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We show the existence of breathing edge modes in the Su-Schrieffer-Heeger model with cubic (Kerr) 
on-site nonlinearity, bifurcating from stationary edge solitons with propagation constant inside the 
topological gap of the linear model. These edge breathers are exact solutions to the nonlinear equations 
of motion, with time-periodic intensity oscillations and tails exponentially decaying from the edge. They 
bifurcate from two localized internal eigenmodes of the stationary edge soliton, having eigenfrequencies 
inside the topological gap and all higher harmonics above the linear spectrum. Numerical Floquet analysis 
for solutions obtained from a Newton scheme shows that edge breathers may be linearly stable even in 
regimes of large-amplitude oscillations, mainly manifested as time-periodic power exchange between the 
edge site and its next-nearest neighbor.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
There has been a large recent interest in the study of non-
linear effects in lattices with topologically induced gaps in their 
linear spectra, particularly within nonlinear optics which has led to 
the emerging field of nonlinear topological photonics (see reviews 
[1,2]), but also more generally for, e.g., mechanical or electrical 
lattices (see, e.g., recent works [3,4] and references therein). To 
elucidate the most fundamental effects arising from the simulta-
neous presence of topology and nonlinearity, much attention has 
been directed to nonlinear generalizations of the one-dimensional 
Su-Schrieffer-Heeger (SSH) lattice [5]. With a suitably chosen on-
site nonlinearity (typically cubic Kerr or saturable), this model has 
an immediate realization using waveguide arrays with alternat-
ing spacings, and in this context properties of nonlinear localized 
modes with propagation constant inside the topological gap were 
studied earlier in some detail, theoretically as well as experimen-
tally [6–9]. If the dimerized SSH chain is terminated by a half-
dimer edge there is an exponentially localized mid-gap edge state 
in the linear limit, which continues with nonlinearity into an edge 
soliton whose propagation constant remains within the topologi-
cal gap for sufficiently weak nonlinearity (“nonlinear Shockley-like 
states” as discussed in [7]). A more recent work showed that in 
the continuum limit, stationary bulk and edge gap solitons are ob-
tained from the same family of solutions to the nonlinear Dirac 
equation [10].

The linear stability of discrete bulk gap solitons was analyzed 
in detail for the SSH model with Kerr nonlinearity in [6] (see also 
[9] for the saturable case), and more recently for topological edge 
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solitons in [11]. If signs are chosen such that the bulk gap soliton 
bifurcates from the lower band, it remains stable in the lower half 
of the gap but destabilizes through an oscillatory instability in the 
upper half if the ratio between the coupling constants is not too 
far from unity [6]. A similar scenario, with oscillatory instability 
above a critical coupling ratio, was later found for the edge soliton 
[11], which only exists in the upper half of the gap (the similar-
ity is clearly seen by comparing the stability diagrams obtained 
in Fig. 5(a) of Ref. [6] and in Fig. 4 of Ref. [11]). In both cases, 
the instabilities are caused by resonances either between a local-
ized internal soliton oscillation mode and extended modes from 
the continuous spectrum, or between two localized modes origi-
nating from the two different sub-bands [6,11]. Similar instability 
mechanisms have been described also for mechanical analogs of 
the SSH model [3,12,13]. The long-term dynamics arising from the 
unstable edge modes in mechanical lattices has been seen to, after 
an initial oscillatory behavior, typically lead to a chaotic spread-
ing into the lattice, while leaving only a small-amplitude linear 
edge mode at the edge [3,12]. On the other hand, for the Kerr 
nonlinear case the example shown in Fig. 5 of Ref. [11] (although 
for a considerably shorter time-scale) indicated the transition into 
a stable nonlinear edge state with smaller power, together with 
small-amplitude, possibly decaying internal-mode oscillations. The 
excitation of a nonlinear topological edge mode with long-lived in-
ternal oscillations has also been illustrated in [14] (see Fig. 2(a4) 
in this paper) using a single-site initial condition for the Kerr non-
linear SSH model.

