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Phase stability of Fe from first principles: Atomistic spin dynamics coupled with ab initio
molecular dynamics simulations and thermodynamic integration
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The calculation of free energies from first principles enables the prediction of phase stability of materials with
high accuracy; these calculations are complicated in magnetic materials by the interplay of electronic, magnetic,
and vibrational degrees of freedom. In this work, we show the feasibility and accuracy of the calculation of phase
stability in magnetic systems with ab initio methods and thermodynamic integration by sampling the magnetic
and vibrational phase space with coupled atomistic spin dynamics–ab initio molecular dynamics simulations
[Stockem et al., PRL 121, 125902 (2018)], where energies and interatomic forces are calculated with density
functional theory. We employ the method to calculate the phase stability of Fe at ambient pressure from 800
up to 1800 K. The Gibbs free energy difference between fcc and bcc Fe at zero pressure is calculated with
thermodynamic integration over temperature and over stress-strain variables and, for the best set of exchange
interactions employed, the Gibbs free energy difference between the two structures is within 5 meV/atom from
the CALPHAD estimate, corresponding to an error in transition temperature below 150 K. The present work
paves the way to free energy calculations in magnetic materials from first principles with accuracy in the order
of 1 meV/atom.

DOI: 10.1103/PhysRevB.107.014102

I. INTRODUCTION

The prediction of temperature-dependent phase stability in
materials from first principles is one of the great challenges
of the electronic structure community [1]. Phase stability is
governed by the Gibbs free energy, whose minimum dictates
the equilibrium phase of a material at constant pressure and
temperature. The calculation of the Gibbs free energy from
first principles can be carried out with thermodynamic inte-
gration (TI) methods, which relate free energies with other
thermodynamic quantities accessible from atomistic simula-
tions [2]. Examples of such calculations with first-principles
methods are present in the literature [3–7], showing that this
field is now mature. TI requires exploration of the phase
space of a system, which can be carried out with ab initio
molecular dynamics (AIMD) simulations, where interatomic
forces and energies are calculated with density functional
theory (DFT). AIMD simulations are a fundamental tool in
the determination of free energies, although imperiled by sev-
eral sources of errors such as the underlying exchange and
correlation functional [7], finite size of the simulation cell,
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time of the simulations, and employed thermostats, to name a
few. Nonetheless, the combination of TI and AIMD has been
proven to capture phase stability in real systems [4–7] and it
is therefore the most accurate method currently at hand.

However, the previously cited studies are carried out in
nonmagnetic systems, with the exception of Ni in Ref. [7]. In
fact, magnetism in materials adds a further level of complexity
in computer simulations, since the phase space of the material
includes also the magnetic degree of freedom (DOF). It is well
known by now that the change in magnetic state can lead to
changes in the interatomic force constants in some materials
like bcc Fe [8,9], and finite temperature calculations need to
take into account short-range order (SRO) effects [10] in order
to have quantitative predictive power. Consistent treatment
of the magnetic and vibrational DOF in AIMD simulations
is therefore needed to perform appropriate sampling of the
phase space. Spin-lattice dynamics [11,12] is a method that
evolves the magnetic and vibrational DOF in a consistent
way, although it is based on interatomic potentials, there-
fore inheriting all the issues of accuracy and transferability
related with these potentials. The interatomic potentials can
be fitted to DFT data, which improves strongly the accuracy
of these methods. A step forward toward a full ab initio
treatment of the coupled magnetolattice dynamics was taken
with the development of combined atomistic spin dynamics-
ab initio molecular dynamics (ASD-AIMD) simulations [13].
In this method, the forces between atoms are calculated
with DFT, and the evolution of the magnetic moments is
simulated with spin dynamics simulations based on Landau-
Lifshitz-Gilbert equations. ASD-AIMD simulations in CrN,
an antiferromagnetic semiconductor, showed an anomalous
scattering of phonons due to coupling between the magnetic
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and lattice DOF just above the Néel temperature, which could
not be explained with simulations in an ideal paramagnetic
(PM) state carried out with disordered local moment (DLM)
[14,15] molecular dynamics (DLM-AIMD) method [16]. This
success of ASD-AIMD simulations in the description of a
magneto-lattice coupling effect suggests that, in combination
with TI methods, the calculation of temperature-dependent
phase stability in magnetic materials from first principles is
now an achievable goal.

