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Abstract

In this thesis the Discontinuous Galerkin approximation performance applied
to the Korteweg–de Vries equation is investigated. This equation is nonlinear
with a third spatial derivative and can be used for shallow water movement.
The thesis includes a background in numerical methods on conservation laws,
Discontinuous Galerkin methods and the Korteweg-de Vries equation. To ap-
proximate the third order derivative, the thesis reformulates Korteweg-de Vries
equation as a system of first order equations in order to apply Discontinuous
Galerkin effectively. The thesis presents two choices of numerical fluxes, central-
and alternating flux which both show promising convergence results, similar to
that of the first order problem. Stability of the numerical approximation is
proved analytically while convergence is shown numerically. The central flux
appear to have spectral convergence, O(hm) for even approximation order m
and sub-optimal convergence for m odd while alternating flux shows spectral
convergence for all approximation orders, h being the discretization mesh. How-
ever, the central flux is found, in practice, to be only half as stiff and thus one
should choose the numerical flux by the problem at hand.
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Nomenclature

• RN denotes the Euclidian N -space, ||x|| = (
∑

j x
2
j )

1
2

• Lp denotes the space of Lp(Ω) integrable functions, ||x(t)||Lp(Ω) = (
∫
Ω
|x(t)|2 dt) 1

2 .
Specifically the L2 space has a inner norm defined by (x, y)Ω =

∫
Ω
x(t)y(t) dt

• Hq denotes the space of functions for which the Sobolev norm is bounded,
i.e. ||x||2q =

∑q
l=0 ||x(l)||2Ω < ∞.

• KdV - Korteweg-de Vries

• PDE - Partial Differential Equation

• FE - Finite Element

• FD - Finite Difference

• FV - Finite Volume

• DG - Discontinuous Galerkin
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Chapter 1

Introduction

Consider a physical quantity u which cannot be compressed and do not emerge
or disappear from anywhere but the boundary flux. Such a quantity abides
by a conservation law, meaning that the total quantity do not change as time
progresses without transportation to or from the space in which it resides. The
thesis will be limited to one spatial dimensional u = u(x, t) where (x, t) ∈
{Ωx ⊗ Ωt}. Mathematically, we describe this conservation law as

∫
Ωx

u(x, t) dx = C, ∀t ∈ Ωt,∀x ∈ Ωx. (1.1)

Conservation laws are present in fluid dynamics as conservation of momentum
or energy systems with energy conservation. Through the language of mathe-
matics we can interpret physical models, like those regarding conservation laws,
and express them as a Partial Differential Equation (PDE). The conservation
laws of interest for this thesis describe conservation of mass or momentum and
are associated with hyperbolic PDEs [8]. This class of PDEs differ from elliptic
and parabolic PDEs in that perturbations in the initial data does not immedi-
ately affect all points of the domain and is thus capable of describing waves of
information. The simplest hyperbolic PDE is the linear advection equation

∂u

∂t
+

∂au

∂x
= 0, a ∈ R (1.2)

where f(u) = au is the flux and the wavespeed is the result of differentiating
the flux with respect to the spatial term. For the simple PDE (1.2) the value
of the wave speed is the constant a. To learn more about the method of char-
acteristics, see Hesthaven’s Numerical methods to conservation laws [9]. The
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2 Chapter 1. Introduction

Figure 1.1: Dashed line is the initial condition and solid is the result after 5
seconds of advection transportation. Linearity of the PDE preserves the initial
condition’s shape.

sign of the wave speed, a > 0 or a < 0 corresponds to a right and left moving
wave respectively. An example solution to the PDE (1.2) can be found by the
method of characteristics with initial conditions u(x, 0) =sech2(x) yields the
exact solution u(x, t) =sech2(x − at) [12]. This sample solution is plotted in
Figure 1.1 with speed speed a = 1. The initial condition of with hyperbolic
secant function, sech, was chosen arbitrarily but it is informative because the
resulting solution resembles a propagating wave. The example illustrates a phe-
nomenom due to the flux linearity where the solution is the initial condition,
but transported with speed a. This only holds for linear advection equations
but highlights what can be expected from linearity.