With the above background, it is relevant to ask whether the 
nonlinear SSH model may support more general, possibly stable, 
solutions localized at the half-dimer edge, in addition to the sta-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tionary topological edge modes. As we will show here, the answer 
is in the affirmative. We will show that also breathing edge modes, 
with time-periodic intensity oscillations, appear as exact solutions 
to the Kerr nonlinear SSH model in certain parameter regimes. 
They appear as continuous solution families, extending the linear 
internal modes of the stationary edge solitons into the fully nonlin-
ear regime. It is important here to realize the distinction between 
the excitation of a linear internal oscillation mode, which appears 
commonly for solitons in non-integrable system and in general de-
cays with time due to resonance with extended eigenmodes, and 
the exact breathing solitons obtained here. As is known [15], the 
linear eigenmodes can be continued into nonlinear exact solutions 
only in cases where all their higher harmonics are outside the 
continuous spectrum. As we will see here, this enforces certain 
restrictions on the parameter values.

Note that for bulk gap modes, the existence of exact breathing 
solitons was pointed out already in [6], due to the existence of an 
internal mode with frequency above the continuous spectrum (and 
consequently also having all higher harmonics above the spec-
trum). This feature is analogous to the (non-topological) case with 
alternating linear on-site energies [16] (modeling, e.g., a waveguide 
array with constant spacings but alternating widths), for which ex-
act breathing gap solitons were explicitly calculated numerically in 
[17] using a Newton scheme originally developed in [18]. However, 
as we will see below, the situation is somewhat more intricate for 
the topological edge modes since the internal mode frequencies 
are inside the gap, and thus one must assure that non-resonance 
conditions are fulfilled to avoid second-harmonic resonances with 
the upper branch of the continuous spectrum.

We consider the following form of the SSH model with Kerr 
onsite nonlinearity:

iψ̇n + C
{[

1 + (−1)nδ
]
ψn−1 + [

1 − (−1)nδ
]
ψn+1

}

+|ψn|2ψn = 0, (1)

with 1 ≤ n ≤ N and boundary conditions ψ0 = ψN+1 = 0. With 
these conventions and 0 < δ < 1, the lattice is terminated with 
a full dimer at the left edge, and a half dimer at the right if N
is odd (as the coupling between sites 1 and 2 is strong while 
that between sites N − 1 and N is weak for odd N). Thus, the 
topological edge state exists only at the right edge. Furthermore, 
we may rescale to put the average coupling constant C = 1 (this 
is done in all numerical results reported below). We will refer 
to the overdot as a derivative with respect time, although for a 
waveguide array it would correspond to a longitudinal spatial coor-
dinate. There are two conserved quantities associated with Eq. (1), 
power (norm) P = ∑

n |ψn|2, and Hamiltonian which may be de-
fined as H = ∑

n

{−C [1 − (−1)nδ]
(
ψnψ∗

n+1 + ψ∗
n ψn+1

) − 1
2 |ψn|4}

(with a sign convention such that iψ̇n = ∂ H/∂ψ∗
n ).

Expressing a stationary solution to Eq. (1) as ψn(t) = φ
(�)
n ei�t , 

with φ(�)
n time-independent, the two bands of the linear spectrum 

have frequencies in the intervals [−2C, −2Cδ] and [2Cδ, 2C], and 
the topological edge soliton exists in the upper half of the gap, 
� ∈ [0, 2Cδ] (with the sign of the frequency � chosen to have 
� > 0 for C > 0). Its linear stability is determined in the stan-
dard way [6,11,16] by expressing a perturbed stationary solution 
as ψn(t) = [φ(�)

n +εn(t)]ei�t , with εn(t) = 1
2 (ξn +ηn)e−iωlt + 1

2 (ξ∗
n −

η∗
n)eiω∗

l t . Linearizing and solving the resulting eigenvalue problem 
yields the small-amplitude oscillation frequencies ωl , with linear 
stability requiring all ωl to be real. The overall stability properties 
were illustrated in Figs. 3-4 of Ref. [11], from which it was con-
cluded that the edge soliton is stable for all � if the ratio of the 
coupling constants t ≡ 1−δ

1+δ
< tc ≈ 0.35 (i.e., if δ � 0.48), while in-

tervals of oscillatory instability appear for t > tc (δ � 0.48). Below 
2

Fig. 1. Real parts of linear eigenfrequencies ωl versus propagation constant � for 
stationary edge solitons when δ = 0.5 (N = 121 sites). The spectrum is symmet-
ric around ωl = 0 so only positive eigenfrequencies are shown. The thin blue line 
indicates the condition for avoiding higher-harmonic resonances: modes with eigen-
frequencies above the line have all harmonics above the upper band. (For interpre-
tation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

we discuss some additional features which are essential to un-
derstand the conditions for having breathing edge modes as exact 
solutions.