An ideal system to test such a combination of techniques
is Fe, the archetype of magnetic metals. Indeed, Fe shows
a sequence of phase transitions occurring at ambient pres-
sure, making it a suitable candidate to benchmark free energy
methods. At low temperatures, Fe is in a bcc ferromagnetic
(FM) phase, the α phase; at 1043 K, the system undergoes
a magnetic transition to PM bcc Fe, closely followed by a
structural transition to fcc (γ phase) at 1185 K; finally, at
1667 K, the system turns back to the bcc structure, known
as the δ phase, before melting at 1811 K. The experimentally
estimated Gibbs free energy difference between bcc and fcc
Fe in the stability range of the γ phase is estimated to be
on the order of 1 meV/atom [17], requiring great accuracy
for any computational technique employed, if the α − γ − δ

transition is to be captured. The calculation of free energies
in Fe was reported in Ref. [18], where spin-lattice dynamics
was employed for the sampling of the phase space. The re-
sults from that study were in very good agreement with the
experimental findings, although a tweaking of the exchange
interactions was needed to achieve this impressive result.
Recently, the phase stability in Fe was also calculated with
a tight-binding Hamiltonian and thermodynamic integration
[19]. Another study [20], based on DLM-AIMD simulations,
showed that bcc and fcc Fe at the γ → δ transition have very
similar electronic and magnetic properties, suggesting that the
transition is driven by the larger vibrational entropy of the
bcc structure compared to the fcc structure. However, this
study neglected any SRO effect at finite temperatures, which
is governed by the exchange interactions Ji j .

Much research has been done on the exchange interac-
tions in bcc Fe. Several studies have calculated the exchange
interactions in this system with different methods [21–25].
For an accurate description of the transition temperature, the
reference magnetic phase is of great importance [23]: since
at the Curie temperature the system is more similar to a PM
state than a perfect FM state, the former state should be
used as background in the calculation of the Ji j . Later on, a
strong effect of lattice vibrations on the value of the exchange
interactions [24,25] was found, which is responsible for a
reduction of the theoretical transition temperature to values
lower than the experimentally determined value. Less focus
was given to the fcc phase of Fe, which shows a more complex
magnetism than bcc Fe: it has been proven that the ground
state of fcc Fe is a spin-spiral arrangement [26], but for larger
volumes the system becomes FM [27]. To our knowledge, no
study of the effect of vibrations on the exchange interactions
has been carried out on fcc Fe. In addition to the difficulties in
the modeling of exchange interactions, a further level of com-
plexity is introduced by the longitudinal degrees of freedom in
metallic magnets, also known as longitudinal spin fluctuations
(LSF). Several methods have been developed in past years to

account for this effect on a semiclassical level [28–32]; an
efficient method to include this effect in DFT calculations was
introduced in Ref. [30].

In this work, we attempt to include the coupling of all
these effects within the same first-principles framework in the
calculation of phase stability in Fe at zero pressure. We carry
out the calculation of the fcc-bcc Gibbs free energy difference
in Fe as a function of temperature with the use of ASD-AIMD
and DLM-AIMD simulations and thermodynamic integration.
This task is achieved by the definition of a thermodynamic
path that starts from the direct calculation of the free energy
difference between the two structures at high temperature in
the DLM state with the stress-strain thermodynamic integra-
tion method (SSTI) [5,33,34] along a deformation path of the
Bain type. This free energy difference is then used as reference
to obtain the full temperature dependence with thermody-
namic integration over temperature (TTI) and, including free
energy contributions from thermal expansion, the full Gibbs
free energy difference between fcc and bcc Fe as a function of
temperature at zero pressure is retrieved including electronic,
magnetic, and vibrational parts and their coupling.

The paper starts by introducing the ASD-AIMD and DLM-
AIMD methods (Sec. II), together with the computational
details employed for these calculations. The exchange interac-
tions employed in this work are shown in Sec. III. In Sec. IV,
the thermodynamic path and the TTI are presented, followed
by the calculation of equilibrium volumes in Sec. V and the
SSTI in Sec VI. The calculated constant-volume free energy
difference and the Gibbs free energy difference at zero pres-
sure are presented in Sec. VII and compared with literature. In
Sec. VIII, the conclusions of this study are drawn.

II. ASD-AIMD AND DLM-AIMD SIMULATIONS:
METHODS AND COMPUTATIONAL DETAILS

ASD-AIMD simulations, introduced first in Ref. [13], con-
sist in an ASD and an AIMD simulation run in parallel while
intercommunicating with each other. At each AIMD time step,
interatomic forces are calculated with DFT employing the
direction of the magnetic moments from ASD simulations, so
that the magnetic DOF influence the evolution of the atomic
positions. At the same time, the different atomic positions at
each step determine different exchange interactions between
neighboring moments, which therefore affect the evolution of
the ASD part of the simulation. The parametrized, distance-
dependent pair exchange interactions employed in this work
are shown in Sec. III. Since in the ASD part the moments are
3D vectors, we employ noncollinear DFT calculations at each
AIMD step. In order to keep the moments in the direction dic-
tated by the ASD simulation, we use the constraining method
developed by Ma and Dudarev [35].

In addition, we use an LSF term of the type SLSF =
−kB log(m) in our VASP calculations, with m being the size
of the magnetic moment. This expression can be derived from
a semiclassical thermodynamic model of LSF with monodi-
mensional phase space measure [32,36,37]. The LSF entropic
term is directly introduced in the Kohn-Sham single-particle
potentials, as first done in Ref. [30]. One uncertainty related
to this term consist in the nature of the systems under inves-
tigation: the monodimensional phase space measure assumed
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in this work is suited for localized moment systems, as bcc
Fe, whereas a different expression can be derived for a more
itinerant system [30]. Fcc Fe is often considered a more
itinerant system than bcc Fe, nonetheless for the volumes
considered here the the Fe atoms in the fcc structure are in the
high-spin state, more similar to bcc Fe. We therefore employ
the same LSF term for both bcc and fcc Fe, as well as for
the intermediate structures along the deformation path. The
magnetic entropy is not included in the calculation of the
stresses, therefore we cannot include it as an adiabatic term,
and we thus include only its indirect effect of increasing the
size of the magnetic moments, rather than as a separate free
energy term. By stabilizing slightly larger moments, compu-
tational gains are observed as the convergence of DFT ionic
steps is made easier.