With some physical context for PDEs, it is now time to describe the equation
at the core of this thesis, Korteweg-de Vries (KdV) equation. It is a nonlinear
PDE with a third spatial derivate. Solutions to the PDE belongs to the classi-
fication solitons as it is a remarkably stable localized wave solution (1.3).

ut + uxxx + 6uux = 0, x ∈ R. (1.3)

The soliton was first observed in 1834 by J.S Russel who studied waves of water
in a narrow channel which preserves their shape and appearence as they move
over large distances and away from its heap of water, there is no elevation [12].
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The same equation (1.3) has also emerged in theory of plasmas and quantum
mechanics. An exact solution is u(x, t) = 1

2asech
2(x − at), where sech is the

hyperbolic secant which decays exponentially as x → ±∞. The existence of
this well behaved exact solution will later allow precise convergence tests of
the approximate solution uh. This behaviour is further examined in the article
by Walter Strauss [12]. The wave speed is a and amplitude is a/2. There is
a soliton for every a > 0 and its appearence is decided by a. If a is large the
soliton will be tall, fast and thin while a small a will yield a short, slow and wide
soliton [14]. A solution of particular interest for the KdV equation has linear
behaviour as two waves interacting. If a taller wave overtakes a smaller wave,
they will have a very nonlinear interaction but emerge identical as they started.
Apart from a small time delay they behave as if they were linear. Walter Strauss
[12] mentions that while this is expected for linear problems, finding nonlinear
equations with this behaviour was a complete suprise at the time.

Although the method of characteristics worked nicely on the earlier constant,
linear advection problem, it falls short on more complex equations such as the
KdV equation. Therefore, in general, a numerical approximation which retains
the original properties of the KdV equation is the best for which we can hope
for. Desirable properties of such a numerical approximation are that it is effi-
cient, stable and converges to the exact solution with low computational cost.
In many problems posed with general geometries the Discontinuous Galerkin
(DG) methods have been succesfully applied. In these cases, the typical Fi-
nite Element (FE) method fall short as it assumes continuity, often unvalid
for hyperbolic PDEs (section 2.2). Although Finite Volume (FV) methods can
capture the discontinuities, or shocks, it is only low order accurate. Hence, a
combination of these methods, the DG methods has been successfully applied
to a wide range of applications, especially when the problem has a dominant
first-order term or when it’s advection dominated [11]. High-order methods like
the DG can resolve waves on fewer degress of freedom and maintain accuracy
over large time scales. But how well does it behave when it is introduced to a
third spatial derivative, such as in the Korteweg-de Vries (KdV) equation. To
tackle this derivative, the DG implementation requires some modification which
in turn might yield instability.

1.1 Questions at the centre

To formulate the challenges above, the questions at centre of this thesis sum-
marizes to:

• How would DG methods work on higher spatial derivative terms?
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• How does the spatial approximation involving third order derivative terms
influence the time integration?

• Can DG methods properly resolve physically relevant solutions to the KdV
equation, e.g., solitons?

• How can one construct a DG spatial discretization to the KdV equation
that is stable? That is, the discretization properly captured energy esti-
mates from the continuous PDE analysis.

1.2 Method
The thesis will begin with a background chapter on numerical methods for
conservation laws. It will highlight what we wish to retain as we move the
continuous analysis to the discretized solution space. The behaviour of the
solution might provide several challenges due to lack of smoothness, development
of shocks and approximation errors that needs to be handled with caution.
Following this, the paper will briefly look into the FE and FV method to properly
motivate the advantages of the DG method. The bigger challenges such as flux
will be underlined and relevant work in the area will be investigated. A DG
construction which satisfies the criterias for stability and convergence will be
presented and motivated analytically. Lastly numerical results will verify the
analytical work. Some conclusive thoughts on DG methods applied to the KdV
equation will round of the thesis.



Chapter 2

Background

Before we apply Discontinuous Galerkin methods on the KdV equation, we build
up the necessary toolbox to deal with numerical methods. As DG methods
are composed of the Finite Element and Finite Volume methods, we will look
into their respective strengths and flaws, the mathematics behind and how to
implement the methods numerically.