For illustration, we plot in Fig. 1 the (positive) real part of the 
linear eigenfrequencies as a function of the propagation constant 
for the family of stable stationary edge solitons when δ = 0.5. The 
continuous spectrum (extended eigenmodes) is the same as for the 
bulk solitons discussed in [6] (cf. Fig. 4 of [6]): it consists of two 
bands [2Cδ + �, 2C + �] and [2Cδ − �, 2C − �], which overlap 
if � < C(1 − δ). Since � < 2Cδ for any gap mode, a regime with 
non-overlapping bands exists only when δ > 1/3 (i.e., for coupling 
ratio t < 1/2).

In addition, as seen in Fig. 1, two localized internal modes ap-
pear in the gap, bifurcating from the upper and lower subbands, 
respectively (these are the modes that will resonate and cause the 
regimes of oscillatory instabilities when δ � 0.48 [11]). The con-
dition for having all higher harmonics of these modes above the 
continuous spectrum then becomes ωl > �

2 + C (thin blue line in 
Fig. 1), which is easily seen to be always fulfilled for any internal 
mode in the gap sufficiently close to the upper band. Furthermore, 
as seen from Fig. 1, there may be a regime where also the mode 
originating from the lower band has all its harmonics above the 
upper band (0.55 � �/C � 0.70 for δ = 0.5). From a more system-
atic investigation, we may conclude that stable topological edge 
solitons having internal modes with all higher harmonics outside 
the continuous spectrum exist for all δ � 0.42: the mode origi-
nating from the upper band always exists in a regime of larger 
� (0.85 � � < 1.0 in Fig. 1), while that from the lower band 
has some regime in � fulfilling the non-resonance condition if 
0.42 � δ � 0.57. For δ � 0.41 (coupling ratio t � 0.42), no local-
ized internal modes exist for stable edge solitons. We may remark 
that simulations in Fig. 5 of [11], showing decaying oscillations, 
corresponded to a coupling ratio with no stable internal mode 
(t = 0.43), while those of Fig. 2(a4) in [14], showing apparently 
persistent oscillations, corresponded to a case with possibility for 
excitation of both modes in non-resonant regimes (δ = 0.5).

We now turn to the explicit numerical calculations of the fam-
ilies of exact, nonlinearly breathing, edge solitons arising from the 
non-resonant linear internal eigenmodes. The numerical Newton 
method is the same as in [17] (see also [18], to which we refer 
for details). Transforming to a rotating frame, ψn(t) = φn(t)eiω0t , 
breathing solitons are sought as solutions which, for given ω0, are 
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time-periodic in φn with frequency ωb , φn(t + 2π/ωb) = φn(t). As 
we are looking for nonlinear continuations of linear eigenmodes, 
with frequency ωl , of stationary edge modes with frequency �, 
we use trial solutions obtained by adding small-amplitude linear 
eigenvectors to the stationary solution, and search for numerically 
exact solutions (||φn(t +2π/ωb) −φn(t)|| < 10−12) with ω0 close to 
� and ωb close to ωl . After convergence, linear stability is obtained 
from a standard numerical Floquet analysis [17,18], with linear sta-
bility being equivalent to having all eigenvalues on the unit circle.