DLM-AIMD simulations were first developed in Ref. [16]
in a collinear framework, where the AIMD run was per-
formed by changing the magnetic configuration every few
time steps. The magnetic configurations consisted of a ran-
dom distribution of up and down moments. In this work,
we perform DLM-AIMD simulations in a different way, to
ensure compatibility with the ASD-AIMD simulations just
described. We employ here the same computational tools
of the ASD-AIMD simulations, but in the ASD part of the
simulation we set exchange interactions to 0 and magnetic
temperature to 106 K. The LSF temperature is always set to
the temperature of the AIMD part. In this way, we ensure
that the spin-spin correlation functions are zero at each time
step, and the single spin autocorrelation function goes to zero
in one single time step, modeling an ideal, adiabatically fast
PM state.

To ensure computational efficiency, we carry out the sim-
ulations for 8 − 12 ps with an AIMD timestep of 1 fs and
low accuracy parameters, namely �-point sampling of the
Brillouin zone and cutoff for the plane-wave expansion of
250 eV. Snapshots from each simulation are then upsam-
pled with higher convergence parameters, 2 × 2 × 2 k-points
mesh, and 500 eV cutoff; the upsampled snapshots are sepa-
rated by approximately 100–200 fs from each other, to ensure
statistical independence. Throughout the paper, the reported
energies and stresses are obtained by summing the average
from the low accuracy calculation with the average difference
between the high and low accuracy calculations, as suggested
in Ref. [6]. We checked the validity of the upsampling scheme
by comparing average energy and stresses with the results of
a full simulation with the high convergence parameters for the
bcc structure at 1000 K and a single volume with ASD-AIMD,
and for bcc, fcc and one intermediate structures at 1800 K with
DLM-AIMD.

AIMD simulations are carried out in the canonical
ensemble, employing the Langevin thermostat to control tem-
perature. The time step for the AIMD part of the simulations,
as mentioned, is set to 1 fs, whereas the ASD simulations
between each AIMD step are performed for the same duration
of 1 fs but with a smaller time step, 10−2 fs. A thermaliza-
tion period of 500–1000 time steps is carried out for each
simulation and it is not considered for averages. Simulations
are performed with body-centered tetragonal (bct) structures,
which for particular values of the c lattice vector correspond to
bcc and fcc structure. In particular, the matrices of the lattice

vectors for the bcc and fcc structures are

hbcc =
⎛
⎝abcc 0 abcc/2

0 abcc abcc/2
0 0 abcc/2

⎞
⎠,

hfcc =
⎛
⎝afcc 0 afcc/2

0 afcc afcc/2
0 0 afcc/

√
2

⎞
⎠. (1)

The columns of these matrices correspond to the lattice vec-
tors of the cell; the lattice parameter abcc corresponds to the
lattice parameter in the conventional bcc cell, whereas the
lattice parameter afcc is reduced by a factor of 1/

√
2 compared

to the lattice parameter of the conventional fcc cell. These
definitions of the cells are particularly useful because they can
be transformed one into the other along the Bain path [3]. We
use supercells made of 5 × 5 × 5 repetitions of the bct cells,
for a total of 125 atoms.

All DFT calculations were carried out with the Vienna
ab initio simulation package (VASP) [38] with the projec-
tor augmented wave method [39,40] and plane-waves as
basis set, using the generalized-gradient approximation of
Perdew-Burke-Ernzerhof [41]. Convergence for the electronic
optimization was set to 10−5 eV. The sampling of the Bril-
louin zone was performed with the Monkhorst-Pack scheme
[42]. Details on the k-points meshes and cutoff for expansion
over the plane-wave basis where already given previously in
this section. We include the electronic entropic contribution
through the Mermin functional [43] using the Fermi-Dirac
electronic smearing and electronic temperature correspond-
ing to the simulated temperature. ASD simulations were
performed with the UppASD code [44,45] using a phe-
nomenological damping factor of 0.05.

Recently, the calculation of stresses in a constrained DFT
framework has been carried out for bcc Fe in the conventional
bcc cell with the two moments at arbitrary angle with respect
to each other [46], suggesting that an additional term appears
in the stresses due to the constraints. We have replicated the
calculation of the pressure upon magnetic moment rotations
performed in Ref. [46] and we only observe differences within
10 kbar, comparable with the differences in magnetic mo-
ment sizes obtained. The error introduced by the suggested
missing term of the stresses due to constraints is small and
probably in the order of the numerical accuracy of the present
calculations.

