
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2023

Collaborative Mapping with
Drone Swarms Utilizing
Relative Distance
Measurements

Johan Forsman and Carl Tidén

Master of Science Thesis in Electrical Engineering

Collaborative Mapping with Drone Swarms Utilizing Relative Distance
Measurements

Johan Forsman and Carl Tidén

LiTH-ISY-EX--23/5541--SE

Supervisor: Anja Hellander
isy, Linköpings universitet

Linus Wiik
Saab Dynamics AB

Examiner: Gustaf Hendeby
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2023 Johan Forsman and Carl Tidén

Abstract

The field of use for unmanned aerial vehicles, UAVs, has completely exploded
in the last decade. Today they are used for surveillance missions and inspecting
places that are difficult for people to access. To increase the efficiency and robust-
ness in the execution of these types of missions, swarms of cooperating drones
can be used. However, that places new demands on which solutions are used for
positioning and navigating the agents. This thesis investigates, implements, and
evaluates solutions for relative positioning and mapping with drone swarms.

Systems for estimating relative poses by fusing velocity data and pairwise
distance measurements between agents using an extended Kalman filter (EKF)
are investigated and presented in the report. A filter that builds upon an existing
approach to estimate relative poses is developed, modified to include all pairwise
distances available in the constellation, leading to up to 47 percent more accurate
positioning. A multi-dimensional scaling (MDS) initialization procedure is also
developed, capable of determining, with good accuracy, the initial relative poses
within a swarm, assisting nearly instant convergence for the EKF. Furthermore,
another EKF, using MDS coordinate estimates as input, is developed and tested.

The drones are equipped with range detectors that measure the distances to
the walls in four directions. The distance data is inserted into a grid, discretizing
the environment. A method to account for the uncertainty in UAV position when
mapping the environment is implemented, leading to improved results. Two
ways for a swarm to create a map are tested and shown to be applicable in dif-
ferent setups. If the drones in the swarm have a common coordinate system, the
drones update the same grid and create a map. If the coordinate systems of the
drones differ, the maps are created individually and merged instead. Generally,
the method for collaboratively constructing a map performs better and does not
require complex solutions for map merging. To merge the maps, a cost function
is needed that measures how well the maps match. Three different cost functions
are compared and evaluated. The mapper is evaluated for a swarm exploring the
environment using both known global positions and relative pose estimates.

The precision achieved with the pre-existing positioning filter is proven to
be sufficiently high to generate maps with decimeter resolution when feeding
relative pose estimates to the mapping system. A higher mapping resolution is
possible in the simulation environment, but requires much more computation
time, and was therefore not tested.

iii

Acknowledgments

We would like to thank our supervisor Anja Hellander for the helpful feedback
and interesting discussions during the course of the work. We’d also like to thank
Linus Wiik and Torbjörn Crona, our supervisor and manager at SAAB, for giving
us the opportunity and the necessary equipment to finish the work at the highest
possible level.

We would like to thank our examiner Gustaf Hendeby who provided great
guidance in the process and, together with our supervisors, helped us keep the
work to a high standard.

Lastly all the colleagues of Saab who made us feel welcome and invited us
to numerous interesting discussions during the many coffee breaks, also deserve
our warm and grateful gratitude.

Linköping, January 2023
Johan Forsman and Carl Tidén

v

Contents

Notation ix

1 Introduction 1
1.1 Background . 1
1.2 Purpose and goal . 3
1.3 Individual contributions . 4
1.4 Outline . 4

2 Theory 5
2.1 Rotation of a point in the three-dimensional space 5
2.2 Coordinate frames . 6
2.3 Extended Kalman filter . 7
2.4 Relative positioning . 10

2.4.1 Motion model for drone states 10
2.4.2 Basic relative positioning system 11
2.4.3 Multidimensional scaling 15

2.5 Constructing a map . 18
2.5.1 Probabilistic occupancy grid 18
2.5.2 Inverse sensor model . 20
2.5.3 Bresenham line algorithm 20
2.5.4 Uncertain pose . 21

2.6 Map-merging for multiple UAVs . 22
2.6.1 Simultaneous map update 22
2.6.2 Multirobot map merging . 23

3 System Description 25
3.1 The Crazyflie platform . 25

3.1.1 Velocity estimation . 26
3.1.2 Measuring inter-drone distances 26

3.2 Mapping node . 26
3.3 Navigation during mapping . 29
3.4 Extended relative positioning system 31

3.4.1 Complementary initialization procedure 31

vii

viii Contents

3.4.2 Improved filtering . 32
3.5 Extended relative positioning system with MDS measurements . . 35

4 Performance analysis for relative localization systems 37
4.1 Simulation environment . 37
4.2 Noise in velocity estimation and UWB ranging 38

4.2.1 Noise in velocity estimates 39
4.2.2 Noise in UWB ranging measurements 39

4.3 Initiation, flight method, update frequency and noise levels in sim-
ulated tests . 40

4.4 Time of convergence in simulation 42
4.4.1 Basic system . 43
4.4.2 Extended system . 43
4.4.3 Extended system using MDS initialization procedure 44

4.5 Accuracy in simulation . 44
4.5.1 Basic system . 44
4.5.2 Extended system . 46
4.5.3 Measurement dropout analysis for the extended system . . 48
4.5.4 System based on filter using MDS measurements 48

4.6 Real-world tests of the basic system 51
4.7 Summary and discussion . 53

5 Performance analysis for the mapping system 59
5.1 Simulation study . 59

5.1.1 Map cost function . 59
5.1.2 Map merging . 60
5.1.3 Noisy measurements and position uncertainty 62
5.1.4 Mapping with relative positions 64

5.2 Using absolute position (Loco) . 68
5.3 Using relative position . 70

5.3.1 Separate coordinate systems 70
5.3.2 Shared coordinate system 70

5.4 Summary and discussion . 73

6 Conclusions and further work 75
6.1 Conclusions . 75
6.2 Further work . 76

A Extended positioning system for a swarm of three UAVs 81

B Information loss due to rotation of grids 83

Bibliography 85

Notation

Symbols

Notation Meaning

xk|k−1 Predicted value of x for iteration k, given an estimate
of its value in iteration k − 1.

ẋ Time derivative of x.
X[a:b,c:d] Row a to (including) b and column c to (including) d of

the matrix X. Assumes that the first row and column
are indexed with 1.

0i Row vector of i zeros or matrix of i × i zeros, inferred
from usage.

f (x)|x=xk The function f evaluated at x = xk .
HF : i Horizontal frame of UAV i.
Aij The entry on row i and column j of the matrix A.
⊕ Map merging operator.

Abbreviations

Abbreviation Meaning

UAV Unmanned Aerial Vehicle
SLAM Simultaneous Localization and Mapping
LIDAR Light Detection and Ranging

EKF Extended Kalman filter
UWB Ultra-wideband
ToF Time of Flight
HF Horizontal Frame

MDS Multidimensional Scaling

ix

1
Introduction

The master’s thesis is a collaboration between Linköping University and Saab
Dynamics AB. This chapter introduces the problem studied and provides an out-
line of the thesis. The thesis will investigate how a map can be constructed with
range detection sensors, and how the relative poses within a UAV swarm can be
determined.

1.1 Background

The use of unmanned aerial vehicles (UAVs), also known as UAVs, has completely
exploded in the last decade. Today, they are used for monitoring missions and
inspections of places that are difficult for humans to access. To increase the ef-
ficiency and robustness of the implementations performing these kinds of mis-
sions, it can be of interest to use swarms of UAVs.

For UAVs to collaboratively perform missions they are in many cases depen-
dent on access to their relative positions. One approach to obtaining this data is
to use a global navigation satellite system (GNSS) such as the Global Positioning
System (GPS), but such a system might malfunction in some scenarios. Another
possibility is to use a motion-capturing (MoCap) system. This, however, requires
expensive infrastructure. Moreover, in many scenarios, it might not be preferable
or even possible to place navigational beacons in the area where the UAVs should
be put to work. In other words, even though named applications are often robust
and give high accuracy, they are not applicable in all environments.

One method for estimating the relative positions of UAVs in a swarm without
installation of infrastructure is presented in [21], where ultra-wideband (UWB)
communication is used. UWB nodes attached to the UAVs of a swarm utilize bidi-
rectional two-way ranging (TWR) communication to estimate distances between
pairs of UAVs. Sensor data from each UAV, such as translational and rotational

1

2 1 Introduction

velocity, is also communicated to other UAVs in the swarm. Using this informa-
tion, the relative pose of each UAV is estimated with an extended Kalman filter
(EKF). A drawback of the approach is that not all pairwise distances between the
UAVs in the swarm are used. The number of distances used in the approach is
equal to the amount of UAVs.

In [29], another positioning approach for agents equipped with UWB-based
ranging sensors is presented. This method incorporates all combinations of dis-
tances available within the swarm, but unfortunately, it also relies on positions
provided by GNSS satellites. As mentioned earlier, in some scenarios it might be
wise to not depend at all on GNSS position information. The authors acknowl-
edge the downsides of using GNSS information by reasoning around potential
accuracy drops due to signal blockage in for example urban environments.

Another relative positioning system is proposed in [11]. This one is also par-
tially reliant on GNSS information, and the authors remark on this by mentioning
that the positioning accuracy of a satellite-based system might be low and that
there might also be issues with deliberate interference. A large part of the devel-
opment of the method is focused on dealing with these issues, just as in [29], but
the work attacks the problem in another way. Here, a few systems using different
variants of multidimensional scaling (MDS) are investigated. A new system is
developed that includes a method for dividing the UAV swarm into patches and
uses super multidimensional scaling (SMDS) to localize agents relative to the oth-
ers in each patch. The patches are then merged using a low-complexity algorithm.
While involving a low-complexity method in a relative positioning system might
make it sound useful in situations when dealing with limited hardware, as can
be the case when running code on processors mounted on UAVs, the method has
drawbacks other than its GNSS reliance. One of those is that the positioning
within patches uses measured relative angles between UAVs. Information like
that might not always be easily measurable. A system for determining relative
yaw angles between agents in a UAV swarm without depending on direct mea-
surements of angles is introduced in [22]. There would exist a clear problem if
trying to use that system for continuous localization, however. The issue would
be that it requires the UAVs in the swarm to move in a specific way to estimate
their relative yaw angles. This is probably not preferable when conducting real
missions with UAV swarms.

Going forward from localizing UAVs, in many applications, it might also be
desirable to have the capability of constructing a map of the area where the UAVs
fly. In [12], a multi-agent simultaneous localization and mapping (SLAM) sys-
tem is proposed where each of the robots uses its environment readings as sensor
input. All the generated individual maps are then merged using an appearance-
based method that identifies overlaps, to form the complete map. Two types of
agents are used, namely exploring and monitoring nodes. Exploring nodes are re-
sponsible for maintaining their maps, while monitoring nodes are the ones where
the map overlaps are inspected, and maps are merged. While [12] acknowledges
that there might be limitations on the hardware being run on the agents, the
article does not consider going with an approach where heavier computing is per-
formed on a central computer, such as in [32]. This method allows the use of

1.2 Purpose and goal 3

so-called nano UAVs since intensive tasks are carried out on a central machine.
An analysis of the time consumption for the computationally intensive tasks is
done both in the case where a single UAV is used, and also when testing with a
pair. The analysis concludes that times are increasing when the map gets larger,
both in the single-UAV test and the multi-UAV test. In the multi-UAV case, about
80 % of the time consumption is due to bundle adjustments of map landmarks.

Though [32] establishes that the approach tested is capable of merging and
optimizing maps in many situations, the method is reliant on global position in-
formation fed to each agent. The proposed strategy is thus more focused on map-
ping than localization. In [18], a framework for collaborative SLAM is developed
where CPU-demanding tasks are also outsourced to a central computer. Here, the
agents are not dependent on global positioning data, and accuracy results from
experiments are on par with existing state-of-the-art SLAM algorithms. Similar
strategies, in the sense that they do not at all rely on global position information,
are developed in [20, 28]. While [28] places a lot of focus on the limitations of
agents’ computational resources and a server-centered way of managing maps,
[20] chooses to focus more on how to optimally reject perception outliers. Many
of the previously commented methods assume each UAV is equipped with a cam-
era as the main sensor feeding data to the SLAM algorithm. It might not always
be feasible to equip UAVs with cameras, for example when dealing with small
UAV platforms like Crazyflie 2.0.

Another way of conducting simultaneous localization and mapping is with
the LOCUS algorithm [26]. It is based on utilizing LIDAR data to estimate the
odometry of a UAV. An issue with LOCUS is that it is dependent on densely
located measurements of the surroundings. It is pointed out that the LOCUS
system can be adapted to different platforms, though the system is only tested
on robots carrying relatively heavy sensors [26, p. 4]. The potential problem of
carrying extensive equipment on nano-UAVs arises yet again.

To summarize, for efficient execution of missions using UAV swarms in un-
known terrains without access to a global positioning system (GPS) or similar
alternatives, the UAVs need to map their environments, as well as estimate posi-
tions on their own [23]. At the same time, limited resources and physical charac-
teristics imply constraints on where the computational tasks can be handled, as
well as which data can be collected.

1.2 Purpose and goal

With the presented background in mind, it is of great interest to examine the pos-
sibilities of further development in the fields of localization within UAV swarms
and using swarms to map unknown places. Since a lot of the previous literature
has focused on the relative positioning of UAVs and mapping unknown territo-
ries as separate missions, a compelling mission is to try fusing the two areas. The
goal for this thesis is therefore to develop a functional system for mapping using
a swarm of Crazyflie UAVs, aided by a system producing relative pose estimates.
Since it is not possible to fit a rotating LIDAR on a Crazyflie UAV, a simpler unit

4 1 Introduction

must be used instead, which adds to the challenge of producing accurate maps.
The main goal of the thesis can be divided into smaller sub-goals. More precisely,
this thesis will try to answer:

• How can UWB communication, conveying ego data and relative distance in-
formation, be used to determine relative poses within a swarm of Crazyflie
UAVs?

• How can uncertainty in sensor data be considered when collaboratively con-
structing a map?

• How can sensor data (five-directional laser scans, IMU data, and relative
position information) from multiple UAVs be fused to collaboratively con-
struct a map?

1.3 Individual contributions

Carl reviewed the implementation of the relative positioning system described in
[21], developed extensions to the existing filter, and implemented a filter using
MDS measurements. Results are presented in Chapter 4.

The methods and strategies for constructing a map were investigated by Jo-
han. This is introduced in related sections in the theory chapter, and results are
presented and discussed in Chapter 5.

We developed the simulator together. All experiments were performed by
both of us. We jointly formulated the problem, analyzed the results, and drew
general conclusions. The sections of the paper were divided between us accord-
ing to the above description.

1.4 Outline

The introduction is given here in Chapter 1. A theoretical background is given in
Chapter 2, followed by a system description in Chapter 3. In Chapter 4 and Chap-
ter 5, results concerning positioning and mapping, respectively, are presented.
Chapter 6 summarizes the results together with some suggestions for future de-
velopments.

2
Theory

This chapter provides theoretical background to some of the topics covered in
the thesis. The main parts covered are filtering for position estimation and occu-
pancy grid mapping.

2.1 Rotation of a point in the three-dimensional
space

In the three-dimensional Euclidean xyz space a coordinate point can be rotated
around any axis. Let φ, θ, and ψ denote the angles with which to rotate a point
around the x−, y−, and z−axis, respectively. The rotation matrices for each axis
are given by

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 , (2.1)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , (2.2)

and

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.3)

These matrices are frequently used when working in three-dimensional space,
and essential in many coordinate transformations.

5

6 2 Theory

2.2 Coordinate frames

There are three types of coordinate frames related to the thesis work, the global
frame, the body frame, and the horizontal frame (HF). There is one single global
frame common for all UAVs, and for each UAV there is an associated body frame
and a HF.

The global frame is a Cartesian coordinate system fixed in the room in which
a set of drones are acting. This system has the z-axis pointing in the opposite
direction of gravity. An example of the global frame is depicted in Figure 2.1a.

The body frame is a Cartesian coordinate system fixed in a specific UAV, with
the z-axis pointing in the upwards direction of the UAV, and the x-axis pointing
in the forward direction of the UAV, at all times. The x and y directions are per-
pendicular to both each other and the z-axis, such that the x, y, and z directions
follow the right-hand rule. Such a frame is depicted in Figure 2.1b.

The third type of coordinate system, the HF, has its origin fixed in a UAV,
in the same way as the body frame. The difference is, however, that the x- and
y-directions in this frame are always horizontal (and perpendicular to both the z-
axis and each other, with the x, y, and z axes following the right-hand rule). The
z-axis in a HF always points upwards and is parallel to the z-axis in the global
frame. The x-axis points in the same direction as the projection of the x-axis of
the body frame onto a horizontal plane. A HF system is depicted in Figure 2.1c.

Assume that the position picf =
[
xicf , y

i
cf , z

i
cf

]T
and attitude φicf , θicf and ψicf

(roll, pitch and yaw) of UAV i is expressed in the global frame. The transforma-
tion of a point pb from the body frame of UAV i to the global frame is then given
by (see Figure 2.2a for an example)

pg = picf +R(φicf , θ
i
cf , ψ

i
cf)pb, (2.4)

where
R(φicf , θ

i
cf , ψ

i
cf) = Rx(φicf) ·Ry(θicf) ·Rz(ψicf).

To transform a point pHF: i in the HF of UAV i into the global frame, for in-
stance to compare relative position estimates to ground truth values, only the
yaw rotation matrix of drone i, Rz(ψicf), is needed (described in (2.3)). The trans-
formation can be performed as (see Figure 2.2b for an example)

pg = picf +Rz(ψicf)pHF: i (2.5)

where pg is the point expressed in the global frame.

To transform a velocity vT =
[
vx vy vz

]
expressed in the body frame of UAV

i into a two-axis velocity v̄Txy =
[
v̄x v̄y

]
expressed in the HF of the UAV, a rotation,

v̄xy = (Rx(φicf)Ry(θicf))[1:2,1:3]v, can be performed [21] (see Figure 2.2c). The
indexing on the multiplied rotation matrices means using the first two rows of the
product. In essence, this operation of rotating and slicing indices is equivalent
to projecting the velocity v onto a horizontal plane. In order to transform the
yaw rate of UAV i expressed in the body frame into the HF, a calculation like

2.3 Extended Kalman filter 7

ψ̇HF = −
sin(θicf)

cos(φicf)
p̄ +

cos(θicf)

cos(φicf)
r̄ can be done [21]. Here, p̄ and r̄ are the rotation

velocities of UAV i in the x- and z-directions of its body frame.