As a specific example, we here show families of exact edge 
breathers obtained with δ = 0.43. In this case, a stable station-
ary edge soliton in the gap (�/C < 0.86) has a non-resonant in-
ternal mode originating from the upper band when �/C � 0.73, 
and a non-resonant mode from the lower band when �/C � 0.62. 
Fig. 2 illustrates the family of breathing solutions continued from 
the lower-branch internal mode at constant ω0 = 0.67. As is seen 
from the upper figure, the oscillations mainly result from signifi-
cant power exchanges between the edge site and its next-nearest 
neighbor. Note also that the oscillations for the example shown 
are sufficiently large so that the minimum |ψ | at the edge site be-
comes slightly smaller than the maximum |ψ | at the next-nearest 
neighbor (i.e., the solution attains a ‘pulson’ character with the 
terminology of [17]). Concerning the phase of ψn , these two (next-
nearest neighboring) sites are seen to retain a phase difference 
close to π during the oscillations, and likewise the wave vector 
for the exponentially decaying tail remains close to π/2 as for the 
stationary edge mode in the gap.

From the central part of Fig. 2 we note that the continuation 
versus breathing frequency ωb from the linear eigenmode at ωb =
ωl in this case becomes non-monotonous: starting at ωl ≈ 1.451
the breathing frequency first decreases with increasing oscillation 
amplitude, reaches a minimum around ωb ≈ 1.445 and then in-
creases until it meets the extended linear eigenmode at the lower 
edge of the upper linear band at ωb = 1.53. The stability analysis 
illustrated in the bottom of Fig. 2 shows that while the breather 
is essentially linearly stable in regimes of small and moderate os-
cillation amplitudes, it destabilizes through a single real Floquet 
eigenvalue becoming larger than one when oscillations become too 
large. Also for smaller amplitudes some Floquet eigenvalues may 
be located slightly outside the unit circle, but these correspond to 
resonances between extended eigenmodes which may cause weak 
instabilities for smaller lattice sizes, disappearing in the limit of a 
semi-infinite chain [19] (“bulk-bulk” instabilities in the terminol-
ogy of [12,13]). We also checked with direct numerical integration 
that the solution shown in the upper Fig. 2 for the smaller sys-
tem of 121 sites indeed destabilizes after long-time integration, 
but that, for a fixed perturbation strength, the time until destabi-
lization increases rapidly with increasing system size. However, for 
these particular parameter values the breather is still quite fragile 
with respect to larger perturbations, since it is close to the in-
stability threshold. Breathers with smaller oscillations tend to be 
generally more stable.

When moving into a regime of slightly stronger nonlinearity 
(0.73 � �/C < 0.86 when δ = 0.43), there may be two simulta-
neously existing distinct families of stable breathers, arising from 
continuation of the two different linear eigenmodes of the station-
ary edge soliton. In order to make a proper comparison between 
these families we perform a continuation at constant power P , 
allowing the harmonic frequency ω0 to be a free parameter (cf. 
[17,18,20]), since P and not ω0 is a conserved quantity of Eq. (1). 
Fig. 3 illustrates the continuation of both families at P = 1.8, cor-
responding to a stationary frequency � ≈ 0.8274. From the shown 
dependence of the Hamiltonian vs. breathing frequency, some fea-
tures should be especially noted:
3

Fig. 2. Top: Short-time evolution of a linearly stable breathing edge soliton. Param-
eter values δ = 0.43, ω0 = 0.67, ωb = 1.45, and N = 121 sites (only a small part 
around the right edge is shown). Middle: Power vs. ωb for the corresponding full 
family of breathers at constant ω0. The solution shown belongs to the upper branch 
at ωb = 1.45. The family bifurcates from the stationary solution at � = ω0 having 
P ≈ 1.141. Bottom: Square modulus of Floquet eigenvalues vs. ωb for the same fam-
ily.

• The bifurcations from the stationary edge soliton appear as 
before at the linear eigenfrequencies ωl; ωb ≈ 1.600 for the 
mode originating from the upper band (thick purple line) and 
ωb ≈ 1.492 for that from the lower (thin green line), respec-
tively.

• The continuation into the regime of slightly nonlinear oscilla-
tions increases (decreases) as well the breathing frequency as 
the Hamiltonian for the mode from the upper (lower) band. 
The latter is related to the Krein signature of the correspond-
ing linear eigenmode which gives the sign of the Hamilto-
nian energy carried by the mode (cf., e.g., [20] and references 
therein); with the sign conventions used here, modes from the 
upper (lower) band have positive (negative) Krein signature.