III. DISTANCE-DEPENDENT EXCHANGE INTERACTIONS

The pair exchange interactions of bcc Fe on a vibrating
lattice have been calculated by Yin et al. [24] and by Ruban
et al. [25]. For this system, we consider exchange interac-
tions up to fifth coordination shell. For the first two shells,
we parametrize the exchange interactions from Ref. [25] and
from Ref. [24] as a function of pair distance with polynomial
functions. From now on, we will call the two parametrizations
JR and JY , respectively. The parametrizations are shown in
Fig. 1(a) and Fig. 1(b) as solid lines, whereas the data points
are taken from Ref. [25] and from Ref. [24], respectively. The
interactions for the last three shells are considered constant,
with values of 0.3, 0.03, and −1.36 meV for third, fourth and
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FIG. 1. Exchange interactions in bcc Fe (top and middle) and fcc
Fe (bottom) for the first two coordination shells with the parametriza-
tions J (ri j ) employed in ASD-AIMD simulations (solid lines). The
data points for bcc Fe in the top figure have been digitally extracted
from Ref. [25], in the middle figure from Ref. [24]. The vertical
dashed lines indicate the ideal neighbors distances for the first two
shells. Notice the two different Hamiltonians employed for bcc and
fcc Fe. The average size of magnetic moments in fcc Fe is approxi-
mately 1.97μB.

fifth coordination shell, respectively. For bcc Fe, the exchange
interactions are defined according to the Heisenberg Hamilto-
nian in the form:

H = −
∑

i j

Ji jei · e j, (2)

where Ji j is the exchange interaction between moment i and
j, and ei is the unit vector in the direction of moment i. We
calculate the Curie temperature with Monte Carlo simulations
for the two different parametrization employing the value of
Ji j at ideal lattice pair distances, with the equilibrium lattice
parameter at 1000 K obtained in this work. For parametriza-
tion JR, the Ji j values for first and second shell are 18.33 and
2.06 meV, which give TC = 880 K; for parametrization JY , the
values are 21.79 and 5.16 meV, giving TC = 1150 K.

Since we are not aware of any similar investigation of
the distance-dependent Ji j in fcc Fe, we carried out a DLM-
AIMD simulation of this system at temperature T ≈ 1200 K
and volume V = 11.84 Å3/atom, and we selected two snap-
shots. For these snapshots, we drew two random noncollinear
configurations of the magnetic moments, and we calculated
the exchange interactions with the total energy differences
method described in Ref. [47] for several pairs of moments
in the first and in the second coordination shells. The DFT
calculations used for the calculation of the exchange interac-
tions were carried out with a 3 × 3 × 3 k-points mesh and a
cutoff energy of 500 eV. The resulting exchange interactions
are shown in Fig. 1(c). For fcc Fe, we employ a different form
of the Heisenberg Hamiltonian:

H = −
∑

i j

J̃i jmi · m j, (3)

where the full magnetic moments enter explicitly. We have
employed this definition of the Heisenberg Hamiltonian for
fcc Fe because the exchange interactions J̃i j = Ji j/|mi||m j |,
now independent of the size of the moments, display a smaller
scatter of values than with the definition of Heisenberg Hamil-
tonian of Eq. (2). Employment of this Hamiltonian would
probably reduce the scatter also for bcc Fe, but we do not
have access to the sizes of the moments for the calculations in
Refs. [24] and [25], therefore we keep the definition of Eq. (2).
To make easier the comparison of the exchange interactions
of fcc and bcc Fe, Ji j for first nearest neighbors according
to Eq. (2) is of 4.3 meV in the fcc structure, whereas the
values from the two parametrizations in the bcc structures
were mentioned previously. For fcc Fe, we consider only the
first two coordination shells.

In the present ASD-AIMD simulations, we do not take
into account the spread of values but only an average distance
dependence of the exchange interactions, shown in Fig. 1 by
the solid lines passing through the scattered values. From
these figures, it is clear that these parametrized exchange
interactions are not fully representative of the pair interactions
in the real systems, but the Ji js and the Hamiltonians (2)
and (3) are employed only to govern the spin dynamics and
therefore sample the magnetic phase space, whereas energies
are from DFT and therefore include the real interaction be-
tween moments beyond the simple distance dependence. Any
inaccuracies therefore enters only the dynamics of sampling
the phase space, not the energetics itself.

However, as will be apparent in Sec. VII, the parametriza-
tion of exchange interactions plays a central role in the
relative stability of the structural phases because different
parametrizations sample partly different phase spaces, with
repercussions on the final results. The spin dynamics of a

014102-4



PHASE STABILITY OF Fe FROM FIRST PRINCIPLES: … PHYSICAL REVIEW B 107, 014102 (2023)

single moment is governed by the effective local field, which
is given by the sum over all neighbors of the magnetic mo-
ments weighted by their pair exchange interactions, hi =∑

j Ji je j . At the temperatures considered in the present work,
around or above the Curie temperature, this local field is small
and changes quickly in direction, suggesting that effects of
the spread of Ji js around our parametrized Ji j (ri j ) values,
average out. The spin dynamics in the PM state is therefore
less sensitive to the details of the instantaneous pair exchange
interactions and more to their distance-dependent average. In
contrast, at low temperatures not considered in this work,
the background is mainly FM and the local configurations
are going to be more important. From these considera-
tions, we deem reasonable considering only the average
distance dependence of the pair exchange interactions in the
present study.