(a) The global frame. (b) Body frame coordi-
nate system, with z-axis
pointing in the upwards
direction of the drone.

(c) Coordinate system lo-
cal to a drone but with the
z-axis pointing upwards.
This is called a horizontal
frame (HF).

Figure 2.1: Different coordinate systems.

2.3 Extended Kalman filter

When trying to determine the unknown state of a linear system subject to process
and measurement noise, a Kalman filter can be used. The Kalman filter is the best
linear unbiased estimator in the sense of minimizing the mean square error of the
state [14]. However, in order for the optimality to hold, some assumptions have to
be made about the system and the observations. Firstly, the system model needs
to be an exact match of the real system. Secondly, the process and measurement

8 2 Theory

(a) The point pb = (0.5 0.5 0) in the body frame is transformed onto the point pg =
(1.346 1.604 1.127) in the global frame. The pose of the UAV in the global frame is
described by picf = (1 1 1) and φicf = θicf = ψicf = π/8.

(b) The point pHF:i = (0.5 0.5 0) in the HF is transformed onto the point pg =
(1 1.707 1) in the global frame. The pose of the UAV in the global frame is described by
picf = (1 1 1) and ψicf = π/8 (only this angle is needed for the transformation).

(c) The velocity v = (1 1 0), expressed in the body frame, is projected onto the two-axis
velocity v̄xy = (0.7774 0.9239), expressed in the HF.

Figure 2.2: Different transformations.

2.3 Extended Kalman filter 9

noise processes must be white and have zero cross-correlation with each other.
Lastly, the covariances of the noise processes need to be known [19].

Consider a system described by

xk+1 = Fxk + wk (2.6a)

where xk is the state vector at time-step k, F is the state transition matrix from
a time-step to the next, and w is a white noise process with known covariance
matrix R. Observations, z, of the state can be made through

zk = Hxk + vk , (2.6b)

where H is the observation matrix and v is measurement noise. The covariance
matrix for v is Q and it has zero cross-correlation with the process noise, as
assumed previously. In this situation, a Kalman filter can be used to estimate
the true values of xk . The following equations are produced when deriving the
Kalman filter.

x̂k|k−1 = Fx̂k−1 (2.7a)

Pk|k−1 = FPk−1F
T + Q (2.7b)

Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1 (2.8a)

x̂k = x̂k|k−1 + Kk(zk − Hx̂k|k−1) (2.8b)

Pk = (I − KkH)Pk|k−1. (2.8c)

Above, Kk is the Kalman gain, x̂k is the estimated state, and Pk is the covariance
matrix of the error of the state estimate at time-step k. The variables x̂k|k−1 and
Pk|k−1 are predicted values for x̂ and P based on the knowledge from the previous
iteration [27].

Though the Kalman filter is optimal, in the sense previously mentioned, un-
der the conditions mentioned earlier, there are many situations in which the
model describing a particular system is not linear, and the regular Kalman filter
can not be used. In these scenarios, the extended Kalman filter can be employed
to provide state estimates in a very similar manner. The EKF works by lineariz-
ing the nonlinear parts of a system model using a Taylor expansion of a certain
degree [17]. Suppose the system including the states of interest can be written on
the form

xk+1 = f (x, u)|x=xk ,u=uk + wk (2.9a)

zk = h(x)|x=xk + vk . (2.9b)

In (2.9), f is a nonlinear differentiable function of the state x, and the input u.
The process noise is denoted w, and v is measurement noise with covariance ma-
trices Q and R, respectively. The observation function h also needs to be differen-
tiable for applying the EKF. Let Fk and Hk be Jacobians of f and h with respect

10 2 Theory

to x, evaluated at the state estimate and input values of time-step k − 1.

Fk =
∂f

∂x |x=x̂k−1,u=uk
, (2.10a)

Hk =
∂h
∂x |x=x̂k|k−1

. (2.10b)

The EKF then works by following the same procedure as for the standard Kalman
filter, but substituting F and H in (2.7b), (2.8a) and (2.8c) with Fk and Hk . The
right hand side of (2.7a) is also substituted with f (x̂k−1, uk), and the term Hx̂k|k−1
in (2.8b) is replaced with h(x̂k|k−1).

If a state update model is given on the continuous form ẋ = f (x, u), where f
is differentiable, a first-order Taylor expansion can be used to create a discrete ap-
proximation on a similar form as the model in (2.9). If there is no noise involved,
the discrete model can be expressed as

xk+1 = xk + f (xk , uk)∆t = F(xk , uk). (2.11)

In the above, ∆t is the interval between the time-point k + 1 and k. If instead,
the input is noisy, the impact of the noise on the process can be approximated
through another first-order Taylor expansion to generate the model

xk+1 = F(xk , uk) +
∂F
∂u |u=uk

wu,k . (2.12)

Above, u is the desired input to the system and wu is the white Gaussian noise
with which the input is disturbed. With the input noise covariance matrix de-

noted Q, the covariance of the resulting process noise becomes ∂F
∂u |u=uk

Q ∂F
∂u

T

|u=uk
[30]. The form of (2.12) is the same as in (2.9) and can be used in an EKF as
presented.

2.4 Relative positioning

This section describes the general theory and methods relevant to the relative po-
sitioning systems covered in this report. It is important to note that all systems
related to relative positioning assume drones that fly at the same height. This
allows for omitting height coordinates when working with horizontal frames (de-
scribed in Section 2.2) and viewing the problems in two dimensions.

2.4.1 Motion model for drone states

In order to predict state (relative positions and rotations) changes in the relative
positioning systems covered in this report, a motion model is needed. The model
takes positional and rotational velocities of individual agents, as well as current
states, to determine how the states change during a short time interval. Since
the positioning systems covered in the report handles poses expressed in the HF
of a specific agent in the swarm, see Section 2.2, the motion model also needs to

2.4 Relative positioning 11

use this sort of coordinate system. As the positioning systems are implemented in
two dimensions, the motion model only needs to consider state changes in the xy-
plane. Consider the scenario depicted in Figure 2.3, where the UAVs have veloci-

ties expressed in their own respective HF vi =
[
vx,i vy,i

]T
and vj =

[
vx,j vy,j

]T
,

and the yaw rates ri = ψ̇i and rj = ψ̇j , also expressed in their own respective HF.
The velocity of UAV j in the HF of UAV i (HF : i), vj,HF:i = [ẋij , ẏij]T , where

xij and yij are the x- and y-position of UAV j in HF : i, can be divided into
a translational and a rotational contribution due the movement of both UAVs
[15]. The translational contribution represents the velocity resulting from the
translational movement of the UAVs. Using (2.3), and the notation in Figure 2.3,
this contribution is

v
(TR)
j,HF: i = R[1:2,1:2]

z (ψij)vj − vi . (2.13)

The rotation of UAV i also causes UAV j to move in HF : i, this is what is referred
to as a rotational contribution. If UAV i rotates with the rate ri [rad/s] around the
z basis vector of its own HF, ẑHF:i , the rotational contribution for UAV j in HF : i,

v
(ROT)
j,HF: i , becomes

v
(ROT)
j,HF: i = −(ri ẑHF:i ×

xijyij
0

)[1:2] = ri

[
yij
−xij

]
, (2.14)

The yaw angle of UAV j relative to UAV i is

ψij = ψj − ψi , (2.15)

where ψi and ψj are the yaw angles of UAV i and j expressed in the global frame.
The relative yaw rate is calculated by taking the derivative of (2.15),

ψ̇ij = rj − ri . (2.16)

All in all, a model of change in the x- and y-positions and yaw-angle of j in
HF : i can be summarized in the following vector

ẋij
ẏij
ψ̇ij

 =

v(TR)
j,HF:i + v(ROT)

j,HF:i
rj,HF:i

 =

cos(ψij)v

x
j − sin(ψij)v

y
j − v

x
i + yij ri

sin(ψij)v
x
j + cos(ψij)v

y
j − v

y
i − xij ri

rj − ri

 . (2.17)

2.4.2 Basic relative positioning system

This section describes the positioning system from [21], which fuses velocity in-
formation from agents within a Crazyflie swarm with time-of-flight (ToF) based
distance measurements provided by UWB ranging decks mounted on the agents,
to provide relative position and rotation estimates. The fusion is done through
an extended Kalman filter.

12 2 Theory

Figure 2.3: Two UAVs i and j, their respective HF, and their translational
velocities vi and vj .

The mentioned ToF measurements are provided by sending messages back
and forth between two drones according to the scheme presented in Figure 2.4.
Naming the flight time of the messages tf , and multiplying the apparent relation-
ships t4 = 2tf + t3 and t5 = 2tf + t6,

t4t5 = (2tf + t3)(2tf + t6) =⇒ t4t5 − t3t6 = 2tf (2tf + t3 + t6) =

= 2tf (t4+t6) = 2tf (t3+t5) =⇒ tf =
t4t5 − t3t6
2(t4 + t6)

=
t4t5 − t3t6
2(t3 + t5)

=
t4t5 − t3t6

t3 + t4 + t5 + t6
.

(2.18)

The final expression is the one used to estimate ToF in the positioning system. It
makes up the basis for alternative double-sided two-way ranging and minimizes
the negative effects on the accuracy of t̂f due to clock drift. Using the expression,
the timing error can be modeled as t̂f − tf = etf , where e models the deviation
(typically expressed in parts per million) from nominal clock frequency [25]. The
ToF messages also let agents inform each other about their ego velocities.

Only one UAV can be in transmitter mode at each time instant, and the switch-
ing of roles is also handled with a specific scheme, shown in Figure 2.5. The
switching scheme is important because the information delays introduced from
having agents wait to share and receive velocity and distance data can have an
effect on the performance of the localization. The positioning work of this report,
however, is more focused on filtering methodologies and does not go into detail
about hardware delay issues. For more elaborate descriptions of both the ToF
message and switching schemes, the reader is referred to [21, 25].

An extended Kalman filter is employed by the positioning system to estimate
relative position and yaw for each drone j, j = 1, ..., n, j , i, in the HF of drone
i (n is the number of drones in the swarm). Since the filtering equations are the
same for each relative pose to estimate, the filter is described for one pair of UAVs
only. Let Xij contain the pose of UAV j expressed in HF : i,

2.4 Relative positioning 13

Figure 2.4: The communication protocol for inter-drone distance measure-
ments and sharing of velocity data.

Figure 2.5: The method for passing around the transmitter role. Switch-
ing role type occurs at the red arrow communications (both involved drones
switch roles).

Xij =
[
xij yij ψij

]T
, (2.19)

where xij and yij are the x- and y-positions of UAV j in HF : i, and ψij is the yaw
angle of UAV j in HF : i. The input to the filter, Uij , is the measured translational
and rotational velocities of UAVs i and j,

Uij =
[
vTi ri vTj rj

]T
=

[
vxi v

y
i ri vxj v

y
j rj

]T
. (2.20)

In the above, v denotes translational velocity and r denotes rotational velocity.
All velocities are expressed in the HF of each respective UAV. The motion model
presented in Section 2.4.1 is used to describe the rate of change in Xij given a
current state and input,

Ẋij = f (Xij , Uij) =

cos(ψij)v

x
j − sin(ψij)v

y
j − v

x
i + yij ri

sin(ψij)v
x
j + cos(ψij)v

y
j − v

y
i − xij ri

rj − ri

 . (2.21)

A first-order Taylor expansion based on the relationship of (2.21) is done to create
a discrete model for state update,

14 2 Theory

Xij,k+1 = f (Xij,k , Uij,k)∆t + Xij,k = F(Xij , Uij)|Xij=Xij,k ,Uij=Uij,k . (2.22)

The velocities used as input to the filter are in reality noisy estimates of the true
velocities of the UAVs, and the process model needs to take this into account. The
effect of the noise can be approximated with another first-order Taylor expansion,
as described in Section 2.3, to generate a model that includes process noise,

Xij,k+1 = F(Xij,k , Uij,k) +
∂F
∂Uij |Uij=Uij,k

wk . (2.23)

In the above, w denotes the input noise. Let A be the Jacobian of F w.r.t. Xij and
B be the Jacobian of F w.r.t. Uij ,

A =
∂F
∂Xij

=

1 ri∆t (− sin(ψij)v

j
x − cos(ψij)v

y
j)∆t

−ri∆t 1 (cos(ψij)v
j
x − sin(ψij)v

y
j)∆t

0 0 1

 , (2.24a)

B =
∂F
∂Uij

=

−1 0 yij cos(ψij) − sin(ψij) 0
0 −1 −xij sin(ψij) cos(ψij) 0
0 0 −1 0 0 1

 . (2.24b)

Let Ak and Bk be the values of A and Bwhen evaluating them at the state estimate
X̂ij,k−1 and the input Uij,k . The measurements fed to the filter are inter-drone
distances. Since the filtering is described for one pair of UAVs, only one distance
measurement is considered. Let h be a function describing the true inter-drone
distance between UAV i and j, z, based on the state variables xij and yij ,

z = h(Xij) =
√
x2
ij + y2

ij . (2.25)

Let the vector H be the Jacobian of h, and let Hk denote the value of H when
evaluating it at the state prediction X̂ij,k|k−1,

H =
[

xij√
x2
ij+y

2
ij

yij√
x2
ij+y

2
ij

0
]

=
[
xij /z yij /z 0

]
. (2.26)

Let the covariance matrix of the input and measurement noise be denoted Q and
R, respectively. Q is 6 × 6 diagonal and R is a scalar.

QS =

σ2
vxy 0 0
0 σ2

vxy 0
0 0 σ2

vr

 , Q =
[
QS 03
03 QS

]
(2.27a)

R = σ2
d . (2.27b)

2.4 Relative positioning 15

Above, σvvy is the standard deviation for the error in translational velocity esti-
mates, σvr is the deviation for rotational velocity estimates and σd is the deviation
for ranging measurements. Finally, with the notations presented above and the
theory from Section 2.3, the prediction step for the filtering is described by

X̂ij,k|k−1 = F(X̂ij,k−1, Uij,k) (2.28a)

Pk|k−1 = AkPk−1A
T
k + BkQB

T
k , (2.28b)

and the update step is described by

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + R)−1 (2.29a)

X̂ij,k = X̂ij,k|k−1 + Kk(zk − h(X̂ij,k|k−1)) (2.29b)

Pk = (I − KkHk)Pk|k−1. (2.29c)

2.4.3 Multidimensional scaling

Multidimensional scaling (MDS) is an algorithm that, among other applications,
can be used to generate positional coordinates based on pairwise ranging mea-
surements between sensor nodes. A general MDS procedure [33] for positioning
n objects in two dimensions is presented in the list below.

1. Create an n × n matrix D̂ that has the estimated distance between agent i
and j, d̄ij , in its position (i, j). Apply the centering operation to obtain B,
B = −1

2CD̂C, where C = I − 1
n Jn is the centering matrix. I is an n×n identity

matrix and Jn is an n × n matrix of ones.

2. Calculate the two (since output coordinates should be two-dimensional)
largest eigenvalues of B and their respective eigenvectors.

3. The MDS result is S ∗ = UmΛ
1
2
m, where Λm is a diagonal matrix with the two

largest eigenvalues on the diagonal (in order from smallest to largest) and
Um is a matrix with the eigenvalues’ respective eigenvectors as columns
(in corresponding order). S ∗ becomes an n × 2 matrix with the x and y
coordinates of all drones in the swarm as rows [34]. The coordinates are
expressed in the HF of drone 1 but might be mirrored and rotated around
the origin such that the matrix of true relative positions, S, can be expressed
as either S = M(θ)FS ∗ or S = M(θ)S ∗, depending on if there is an incorrect
mirroring involved or not [22]. The rotational error is in this case θ and the
matrices M and F are described in (2.30a) and (2.30b).

M(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (2.30a)

F =
[
−1 0
0 1

]
. (2.30b)

16 2 Theory

Considering the three-agent scenario in Figure 2.6a, the determined positions
of agents 2 and 3 are rotated around agent 1, without violating the distance con-
straints. In this case, the relationship between S and S ∗ is S = M(−π2)S ∗. Their
positions might also be flipped similar to what is shown in Figure 2.6b. In that
case, the relationship is S = M(0)FS ∗ = FS ∗.

In [22], a solution to this ambiguity problem is proposed. The approach sug-
gested there is one that is capable of dealing with ambiguities as well as being
resilient to noisy ranging measurements. It works by moving one of the agents
in the swarm two times (while estimating the movement distances and directions
with onboard sensors) and making standard MDS position estimates before, in be-
tween, and after the two moves. The algorithm is summarized in Algorithm 2.1.
Since the underlying mathematics of the steps involved in Algorithm 2.1 is de-
scribed across several pages in [22], and the usage of the procedure related to
this report is rather ad hoc, the equations for implementing the procedure is pre-
sented here in a concrete and minimal way. The interested reader is referred to
[22] for more detail and intuition.

(a) Wrongly rotated posi-
tion estimates and true po-
sitions.

(b) The estimates might
be mirrored along the y-axis
while still satisfying dis-
tance constraints.

Figure 2.6: The ambiguity problem depicted.

In Algorithm 2.1, the first step consists of collecting the pairwise distances
and creating a distance matrix D̂. The standard MDS procedure, as described in
the list above, is then applied to calculate S ∗.