2.1 Approximation space
We begin by assuming that the exact solution u ∈ H1 to bound the integral of
u and allow derivatives of L2 functions, more about Sobolov spaces in [2, ch 3].
u can either be projected as a series of orthogonal L2 integrable functions

u =

∞∑
i=0

ũiφi (2.1)

where φi spans u or interpolated

u =

∞∑
i=0

u(xi, t)Pi(x) (2.2)

by some interpolating polynomial P . Mathematically there is little difference
but the code-wise implementation differs. The basis expansion is called a modal
approximation while the interpolation approach is called a nodal approximation.
More about nodal and modal approximations in [1]. As numerical approxima-
tions cannot use infinite series expansions, a truncation is needed, leaving an
approximate solution uh ∈ Pm. Higher order m minimizes the residual between

H.Mediaa, 2023. 5
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u and uh such that higher frequency functions can be properly represented.

We begin the discussion of modal approximations by underlining the im-
portance of choosing suitable basis functions for a given problem. Using basis
functions that are largely non-zero globally would open the door to Spectral
Methods which is widely used due to their exponential convergence rate on
smooth problems [9]. Fourier representation utilizes such basis functions but as
they need to be periodic, the usefulness is limited. Additionally, in formation of
shocks they fall short due to the large number of nodes needed to encapsule the
localized shockwave. Hence spectral methods are not suitable for solving conser-
vation laws where shocks are prone to emerge in non-linear solutions. Therefore
we exclude basis functions that are non-zero globally and instead consider ba-
sis functions being non-zero only locally. An example of such a basis could
be the Legendre polynomials. The unknowns in the modal approximation are
the expansion coefficients ũi. To find these, we first define each basis function
φj ∈ Dj . The coefficients are then calculated by L2 projection via

ũi = (u(x, t), φi(x))Di =

∫
Dj

u(x, t)φi(x) dx. (2.3)

If we instead consider a nodal approximation the solution is interpolatory [9],
meaning that for some chosen m+1 gridpoints xi ∈ {x0, x1, ..xm} on our spatial
axis the exact solution is calculated and in turn used as coefficients. We are
free to choose an interpolating polynomial Pi(x) with a particularly useful basis
being the Lagrange polynomials [9]

Pi(x) = li(x) =

m∏
k=0
k ̸=i

x− xk

xi − xk
(2.4)

such that

uh(x, t) =

m∑
i=0

u(xi, t)li(x), xi ∈ {x0, x1, ..xm}, (2.5)

while emphasizing that u(xi, t) is still time dependent. For this thesis we will use
a nodal approach with Lagrange polynomials. The nodal approach will provide
some numerical advantages as the global solution is patched together which will
be discussed in detail in later sections.

2.2 Shocks and weak solutions
Consider Burgers’ equation
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Figure 2.1: Burgers’ equation shows an emergin shock wave.

∂u

∂t
+

1

2

∂u2

∂x
= 0 (2.6)

where the flux is u by the chain rule applied to the spatial term. If this is com-
puted with the initial conditions u(x, 0) = 1+sin(x), x ∈ [0, 2π] some interesting
consequences of nonlinearity makes itself apparent, see Figure 2.1. As the fig-
ure shows, a discontinuity forms as time progresses from our initial conditions.
The resulting discontinuity or shock wave means that a classical solution to the
PDE does not exist as smoothness disappear. The development of numerical
tools must consider these properties. As ∂u

∂x grows to infinity, the numerical
computation will be put at a halt. Hence a new way to model the equation is
needed. Distribution theory handles with this discontinuity problem by using
test functions. Recall the generic hyperbolic PDE

ut + f(u)x = 0 (2.7)

which may contain a nonlinear flux. By applying u on a test function ϕ ∈ C∞

we define the weak form of equation (2.7) as

(ut + f(u)x, ϕ)Ωx
=

∫
Ωx

(ut + f(u)x)ϕdx = 0. (2.8)
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Partial integration gives∫
Ωx

utϕdx+ [f(u)ϕ]∂Ωx −
∫
Ωx

f(u)ϕx dx = 0 (2.9)

and thus the solution u to above, called a weak solution, solved the issue of clas-
sical derivative due to the shock. However, the weak solution removes unique-
ness, making infinitely many solutions possible [12]. To address this issue, we
will work from the criterias to recover the true solution, namely entropy condi-
tions [9, eq 2.7]. The entropy criterias stems from the characteristic lines and
how they must run into the shock since no true solution can have characteristics
emerging from a shock, i.e., once information enters a shock, there is no way to
recover it. From Hesthaven [9, eq 2.10], we state the Lax entropy condition

f ′(ul) > s > f ′(ur), f ′′(u) > 0 (2.10)

where ul and ur are the left and right values of the shockwave and s is the
shockspeed. The first derivatie of the flux is related to the wavespeed while
the second derivative introduces convexity. We also borrow corollary 2.4 from
Hesthaven [9]; If u is a weak solution with a convex flux and it satisfies an
entropy condition, the solution is unique. With confidence that we can recover
the unique solution from the weak form, we assemble what we have so far in the
Finite Element (FE) method.