• The continuation vs. ωb is now monotonous in the whole 
range of existence for the family from the lower band, while 
that from the upper band has three turning points.

• For both families the continuation shows a sharp increase in 
H at some critical smaller ωb; this corresponds to a second-
harmonic resonance with a mode from the upper edge of the 
upper band when ωb ≈ ω0/2 +C . The continuation can be per-
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Fig. 3. Upper: Hamiltonian vs. ωb at constant power P = 1.8 for the two differ-
ent families of breathers continued from the two localized internal modes of the 
stationary edge soliton for δ = 0.43. Dashed lines indicate regimes of instability. 
N = 121 sites. The continuations were interrupted for smaller ωb as solutions be-
came non-localized. Lower: Dynamics at the edge site and its two nearest neighbors
for linearly stable exact breathers belonging to each of the two families. Left: lower-
band family at ωb = 1.43, ω0 ≈ 0.838. Right: upper-band family at ωb = 1.57, 
ω0 ≈ 0.746.

formed towards smaller ωb but the solution will no longer be 
exponentially localized due to the second-harmonic extended 
tail.

• From the Floquet analysis (not shown) the family from the 
lower band is now found to be linearly stable (except for 
finite-size instabilities as above) in its full range of existence 
as a localized breather, while that from the upper band desta-
bilizes for ωb � 1.563. The instability threshold appears at the 
point where dH/dωb = 0, which appears to be a general suf-
ficient condition for a stability change through a collision of 
Floquet eigenvalues at +1 when continuation is performed at 
constant P [20] (this condition would not be valid for contin-
uations at constant ω0).

The main qualitiative differences between the oscillation pat-
terns in the two families are illustrated in the lower parts of Fig. 3. 
While in both cases the main oscillation is the power exchange be-
tween the edge site and its next-nearest neighbor, the smaller os-
cillations at the nearest neighbor differ. For the lower-band family 
the two sites in the neighboring dimer mainly oscillate in phase, 
while they oscillate largely out-of phase for the upper-band family. 
As a result, for the lower-band family the neighboring dimer may 
become almost depleted at the instants when the edge site peaks, 
while for the upper-band family the nearest-neighbor site then has 
a considerable amplitude which instead almost vanishes when the 
edge site has its minimum.

In conclusion, we showed that two families of topological edge 
breathers may appear as exact and linearly stable localized solu-
tions to the nonlinear SSH model under certain parameter condi-
4

tions, and used numerical continuation methods for their explicit 
calculation. Generally, edge breathers would appear in any lattice 
supporting an edge soliton with localized internal modes having all 
higher harmonics outside the linear spectrum of extended modes, 
and whether such modes exist also for two-dimensional topolog-
ical systems may be an interesting direction for future research. 
There are already many experiments confirming the existence of 
edge and interface solitons (topological as well as non-topological) 
in SSH-related systems (e.g., [7,8,21–23]), and it would be highly 
interesting to see whether also these edge breathers could be 
generated in realistic setups. The fact that long-lived oscillations 
may be generated from a simple single-site initial condition [14]
may indicate that they could appear experimentally from a single-
waveguide excitation in the relevant parameter regime; however 
whether these oscillations indeed correspond to excitation of exact 
breathers needs to be more carefully investigated.

A final remark concerning the system size may be relevant. 
Since our main aim here was to describe exponentially localized 
edge modes in an ideally semi-infinite system, we considered large 
system sizes in order to have a negligible influence from the oppo-
site edge. For convenience we chose an odd number of sites with 
δ > 0 and the topological edge mode located at the right edge, 
but we could equally well have chosen an even number of sites 
and δ < 0 to have a fully topologically nontrivial SSH chain with 
two topological edge modes. The only visible effect on the results 
reported here would be an additional midgap mode in the lin-
earized spectrum of Fig. 1, corresponding to the linear edge mode 
at the opposite edge. However, for smaller chains in the topologi-
cally nontrivial regime the two edge modes will hybridize, leading 
to power oscillations between the edges in the linear chain which 
may survive also in presence of Kerr nonlinearity [24]. The time 
scale for such oscillations would however be extremely large for 
the system sizes considered here.
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