After S ∗ has been calculated, the next step is to move one of the agents (in this
description agent 1) to a new position. ∆x′1 and ∆y′1 is the movement of the agent
described in its prior-to-movement HF (see Section 2.2). Then, distances are once
again measured and a new distance matrix D̂ ′ is created using the same method
as earlier in the process. The first estimate of the angle with which to clear out
the rotation ambiguity, θ̂R,1, is defined as

θ̂R,1(S ∗,∆S ′ , D̂ ′) = arg min
θ∈θλ

n∑
i=1

(ai + bi cos(θ) + ci sin(θ))2 . (2.31)

Here, ai , bi , ci is defined as in (2.32) and θλ as the set described in (2.33). In
(2.33), λj represent the roots of the equation that comes from deriving the sum

2.4 Relative positioning 17

Data: Pairwise distance measurements
begin

Collect d̄ij for i, j = 1, ..., n and determine D̂
Calculate S ∗

end
begin

Move agent 1 to [∆x′1,∆y
′
1]T

Collect d̄′ ij for i, j = 1, ..., n at the new position and determine D̂ ′

Calculate θ̂R,1 = θ̂R(S ∗,∆S ′ , D̂ ′)
end
begin

Move agent 1 to [∆x′′1 ,∆y
′′
1]T

Collect d̄′′ ij for i, j = 1, ..., n at the new position and determine D̂ ′′

Calculate θ̂R,2 = θ̂R(S ∗∗,∆S ′′ , D̂ ′′)
Estimate the position matrix Ŝ

end

Algorithm 2.1: The positioning algorithm based on multidimensional scal-
ing coordinates presented in [22]. Some of the notations are introduced in
the running text.

∑n
i=1 (ai + bi cos(θ) + ci sin(θ))2 from (2.31) and setting it equal to zero.

ai = d1,i
2 − d′1,i

2 + ∆x′1
2 + ∆y′1

2

bi = −2(x∗i∆x
′
1 + y∗i∆y

′
1)

ci = 2(x∗i∆y
′
1 − y

∗
i∆x

′
1).

(2.32)

θλ = {arcsin(λj), g(π − arcsin(λj)) : j ∈ {1, 2, 3, 4}} ∈ [−π, π),

g(x) = x − 2π
⌊ x
2π

+
1
2

⌋
.

(2.33)

The last step of Algorithm 2.1 starts off in the same way as the second. Agent 1
is moved to another new position, the move distance is measured, and ∆x′′1 and
∆y′′1 are defined as the total movement from the agent’s initial position (before
the first move). Then a new distance matrix D̂ ′′ is estimated. S ∗∗ is calculated by
rotating S ∗ with the angle θ̂R,1 obtained in the previous step, as in (2.34).

S ∗∗ =
[

cos(θ̂R,1) sin(θ̂R,1)
− sin(θ̂R,1) cos(θ̂R,1)

]
S ∗. (2.34)

When S ∗∗ has been determined, θ̂R,2 can be calculated as in (2.31) but with d′1,i ,
x∗i , y

∗
i , ∆x

′
1 and ∆y′1 in (2.32) replaced with the new corresponding values from

D̂ ′′ , S ∗∗ and ∆S ′′ . The algorithm is concluded by determining the final position

18 2 Theory

estimates

Ŝ =

M(θ̂R,1)S ∗ |θ̂R,2| ≤ |l|
M(θ̂R(FS ∗,∆S ′ , D̂ ′))FS ∗ |θ̂R,2| > |l|,

(2.35)

where
l =

1
2
g(−2arctan2(∆x′1,∆y

′
1) + 2arctan2(∆x′′1 ,∆y

′′
1)). (2.36)

2.5 Constructing a map

Mapping the environment can be done in both 2D and 3D and gives a picture of
what the environment looks like. Mapping is a task that relies heavily on process-
ing sensor data or capturing features in the image. By estimating the distance
between identified features, information about where obstacles are (or are not)
located can be added to the map. Mapping with a UAV involves estimating the
position of the UAV, collecting information about the environment, and simul-
taneously inputting more information about the environment based on what is
seen. If the position of the UAV is known and the sensors are not noisy, a com-
mon approach is to create a point cloud in which the position of each identified
feature is converted from the body frame of the sensing UAV to the global frame
and stored on the map [23].

Noisy sensor data or uncertain UAV position will result in faulty positions for
features, resulting in a blurry point cloud map, and in the worst case an unread-
able map. By discretizing the world and converting the map into a grid a readable
map can be obtained at the expense of lower resolution. Each grid cells represent
a square in 2D space or a cube in 3D space and are labeled as either free or occu-
pied. However, discrete labeling is risky because it results in a discretized point
cloud map. The probabilistic occupancy grid stores the probability that each cell
is occupied, leading to a simple update rule [31].

2.5.1 Probabilistic occupancy grid

The aim of occupancy grid mapping is to determine the joint probability for every
cell in a grid mesh being occupied. Each cell m[i, j] in the (2D) grid keeps track
of the probability, p(m[i, j]), that the cell is occupied. In practice, this means that
a cell with value 0 corresponds to an unambiguously free cell whilst a cell with
value 1 corresponds to an unambiguously occupied cell. Values in-between cor-
respond to more or less certainty that the cell is occupied. The grid is initialized
with the value 0.5 for all cells if no prior information is given [31]. It is assumed
that the grid has a fixed resolution and that the area corresponding to a cell is ei-
ther completely free or completely occupied. It is also assumed that the world is
static and that the cell values are independent of each other. The probability that
a cell is occupied, given the prior probability of the cell being occupied, p(m[i, j]),
and an obstacle measurement zt at time t is then, according to Bayes rule

p(m[i, j]|zt) =
p(zt |m[i, j])p(m[i, j])

p(zt)
, (2.37)

2.5 Constructing a map 19

where p(zt) denotes the certainty that the measured cell m[i, j] is occupied. This
term is the so-called inverse sensor model [31]. For N measurements the joint
probability is

p(m[i, j]|z1:N) =
N∏
t=1

p(m[i, j]|zt). (2.38)

The odds of an event occurring are defined as o(A) = p(A)
p(¬A) , and the odds that a

cell is occupied, given measurements z1:N , are then

o(m[i, j]|z1:N) =
p(m[i, j]|z1:N)
p(¬m[i, j]|z1:N)

=
p(m[i, j]|zN)
p(¬m[i, j]|zN)

p(m[i, j]|z1:N−1)
p(¬m[i, j]|z1:N−1)

p(¬m[i, j])
p(m[i, j])

.

(2.39)
By taking the logarithm and defining the prior term

l0 = log
p(m[i, j])

1 − p(m[i, j])
= − log

1 − p(m[i, j])
p(m[i, j])

, (2.40)

the previous term

lt−1 = log
p(m[i, j]|z1:t−1)

1 − p(m[i, j]|z1:t−1)
, (2.41)

and the log odds of (2.37)

st = log
p(m[i, j]|zt)

1 − p(m[i, j]|zt)
, (2.42)

the standard update strategy for probabilistic occupancy grids is achieved [31],

lt(m[i, j]) = st(m[i, j], zt) + lt−1(m[i, j]) − l0(m[i, j]). (2.43)

As previously stated, the map is initialized with the prior p(m[i, j]) = 0.5 when no
previous information about the environment is given. This gives l0 = log 1−0.5

0.5 =
0, and eliminates (2.40) from (2.43) to get the update algorithm

l(m[i, j]) =
N∑
t=1

st(m[i, j], zt) (2.44)

with the ability to retrieve p(m[i, j]) as

p(m[i, j]) = 1 − 1
1 + exp l(m[i, j])

. (2.45)

Note that the multiplication in (2.38) is now an addition. In the update algo-
rithm (2.44) for each cell in a grid, (2.42) determines the value to increment (or
decrement) a cell with [31].

20 2 Theory

2.5.2 Inverse sensor model

The inverse sensor model is determined by the type of sensor and specifies the
occupation probability for the cells indicated by the sensor. A common model
for a range sensor such as sonar or LIDAR works by updating all cells within the
sensor cone with a value of log o(pf ree) and a value of log o(pocc) to cells at the
measured range. The sensor cone is the area of free space the sensor has detected
until the target. Nothing can be said about the occupation probability for cells
farther away than the detected cells. For an ideal inverse sensor model pf ree = 0
and pocc = 1 [16, 31]. [16] incorporates uncertainty into this model by convolving
the ideal sensor model with a Gaussian distribution. The ideal inverse sensor
model is shown in Figure 2.7 along with the Gaussian sensor model introduced
in [16]. The width of the bar corresponds to the accuracy of the sensor reading.

Figure 2.7: The ideal inverse sensor model and the ideal inverse sensor
model convolved with a Gaussian noise model.

2.5.3 Bresenham line algorithm

Given the position of a UAV pcf = (x1, y1) and a measured point zt = (x2, y2) in the
global frame, it is of interest to know all points in the grid in-between since they
are free (unoccupied). The Bresenham line algorithm approximates a straight
line in a grid lattice and allows the free cells [10] to be updated. The algorithm
differs slightly depending on the direction of the line. With the coordinates in
the body frame of the UAV, the line will always start at the origin. The measured
point expressed in the body frame is

pb = sr

cos(sb)
sin(sb)

0

 , (2.46)

2.5 Constructing a map 21

where sb is the sensor bearing, that is the angle in the body frame at which the
sensor reads the distance sr , called the sensor range. The measured point in the
body frame is converted to the global frame with (2.4). The algorithm will return
a discretized sequence of coordinates (X, Y) from pcf to zt .

Consider a line in the standard two-dimensional Cartesian coordinate system.
Let the slope of the line be less than one, and let the line be in the first quadrant.
Since the line has a gradient of less than one, the sequences will be on the form

X = [⌊x1⌋, ⌊x1⌋ + 1, . . . , ⌊x2⌋]T

and
Y = [⌊y1⌋, . . . , ⌊y1⌋, ⌊y1⌋ + 1, . . . , ⌊y1⌋ + 1, . . . , ⌊y2⌋]T .

Algorithm 2.2 applies the Bresenham line algorithm. The error between the real
value of y and the Bresenham value of y given x accumulates in Pk and determines
when y must be incremented. For lines in other quadrants or other gradients, the
line is transformed by swapping x and y and (or) changing incrementation to
decrementation. Figure 2.8 illustrates the algorithm using pcf = (0.5, 1.5) and
zt = (9.5, 4.5).

Data: Start (x1, y1), end (x2, y2)
Result: List with coordinates, L = (X, Y)
Ensure x2 > x1, otherwise, flip the start and end points.
dx← x2 − x1, dy ← y2 − y1
Ensure dy/dx ∈ [0, 1], otherwise switch x and y.
x← ⌊x1⌋, y ← ⌊y1⌋
Pk ← 2dy − dx
while x ≤ x2 do

Append (x, y) to L
if Pk ≥ 0 then

y ← y + 1
Pk ← Pk − 2dx

end
x← x + 1
Pk ← Pk + 2dy

end

Algorithm 2.2: Bresenham line algorithm.

2.5.4 Uncertain pose

The assumption that the pose of a UAV is known exactly is rarely true in practice,
especially without a global positioning system. If the pose has a large uncertainty,
the resulting map will not be an accurate representation of the real world. The
pose consists of the position and orientation of a UAV. [16] addresses the prob-
lem by updating a set of possible positions for the observed obstacle. Each cell
in the distribution of positions is associated with a weight, corresponding to the

22 2 Theory

Figure 2.8: The Bresenham line algorithm returns the yellow cells. The orig-
inal line from (0.5, 1.5) to (9.5, 4.5) is seen in blue.

likelihood of the obstacle being there. The update value (2.42) is computed for
each position and multiplied with the corresponding weight before updating the
cell’s value in the grid. If no given distribution is available, the position is con-
volved with a Gaussian distribution by sampling n points around the estimated
position. The weights are all 1/n. Instead of trusting the estimated position and
updating one cell, the update is smeared out in the grid around the cell. The time
complexity for n sampled points is O(n).

2.6 Map-merging for multiple UAVs

There are two alternatives for a swarm to map collaboratively. Either they update
the same map, or one map is maintained individually by each agent and merged
offline.

2.6.1 Simultaneous map update

For a swarm to update the same map, the global coordinate system must coincide
for all UAVs in the swarm. With ideal sensors, the order that the map is updated
does not matter. Assuming that the position estimate of each agent does not drift,
the map updates for a swarm can therefore be done in parallel or sequentially.
For a sequential solution, there is no difference between one UAV traversing two
trajectories or two UAVs traversing one trajectory each. To understand the prin-
ciple, it helps to observe the case where the prior term in (2.44) is not neglected.
With two sequential runs, the final map after the first run becomes the prior term
for the second. Of course, the prior term can be neglected here as well, since

l(m[i, j]) =
N∑
t=1

st =
M∑
t=1

st +
N∑

k=M+1

sk , 1 < M < N (2.47)

2.6 Map-merging for multiple UAVs 23

can present two subsequent sequential turns. Here, M partitions the N measure-
ments. For a parallel run, the UAVs will have an equal number of samples N
updating the grid,

l(m[i, j]) =
N∑

t,k=1

(st + sk) , (2.48)

where st , and sk are the individual sensor model updates for the two UAVs. Ob-
serve that, if st and sk update the same cells in (2.47) as in (2.48) the two equa-
tions are equivalent. For a solution where a swarm updates the same map, the
positional perception must coincide for all UAVs. This is however not the case
if no global positioning system is used, and there will be cases when the UAVs
disagree about the map. The map will show what it is updated with most times.

2.6.2 Multirobot map merging

Another approach is to let each UAV construct a map in its local coordinate sys-
tem and afterward merge the maps. There exist numerous methods for pairwise
map-merging, but [35] suggests an optimization method to find the rotation and
translation applied to one of the maps that maximize the overlap between the
maps. The rotation and translation from one map to another are determined by
three parameters, the angle to rotate the grid map with, θ, and the translation in
the x- and y-direction, tx and ty , respectively. The function associated with these
parameters takes a coordinate, (x, y) in the plane, rotates it around the origin by
angle θ, and translates it with tx, ty [13].

The transformed map m′ = Tm(θ, tx, ty) applied to map m is calculated by
mapping each cell in m to one cell in m′ . The mapping between m[i, j] and
m′[i, j] = m[i′ , j ′] where

(i′ , j ′) =

(
cos θ − sin θ tx
sin θ cos θ ty

) ij
1

T
 . (2.49)

The floor operator is necessary to give a discrete index for the cell.
In order to find the optimal rotation and translation given two maps, m1 and

m2, a cost function
w(m1, m2) (2.50)

that measures how much the two maps agree is maximized. The task of finding
an adequate function can be challenging and dependent on the properties of the
grid map. In [9] a cost function is suggested that compares the exact value in each
grid cell

w(m1, m2) =
N∑
i=1

M∑
j=1

Eq (m1[i, j], m2[i, j]) , (2.51)

where Eq(a, b) = 1 if a = b and 0 otherwise, and m1, m2 ∈ R
N×M . This method

works well when working with binary grids, where each cell is either occupied,

24 2 Theory

free or unknown. Implementing the probabilistic grid map in its log-odds form
allows floating classification and requires a function that instead measures the
number of falsely classified cells. For this, the accuracy measure implemented in
[13] can be useful, where the metric

w(m1, m2) =
agr(m1, m2)

agr(m1, m2) + dis(m1, m2)
, (2.52)

is defined. In (2.52) agr(m1, m2) is the number of correctly classified cells, which
is the number of cells that are both free or both occupied, and dis(m1, m2) is the
number of incorrectly classified cells, which is the number of cells that in m1 is
occupied but free in m2 or vice versa.

With the cost function w(m1, m2) and the transformation Tm(θ, tx, ty) for map
m it is of interest to find

θ∗, t∗x, t
∗
y = arg max

θ,tx ,ty

w
(
m1, Tm2

(θ, tx, ty)
)
. (2.53)

For n maps there are (N2) pairwise parameters to optimize for, and the maps
can be merged in an equal number of ways. In [13] the merging is done recur-
sively pairwise until one final map is obtained. For four different maps the merg-
ing would be

(m1 ⊕m2) ⊕ (m3 ⊕m4) = m12 ⊕m34,

where mi ⊕ mj fuses two maps by summing the odds for each cell. This fusion
will improve the classification (free or occupied) in regions where the fused maps
agree.

The method then needs to find n − 1 transformations. [9] discusses how the
map cost function can be extended to cover the overlap between all these maps.
The cost function then calculates

w(m1, m2, . . . , mn)

where the Eq function is extended to overlap for all maps, that is Eq(a1, a2, . . . , an) =
1 if a1 = a2 = · · · = an and 0 otherwise. The task is then to determine the n − 1
transformations

Tmk (θ, tx, ty)

from m1 to mk that maximize

w(m1, Tm2
(θ, tx, ty), . . . , Tmn(θ, tx, ty)).

However, there is no investigation of the suggested method as [9] performs pair-
wise merging. The merging is then done either by summing or taking the mean
values of the log-odd grid values [9, 13].

3
System Description

This chapter provides a description of the Crazyflie platform and the systems
that have been developed during the course of the thesis.

Figure 3.1: The body coordinate system of the Crazyflie. x is the heading
direction [3].

3.1 The Crazyflie platform

The hardware for which the algorithms are tuned and tested, are nano-drones
of type Crazyflie 2.0 developed by Bitcraze and can be seen in Figure 3.1. Out
of the box, each drone weighs around 30 grams and fits in the palm of a hand.
The drones can be equipped with Bitcraze’s extension decks: a multi-ranger deck
that has five (left, right, front, rear, and up) time of flight (ToF) LIDAR sensors
for distance measurements to the surroundings, a flowdeck for optical position-

25

26 3 System Description

ing relative to the floor, and a Loco positioning deck for UWB communication
[1, 4, 5, 8]. The drones communicate independently via Crazyradio PA with a
computer on which the mapping algorithm is executed, but each drone has the ca-
pability of estimating its own relative position when using the system described
in Section 2.4.2.

The LIDARs mounted on the crazyflie can detect objects up to 4 m away with
an accuracy of a few millimeters [8]. The precision was validated by moving a
drone from 0.25 m from an obstacle to 1 m away. Figure 3.2a illustrates the mea-
sured ranges and the reference value. From the measurements where reference
values exist the errors were calculated and are illustrated in Figure 3.2b. The
standard deviation of the error is 2 mm.

Out of the box, the Crazyflie comes with an extended Kalman filter, used to
estimate rotation, position, and velocity of the UAV [24]. The EKF, illustrated
in Figure 3.3, is built to work with any configuration of decks mounted on the
Crazyflie. A configuration can involve internal sensors, the flow deck, and in part,
the Loco positioning system [2]. With the Loco positioning system, specified in
[7], the position estimation has an accuracy of 1 dm [6].

3.1.1 Velocity estimation

The internal EKF velocity estimator which is part of the Crazyflie firmware ex-
press velocities in the body frame of the drone, as depicted in Figure 2.1b. For
the positioning systems described in this report, x and y velocities expressed in
the HF of each drone are needed. Transformations from body frame to HF are
covered in Section 2.2.

