565947

[23] John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Pro-

gramming Problem Comprehension. In Proceedings of the 2019 ACM Conference
on International Computing Education Research (Toronto ON, Canada) (ICER ’19).
ACM, New York, NY, USA, 131-139. https://doi.org/10.1145/3291279.3339416
[24] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the
Testers?. In Proceedings of the 2018 ACM Conference on International Comput-
ing Education Research (Espoo, Finland) (ICER ’18). Association for Computing
Machinery, New York, NY, USA, 51-59. https://doi.org/10.1145/3230977.3230999

[11

[12

=
&

[14

[15

[16]

(17]

(18]

[19

[20

[21

[22

https://storm-lang.org/
https://doi.org/10.1145/1268784.1268936
https://doi.org/10.1145/1268784.1268936
https://doi.org/10.1145/305786.305831
https://doi.org/10.1145/305786.305831
https://doi.org/10.1145/331795.331879
https://doi.org/10.1145/353519.343066
https://doi.org/10.1145/353519.343066
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1016/j.ijhcs.2003.10.005
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/3377814.3381706
https://doi.org/10.1145/3304221.3319763
https://doi.org/10.1016/S0360-1315(02)00076-3
https://doi.org/10.1145/1288580.1288598
http://urn.fi/URN:ISBN:978-952-60-4530-6
http://urn.fi/URN:ISBN:978-952-60-4530-6
http://dl.acm.org/citation.cfm?id=1862712.1862732
http://dl.acm.org/citation.cfm?id=1862712.1862732
https://doi.org/10.1145/2597959.2597972
http://lib.tkk.fi/Diss/2012/isbn9789526046266/
http://lib.tkk.fi/Diss/2012/isbn9789526046266/
https://doi.org/10.1145/3291279.3339415
https://doi.org/10.15388/infedu.2021.29
https://doi.org/10.1145/3511861.3511885
https://doi.org/10.1145/3511861.3511885
https://doi.org/10.1145/3564721.3565947
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3230977.3230999

	Abstract
	1 Introduction
	2 Related Work
	2.1 Teaching and Learning Concurrency
	2.2 Tools for Teaching Concurrency
	2.3 Progvis

	3 Context: The Course
	4 The First Year
	4.1 Results From the First Year
	4.2 Discussion of Results From the First Year

	5 The Second Year
	5.1 Results From the Second Year
	5.2 Discussion of Results From the Second Year
	5.3 Threats to Validity
	5.4 Future Improvements

	6 Conclusion
	References