IV. THERMODYNAMIC PATH

In the calculation of free energy differences with TI meth-
ods, one needs to first define the integration path to employ.
The Gibbs free energy difference between the fcc and bcc
structures �Gfcc-bcc(T, P = 0) can be expressed as

�Gfcc-bcc(T1, P = 0) = �F fcc−bcc(T1)

+ �F fcc
(
V fcc

2 → V fcc
1 , T1

)
− �F bcc(V bcc

2 → V bcc
1 , T1

)
, (4)

where the first term on the right-hand side, �F fcc−bcc(T1), is
the free energy difference between the fcc and bcc structures
at temperature T1 and fixed volumes V fcc/bcc

2 , and the last
two terms in this equation are the free energy differences at
constant temperature between two different volumes, V fcc/bcc

1
and V fcc/bcc

2 . These volumes are the equilibrium volumes for
each structure at temperatures T1 and T2, respectively. The
last two terms in the equation are needed because the calcu-
lation of the former term is carried out at constant volume for
different temperatures, therefore needing to re-introduce the
equilibrium volume in the calculation to account for thermal
expansion. More about the calculation of these terms can be
found in Sec. V.

The first term, �F fcc−bcc(T1), can be calculated with TTI
[48], which can be shown to take the following form for free
energy differences:

�F fcc-bcc(T1) = �F fcc-bcc(Tref )
T1

Tref

− T1

∫ T1

Tref

〈E fcc〉T,V fcc
2

− 〈Ebcc〉T,V bcc
2

T 2
dT . (5)

In this equation, the energies 〈E fcc/bcc〉T,V fcc/bcc
2

at constant

volumes V fcc/bcc
2 are readily available from the ASD-AIMD

simulations, whereas the first term �F fcc-bcc(Tref ) is a ref-
erence free energy difference between the two structures at
temperature Tref. The constant volume employed in the ASD-
AIMD simulations from which the energies of Eq. (5) was
chosen as the equilibrium volume at T = 1000 K to avoid
problems related to diffusion (see Sec. V for a discussion of
this problem).

The reference free energy difference is calculated with
SSTI (see Sec. VI). The simulations needed to calculate this
quantity are carried out in the DLM state, to avoid the need of
calculating exchange interactions for the intermediate struc-
tures. Although the DLM method models an ideal PM state,
it is assumed here that it is a good representation of the real
magnetic state at very high temperature, near the melting point
of Fe. In this way, the SSTI can be performed at Tref = 1800 K
in the DLM state, and the resulting free energy difference can
be used directly in Eq. (5). The validity of this assumption will
be discussed in Sec. VII.

To summarize, the thermodynamic path employed starts
with the calculation of the reference free energy difference
with SSTI at Tref = 1800 K in the DLM state with the 1000 K
equilibrium volume, followed by integration over tempera-
ture at constant volume in the finite-temperature magnetic
state with ASD-AIMD, and finally adding the contribu-
tion from thermal expansion/contraction also obtained with
ASD-AIMD.

V. DETERMINATION OF LATTICE PARAMETER
AND FREE ENERGY CONTRIBUTION

FROM THERMAL EXPANSION

The equilibrium volume as a function of temperature for
each structure and exchange interaction parametrization is
determined by running ASD-AIMD simulations at different
volumes for a few selected temperatures, and then inter-
polating the pressure as a function of volume at constant
temperature with a second order polynomial. The equilibrium
volume is the volume at zero pressure.

For bcc Fe at 1800 K around the equilibrium volume,
we observed some concerted diffusion events as previously
reported for bcc Fe at high pressures and temperatures [49],
as well as bcc Ti [50] and other bcc metals [51] at ambient
pressures and temperatures close to melting. It is not clear
if these events are a real effect or just an artifact originated
from the low accuracy parameters employed; additional in-
vestigations are needed to address the origin of this effect. For
what concerns the present investigation, avoiding diffusion is
desirable since it makes more difficult to converge quantities,
requiring much longer simulation times: we therefore perform
all the simulations at the equilibrium volume at T0 = 1000 K
to hinder diffusion, and the TI is carried out on results from
these simulations. Diffusion could be important to stabilize
a certain crystal structure at high temperature [5,49,50], but
from the low frequency of these events we deem not funda-
mental the inclusion of this effect in the investigation of phase
stability of Fe.