3.1.2 Measuring inter-drone distances

The Crazyflies can, as mentioned, be equipped with UWB decks, available from
Bitcraze. This deck allows for communication between UAVs. The ToF for the
messages passed back and forth between a pair of agents can be utilized to esti-
mate the distance between them.

3.2 Mapping node

The mapping node run in parallel to the navigation module, described in Sec-
tion 3.3, and relative localization. The grid map is controlled by two parameters,
the resolution Rmap [m] describing the side length of each square in the grid and
the size Smap [m]. The product of these two parameters determines the matrix
dimensions of the grid. For a swarm, the methods introduced in Section 2.6 was
used. When the Crazyflies fly simultaneously there is a chance that the LIDAR
detects other UAVs, and inserts them as obstacles. This is not a wanted feature,
as they do not make up occupied space in the map nor are static. These scans are
rejected by checking the position of the scan with the estimated positions of the
other drones. Note that the UAVs must share a global coordinate system for this
to work. If there is no shared coordinate system so that the UAVs can not reject

3.2 Mapping node 27

(a) LIDAR measurements in blue and reference values in dashed red.

(b) Distance error for the parts that have a reference value.

Figure 3.2: LIDAR distances to a wall when moving a drone, and the errors
compared to reference values. The error values have a standard deviation of
2 mm.

28 3 System Description

Figure 3.3: The inputs and outputs for the built-in extended Kalman filter
on the Crazyflie platform [2]. The roll and pitch angle is expressed in the
HF of the agent. The yaw and position values are expressed in a coordinate
system fixed in the global frame, with axes pointing in the same directions as
the axes of the HF at UAV startup. The velocities are expressed in the body
frame of the agent.

these scans, they are inserted into the map. When the UAVs fly around, the grid
index that they are seen at from another UAV constantly changes. For a longer
flight, each UAV will measure the index being free more times than occupied,
more or less eliminating the issue of inserting a UAV as an obstacle.

The test environment consisted of cardboard boxes limiting the area to ex-
plore. The ground truth maps seen in Figure 3.4 make up a scenario to test how
well the mapper captures corners, and a scenario to test the capture of static ob-
stacles inside the free space. The test was performed both using the Loco system
and with relative positioning. The map in Figure 3.4b has 1.32 times more wall
length than the map in Figure 3.4a. On the other hand, the free space is 14% less.

When constructing the map, the size must be greater than the explored area
for the map to fit. For these maps to fit in the grid with any rotation, the side
lengths of the gridSmap = 6 [m]. A higher resolution enables a more detailed map
but increases the number of cells in the grid quadratically. The used resolution
is Rmap = 10 [1/m]. In order to not rely entirely on each update pf ree > 0 and
pocc < 1, this is also needed in any implementation to keep the update values
real. For the update of free and occupied cells, pf ree = 0.3 and pocc = 0.8, respec-
tively, is used. For a merged map to be as similar as possible to a simultaneously
updated map, the merging of two maps is performed by summing the log odds
form of the grids. The maximal sampling frequency of the Crazyflie LIDARs was
100 Hz. This sampling frequency was therefore also used in the simulation en-
vironment. Each sample consisted of sensor range and positional data together

3.3 Navigation during mapping 29

(a) Map scenario 1 (b) Map scenario 2

Figure 3.4: Map scenarios. Purple indicates free space, yellow occupied, and
turquoise unknown.

with a timestamp.
The map cost function (2.50) was introduced in Section 2.6.2. The suggested

cost function in (2.51) gives the number of identical cells. This number can be di-
vided by the total number of cells to give the accuracy of the map. This depends
on both the free area and the unknown space. It is also dependent on binary clas-
sification. The cost function in (2.52) on the other hand ignores the unexplored
space but is also dependent on the area of the free space. It does take classifica-
tion into account, which gives a better indication of the performance. To get rid
of the dependency on the area of free space we suggest a slightly modified cost
function

w(m1, m2) =
agrocc(m1, m2)

agrocc(m1, m2) + dis(m1, m2)
, (3.1)

where agrocc, unlike agr, ignores the number of cells that both are free. This
instead measures the performance regarding correctly placed walls.

3.3 Navigation during mapping

The trajectory planning of the Crazyflies is kept simple and lets the UAVs explore
the environment in a controlled manner. There is no planning strategy involved,
but the UAVs fly based on LIDAR data. A UAV flies straight ahead if no wall is
close in front or on the side of it. It will maintain the distance to a wall if either
of the sides is close. The UAV turns left or right, based on the surrounding, if an
obstacle is detected ahead. Algorithm 3.1 implements this strategy. On Line 3 the
turn angle is randomized but close to 90 degrees. While the navigation method
for the Crazyflies is rather simple, the trajectory will cover the whole 2D plane

30 3 System Description

eventually. As the LIDAR detects not only walls but other UAVs as well, the UAVs
will not collide. Figure 3.5 illustrates the trajectory taken by three UAVs in the
simulator when exploring map scenario 1. The heading of a UAV and its traveling
direction does not have to coincide.

Data: Lidar scans
while state is planning do

front = measurement.scan.front;
left = measurement.scan.left;
right = measurement.scan.right;
if front is close then

if left is close then
turn right;

else
turn left;

end
else

if left is close then
hover right;

end
if right is close then

hover left;
end
go straight;

end
end

Algorithm 3.1: Guidance for the UAVs.

Figure 3.5: The trajectory of three UAVs in the simulation environment. The
label denotes the different UAVs.

3.4 Extended relative positioning system 31

3.4 Extended relative positioning system

A relative positioning system is described in this section, extended compared to
the system described in Section 2.4.2 in the sense that it can utilize all pairwise
distances within a swarm of UAVs. In other words, this system builds upon the
motion model associated with the basis system, but does not limit itself to using
pairwise distances where the origin-UAV must be one part of each pair.

3.4.1 Complementary initialization procedure

The extended relative positioning system described in this section can be com-
plemented with an initialization procedure. This is to decrease the convergence
time of the subsequent filtering process. The goal of the procedure is to estimate
the relative positions and yaw angles of the agents in a swarm. In the following,
the Cartesian coordinate system located, scaled, and oriented as the HF of UAV 1
prior to the start of the procedure, is referred to as the initial HF.

The procedure begins with estimating the relative positions of all UAVs by
performing the steps of Algorithm 2.1, moving agent 1 for 0.5 seconds in each of
the two moves. The resulting n× 2 matrix Ŝ contains estimated x and y positions
of all UAVs in the swarm, expressed in the initial HF, along its rows. Let the new
position of UAV 1 in the initial HF be denoted

[
∆x1 ∆y1

]
, and let

S1 = Ŝ − 1n
[
∆x1 ∆y1

]
. (3.2)

Subtracting
[
∆x1 ∆y1

]
from all rows of Ŝ , as in the above, yields coordinates

expressed in the HF of UAV 1, under the condition that the total movement of
UAV 1 did not affect its rotation. Figure 3.6a depicts coordinates in S1.

Next, all agents of the swarm, except UAV 1 and UAV 2, are moved for 0.5
seconds with a speed of 1 m/s in their respective x-directions. The result of this
is depicted in Figure 3.6b. After moving the agents, new position estimates are
calculated using the standard MDS procedure presented in Section 2.4.3. The po-
sitions are stored along the rows of the matrix S2. The blue circles in Figure 3.6c
depict example S2 coordinates.

Since the coordinates in S2 are subject to flip ambiguity,

S3 = S2

[
−1 0
0 1

]
(3.3)

is introduced. Clearly, S3 contains the coordinates of S2 flipped along the x-axis
of the HF of UAV 1. Yellow circles in Figure 3.6c depicts coordinates of S3.

Rotations around the origin of HF : 1 are then performed on S2 and S3 to
move their respective UAV 2 position representations as close as possible to the
position of UAV 2 in S1. Rotated versions of S2 and S3, S2,R and S3,R, can be seen
in Figure 3.6d. By doing this, rotational ambiguity is resolved.

The final step starts with picking either S2,R or S3,R based on which one has
UAV 3 positioned closest to 0.5 m from where it is placed in S1. The chosen
matrix is referred to as S4. This step resolves flip ambiguity, and S4 contains

32 3 System Description

non-ambiguous relative poses of UAVs 3 to n. To estimate the relative yaw angles
of those agents, a comparison of the coordinates in S1 and S4 is used together
with the knowledge that the agents have moved in their respective x-directions.
Strictly, the yaw angle of UAV i, 3 ≤ i ≤ n, is set to arctan2(xi , yi),

xi = (S4 − S1)i1, yi = (S4 − S1)i2. (3.4)

Determining the yaw angle of UAV 2 is done by repeating all steps (except the
one involving Algorithm 2.1), but using S4 as S1 and keeping UAV 3, instead of
UAV 2, still.

3.4.2 Improved filtering

The filter described in Section 2.4.2 uses pairwise distances as measurement in-
put. However, only the pairwise distances where the origin-UAV is part of the
pair are used. In a swarm of n UAVs, there are

(n
2
)

= n2−n
2 distances available for

measurement and usage in a positioning filter, but only n − 1 are used by each
such filter. The more UAVs in the swarm, the more possible distance measure-
ments are left unused. In this section, a filter for n UAVs is proposed, where all
available distance values are used. The filter assumes that the agent with index
1 is the origin-UAV. See Table A.1 in the Appendix for a description of the filter
notations in the special case of a swarm with three UAVs.

Since the state of individual UAVs become dependent on the state of others
when using all pairwise distances, i.e. the position state of UAV 3 can be affected
by a measurement of the distance between UAV 1 and 2, the filter described here
uses a state that contains information about the whole swarm. Let X be the rela-
tive poses of all other UAVs in the HF of UAV 1,

X =

p12
...

p1n

 =
[
x12 y12 ψ12 . . . x1n y1n ψ1n

]T
,

and let the input values that constitute U be translational velocities, v, and rota-
tional velocities, r, both expressed in the HF of each individual UAV

U =
[
vT1 r1 . . . vTn rn

]T
,

vi =
[
vxi,HF:i v

y
i,HF:i

]T
.

The process model equations used by the filter are essentially identical to the
ones presented in Section 2.4.2, with the difference that Ẋij of (2.21) is replaced

3.4 Extended relative positioning system 33

(a) The initial poses of
the agents, contained in
the matrix S1.

(b) The poses of the
agents after moving UAVs
3 to n.

(c) Here, S2 (blue) and
S3 (yellow) are included.
The rotation ambiguity
has not been cleared out.

(d) Here, S2 and S3 have
both been rotated. It is
apparent that the flipped
version S3,R contains the
true coordinates since the
position of UAV 3 in S2,R
is clearly off from where
it should be after moving
the agent half a meter.

Figure 3.6: Some steps of the process described in Section 3.4.1 depicted. S1,
S2, and S3 are assumed to be noiseless for visibility purposes.

34 3 System Description

with a vector modeling the motion of all UAVs,

Ẋ =

cos(ψ12)vx2 − sin(ψ12)vy2 − v
x
1 + y12r1

sin(ψ12)vx2 + cos(ψ12)vy2 − v
y
1 − x12r1

r2 − r1
...

cos(ψ1n)vxn − sin(ψ1n)vyn − vx1 + y1nr1
sin(ψ1n)vxn + cos(ψ1n)vyn − v

y
1 − x1nr1

rn − r1

.

Equations (2.22) and (2.23) are still relevant and correct for this implementation.
The matrix A is expanded into a block diagonal matrix with A2, ..., An along the
diagonal. The matrix B consists of B2, ..., Bn stacked vertically. In the expressions
below, i ≥ 2.

Ai =

1 r1∆t (− sin(ψ1i)v

x
i − cos(ψ1i)v

y
i)∆t

−r1∆t 1 (cos(ψ1i)v
x
i − sin(ψ1i)v

y
i)∆t

0 0 1

 ,
Bi =

−1 0 y1i 03(i−2) cos(ψ1i) − sin(ψ1i) 0 03n−3i
0 −1 −x1i 03(i−2) sin(ψ1i) cos(ψ1i) 0 03n−3i
0 0 −1 03(i−2) 0 0 1 03n−3i

 .
The meaning of Ak and Bk is the same as in Section 2.4.2. The measurement
values are all pairwise distances in the swarm, in the case of n UAVs, where n > 3,
the measurement vector becomes as follows, where the value dij is the distance
between agent i and agent j,

z =
[
d12 . . . d1n d23 . . . d2n . . . d(n−1)n

]T
.

Let h be a function describing the inter-UAV distances as a function of the state.
It is, as mentioned earlier in the report, assumed that the UAVs all have the same
altitude. The positional difference along the x axis between UAV i and j , i, can
be expressed as |x1i − x1j |. The corresponding goes for the difference along the y
axis. Consequently, the distance between UAVs i and j , i can be expressed as√

(x1i − x1j)2 + (y1i − y1j)2, yielding an expression for h(X),

h(X) = z =

√
x2

12 + y2
12

...√
x2

1n + y2
1n√

(x13 − x12)2 + (y13 − y12)2

...√
(x1n − x12)2 + (y1n − y12)2

...√
(x1n − x1(n−1))2 + (y1n − y1(n−1))2

.

3.5 Extended relative positioning system with MDS measurements 35

Let H denote the Jacobian of h. For the rows of z where UAV 1 is part of the
distance measurement (the first n − 1 rows), the rows H1, ..., Hn−1 of H become

Hi =
[
03(i−1) x1i /zi y1i /zi 0 03(n−i−1)

]
,

and latter rows of H , representing distances between UAV i and j, where i , 1
and j > i, get the following form

Hx =

0T3(i−2)
−(x1j − x1i)/zx
−(y1j − y1i)/zx

0
0T3(j−i−1)

(x1j − x1i)/zx
(y1j − y1i)/zx

0
0T3(n−j)

T

.

In the above, x is the index of the row in z that corresponds to the distance be-
tween UAV i and j.

The prediction and update equations are the same as the ones used for the
filter presented in Section 2.4.2, with the difference that R is now a n2−n

2 × n2−n
2

diagonal matrix with σ2
d on the diagonal and Q a 3n × 3n diagonal matrix with[

σ2
vxy σ2

vxy σ2
vr

]
repeated on its diagonal.

3.5 Extended relative positioning system with MDS
measurements

Since a relatively large portion of the work related to the thesis focuses on MDS,
it was a close-at-hand addition to develop and test a filter that uses coordinates
generated with the general MDS procedure as measurement values. All equa-
tions and relationships other than those involved in using measurement values
are the same for the filter described here as for the extended filter described in
Section 3.4.2. For example, the state vector has the same content and the process
model as well as the A and B matrices are the same.

Following the steps described in the list at the beginning of Section 2.4.3, rel-
ative coordinates for all agents of a swarm, expressed in the HF of agent 1, can
be estimated. The MDS positions generated will have two zeros in its top row,
implicitly placing agent 1 in the origin of its own HF. Since an MDS formation
is subject to ambiguity regarding rotation and mirroring, the measurement co-
ordinates are rotated before being fed to the filter, so that UAV 2 gets the same
rotational polar coordinate in the HF of agent 1 as in the state prediction. The
formation is also mirrored along the line from the origin of HF : 1 to the rotated
measurement position of UAV 2 if this causes the MDS-position of UAV 3 to get

36 3 System Description

closer to its position in the predicted state. The positions are then rearranged to
make up the measurement data of the filter, which can be expressed as

z =
[
x12,MDS y12,MDS . . . x1n,MDS y1n,MDS

]T
.

As usual, n denotes the number of UAVs in the swarm. Using this measurement
vector, the function that describes the measurement in terms of state variables is
simply

h(X) =
[
x12 y12 . . . x1n y1n

]T
.

The Jacobian of h w.r.t. the state X, H , becomes a 2(n − 1) × 3(n − 1) matrix with
the following structure. All undescribed entries of H is zero,

H [2i+1:2i+2,3i+1:3i+3] =
[
1 0 0
0 1 0

]
, i ∈ [0, ..., n − 2] ∈ N.

With the new definitions of z, h, and H , the same prediction and update equa-
tions used for the filter described in Section 3.4.2 are used. The difference is that
the R matrix is now 2(n − 1) × 2(n − 1) and contains the variance of the positional
error norm of the MDS measurements, σ2

xy , repeated on its diagonal.

4
Performance analysis for relative

localization systems

This chapter covers the results collected from tests of various relative position-
ing systems. Results from tests of velocity estimation and ranging accuracy for
real Crazyflie UAVs are presented in Section 4.2. General settings used for all
simulation tests are covered in Section 4.3.

Simulated tests of both convergence times and converged state accuracies are
performed. The results of the simulated convergence time tests are presented in
Section 4.4. Results from simulation regarding the accuracy of converged state
estimates are presented in Section 4.5. The two types of tests were conducted
both for the basic filter and extended variants developed throughout the thesis.
This was to allow a comparison of the developments to a ”benchmark” system.

Section 4.6 covers the results of a real-world test of the system described in
Section 2.4.2 with actual hardware UAVs, as well as the results of a comparative
simulation. The last part of the chapter, Section 4.7, summarizes the results of all
tests of the positioning systems. It also provides a discussion of the results.

4.1 Simulation environment

Since both the relative positioning and mapping systems described in the report
work in two dimensions, the simulation environment described here is also im-
plemented that way. This means that the roll and pitch angles are implicitly set
to zero, and the heights of the UAVs are considered constant and identical.

The simulation environment was developed for testing out improved local-
ization methods as well as mapping methods. The system builds upon the mo-
tion model described in [21] and utilizes some code already implemented by the
authors of that report1. Specifically, the function for determining the updated

1Source code: https://github.com/shushuai3/multi-robot-localization

37

38 4 Performance analysis for relative localization systems

Figure 4.1: The view during simulation. The black dots describe orientation
and the transparent markers are estimates provided by a relative position-
ing system. Since the relative positioning is done with the pink UAV as the
origin-UAV, its pose is set to ground truth in the simulation.

position of a UAV based on x-, y- and yaw-rotation velocities (motion model),
previous pose, and time delta is used, as well as the function for running the
positioning filter itself in simulation (the EKF proposed in [21]).

The environment also supports generating simulated LIDAR measurements.
These are used when testing out mapping algorithms, together with ground truth
poses of the UAVs which are naturally available in simulation. They are also use-
ful when implementing navigation methods capable of avoiding crashing UAVs
into walls and other agents. The simulation program generates a live view of the
simulation in an animated figure, a snapshot of the animation is presented in
Figure 4.1.

4.2 Noise in velocity estimation and UWB ranging

In order for simulation tests of different positioning systems to provide results
similar to what can be expected in real-world scenarios, it is important feed real-

4.2 Noise in velocity estimation and UWB ranging 39

istic noise to the systems. Therefore, investigations into the noise characteristics
of velocity estimates and ranging measurements were conducted.

4.2.1 Noise in velocity estimates

Flight tests were performed with real UAVs in an environment where a high-
quality motion capture system (Qualisys) was available. Velocity estimates for
one UAV expressed in its HF were calculated based on values expressed in its
body frame and estimates of pitch and roll. The Qualisys velocity estimates were
also transformed into the HF of the UAV, using a rotation matrix and the yaw es-
timate from the MoCap system. Both the transformed x-velocities are presented
in Figure 4.2a. Figure 4.2b shows estimates of the yaw rate of the UAV from both
the internal estimator and Qualisys.

Ignoring data from the MoCap system and assuming constant speeds, the stan-
dard deviations for the x- and yaw-velocity estimates from the Crazyflie have val-
ues σvx = 0.03497 m/s and σvyaw = 0.1967 rad/s, respectively. The MoCap data
is not used as reference when determining standard deviations because its noise,
judging especially from Figure 4.2b, seems to have approximately the same am-
plitude (or worse) as the noise in the Crazyflie estimates.

(a) Estimates of the x-velocity of a
UAV from its own estimator and Qual-
isys.

(b) Estimates of the yaw rate of a UAV
from its own estimator and Qualisys.
The Qualisys data contains large erro-
neous spikes.

Figure 4.2: Estimated x- and yaw velocities for a UAV.

4.2.2 Noise in UWB ranging measurements

The noise in distance measurements was investigated by comparing UWB rang-
ing values with Qualisys data for two pairs of UAVs. Comparisons of measure-
ment and reference values are shown in Figure 4.3. Reference values were sub-
tracted from measured values and a histogram of the errors based on one UAV
pair is presented in Figure 4.4. The result is similar to a normal distribution.

40 4 Performance analysis for relative localization systems

Table 4.1: Standard deviation in the ranging error based on measurements
from two UAV pairs.

Data from Standard deviation of the error (m)
Figure 4.3a 0.1100
Figure 4.3b 0.1365

Standard deviations for the distance errors based on the values in Figure 4.3 were
calculated, and the results are presented in Table 4.1.

(a) Measured and true distance be-
tween a pair of UAVs.

(b) Measured and true distances be-
tween another pair of UAVs.

Figure 4.3: Measured and real distances between two pairs of UAVs over the
course of the same flight. The measured distances in the right plot seem to
have a lower noise content, but this is partially due to the different scaling of
the y-axis. The span of the distances is larger in the right plot.

4.3 Initiation, flight method, update frequency and
noise levels in simulated tests

Prior to performing simulated tests for the relative localization systems described
in this report, a method for initiation of the simulated ground truth poses was
chosen. The method decided upon set the global ground truth x and y positions
of each UAV in the swarm randomly according to a uniform distribution on the
interval [−2, 2] [m], and the global ground truth yaw angle of each UAV was ini-
tialized according to a uniform distribution on the interval [−π, π] [rad]. The ra-
tionale behind the method is that in real applications, feasible starting poses can
vary a lot. Since simulation is meant to mimic potential real scenarios, random
poses are chosen to cover a broad range of possible states. Initial state estimates
were assigned differently based on whether convergence time or average filtering
error was to be investigated. The methods for the initialization of state estimates

4.3 Initiation, flight method, update frequency and noise levels in simulated tests 41

Figure 4.4: Distribution of the ranging errors shown in Figure 4.3a. The dot-
ted red line is an optimally fitted (using interval midpoints and occurrences)
Gaussian with parameters sf = 2.5109, µf = 0.02577 and σf = 0.09981.

are covered in the related sections.
In order to allow for a fair comparison of the relative localization systems,

a suitable navigation method also had to be chosen. This is because the perfor-
mance of the filters can be affected by the method with which the UAVs are navi-
gating. By using a navigation method that chooses random velocities, and basing
test results on a large number of flights for each positioning system, fair and
comparable results can be achieved, while still allowing variations in UAV move-
ments for different test runs. The decided algorithm for navigation is described
below.

1. For each UAV, set the x and y velocities randomly according to a uniform
distribution on the interval [−2, 2] [m/s]. Set the yaw rate randomly accord-
ing to a uniform distribution on [−0.5, 0.5] [rad/s].

2. When two seconds have elapsed, reverse the signs of the current velocities.
This is to make sure the UAVs stay within a reasonable range of each other,
which might be required in real scenarios.

3. When another two seconds have elapsed, restart from the first step.

This navigation method is used for all simulations presented in the report. It does
entail a risk of collisions between the UAVs, but minor tweaks to the navigation
method to avoid this should not have too much impact on localization perfor-
mance. When using the MDS-initiation procedure described in Section 3.4.1, the
navigation method is used after the first two seconds of a test have passed (the
initiation procedure takes two seconds).

A result of the general initialization and navigation method is that the area
the UAVs can occupy during a simulated test is bounded by a 12 × 12 m square.

42 4 Performance analysis for relative localization systems

If UAVs get initialized at the edges of the 2 × 2 m square mentioned above, and
happen to be assigned random velocities of 2 m/s away from the center of the
square for 2 s, they reach the bounds. However, it is important to remember that
this is an unlikely scenario, and in simulations, the UAVs will probably often
keep to a smaller area.

Simulated tests use 100 Hz as the update frequency. Both prediction and mea-
surement steps are conducted at each update. The noise levels used took the
results in Section 4.2.1 and Section 4.2.2 into consideration, but were in a con-
servative manner set a bit higher. The standard deviation of the noise in transla-
tional velocity readings, commonly referred to as σvxy in the positioning system
descriptions, was set to 0.25 m/s. This was a compromise between the much
lower standard deviation observed in the tests of Section 4.2.1 and the fact that
velocities change rapidly with the chosen navigation method. The deviation for
the noise in yaw rate readings, σvr , was set to 0.4 rad/s, following the same reason-
ing as for the translational velocity noise. The standard deviation of the ranging
measurement noise, σd , was assigned a value of 0.1 m. For tests of the MDS fil-
ter, the standard deviation for the xy-error, σxy , was set to 0.5 m. This was to
allow reasonably quick convergence since the filter often seemed to get stuck in
the wrong states when using a smaller deviation.

4.4 Time of convergence in simulation

Real uses of UAVs entail many hardware related issues to take into consideration.
Limits on battery life, for instance, can constrain the amount of time a swarm of
UAVs is able to stay in the air, and a quick convergence time for positioning filters
might be of interest. This section investigates convergence times for the various
filters described in the report.

Let convergence for a swarm be defined as the point in time at which all UAVs
have had a positional error norm in the HF of the origin-UAV of less than one
meter, for a consecutive time period of ten seconds. The time of convergence is
then defined as the time point that begins the ten seconds. In the tests presented
here, 100 test runs were done for each system, and every test run went on for a
maximum of 500 seconds. The total average convergence time is the average of
the convergence times from all test runs, not counting the ones that did not reach
convergence. It is difficult to say how much more time is needed for convergence
in each of those, hence the omittance. If runs needing significantly more time
than 500 seconds to converge were accounted for in the mean, it could be highly
affected. Therefore, it is important to remember this bias. The amount of runs
that did not reach convergence for each test is presented in Table 4.3.

The method used to initialize the filter state in all tests of convergence time
was to set it equal to a vector of zeros. The reason was to enable a fair com-
parison of times needed, without any information whatsoever about the initial
UAV poses. Another reason was to minimize the influence of chance. Had some
method of random state initialization been used, convergence times could have
been unintentionally affected.

4.4 Time of convergence in simulation 43

Figure 4.5: Distribution of convergence times for 100 test runs of the ba-
sic system. The test used a swarm consisting of three UAVs. µt = 11.35 s,
σt = 9.605 s, all test runs converged.

4.4.1 Basic system

One test was done for the basic system, described in Section 2.4.2, using a sim-
ulated swarm of three UAVs. This is because the basic system is independent of
the number of UAVs in the swarm, since it only uses pairwise distances where the
origin-UAV constitutes one part. In Figure 4.5, a histogram over the distribution
of convergence times is presented. It can be seen that the number of runs belong-
ing to each bin generally decreases with increasing time values, with a majority
of the runs converging in the first 20 seconds.

4.4.2 Extended system

The extended filtering system described in Section 3.4.2 was tested for five com-
binations of swarm UAV count and available measurement values. This was to
investigate in what way both UAV and distance count could affect convergence
performance. The combinations are listed below.

a) Four UAVs and all pairwise distances 1-2, 1-3, 1-4, 2-3, 2-4, 3-4 (all).

b) Four UAVs and distances between UAVs 1-2, 2-3, 3-4, 1-4.

c) Three UAVs and distances between UAVs 1-2, 1-3, 2-3 (all).

d) Three UAVs and distances between UAVs 1-2, 2-3.

e) Eight UAVs and all pairwise distances.

The results, in order of mention, are presented in Figure 4.6a, Figure 4.6b, Fig-
ure 4.6c, Figure 4.6d and Figure 4.6e. As can be seen in the histograms, the dis-
tributions generally begin with bins containing many test runs. The number of

44 4 Performance analysis for relative localization systems

runs in each bin then decreases with increasing time values along the horizontal
axis. This is to be expected since test runs can sometimes get good initial guesses
of the state, at the point of the first measurement.

It is important to keep in mind that not all test runs are represented in the
various histograms. The histograms show the runs which converged during the
first 100 seconds, and some test runs took longer than that. Some runs did not
converge at all, see the captions below the histograms for the number of runs that
reached convergence in less than 500 seconds.

4.4.3 Extended system using MDS initialization procedure

For the case of three UAVs and usage of all pairwise distances, the MDS-initiation
procedure defined in Section 3.4.1 was also tested. The results are presented
in Figure 4.7. The convergence times have clearly decreased compared to those
presented for the other systems. A majority of all test runs reach convergence
during the first five seconds. To be more precise, 80 out of the total 100 of the
runs converged in under five seconds, and 98 converged in under 30 seconds.
There were two outliers that needed between 90 and 95 seconds, possibly due to
unfavorable initial ground truth poses that made it difficult for the initialization
procedure to produce good state estimates.

4.5 Accuracy in simulation

An interesting aspect of the performance of a relative localization system, besides
its convergence time, is the accuracy. Therefore, tests were conducted to assess
the accuracies of the positioning filters presented in the report. The accuracy of
a filter is preferably measured after convergence and needs a definition, the one
used to generate positioning accuracy results in this report follows here.

Accuracy means the average positional error norm for one specific UAV in a
swarm, in the HF of the origin-UAV, across all test runs. In the tests presented
here, 100 test runs were done for each system, and every test run went on for
200 seconds. However, in the error plots, results from only five test runs are
presented to avoid indistinguishability among the lines. Furthermore, plots that
are both zoomed in along the horizontal axis and plots displaying errors across a
longer time horizon are provided for each test presented. This is to display both
short-term dynamics in the errors as well as indications on for example how high
the errors can reach in worst cases.

The filter state initialization method for tests of accuracies is based on placing
estimates close to their ground truth values. More precisely, relative x, y, and yaw
estimates (expressed in the HF of the origin-UAV) are initialized with true values
added with Gaussian noise of zero mean and 0.2 [m, rad] in standard deviation.

4.5.1 Basic system

The accuracy of the basic system was investigated in one test, to generate com-
parative values for the extended system. Figure 4.8a shows the errors of UAV 2

4.5 Accuracy in simulation 45

(a) 4 UAVs and all pairwise distances.
µt = 48.42 s, σt = 84.29 s, 88 out of 100
test runs converged.

(b) 4 UAVs and distances 1-2, 2-3, 3-4,
1-4. µt = 64.52 s, σt = 85.72 s, 97 out
of 100 test runs converged.

(c) 3 UAVs and all pairwise distances.
µt = 30.21 s, σt = 63.88 s, 93 out of 100
test runs converged.

(d) 3 UAVs and distances 1-2, 2-3.
µt = 41.60 s, σt = 50.38 s, all test runs
converged.

(e) 8 UAVs and all pairwise distances.
µt = 29.02 s, σt = 65.10 s, 64 out of 100
test runs converged.

Figure 4.6: Convergence time distributions from the tests of the extended
system, described in Section 3.4.2. Note that the means and standard devia-
tions are based only on the test runs that did converge, see Table 4.3 for how
many runs converged in each case.

46 4 Performance analysis for relative localization systems

Figure 4.7: Distribution of convergence times for the extended system de-
scribed in Section 3.4.2, using the MDS initialization procedure described in
Section 3.4.1. The swarm was made up of three UAVs and all pairwise dis-
tances were available. All 100 test runs converged, and the average time and
standard deviation for convergence were µt = 4.868 s, σt = 10.07 s, and all
test runs converged.

in a swarm of 4 UAVs for five runs during four seconds. Figure 4.8b shows the
error of UAV 2 for five test runs over 100 seconds. As can be seen in both plots,
the positional error varies in relatively large intervals. Usually, the errors keep at
low values, like the green line in Figure 4.8a, but position estimates can get much
larger errors, like the orange line in Figure 4.8b at about 40 seconds.

4.5.2 Extended system

Accuracy results for the extended system are based on seven tests where different
combinations of swarm UAV count and available pairwise distances were tried.
In contrast to the single accuracy test of the basic system, this is an increase. The
reason behind the enlarged test set is that the accuracy of the extended system
can be expected to vary with UAV count, which is not true for the basic system.

Two tests were conducted for a swarm of four UAVs. Namely, a test with four
UAVs and all pairwise distances, and a test with four UAVs and distances 1-2, 2-3,
3-4, and 1-4. Five tests were conducted for a swarm of eight UAVs. Namely, a test
with eight UAVs and all pairwise distances, a test with eight UAVs and distances
1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, and 1-8, a test with pairwise distances according
to Figure 4.10a, a test with eight UAVs and distances according to Figure 4.10b,
and a test with eight UAVs and randomized pairwise distances. Randomized
pairwise distances mean all possible pairwise distances were used, but for each
measurement step of the filtering process, each distance was included with a
50 % probability.

4.5 Accuracy in simulation 47

(a) Result of five test runs during four
seconds.

(b) Result of five test runs over 100
seconds.

Figure 4.8: The positional error of UAV 2 in the swarm when using the basic
relative positioning system on a swarm of four UAVs.

Testing with as many as eight UAVs allowed for much variation in available
distance count. This allowed for a deep investigation of how that affected perfor-
mance. Also, in the case of asymmetric distance availability (compare e.g. UAV 2
and UAV 8 in Figure 4.10a), accuracies of different UAVs within the same swarm
could be compared. Randomized pairwise distances were used to mimic a po-
tential real-world scenario with defective inter-drone communication. The test
using randomization was meant to investigate the performance degradation con-
cerning the accuracy in such a situation.

In the tests with a swarm of four UAVs, average errors were calculated for
UAV 2. For the case of eight UAVs and distances 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8,
and 1-8, average errors were calculated for UAVs 2 and 5. For the case of eight
UAVs and distances according to Figure 4.10a, average errors were calculated for
UAVs 2 and 8. In the same way, average errors for the tests with eight UAVs and
distances according to Figure 4.10b were calculated for both UAVs 2 and 8.

The accuracy results are presented in Table 4.3. Figure 4.11 and Figure 4.12
show the errors of UAV 2 from five test runs during four seconds, for each re-
spective combination of UAV count and available pairwise distances. The reason
why only five test runs are shown in the plots is that displaying more, or even all
100, runs would render the lines more or less indistinguishable. Figure 4.13 and
Figure 4.14 show the errors of UAV 2 from five test runs over 100 seconds, for
each respective combination of UAV count and available pairwise distances.

In the same way as in the plots depicting error values for the basic system, the
errors in the different tests vary greatly. It can be seen, however, that the error
values shown in Figure 4.12a and Figure 4.12e seem to generally stay lower than
those shown in the other plots of Figure 4.11 and Figure 4.12. This observation
is confirmed by the average error values stated in Table 4.3.

48 4 Performance analysis for relative localization systems

Figure 4.9: The impact of losing potential pairwise distance measurements.
The tests utilized a swarm of eight UAVs. Standard deviations associated
with each average error are depicted by vertical bars. The x-axis is logarith-
mically scaled.

4.5.3 Measurement dropout analysis for the extended system

Since the test described in Section 4.5.2 where pairwise distance measurements
are included with a probability of 50 percent did not affect accuracies much (see
Table 4.3), this section presents a further analysis of the impact on accuracy of
measurement dropout. Six additional tests were conducted, using the same setup
as for the test with 50 percent measurement dropout risk, but changing the prob-
ability of including each possible measurement to 5, 1, 0.875, 0.75, 0.625, 0.5
percent, respectively, and only doing ten 200 second runs for each test.

The average and standard deviation of the positional error of UAV 2 were
calculated for each new test, and the results are depicted in Figure 4.9, as well as
Table 4.2. As can be seen both in the plot and the table, dropout effects are not
appearing clearly until the probability of including measurements is very low. At
a five percent chance of including each measurement, the accuracy is comparable
to the accuracy in tests with no dropout risk. At 0.5 percent chance of including
measurements, the average error is around two meters, which means the filter
does not output much valuable information. Since the UAVs keep to a 12 × 12 m
square during simulation (and probably stay closer to each other than that most
of the time), the average distance between UAVs could very well be around 2 m.

4.5.4 System based on filter using MDS measurements

One test was performed for the system using MDS measurements, utilizing four
UAVs. The main reason as to why only one test was conducted was the low accu-
racy. The accuracy was calculated based on the errors of UAV 2, and can be seen

4.5 Accuracy in simulation 49

(a) A combination of UAV count
and pairwise distances tested
with the extended positioning
system.

(b) Another combination of
UAV count and pairwise dis-
tances tested with the extended
positioning system.

Figure 4.10: Two combinations of available distances tested with the ex-
tended positioning system.

(a) All pairwise distances were used. (b) Distances 1-2, 2-3, 3-4 and 1-4
were used.