Since the simulations are carried out at all temperatures
fixing the volume to the 1000 K equilibrium value, in order
to obtain the Gibbs free energy at p = 0 GPa, one needs
to calculate the Helmholtz free energy contribution due to
thermal expansion for each structure �F (V0 → V1, T1) from
volume V0 = Veq(T0), with T0 = 1000 K, to volume V1 =
Veq(T1). We calculate this contribution for each structure and
parametrization of the exchange interactions at a few different
temperatures T1 by integrating the pressure at temperature T1:

�F (V0 → V1, T1) = −
∫ V1

V0

P(V, T1)dV, (6)

014102-5



GAMBINO, KLARBRING, AND ALLING PHYSICAL REVIEW B 107, 014102 (2023)

FIG. 2. Contribution to the free energy due to thermal expansion
as a function of temperature for bcc Fe with exchange interactions
parametrized after Ref. [25] (JR, red squares and curve), bcc Fe with
exchange interactions parametrized after Ref. [24] (JY, blue circles
and curve), and for fcc Fe (green triangle and curve). The curves are
a cubic polynomial interpolation to the data points, calculated with
Eq. (6).

where P(V, T1) is the quadratic interpolation of the pressure
previously mentioned in this section. The free energy con-
tribution for each structure and parametrization is shown in
Fig. 2, where the lines correspond to a fitting with a third-order
polynomial.

VI. STRESS-STRAIN THERMODYNAMIC
INTEGRATION (SSTI)

The SSTI method consists in integrating the thermody-
namic stresses in the cell along a deformation path between
two structures [5,33,34]. The deformation path is described
with a matrix made of the lattice vectors of the intermediate
structures, similarly to the matrices defined in Eq. (1), which
depends on a parameter λ that brings continuously from the
initial to the final structure. In this case, we define the defor-
mation path as a linear interpolation between the bcc and fcc
matrices, namely:

h(λ) = hbcc + λ(hfcc − hbcc). (7)

For the bcc to fcc transformation, this is similar to the well
known Bain path, which consists simply in changing the c/a
ration in the bcc cell. With the definition of deformation
path of Eq. (7), the free energy difference between the two
structures can be shown to be [5,34]:

�F fcc-bcc =
∫ 1

0
V (λ)σ (λ)h−T (λ) : (hfcc − hbcc)dλ, (8)

where V (λ) is the volume of the configuration with param-
eter λ, σ (λ) the Cauchy stress tensor for this configuration,
−T indicates the inverse and transposed matrix, and finally :
indicates a contraction of the two matrices over both indices,
i.e., A : B = ∑

i, j Ai jBi j . The calculation of the free energy
difference with this method requires to collect the stress ten-
sor for the initial structure, the final structure, and a certain
number of intermediate structures, by carrying out dynamic

FIG. 3. Isotropic components of the stress tensor σ11, σ22 and
σ33 (top) and energy difference with respect to bcc Fe calculated
with SSTI (bottom) along the deformation path at 0 K in the DLM
state. Isotropic components are the only components contributing
to the energy difference. The final energy difference (−43.0 ± 0.3
meV/atom) coincides, within statistical error, with the direct energy
difference between fcc and bcc (−42.9 ± 0.4 meV/atom).

simulations. The SSTI method has been previously used in
simplified forms [52,53] and with the full equation [5,34],
but to our knowledge it has never been employed accounting
explicitly for the magnetic degrees of freedom.

Since the DLM state is employed, we check the validity
of the method by carrying out a SSTI calculation of the
free energy difference in the DLM state at T = 0 K, which
is just the energy difference. To describe the DLM state in
this test, we employ for all structures the same six magnetic
configurations, generated with Monte Carlo simulations such
that the spin-spin correlation functions are as close as possi-
ble to zero. We use 11 intermediate structures between bcc
and fcc and interpolate the integrand of Eq. (8) with piece-
wise cubic Hermite polynomials. The isotropic components
of the stress tensor along the deformation path are shown in
Fig. 3(a), and the resulting energy difference along the path in
Fig. 3(b). Only the isotropic components of the stress tensor
are presented because it can be shown that these are the only
components contributing to the integral in this case. The en-
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FIG. 4. Total energy as a function of temperature of bcc Fe
with parametrization JR (solid red circles and lines), bcc Fe with
parametrization JY (solid blue circles and lines) and fcc Fe (empty
green circle and solid lines) from ASD-AIMD, and bcc Fe (yellow)
and fcc Fe (light blue) from DLM-AIMD (dashed lines and empty
symbols) simulations. Error bars are smaller than the symbols.

ergy difference between fcc and bcc Fe obtained with the SSTI
method (−43.0 ± 0.3 meV/atom) and from direct difference
(−42.9 ± 0.4 meV/atom) are virtually identical. Since at fi-
nite temperatures we cannot run DLM-AIMD simulations
for 11 intermediate structures for computational reasons, we
check how the method works employing only three intermedi-
ate structures equally spaced from each other [blue circles and
lines in Fig. 3(b)], and we observe a negligible difference in
the final result (≈0.1 meV/atom). This test suggests that the
method is reliable in the magnetically disordered state.

VII. RESULTS

The total energies as a function of temperature obtained
from ASD-AIMD and DLM-AIMD are shown in Fig. 4.
First of all, we notice that the total energy of fcc Fe from
ASD-AIMD and DLM-AIMD are practically indistinguish-
able along the whole temperature range, demonstrating that
fcc Fe is well in the PM state at these temperatures. For bcc Fe,
on the contrary, the total energy is much lower at low temper-
atures (≈100 meV/atom lower) when magnetic interactions
are considered as compared to the DLM state. At high tem-
peratures, however, the total energy for both parametrizations
of exchange interactions of bcc Fe approach the DLM limit,
with the stronger exchange interactions (parametrization JY )
leading to a slightly lower energy at T = 1800 K than the
DLM energy.