Figure 4.11: Positional error norm for UAV 2 using the extended positioning
system, based on two tests with a swarm of four UAVs. The result of five test
runs during four seconds are shown in each plot.

50 4 Performance analysis for relative localization systems

(a) All pairwise distances were used. (b) Distances 1-2. 2-3, 3-4, 4-5, 5-6, 6-
7, 7-8, and 1-8 were used.

(c) Distances according to Figure 4.10a
were used.

(d) Distances according to Fig-
ure 4.10b were used.

(e) Randomized pairwise distances
were used.

Figure 4.12: Positional error norm for UAV 2 during four seconds using the
extended positioning system, from five tests with a swarm of eight UAVs.

4.6 Real-world tests of the basic system 51

Table 4.2: Averages and standard deviations of the errors from the dropout
tests described in Section 4.5.3. The values in the first column denote prob-
abilities of keeping each measurement.

P (%) Average error (m) Standard deviation of errors (m)
5 0.1892 0.1864
1 0.4555 0.4171

0.875 0.6379 0.5803
0.75 0.6561 0.6768

0.625 1.306 1.402
0.5 2.027 2.724

(a) All pairwise distances were used. (b) Distances 1-2, 2-3, 3-4 and 1-4
were used.

Figure 4.13: Positional error norm for UAV 2 using the extended positioning
system, based on two tests with a swarm of four UAVs. The results of five
test runs over 100 seconds are shown in each plot.

in Table 4.3. Clearly, the error values are not nearly as good as those for the other
systems. Potential reasons for the low performance are discussed in Section 4.7.

4.6 Real-world tests of the basic system

Tests were conducted for the basic system on a swarm of three actual UAVs. The
navigation method for the real-world tests was based on the agents moving in
circles with diameters of 1 m and always heading in the x-directions of their
respective HF. No filtering was conducted on the UAV hardware, but instead,
they logged their velocities and range measurements to a central computer. This
logging was done with a frequency of 10 Hz, due to limits on the computational
capacities of the agents. The relative positions and yaw values of the UAVs were
initialized with their true values before starting the filtering.

An external MoCap system was run simultaneously to record global ground

52 4 Performance analysis for relative localization systems

(a) All pairwise distances were used. (b) Distances 1-2. 2-3, 3-4, 4-5, 5-6, 6-
7, 7-8, and 1-8 were used.

(c) Distances according to Figure 4.10a
were used.

(d) Distances according to Fig-
ure 4.10b were used.

(e) Randomized pairwise distances
were used.

Figure 4.14: Positional error norm for UAV 2 over 100 seconds using the
extended positioning system, from five tests with a swarm of eight UAVs.

4.7 Summary and discussion 53

Figure 4.15: Global ground-truth coordinates of the UAVs during the real-
world flight described in Section 4.6.

truth coordinates and yaw values, to allow subsequent evaluation of the perfor-
mance of the relative localization system. A plot of the global ground truth coor-
dinates from the test is presented in Figure 4.15. Figure 4.16a presents the result
of running the basic filter offline for the ”cf5” UAV with the collected velocity
and ranging data. The plot shows estimated states which are transformed into
coordinates expressed in the global frame.

Since the results of the real-world test was not as good as hoped, a simulated
version of the test was conducted to validate that it was the low update frequency
that was causing issues. Figure 4.16b shows the results of a simulation that was
made to mimic the real-world flight. In this simulation, the UAVs were assigned
the same initial poses and navigation method as in the real test. The estimates
in the simulation were much more accurate when performing the exact same test
but instead using a 100 Hz update frequency.

4.7 Summary and discussion

The convergence times and converged state accuracy values from the simulation
are summarized in Table 4.3. A star next to the convergence time values indi-
cates all test runs did not converge. The number in the parenthesis then shows
how many runs did converge. The maximum number of test runs that possibly
could converge for each test is 100 since this is the number of test runs for each
combination of the positioning system, UAV count, and available distances. In
the fields of the column ”System & distances”, the first number in the paren-
thesis indicates how many UAVs were used in the swarm. The potential second
number in the same parenthesis indicates which UAV’s average error is listed. In
the rows of the column that do not include either the word ”Basic” or ”MDS fil-
ter”, the extended system was used to generate the results. ”Circle” means that

54 4 Performance analysis for relative localization systems

(a) Relative positions transformed to coordinates in the global
frame. The basic filter was used to generate the estimates, with
velocities and ranging measurements from real UAVs. Initial
states were set to their respective true values.

(b) Results of a simulated test with the same initial positions,
yaw angles, and navigation method used in the real-world test
described in Section 4.6. The simulation was run with a 10 Hz
update frequency. Initial relative states were set to their true
values. The basic filter was used in the simulation.

Figure 4.16: Running the basic positioning system on real and simulated
velocities and ranging measurements. The filtering was conducted for 20 s
in each of the two tests.

4.7 Summary and discussion 55

pairwise distances forming a closed loop in the swarm were used. In the case of
four agents, it means the distances 1-2, 2-3, 3-4, and 1-4, and in the case of eight
agents the distances 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8 and 1-8.

Something that can be noted from the convergence time data presented in
Table 4.3, is that the convergence time seems to increase with more available
distances. Comparing the average convergence time of the basic system, 11.35,
with that of the extended system using three UAVs, 30.21, they are separated
by a factor of almost three. When using the extended system with all distances
on a swarm of four UAVs, the convergence time is even larger. This is to be
expected since a swarm of four UAVs requires one more UAV to keep an error of
less than a meter for ten seconds to be considered converged. Still, the number
48.42 is considerably higher than 30.21. The number of test runs that converge
when using the extended system with all pairwise distances is decreasing with
increasing UAV count. For eight agents and all distances, only 64 of 100 test
runs reach convergence. This is causing the average convergence time for that
test to be misleading. If the 46 test runs that did not converge would have taken
much longer than 500 seconds, this would have pulled the average value (and
probably also the standard deviation, considering data from other tests) up by
quite a lot. The reason why the value 29.02, is so low, is probably because the test
runs that converged did so by getting an advantageous state estimate after the
first measurement of the filter. This same reasoning goes for tests of convergence
time in other setups as well.

An interesting thing that can be highlighted is that the fraction of test runs
that converge generally increases when removing pairwise distances. When using
the extended system on a swarm of three agents, but with distances 1-2, 2-3 (a
line of distances from the origin-UAV to the last), all test runs converge. When
using a swarm of four agents and the distances 1-2, 2-3, 3-4, and 1-4, 97, which
is almost all runs, reach convergence. In comparison with the corresponding
test where all distances are used, this is an improvement. An explanation for
this is that removing distance measurements release constraints on the estimated
formation. States that are rotated around the origin-UAV far off from their true
values by the first measurement are intuitively harder for the filter to correct
when dealing with a ”stiffer” formation. That the average convergence times seem
to increase with removed pairwise distances when using the extended system
could have to do with the reasons discussed previously, if more test runs converge,
possibly after close to 500 seconds, this increases the average required time.

One more thing to consider when it comes to the convergence time data is
that the standard deviations are quite large. Often, they are reasonably higher
than the averages. It is at the same time natural for the standard deviations to
be large, given the test setups. It is hard to think of a solution that enables a
fair comparison of convergence times between the different systems and also de-
creases the deviation. Letting the tests run for more than 500 seconds, and allow-
ing all test runs to converge would generate less ambiguous average convergence
time values, but would probably increase the deviations. Additionally, there are
practical dilemmas with letting test runs run indefinitely since this implies very
time-demanding simulations.

56 4 Performance analysis for relative localization systems

When using the MDS initialization procedure described in Section 3.4.1, the
convergence time is greatly decreased. The extension steps to the standard MDS
procedure, sorting out ambiguities, naturally contribute a lot to this result. The
decrease would be seen also if testing with more agents since there are no prac-
tical dependencies in the steps of the initialization method on the UAV count.
When using the extended filter in a real setting with real hardware UAVs, a low
convergence time could be essential. The battery life of a Crazyflie UAV is limited
and if the mapping is to be performed utilizing relative poses, it would probably
be preferable to have realistic relative poses available as quickly as possible.

Results of converged state accuracy are also presented in Table 4.3. First off,
it can be seen that using all pairwise distances in a swarm of four UAVs leads
to lower average errors than when removing some distances and only using 1-2,
2-3, 3-4, and 1-4 (”Circle”). Still, the results are better than for the basic sys-
tem. The lowest average errors are achieved when using all pairwise distances
in a swarm of eight UAVs. This follows the intuition that more distance informa-
tion makes for better accuracy. When more measurements are available related
to a quantity, the error of each measurement practically averages and the devia-
tion essentially becomes smaller. The more measurements to average, the better
accuracy emerges. Following this reasoning, it could be stated that relative posi-
tioning systems as the extended examined in this report benefit from working on
larger swarms. Larger swarms imply more possible pairwise distances, following
the expression (n2 − n) / 2. However, in real-world applications with hardware
UAVs, working with more agents can lead to practical troubles. Using the ”Circle”
distance combination for a swarm of eight agents worsens the performance com-
pared to when all distances are used. The average error is worse than when using
four UAVs and ”Circle” distances. This indicates that swarms of more agents
can instead worsen performance compared to swarms of fewer when all pairwise
distances are not available.

The test of converged state accuracy where the randomized distances were
used, indicates a slight increase in average error compared to when all distances
are available. The subtility of the increase could have to do with the distances
being randomized in each measurement step of the filter, making each distance
probable to occur frequently enough for the filter to make good use of it. It is in-
teresting that this phenomenon persists all the way down to where the probability
of including each measurement reaches only around five percent. No substantial
drops in accuracy are seen before then. A test where the availability of each dis-
tance would be selected randomly every, say, 100 update steps, would potentially
show a larger decrease in performance. Such a method is arguably more realistic
since real UAVs flying in a space composited of multiple rooms might be prone to
lose ranging abilities between each other for longer intervals than one iteration.

Considering the figures showing errors during four seconds, it can be seen
that when the extended system uses all pairwise distances, the error lines get
less smooth. Comparing for example Figure 4.12a and Figure 4.12b, the lines
in the first contain more and larger spikes. The extended positioning system is
apparently quicker at correcting errors when more distances are available, lead-
ing to spiky formations. This effect can intuitively be understood by imagining a

4.7 Summary and discussion 57

swarm not using all possible distance measurements. In that kind of setup, the
formation can be skewed to a larger degree (increasing errors) and might stay in
the skewed state longer (fewer spiky errors), in comparison with a setup using
all possible distances. Like in the convergence tests, the standard deviations are
high also for the converged state error values.

The performance of the MDS filter is clearly not as good as that of the other
systems. This can be deduced by looking at the accuracy value in Table 4.3. As
stated in Section 3.5, the MDS coordinates are rotated and flipped in a specific
way to fit well with the current (predicted) states. If there is much noise in the
velocity estimates yielding the state prediction, the subsequent measurement up-
date can serve to validate these errors rather than correct them. One potential
fix for this issue might be a solution where the transformation of the MDS coor-
dinates takes the positions of all agents in the swarm into consideration when
resolving ambiguity.

Looking at the real-world tests in Section 4.6 reveals that the basic system
performs poorly when running it with a low update frequency (10 Hz in the case
of the tests). Tests suggested that this bad performance could be connected to the
motion model being used, which is presented in Section 2.4.1 and comes into play
in all filters covered in this report. A more accurate higher-order discretization
of the continuous motion model could be beneficial in order for the filtering to
work better when using lower iteration frequencies.

58 4 Performance analysis for relative localization systems

Table 4.3: Summary of results on convergence time and average error for the
different relative positioning systems. An asterisk indicates that not all runs
reached convergence during a test. Numbers in parenthesis next to asterisks
display how many runs reached convergence (out of 100 potential).

Convergence time
System & distances Average (s) Standard deviation (s)
Basic (3) 11.35 9.605
All pairwise (3) 30.21* (93) 63.88* (93)
1-2, 2-3 (3) 41.60 50.38
All pairwise (4) 48.42* (88) 84.29* (88)
1-2, 2-3, 3-4, 1-4 (4) 64.52* (97) 85.72* (97)
All pairwise (8) 29.02* (64) 65.10* (64)
MDS initialization (3) 4.868 10.07

Converged state error
System & setup Average (m) Standard deviation (m)
Basic (4) 0.3105 0.3418
All pairwise (8, 2) 0.1639 0.1736
Circle (8, 2) 0.2238 0.2501
Randomized (8, 2) 0.1687 0.1718
Figure 4.10a (8, 2) 0.1886 0.1950
Figure 4.10a (8, 8) 0.1989 0.1970
Figure 4.10b (8, 2) 0.2175 0.2336
Figure 4.10b (8, 8) 0.2509 0.2936
All pairwise (4, 2) 0.1777 0.1823
Circle (4, 2) 0.2181 0.2253
MDS filter (4, 2) 4.853 4.519

5
Performance analysis for the mapping

system

This chapter covers the results collected from tests of the mapping system. A
simulation study is performed that evaluates the different methods for merging
maps and discusses how the mapper can handle noisy sensor data. The evalua-
tion is verified by real-world tests.

5.1 Simulation study

This section will provide evaluations of how the described methods for grid map-
ping influence the result of the constructed map. In Section 5.1.1 the introduced
map cost function (2.52) is evaluated. In Section 5.1.2 the cost function is used to
evaluate the strategy used for multimap merging, and how the order in which the
maps are merged affects the final map. Strategies to handle noisy measurements
are evaluated in Section 5.1.3, together with some results on how a merged map
constructed offline (after flight) differs from a map constructed collaboratively
online (during flight). Lastly, relative positions are used to construct a map in
Section 5.1.4.

5.1.1 Map cost function

The map cost functions (2.51), (2.52), and (3.1) were reviewed to investigate their
properties. To test if these functions all are able to find the ideal transformation
matrix, and to compare the accuracy measurements, a simulation involving three
UAVs flying for 2 minutes was conducted. In each iteration, the UAVs explored
the map scenarios given in Figures 3.4a and 3.4b. For each iteration, the final map
was compared with the true map to calculate the accuracy. In total, ten iterations
were made, with individual offset and angle adjustments. The results are seen in
Table 5.1. To get a percentage, and not a score for (2.51), w is divided by n, where

59

60 5 Performance analysis for the mapping system

n is the total number of cells. The area of the unexplored space is doubled by
increasing the size of the grid at initialization. The area of the free space differs
only from the mapping scenario. The table shows how the different cost functions
scale depending on the properties of the map. The classification measures, (2.52)
and (3.1) are both static when the area of unknown space is doubled, but (2.51)
increases. The performance difference between mapping scenarios scales with
the area of free space for (2.52), and with the length of walls for (3.1). Observe
that the classification is independent of the mapping method, and that is not
the case for the equality function. For the rest of the thesis, the cost function
considering only the position of the walls is used.

Table 5.1: Map comparison between achieved online- and offline-created
maps to the exact map for different cost functions. The numbers are given
in percentages. Numbers given in parenthesis are variances in percentage
points.

Mapping (2.51) (2.52) (3.1)
Map scenario 1

Offline 68.7 (0.46) 92.3 (0.02) 49.6 (0.56)
Online 75.5 (1.16) 92.5 (0.03) 52.2 (0.28)

Map scenario 2
Offline 74.1 (0.53) 83.1 (0.48) 42.1 (0.86)
Online 83.1 (0.91) 83.2 (0.06) 42.8 (0.73)

Double the area of unknown space
Mapping (2.51) (2.52) (3.1)

Map scenario 1
Offline 82.5 (0.16) 92.5 (0.01) 49.2 (0.47)
Online 86.2 (0.37) 92.5 (0.03) 52.2 (0.28)

Map scenario 2
Offline 85.5 (0.17) 82.7 (0.44) 41.9 (0.45)
Online 90.5 (0.29) 83.2 (0.06) 42.8 (0.73)

For the maps explored here, all cost functions work and create similar maps.
Figure 5.1 illustrates the offline constructed maps that the different cost func-
tions construct for map scenario one. For online constructed maps the cost func-
tion does only express the similarity to the true map and does not affect the con-
structed map.

5.1.2 Map merging

For the first test, three UAVs are in the simulation environment, with exact posi-
tions and ideal sensor measurements. When maps are merged offline, the order
in which they are merged matters. That is, with three maps, the final map dif-
fers depending on the pairwise order in which the maps are merged. In general,
(m1 ⊕ m2) ⊕ m3 = m12 ⊕ m3 = m123 , m132 = m13 ⊕ m2 = (m1 ⊕ m3) ⊕ m2, but
note that m1 ⊕ m2 = m12 = m21 = m2 ⊕ m1. A demonstration of this is shown

5.1 Simulation study 61

(a) Merged with (2.51). (b) Merged with (2.52).

(c) Merged with (3.1).

Figure 5.1: Maps generated by three UAVs for map scenario 1. The maps
are merged with different cost functions. The accuracy is expressed as the
accuracy towards the true map calculated with the respective cost function.

62 5 Performance analysis for the mapping system

in Figure 5.3, where the maps along each row are identical, but there are differ-
ences along the columns. The difference is not large, but it is noticeable. The
red-circled areas are regions where the difference is more noticeable. The indi-
vidual maps are displayed in Figure 5.2. The focus is not to achieve the best map,
but to emphasize the difference in merging order.

Figure 5.2: The individual maps merge in different orders. UAV 0, respon-
sible for map 0 has been initialized such that the map it generates is not
rotated nor translated compared with the true map, while the other UAVs
are initialized with random rotations and translations.

5.1.3 Noisy measurements and position uncertainty

In a more realistic simulation, white Gaussian noise is added to the odometry
data and to the range readings. The standard deviation is 1 dm for the position,
0.1 rad for the yaw angle, and 2 mm for the range readings. The imposed dis-
turbance is realistic when the Loco positioning system is used. The UAVs still
share a coordinate system. The mapping algorithm considers the uncertainty in
position as described in Section 2.5.4.

As the map is two-dimensional, the altitude is ignored when sampling poses
to handle uncertainty in the position. As θcf = φcf = 0 in the two-dimensional
simulations, these parameters are ignored as well. This can also be said for
real flights as the mapping surrounding is built of cardboard boxes with limited
height, and measurements with larger angles are ignored as the LIDAR can detect
false obstacles over the boxes. The pose variables to sample are then xcf , ycf , ψcf .
When sampling positions (x, y) and yaw angles ψ, the standard deviations for
these parameters correspond to their respective standard deviations in estima-
tion. The number of sampled points n linearly increases the time it takes to finish
the map, and can therefore not be too large when mapping in flight. For simu-
lated and offline data, a larger number of sampled points can be tested.

The standard deviation for the LIDARs is, as seen in Figure 3.2b, 2 mm. It can
therefore be argued that it is unnecessary to use a Gaussian sensor model and
that the ideal inverse model can be used.

5.1 Simulation study 63

Figure 5.3: Maps constructed by three drones, merged in different orders.
The final maps are identical along the rows but differ across the columns.
The accuracy measures wall placement. The red circles emphasize areas
where the difference is more noticeable.

64 5 Performance analysis for the mapping system

Table 5.2 reports the impact of the number of samples. The estimated pose is
held constant at xt = 2, yt = 5, ψt = 0.4. The time complexity scales linearly, as it
should. Since the simulator and the Crazyflies have a sampling frequency of 100
Hz, a value of less than 100 iterations/s would not work for online mapping. Ac-
cording to Table 5.2, this limit is about 20 samples. At five samples, the standard
deviation is about 1/4 of the error in the Loco estimation. At 100 samples, the
standard error has dropped to below one centimeter, which would be an accept-
able size. Based on the distribution of positions and yaws shown in Figure 5.4,
20 samples are quite a few to obtain a Gaussian distribution and correct weights.
This is seen by comparing Figures 5.5b and 5.5d with Figures 5.7a and 5.7b. Us-
ing noisy measurements in the simulator, three UAVs fly for 1 minute. The data is
saved in order to construct both an online map and an offline merged map. Maps
constructed with 20 samples is illustrated in Figures 5.5 and 5.6. The online and
offline created maps display both mapping scenarios with, and without, consid-
ering an uncertain position in the mapping algorithm. Tests involving a higher
number of samples for maps have been performed, but the visual result does not
differ much from the results with 20 samples. In Figure 5.7 the mapper has pro-
cessed 100 samples. The time consumption, on the other hand, increases, making
the extra number of samples unnecessary. The improvement when considering
the uncertainty in the pose estimation is seen along each wall and at the corners.
The major shared improvement is seen by comparing the top right corner. The
positions of the walls and corners are not altered but are more prominent.

Table 5.2: Account for how the number of sampled points affects the time
complexity and distribution. Iterations/s describe how many measurements
the mapping algorithm processes on average each second. For the standard
deviation of the position, σpos, the Euclidean distance error is used. σψ is the
standard deviation for the yaw-angle. All calculations are made for 10000
samples. For n = 1, the original pose is used.

Samples n Iterations/s σpos [m] σψ [rad]
1 2275 0 0
5 457 0.029 0.027

10 225 0.021 0.019
20 109 0.014 0.013

100 21 0.007 0.006
1000 2 0.002 0.002

5.1.4 Mapping with relative positions

If the mapping is to take place live, the global coordinate system for each UAV
must coincide. With the relative positioning system described in Section 2.4.2,
the global poses can be estimated from a reference drone, if the reference drone
has a known global pose. This pose is in the simulator given from the motion
model. For now, it is assumed that the task of knowing the global position of the

5.1 Simulation study 65

Figure 5.4: An example of how the position and yaw angles are distributed
when sampling 20 poses. The left image shows the x and y position of each
sample, the mean position for all sampled points, and the original position.
The right image shows the distribution for sampled yaw angles.

UAV is solved. It is also assumed that the transformations between the UAVS IHF
are known. In the simulator, one UAV has the task of estimating the positions
of the other UAVs. White noise is added to the position of each UAV, which will
propagate to the estimated positions of the other UAVs. The mapper sample 20
poses to handle uncertainty in the position. The used standard deviation corre-
sponds to the results achieved with the basic filter in Table 4.3 for the position,
and 0.1 rad for the angle. In Figure 5.8a the map is seen. In Figure 5.8c the
resolution of the map is increased to centimeter precision but the identification
of walls is worsened. Each pixel in the grid maintains one square centimeter in
reality, and the thickness of the walls would ideally be of this size. Such a wall is
hard to see, even with perfect sensors and an ideal inverse sensor model.

A suggestion to handle the increased resolution and still distinguish the walls
is to change the inverse sensor model so that the range reading extends w meters
from the read distance. This modification will for a sensor reading r say that the
space 0→ r is free, r → r+w is occupied and r+w→∞ is unknown. The width w
should be smaller than the minimum width of captured obstacles on the map. In
the maps used, the maximal width would be 0.78 m, corresponding to the short-
est distance between two edges on the map. The modification is implemented by
multiplying the occupied space, 1 ∗Rmap to (1 +w) ∗Rmap, with the sensor reading
sr . Note that this scales O(w ∗ Rmap) in complexity. In previously displayed maps,
a wall width of 1 dm is enough for the walls to be seen clearly. The mapper was
tested with w = 0.1 [m], and the result is seen in Figure 5.8d. The walls are seen
much clearer, and the corners are captured with centimeter precision. The total

66 5 Performance analysis for the mapping system

(a) Scenario 1. (b) Scenario 1. Uncertainty in the posi-
tion was considered, with 20 samples and
the same variance as the noise.

(c) Scenario 2. (d) Scenario 2. Uncertainty in the posi-
tion was considered, with 20 samples and
the same variance as the noise.

Figure 5.5: Maps generated by three UAVs, with noisy measurement data,
for both map scenarios. The figures illustrate the different cases when the
map takes position uncertainty into account or not.

5.1 Simulation study 67

(a) Scenario 1. (b) Scenario 1. Uncertainty in the posi-
tion was considered, with 20 samples and
the same variance as the noise.

(c) Scenario 2. (d) Scenario 2. Uncertainty in the posi-
tion was considered, with 20 samples and
the same variance as the noise.

Figure 5.6: Maps generated by three UAVs, with noisy measurement data,
for both map scenarios. The individual constructed maps were merged pair-
wise. The figures illustrate the different cases when the map takes position
uncertainty into account or not.

68 5 Performance analysis for the mapping system

(a) Offline constructed map. (b) Online constructed map.

Figure 5.7: Maps constructed online and offline created by three drones for
map scenario 2. The uncertainty in the position was considered sampling
100 positions. When comparing with the maps constructed with 20 samples
the improvement is meager.

increase of time is O(R3
map ∗npos ∗ncf ∗w), and the map takes six hours to complete

with this configuration. The walls are easier to see, and the distances between the
obstacles are nearly perfect. It is clear when comparing with Figure 5.8b that the
map is improved when also compensating for uncertainty in the position.

5.2 Using absolute position (Loco)

With the Loco positioning system, the global positions of the UAVs are known
with a precision of 1 dm. As the positions are known in a global coordinate
system, the map can be updated simultaneously. Three UAVs explore the envi-
ronment for one minute. The measurement samples are saved on a computer
to construct the map both with and without uncertainty in the position from the
same sensor data. In Figure 5.9, the maps seen are all constructed simultaneously,
with a varying number of sampled positions. By comparing Figures 5.9a and 5.9c
with Figures 5.9b and 5.9d, it is clear that the uncertainty in position does indeed
improve the map. The slightly tilted walls indicate a small clockwise rotation of
the map. The mapping system was, for both map scenarios, able to capture the
major obstacles in the map. It is clear that considering uncertainty in the posi-
tion estimates does improve the positioning of the walls and corners. The top
right corner and bottom right corner were improved a lot in map scenario 1. In
scenario 2, the UAVs did not capture the corners as well, which is also seen when
comparing the maps that are produced when not considering uncertainty in the

5.2 Using absolute position (Loco) 69

(a) Map with 1 dm as resolution. Uncer-
tainty in the position was considered, with
20 samples and the same variance as the
noise.

(b) Map with 1 cm as resolution. Uncer-
tainty in the position was not considered.
Created with the wide-walls algorithm.

(c) Map with 1 cm as resolution. Uncer-
tainty in the position was considered, with
20 samples and the same variance as the
noise.

(d) Map with 1 cm as resolution. Uncer-
tainty in the position was considered, with
20 samples and the same variance as the
noise. Created with the wide-walls algo-
rithm.

Figure 5.8: Maps generated by three UAVs for map scenario 2. Illustra-
tion for the mapper performance when using relative distances between the
UAVs, and some methods to use when a higher resolution is wanted.

70 5 Performance analysis for the mapping system

position. The improvement for map scenario 2 is instead seen along the walls or
for the obstacle in the middle of the map.

5.3 Using relative position

The global position is harder to estimate without an external positioning system
and relies on estimates from internal filters instead. The estimated positions of
Crazyflies rely on Bitcraze’s EKF which uses flowdeck and IMU data. These esti-
mates tend to drift. The position estimate is local with each UAV, allowing each
UAV to explore the map in its frame. The individually explored maps are merged
after. For online mapping, the position estimate of each UAV is used to synchro-
nize their internal coordinate system, utilizing a shared coordinate system.

5.3.1 Separate coordinate systems

When the UAVs have separate coordinate systems, the maps must be merged. As
presented in Section 2.6.2, there is no difference between creating a map from
several UAVs or from several runs. If each run is kept short, and numerous runs
are used, the position estimation will not drift as much. The UAVs manage to
circle the area of the map one or two times in one minute. In the limited area, it
is not possible to use more than about four UAVs to give each enough space. This
also decreases the probability for the UAVs to insert other UAVs as obstacles on
the map.

The result seen in Figure 5.10a shows four UAVs flying for half a minute ex-
ploring the environment. Observe that the map has a different scale compared to
previously displayed maps. The mapper considered the uncertain pose by sam-
pling 20 poses. The map is rotated 90 degrees clockwise compared to the true
map in Figure 3.4a. The UAVs have captured the big corner, seen in the upper
left corner of the map, and there is some indication of the other corners with dif-
fuse edges. The maps are rotated into the orientation of map m0. Any rotation
leads to some information loss, see Appendix B, so the result can be expected to
be worse than that of previous maps. The distances between the walls are quite
correct, as is the placement of the top left corner (which would be the bottom
lower corner in Figure 3.4a).

5.3.2 Shared coordinate system

With a shared coordinate system, the positions of all UAVs must either be given
in the same coordinate system, or the positions must be known relative to one
of the UAVs. The test in Section 5.1.4 uses the basic relative positioning system
to determine the formation of the swarm. The relative poses are transformed
using the global pose of a reference UAV. The mapper then relies on the global
position of the reference UAV and its estimates of where the other UAVs are lo-
cated. Considering Table 4.3, the uncertainty in the position was around 3 dm for
the basic system. This uncertainty was used when constructing the map, and 20
poses were sampled. Figure 5.10b illustrates the result, where the map is rotated

5.3 Using relative position 71

(a) Scenario 1. (b) Scenario 1. Uncertainty in the posi-
tion was considered, with 20 samples and
the same variance as the noise.

(c) Scenario 2. (d) Scenario 2. Uncertainty in the posi-
tion was considered, with 20 samples and
the same variance as the noise.

Figure 5.9: Maps generated by three UAVs, for both map scenarios. The
Crazyflies are positioned by the Loco positioning system. The Figures illus-
trate the different cases when the map takes position uncertainty into ac-
count or not.

72 5 Performance analysis for the mapping system

90 degrees counter-clockwise. The corners were difficult to capture due to the
big uncertainty. However, the major corner, seen in the bottom right corner, is
well-defined.

(a) Merged map by four UAVs for map
scenario 1. Each UAV constructed the map
in their local frame.

(b) Map constructed collaboratively by
three UAVs for map scenario 1. The UAVs
started from a known formation and used
a shared coordinate system.

Figure 5.10: Constructed maps from real flights with separate or shared co-
ordinate systems. The mapper considered an uncertain position.

5.4 Summary and discussion 73

5.4 Summary and discussion

For a swarm, one can let the UAVs work on individual maps to be merged. The
merging is in this report only performed after a flight is done, but can be done
during the flight by copying the grid from each UAV and merging them. The
merged map can then be introduced to each UAV as the prior term in the grid
map. As seen in Section 5.1.2 the merging order matters, but has minimal impact
on how the map looks. It is therefore useful to fix one map and perform pairwise
merging of the maps until one final map is achieved. The measure used from the
introduced cost function from Section 2.6.2 gives a hint of how the performance
of the achieved map is, and can both be used to know how much two maps to
be merged overlap or to compare the similarity with the true map. For other
maps, there are however indications from the results that some cost functions will
not find the optimal translation and (or) rotation. For example, (2.51) will have
trouble with a map where the area of the unknown

mapped space → becomes very large,

(2.52) will have trouble when the free
occupied space becomes very large. The modified

version, (3.1), measuring the precision for the positions of the obstacles is more
robust in these extremes but might have trouble finding the true transformation
if the created map is subject to ambiguity regarding rotation and flip. This is
however the case for all presented cost functions.

In Table 5.1 the three suggested cost functions were investigated, and it was
shown that (2.52) and (3.1) scaled as expected with the area of free space and
length of the walls, respectively, both for offline and online mapping. The equal-
ity check (2.51) between maps scaled with the area of unknown space. However,
the function differs between online and offline mapping, which is something to
remark on.

The difference was investigated, and the best guess for the difference is due
to the distinction in how the maps are created. For offline maps, the probability
grids are converted to log-odds grids and then merged, followed by conversion
back to a probability map. In the true map, free space is represented by zeros, and
occupied space is represented by ones. For cells to be equal, there must either be
calculations involving division by zero or logarithms of zero, as free and occupied
space in the exact map corresponds to a value of 0 and 1, respectively. These
operations are not only mathematically undefined but will not return exact 0 nor
1, without any floating point rest, in numerical calculations. With the conversions
back and forth, some information is lost.

The grid introduced here is initialized with a fixed size, which requires knowl-
edge about how large the area to be mapped is. The method of merging maps
does not require any communication within the swarm, nor to a computer during
flight. The swarm would explore the area and each UAV log its estimated pose
and sensor data. The data can be collected after the flight and used to construct
the map. Such an implementation can be useful in areas where communication
is the main problem but requires that each UAV has a good internal filter for pose
estimation.

Relative positioning is required in an implementation involving collaborative
mapping. The investigated method assumed that the pose of one UAV was known

74 5 Performance analysis for the mapping system

globally, this UAV was denoted the reference UAV. The global poses of the other
UAVs were derived from the poses relative to the reference UAV and were given
in the horizontal frame of the reference UAV. All positions then drifted with the
position of the reference UAV. There are numerous scenarios where one UAV is
equipped with better sensor data for estimating its global position, and only one
UAV needs to know its pose in the global frame. With the Loco positioning sys-
tem, the global position had an accuracy of 1 dm, and would not drift. When not
using the Loco system, the position of the reference UAV drifted. It might be in-
teresting to look at the swarm’s common picture of the global coordinate system.
That is an implementation where the position estimate of each UAV is used to
align the coordinate systems between the UAVs. Such an implementation could
decrease the drift.

When considering uncertainty in the position, the maps were improved. In
the simulator, white noise with a standard deviation of 1 dm was added to the
position of the reference drone, corresponding to the accuracy of the Loco posi-
tioning system. However, the error in the positions given by the Loco positioning
system is not Gaussian distributed, leading to less improvement than for the sim-
ulated data. Even though 20 samples were quite few when sampling poses it was
enough to complete a map. Since the data were collected at 100 Hz, the UAVs
only managed to move a small distance between each sample.

The time complexity when mapping is of great interest, balancing time versus
details in the map. The map with centimeter resolution instead of decimeter
resolution introduced more details in the map, but with great cost regarding time
consumption. When comparing the maps based on simulated data to the maps
based on real-world data, the difference is huge.

6
Conclusions and further work

This chapter summarizes the main results presented in Chapter 4 and Chapter 5
and presents possible ideas for future work.

6.1 Conclusions

The results presented in Chapter 4 show that making more distances available
when filtering does improve accuracy. As an example, the average filter error is
reduced by about 47.2 percent compared to the basic filter when using all avail-
able distances within a swarm of eight UAVs, a vast improvement. The accuracy
achieved has a value of 0.1639 m. Using UWB distance measurements and ego
velocity data within a swarm of UAVs, together with an extended Kalman filter
designed as described in Section 3.4.2, clearly enables relative pose estimation,
yielding an answer to the first question stated in the introduction. Mapping was
shown to work with the basic filter, which indicates that the extended filter, with
its nearly double accuracy, should handle the task neatly.

Still, improved accuracy from using more distance measurements comes at
the cost of potentially pushing the computational limits of hardware UAVs. It re-
mains somewhat unclear how the delays of real UWB communication, the method
for collecting distance measurements mentioned in the first report question, can
lead to accuracy problems. Delays are, additionally, likely to get worse when
increasing the UAV count of a swarm. Convergence also gets harder to achieve
when using many UAVs and starting with unknown states. This issue is clearly
displayed by convergence tests presented in the results section, where a swarm of
eight UAVs using all available distance measurements reaches convergence only
in about half the test runs.

For the convergence issues, effective remedies can evidently be applied, like
the MDS initialization method that was described in Section 3.4.1. In real sce-

75

76 6 Conclusions and further work

narios, this method is also meant to use UWB ranging and ego velocity data, the
sensor data mentioned in the first report question, and can beneficially be used
together with the extended filtering system. The relative poses can thereby be
accurately estimated nearly instantly. As for problems with computational capac-
ities on hardware UAVs, large segments of the positioning systems can be moved
to a central computer. However, since there are limits on how many Crazyflies
can connect to a computer, there might still be computational limits imposed, in
other ways, on the relative positioning systems.

Switching to the other focus of the report, the mapping strategy relies on
knowing where drones are located, and what each individual drone sees, in terms
of sensor data. The data is inserted into an occupancy grid where the map is con-
structed. By infusing the position of the drone with uncertainty, irregularities in
the walls or corners get smoothed out. The uncertainty in the position is achieved
by uniformly sampling positions around the estimated position. When inserting
sensor data into the grid, the relative position information is used to know where
the obstacles detected by the LIDAR should be inserted. Before inserting informa-
tion about the obstacles, the range detections are transformed to the horizontal
frame with information from the IMU. If the resolution is to be increased, the in-
verse sensor model needs to be adjusted for the obstacles to be seen on the map.