In order to see more in detail how different the finite-
temperatures magnetic state and the DLM state are, the
magnetic SRO parameter for first nearest neighbors from
ASD-AIMD simulations is shown in Fig. 5 for bcc Fe with
the two parametrizations and for fcc Fe. SRO is defined as

SRO =
〈

1

Nat

Nat∑
i=1

1

NNN

NNN∑
j=1

ei · e j

〉
Nt

, (9)

FIG. 5. SRO for first nearest neighbors as a function of tem-
perature of bcc Fe with parametrized exchange interactions from
Ref. [25] (red), bcc Fe with parametrized exchange interactions
from Ref. [24] (blue) and fcc Fe (green) from ASD-AIMD. SRO=0
corresponds to DLM state, whereas SRO=1 corresponds to pure FM
state. The lines are just a guide to the eye.

where Nat is the number of atoms in the supercell, NNN is the
number of first nearest neighbors, Nt is the total number of
steps, and ei is the direction of the magnetic moment on atom
i. Of course, the DLM state has zero SRO, since it models
an ideal PM state. A certain degree of SRO survives at the
highest temperature even for fcc Fe, however this does not
seem to particularly affect the energies, as seen in Fig. 4. We
notice in passing that the SRO from the present calculations is
different from typical Monte Carlo results with the Heisenberg
Hamiltonian. This difference is mainly due to the specific
methodology employed here, since at each AIMD time step
the exchange interactions between each pair of moments is
changed. In addition, simulation cell size and simulation time
could also affect the quantitative smoothness of the SRO.
From inspection of energies and SRO, we can therefore imag-
ine that using the free energy difference between fcc and
bcc structures calculated in the DLM state at T = 1800 K
in Eq. (5) is going to introduce a small error; however, the
energy difference between the different magnetic states of
≈1 meV/atom will cancel out with the difference in magnetic
entropy, resulting in an error below our statistical resolution.

Having established that the DLM and the finite-
temperature magnetic state are similar enough at high
temperatures, we can pass to the results of the SSTI pro-
cedure to obtain free energy differences between bcc and
fcc Fe in the DLM state. We have carried out the calcula-
tion of �F fcc-bcc

DLM at temperatures T = 800, 1000, 1400, and
1800 K to see how the stresses along the deformation path
are affected by temperature. In addition, we obtain from here
the temperature dependence of the free energy difference in
the DLM state so that we are able to address the effect of
magnetic interactions and SRO on the structural transitions.
The diagonal components of the stress tensor and free energy
differences from SSTI for the different temperatures at con-
stant volume in the DLM state are shown in Fig. 6. All the
stresses, obviously, increase with temperature; in addition, we
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FIG. 6. (Top) isotropic components of the stress tensor σ11 (dot-
ted line), σ22 (dashed line) and σ33 (solid line) and (bottom) free
energy difference with respect to bcc Fe calculated with SSTI in the
DLM state along the deformation path for the different temperatures.

observe that the difference between the σ33 component (the
highest in each curve) and the other two components along
the deformation path decreases with increasing temperature.
At 1800 K, the stresses become fairly isotropic for every
intermediate structure, suggesting that the systems are close to
melting. We did observe, indeed, cases of concerted diffusion
in the intermediate structures at the highest temperature, but
it is difficult to estimate if the diffusion is due to the low
accuracy parameter employed in running the simulations or it
is a real physical effect, similarly to what is observed in bcc Fe
(Sec. V).

The free energy difference from bcc Fe along the path
shows that, in the DLM state, the bcc structure and the first
intermediate structure at finite temperatures are fairly similar
in free energy. This does not mean that this intermediate struc-
ture is as stable as the bcc structure, since here we consider
only a fixed volume, which is not the equilibrium volume for
any structure in the DLM state. Nonetheless, it is interesting
that bcc and this intermediate, bct structure are similar, having
possible implications for the martensitic phase of steels.

The free energy difference in the DLM state obtained with
SSTI is shown in Fig. 7 (yellow circles and lines), where neg-

FIG. 7. The free energy difference between DLM fcc and DLM
bcc Fe at constant volume �F fcc-bcc(T ) as a function of temperature
(yellow circles and lines) and in the finite-temperature magnetic
states with exchange interactions for bcc Fe parametrized after
Ref. [25] (JR, red line) and after Ref. [24] (JY , blue line) at the 1000 K
equilibrium volumes.

ative values indicate fcc stability and positive values indicate
bcc stability. Clearly, in the DLM state, the fcc structure is
more stable than the bcc at low temperatures, and at higher
temperatures the larger vibrational entropy related to the open-
ness of the bcc structure comes into play and makes the
phase transition possible. Since the volume is kept constant
at all temperatures, we cannot exclude that a contribution
from thermal expansion would change the relative stability.
Nonetheless, to elucidate the effect of magnetic order and
vibrations on the structural transitions in Fe, we can calculate
the free energy difference at constant volume in the finite-
temperature magnetic states with TTI, using as a reference
free energy the value from SSTI at T = 1800 K (blue and
red lines in Fig. 7). As it can be seen, the double transi-
tion α → γ → δ occurs even at constant volume when using
parametrization JY of the exchange interactions for bcc Fe,
and it can be expected to occur at T < 800 K when using
parametrization JR. These results show that the FM ordering
of bcc Fe makes this phase the thermodynamically stable
phase at low temperatures due to lower energy compared
to the fcc structure. The transition then occurs thanks to a
combination of increased magnetic energy of the bcc phase
and, at the same time, a higher magnetic entropy of the fcc
phase. This latter information can be inferred from the SRO
parameter (Fig. 5), where it is clear that in the fcc phase
magnetic moments are more free to rotate than in the bcc
phase.

Finally, the full Gibbs free energy difference between fcc
and bcc Fe at zero pressure including thermal expansion is
shown in Fig. 8 for both parametrizations of exchange in-
teractions of bcc Fe employed, together with results from
the CALPHAD method (values digitally extracted from
Ref. [17]) which can be thought as the experimental coun-
terpart. First and foremost, these results show that, no matter
the parametrization of exchange interactions employed for bcc
Fe, the Gibbs free energy difference curves show a minimum
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FIG. 8. Gibbs free energy difference as a function of tempera-
ture from the present work with exchange interactions for bcc Fe
parametrized after Ref. [25] (JR, red), with exchange interactions for
bcc Fe parametrized after Ref. [24] (JY, blue), and from CALPHAD
(yellow line) [17]. The shaded areas indicate error bars correspond-
ing to twice the standard error. The vertical lines indicate the Curie
temperature of bcc Fe in the corresponding model (CALPHAD indi-
cates experimental).

below zero, indicating that the double transition occurs in both
cases: in the case of parametrization JY , the two transitions
occur in the investigated temperature range, in the case of
parametrization JR, the α → γ transition occurs below T =
800 K. The difference between the two curves calculated in
this work also reveals the importance of exchange interactions
and the Curie temperature of bcc Fe on the lower structural
transition: the lower the Curie temperature is (shown for both
parametrizations in Fig. 8 as dashed, vertical lines), the lower
the α → γ transition occurs. The dependence of the struc-
tural transition on Curie temperature is partly an artifact of
the present scheme, where the exchange interactions for bcc
Fe are taken from literature, since the exchange interactions
and therefore the Curie temperature are strictly connected
to the energetics of the system. Nonetheless, inclusion of
thermal expansion does not change the picture compared to
Fig. 7 for the α → γ transition, since the volumes employed
in SSTI for bcc and fcc Fe are the equilibrium volumes
at 1000 K.

The γ → δ transition is well reproduced (within 50 K)
independently of the exchange interactions employed, stress-
ing how the details of magnetic ordering do not play any
particular role at these temperatures and the important physics
is related mainly to the vibrational DOF within a magnetically
disordered state. Despite the remarkable agreement between
our simulations and CALPHAD results, we do also observe
a qualitative difference between the present calculations and
experiments: in both calculated curves, the α to γ transition
temperature is lower than the Curie temperature of bcc Fe in
the corresponding model, in contrast with experiments.

As a final remark, we notice that the Gibbs free en-
ergy difference between bcc and fcc Fe calculated using

parametrization JY for the exchange interactions of bcc Fe
is within 5 meV/atom from the CALPHAD estimate. This
small difference is enough to induce an error of ≈150K in
the predicted structural transition at low temperature, demon-
strating the unforgiving nature of Fe as a benchmark system
for modeling of phase stability.

VIII. CONCLUSIONS

In this work, the phase stability in Fe at zero pressure
was investigated from first principles with thermodynamic
integration methods based on ASD-AIMD simulations. The
Gibbs free energy difference between fcc and bcc Fe as a
function of temperatures is calculated starting from a rep-
resentation of an ideal PM state with the DLM approach,
which is then reconnected to finite-temperature magnetism.
A thermodynamic integration over stress-strain variables is
carried out at T = 1800 K to calculate the free energy dif-
ference in the DLM state with DLM-AIMD simulations,
and it is then used as a reference free energy difference in
thermodynamic integration over temperature based on cou-
pled ASD-AIMD simulations, which enable us to simulate
vibrational and magnetic degrees of freedom consistently.
To run these simulations, we calculated the exchange in-
teractions as a function of pair distance in fcc Fe in
presence of vibrations, and we employed two different
parametrizations of the exchange interactions for bcc Fe from
the literature.

The α → γ → δ transitions in Fe at ambient pressure
are correctly predicted by the present method for both
parametrization of the bcc exchange interactions, and for
the γ → δ transition the predicted transition temperature is
within ≈50 K from experimental values. The present work
devises a thermodynamic path that enables the calculation of
Gibbs free energy differences in magnetic materials from first
principles approaching the long-sought for accuracy in the
order of 1 meV/atom.
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