For a swarm, the collaboratively constructed map was successfully created
in two ways, both by merging the locally created maps and by cooperating on a
common grid. If local maps are used, the position estimate of each drone is in the
local map, and all maps must be merged to know the position of the swarm on the
global map. As the merging of maps takes time, the positions of the drones will
have drifted until the estimated position can be seen. The collaboratively con-
structed map relied on global pose estimates for at least one UAV in the swarm,
called the reference or origin-UAV. The mapper then uses the pose of the refer-
ence drone and its estimation of the poses of the other drones in the swarm to
determine the positions of all UAVs in a shared coordinate system. Both imple-
mentations use sensor data to construct a map, but neither of them uses the map
to locate. This is the main difference from a SLAM implementation.

The answer to the last report question inherently reasons around the overall
goal of the report, namely to investigate methods for mapping the environment in
which a UAV swarm acts, utilizing relative position estimates based on relative
distance measurements. A general conclusion is that there are many different
methods for separately approaching mapping and localization problems using
UAV swarms, leading the way to even more potential strategies for combining
promising solutions. Results of tests conducted during the work of this thesis
present two viable strategies for combining both types of systems, but many more
could be explored.

6.2 Further work

A takeaway from real-world tests of the positioning systems is that the perfor-
mance of the involved filters is radically worsened when the update frequency

6.2 Further work 77

is decreased. Therefore, it could be a good idea to develop an improved motion
model, more resilient to large time deltas and noise in velocity estimates.

The positioning filter using MDS coordinates as measurements did not work
as expected and the propositions for the improvement of that filter could be in-
vestigated. The method of taking the positions of all UAVs into account when ro-
tating and flipping to counter ambiguities could potentially keep the filter from
divergence after the first convergence.

For a SLAM implementation, the map must be used to localize each drone in
the swarm. Both methods for constructing the map provide sufficient informa-
tion for a proper SLAM implementation, that is an implementation where the
LIDAR is used not only to insert information in the map but also used to help the
localization in the so-far constructed map. It would therefore be a challenging
and interesting task to extend the position estimating with LIDAR data.

The resolution of a map has a major impact on the time needed for construct-
ing a merged map, where a comparison between each cell is necessary. [13] did
not only explore how the incorporation of uncertain sensors could improve the
mapping algorithm, but also how the resolution of the map could be determined.
The grid map can be modified to use dynamic resolution. The cells in the grid
are then locally merged or split. Splitting cells improves the resolution in the
nearby area and should be done when two sensor measurements disagree on the
classification of a cell in the grid. This subject could be investigated further.

A final idea for further work is to test the various mapping systems with the
best-performing relative localization system. Hardware-related issues and lack
of time came in the way during the course of this work. It could be an interesting
task to implement functionality for combining the systems on hardware UAVs.

Appendix

A
Extended positioning system for a

swarm of three UAVs

The notations related to the EKF of the extended positioning system for the case
of a swarm with three UAVs, where all available pairwise distances are used, is
described in Table A.1.

Table A.1: Notations related to the Kalman filtering process used to estimate
the relative positions and yaw angles of agents 2 and 3 in the HF of agent 1.

Notations

X =
[
p12
p13

]
=

[
x12 y12 ψ12 x13 y13 ψ13

]T

U =
[
vT1 r1 vT2 r2 vT3 r3

]T
vi =

[
vxi v

y
i

]T

Ẋ =

cos(ψ12)vx2 − sin(ψ12)vy2 − v
x
1 + y12r1

sin(ψ12)vx2 + cos(ψ12)vy2 − v
y
1 − x12r1

r2 − r1
cos(ψ13)vx3 − sin(ψ13)vy3 − v

x
1 + y13r1

sin(ψ13)vx3 + cos(ψ13)vy3 − v
y
1 − x13r1

r3 − r1

81

82 A Extended positioning system for a swarm of three UAVs

f1(i) = − sin(ψ1i)v
x
i − cos(ψ1i)v

y
i , f2(i) = cos(ψ1i)v

x
i − sin(ψ1i)v

y
i

A =

1 r1∆t f1(2)∆t 0 0 0
−r1∆t 1 f2(2)∆t 0 0 0

0 0 1 0 0 0
0 0 0 1 r1∆t f1(3)∆t
0 0 0 −r1∆t 1 f2(3)∆t
0 0 0 0 0 1

B =

−1 0 y12 cos(ψ12) − sin(ψ12) 0 0 0 0
0 −1 −x12 sin(ψ12) cos(ψ12) 0 0 0 0
0 0 −1 0 0 1 0 0 0
−1 0 y13 0 0 0 cos(ψ13) − sin(ψ13) 0
0 −1 −x13 0 0 0 sin(ψ13) cos(ψ13) 0
0 0 −1 0 0 0 0 0 1

z =

[
d12 d13 d23

]T
h(X) =

√
x2

12 + y2
12√

x2
13 + y2

13√
(x13 − x12)2 + (y13 − y12)2

H = x12/z1 y12/z1 0 0 0 0

0 0 0 x13/z2 y13/z2 0
−(x13 − x12)/z3 −(y13 − y12)/z3 0 (x13 − x12)/z3 (y13 − y12)/z3 0

R =

σ2
d 0 0

0 σ2
d 0

0 0 σ2
d

Q =

σ2
vxy 0 0 0 0 0 0 0 0
0 σ2

vxy 0 0 0 0 0 0 0
0 0 σ2

vr 0 0 0 0 0 0
0 0 0 σ2

vxy 0 0 0 0 0
0 0 0 0 σ2

vxy 0 0 0 0
0 0 0 0 0 σ2

vr 0 0 0
0 0 0 0 0 0 σ2

vxy 0 0
0 0 0 0 0 0 0 σ2

vxy 0
0 0 0 0 0 0 0 0 σ2

vr

B
Information loss due to rotation of

grids

The rotation of a grid is performed as described in Section 5.1.2, but each rota-
tion leads to some informational loss due to truncation of grid indices. To show
this, the original map illustrated in Figure 3.4a is first rotated 20 degrees clock-
wise, illustrated in Figure B.1a, and then 20 degrees anti-clockwise, illustrated in
Figure B.1b.

(a) The example map in Figure 3.4a ro-
tated 20 degrees clockwise.

(b) The map rotated back to its original
orientation.

Figure B.1: Illustration of how a rotation of a grid leads to some informa-
tional loss for the map. The left map is rotated 20 degrees, and the right
map is rotated back to its original orientation.

83

Bibliography

[1] Bitcraze AB. Crazyflie 2.1, 2022. URL https://www.bitcraze.io/
products/crazyflie-2-1/.

[2] Bitcraze AB. State estimation, 2022. URL https://www.bitcraze.
io/documentation/repository/crazyflie-firmware/master/
functional-areas/sensor-to-control/state_estimators/.

[3] Bitcraze AB. The coordinate system of the crazyflie 2.X, 2022. URL
https://www.bitcraze.io/documentation/system/platform/
cf2-coordinate-system/.

[4] Bitcraze AB. Flow Deck v2, 2022. URL https://www.bitcraze.io/
products/flow-deck-v2/.

[5] Bitcraze AB. Loco Positioning System, 2022. URL https:
//www.bitcraze.io/documentation/system/positioning/
loco-positioning-system/.

[6] Bitcraze AB. Loco Positioning System, 2022. URL https:
//www.bitcraze.io/documentation/system/positioning/
accuracy-loco/.

[7] Bitcraze AB. Loco Positioning System, 2022. URL
https://www.bitcraze.io/documentation/repository/
crazyflie-firmware/master/functional-areas/
loco-positioning-system/.

[8] Bitcraze AB. Multi-ranger deck, 2022. URL https://www.bitcraze.
io/products/multi-ranger-deck/.

[9] Andreas Birk and Stefano Carpin. Merging occupancy grid maps from mul-
tiple robots. IEEE Proceedings, special issue on Multi-Robot Systems, 94(7):
1384–1397, 2006. doi: 10.1109/JPROC.2006.876965.

[10] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4(1):25–30, 1965. doi: 10.1147/sj.41.0025.

85

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/state_estimators/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/state_estimators/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/state_estimators/
https://www.bitcraze.io/documentation/system/platform/cf2-coordinate-system/
https://www.bitcraze.io/documentation/system/platform/cf2-coordinate-system/
https://www.bitcraze.io/products/flow-deck-v2/
https://www.bitcraze.io/products/flow-deck-v2/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/accuracy-loco/
https://www.bitcraze.io/documentation/system/positioning/accuracy-loco/
https://www.bitcraze.io/documentation/system/positioning/accuracy-loco/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/loco-positioning-system/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/loco-positioning-system/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/loco-positioning-system/
https://www.bitcraze.io/products/multi-ranger-deck/
https://www.bitcraze.io/products/multi-ranger-deck/

86 Bibliography

[11] Rui Chen, Bin Yang, and Wei Zhang. Distributed and collaborative localiza-
tion for swarming uavs. IEEE Internet of Things Journal, 8(6):5062–5074,
2021. doi: 10.1109/JIOT.2020.3037192.

[12] Ruwan Egodagamage and Mihran Tuceryan. A Collaborative Augmented
Reality Framework Based on Distributed Visual Slam. In 2017 International
Conference on Cyberworlds (CW), pages 25–32, 2017. doi: 10.1109/CW.
2017.47.

[13] Victor Terra Ferrão, Cássio Dener Noronha Vinhal, and Gelson da Cruz. An
Occupancy Grid Map Merging Algorithm Invariant to Scale, Rotation and
Translation. In 2017 Brazilian Conference on Intelligent Systems (BRACIS),
pages 246–251, 2017. doi: 10.1109/BRACIS.2017.69.

[14] Jeffrey Humpherys, Preston Redd, and Jeremy West. A Fresh Look at
the Kalman Filter. SIAM Review, 54(4):801–823, 2012. doi: 10.1137/
100799666. URL https://doi.org/10.1137/100799666.

[15] Timon Idema. Rotating Reference Frames, 2020. URL https://batch.
libretexts.org/print/Finished/phys-17360/Full.pdf.

[16] Daniek Joubert, Willie Brink, and Ben Herbst. Pose uncertainty in oc-
cupancy grids through Monte Carlo integration. In 2013 16th Interna-
tional Conference on Advanced Robotics (ICAR), pages 1–6, 2013. doi:
10.1109/ICAR.2013.6766589.

[17] S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92(3):401–422, 2004. doi: 10.1109/JPROC.2003.
823141.

[18] Marco Karrer, Patrik Schmuck, and Margarita Chli. CVI-
SLAM—Collaborative Visual-Inertial SLAM. IEEE Robotics and Au-
tomation Letters, 3(4):2762–2769, 2018. doi: 10.1109/LRA.2018.2837226.

[19] Tony Lacey. Tutorial: The Kalman Filter, chapter 11, pages 133–140. MIT,
1998.

[20] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and
Giovanni Beltrame. DOOR-SLAM: Distributed, Online, and Outlier Re-
silient SLAM for Robotic Teams. CoRR, abs/1909.12198, 2019. URL
http://arxiv.org/abs/1909.12198.

[21] Shushuai Li, Mario Coppola, Christophe De Wagter, and Guido C. H. E.
de Croon. An autonomous swarm of micro flying robots with range-based
relative localization. CoRR, abs/2003.05853, 2020. URL https://arxiv.
org/abs/2003.05853.

[22] Wenchao Li, Beth Jelfs, Allison Kealy, Xuezhi Wang, and Bill Moran. Coop-
erative Localization Using Distance Measurements for Mobile Nodes. Sen-
sors, 21(4), 2021. ISSN 1424-8220. doi: 10.3390/s21041507. URL https:
//www.mdpi.com/1424-8220/21/4/1507.

https://doi.org/10.1137/100799666
https://batch.libretexts.org/print/Finished/phys-17360/Full.pdf
https://batch.libretexts.org/print/Finished/phys-17360/Full.pdf
http://arxiv.org/abs/1909.12198
https://arxiv.org/abs/2003.05853
https://arxiv.org/abs/2003.05853
https://www.mdpi.com/1424-8220/21/4/1507
https://www.mdpi.com/1424-8220/21/4/1507

Bibliography 87

[23] Mathworks. What is SLAM (simultaneous localization and mapping), 1
2022. URL https://se.mathworks.com/discovery/slam.html.

[24] Mark W Mueller, Michael Hamer, and Raffaello D’Andrea. Fusing ultra-
wideband range measurements with accelerometers and rate gyroscopes for
quadrocopter state estimation. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 1730–1736, May 2015. doi: 10.
1109/ICRA.2015.7139421.

[25] Dries Neirynck, Eric Luk, and Michael McLaughlin. An alternative double-
sided two-way ranging method. In 2016 13th Workshop on Positioning,
Navigation and Communications (WPNC), pages 1–4, 2016. doi: 10.1109/
WPNC.2016.7822844.

[26] Matteo Palieri, Benjamin Morrell, Abhishek Thakur, Kamak Ebadi, Jeremy
Nash, Arghya Chatterjee, Christoforos Kanellakis, Luca Carlone, Cataldo
Guaragnella, and Ali-Akbar Agha-Mohammadi. LOCUS: A Multi-Sensor
Lidar-Centric Solution for High-Precision Odometry and 3D Mapping in
Real-Time. CoRR, abs/2012.14447, 2020. URL https://arxiv.org/
abs/2012.14447.

[27] Yan Pei, Swarnendu Biswas, Donald Fussell, and Keshav Pingali. An Elemen-
tary Introduction to Kalman Filtering. Communications of the ACM, 62, 10
2017. doi: 10.1145/3363294.

[28] Patrik Schmuck and Margarita Chli. Multi-UAV collaborative monocular
SLAM. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 3863–3870, 2017. doi: 10.1109/ICRA.2017.7989445.

[29] Jiawen Shen, Shizhuang Wang, Yawei Zhai, and Xingqun Zhan. Co-
operative relative navigation for multi-UAV systems by exploiting
GNSS and peer-to-peer ranging measurements. IET Radar, Sonar
& Navigation, 15(1):21–36, 2021. doi: https://doi.org/10.1049/rsn2.
12023. URL https://ietresearch.onlinelibrary.wiley.com/
doi/abs/10.1049/rsn2.12023.

[30] Marco Taboga. Covariance matrix, Lectures on probability theory and
mathematical statistics, 2021. URL https://www.statlect.com/
fundamentals-of-probability/covariance-matrix.

[31] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
robotics. MIT Press, Cambridge, Mass., 2005. ISBN 0262201623
9780262201629. URL http://www.amazon.de/gp/product/
0262201623/102-8479661-9831324?v=glance&n=283155&n=
507846&s=books&v=glance.

[32] Viktor Tuul. Online Collaborative Radio-enhanced Visual-inertial SLAM.
Master’s thesis, Kungliga Tekniska Högskolan, 6 2019.

https://se.mathworks.com/discovery/slam.html
https://arxiv.org/abs/2012.14447
https://arxiv.org/abs/2012.14447
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/rsn2.12023
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/rsn2.12023
https://www.statlect.com/fundamentals-of-probability/covariance-matrix
https://www.statlect.com/fundamentals-of-probability/covariance-matrix
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance

88 Bibliography

[33] Florian Wickelmaier. An introduction to MDS, May 2004. URL https:
//www.hongfeili.com/files/paper100/paper4.pdf.

[34] Richard Wilkinson. Multivariate statistics, 2022. URL https://
rich-d-wilkinson.github.io/MATH3030/6-mds.html.

[35] Shuien Yu, Chunyun Fu, Amirali K. Gostar, and Minghui Hu. A Review on
Map-Merging Methods for Typical Map Types in Multiple-Ground-Robot
SLAM Solutions. Sensors, 20(23), 2020. ISSN 1424-8220. doi: 10.3390/
s20236988. URL https://www.mdpi.com/1424-8220/20/23/6988.

https://www.hongfeili.com/files/paper100/paper4.pdf
https://www.hongfeili.com/files/paper100/paper4.pdf
https://rich-d-wilkinson.github.io/MATH3030/6-mds.html
https://rich-d-wilkinson.github.io/MATH3030/6-mds.html
https://www.mdpi.com/1424-8220/20/23/6988

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Background
	1.2 Purpose and goal
	1.3 Individual contributions
	1.4 Outline

	2 Theory
	2.1 Rotation of a point in the three-dimensional space
	2.2 Coordinate frames
	2.3 Extended Kalman filter
	2.4 Relative positioning
	2.4.1 Motion model for drone states
	2.4.2 Basic relative positioning system
	2.4.3 Multidimensional scaling

	2.5 Constructing a map
	2.5.1 Probabilistic occupancy grid
	2.5.2 Inverse sensor model
	2.5.3 Bresenham line algorithm
	2.5.4 Uncertain pose

	2.6 Map-merging for multiple UAVs
	2.6.1 Simultaneous map update
	2.6.2 Multirobot map merging

	3 System Description
	3.1 The Crazyflie platform
	3.1.1 Velocity estimation
	3.1.2 Measuring inter-drone distances

	3.2 Mapping node
	3.3 Navigation during mapping
	3.4 Extended relative positioning system
	3.4.1 Complementary initialization procedure
	3.4.2 Improved filtering

	3.5 Extended relative positioning system with MDS measurements

	4 Performance analysis for relative localization systems
	4.1 Simulation environment
	4.2 Noise in velocity estimation and UWB ranging
	4.2.1 Noise in velocity estimates
	4.2.2 Noise in UWB ranging measurements

	4.3 Initiation, flight method, update frequency and noise levels in simulated tests
	4.4 Time of convergence in simulation
	4.4.1 Basic system
	4.4.2 Extended system
	4.4.3 Extended system using MDS initialization procedure

	4.5 Accuracy in simulation
	4.5.1 Basic system
	4.5.2 Extended system
	4.5.3 Measurement dropout analysis for the extended system
	4.5.4 System based on filter using MDS measurements

	4.6 Real-world tests of the basic system
	4.7 Summary and discussion

	5 Performance analysis for the mapping system
	5.1 Simulation study
	5.1.1 Map cost function
	5.1.2 Map merging
	5.1.3 Noisy measurements and position uncertainty
	5.1.4 Mapping with relative positions

	5.2 Using absolute position (Loco)
	5.3 Using relative position
	5.3.1 Separate coordinate systems
	5.3.2 Shared coordinate system

	5.4 Summary and discussion

	6 Conclusions and further work
	6.1 Conclusions
	6.2 Further work

	A Extended positioning system for a swarm of three UAVs
	B Information loss due to rotation of grids
	Bibliography