2.3 Finite Element method

Finite Element methods approximate the solution by piecewise polynomials eval-
uated at arbitrary nonoverlapping elements Dj which together fill the physical
domain [10]

Ωx =

N⋃
j=1

Dj . (2.11)

These elements can be of different shape and size. In 1D they are simply non-
overlapping line segments. The individual elements are connected together as a
mesh. The advantages of FE methods are its efficiency on complex boundaries
with little difficulty; however, the methods are not free from drawbacks, read
more at the introduction by Hesthaven [10]. As the FE method relies on a finite
number of polynomial basis functions to represent the solution it lacks accuracy
when the solution is non-smooth. Additionally, if the solution is smooth but,
complex the FE method becomes computionally expensive as it requires more
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Figure 2.2: Finite Element method illustration with triangular basis functions.

degrees of freedom to capture the complex wave behaviour [3]. So, the solution
and flux is approximated by some finite sum of basis functions

uh(x) =

m∑
i=0

ûiφi(x), φi ∈ H1(R) (2.12)

and

fh(x) =

m∑
i=0

f̂iφi(x), φi ∈ H1(R) (2.13)

where φi are the basis functions for the entire spatial domain Ωx but non-zero
for a few elements only [5, ch 2.4], see Figure 2.2. By using basis functions
non-zero over a small part of the domain only, the discrete problem becomes
more localized and in turn faster to compute [5]. To allow discontinuities in the
scalar hyperbolic PDE

∂uh

∂t
+

∂fh(u)

∂x
= 0 (2.14)

without blowing up the solution due to the derivates, we consider the weak form
of the governing equation for some test function ϕ ∈ L2 and require the test
functions are orthogonal to the residual in L2 norm such that

∫
Ωx

Rh(x, t) dx =

∫
Ωx

(
∂uh

∂t
+

∂f(uh)

∂x

)
ϕ(x) dx = 0 (2.15)
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where the residual is derived from∣∣∣∣(∂u

∂t
+

∂f(u)

∂x

)
−
(
∂uh

∂t
+

∂f(uh)

∂x

) ∣∣∣∣
=

∣∣∣∣0− (∂uh

∂t
+

∂f(uh)

∂x

)∣∣∣∣ . (2.16)

From equations (2.12), (2.13) and (2.15) we find that the approximate solution
is defined by the weak formulation∫

Ωx

∂

∂t

(
m∑
i=0

ûiφi(x)

)
ϕ(x) dx+

∫
Ωx

∂

∂x

(
m∑
i=0

f̂iφi(x)

)
ϕ(x) dx = 0.

(2.17)

By selecting test functions which span the same space as the basis functions,
i.e.

(·, ϕ) = 0 ⇐⇒ (·, φi) = 0 ∀i ∈ 0, ..,m (2.18)

and define a mass matrix M and stiffness matrix S by the elements

Mi,j =

∫
Dj

φi(x)φj(x) dx

Si,j =

∫
Dj

φi(x)
dφj(x)

dx
dx

(2.19)

we retrieve the Galerkin approximation method [9, pg 379] and rewrite equation
2.48 to

M
duh

dt
+ Sfh = 0 (2.20)

where uh = [u1, u2, ...uN ]T and fh = [f1, f2, ...fN ]T . The integrals in equation
(2.19) needs evaluation which is not always trivial and therefore quadrature will
be used, further discussed in section 2.6. The elements are coupled together by
requiring continuity at their interfaces.

High-order accuracy is achieved by increasing the polynomial degree of the
basis functions, m. However the globally defined basis functions and residual
being orthogonal to the same set of globally defined test functions implies that
the FE method is implicit and M must be inverted, at high computational cost
and limitation to our time solver. It is also typically restricted to H1 problems
to avoid dealing with discontinuities in L2. Next, we will be looking into an
alternative approach, the Finite Volume (FV) method [10].
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2.4 Finite Volume method

If the test functions are assumed to be a constant 1 and we apply partial in-
tegration to the weak formulation, a method is obtained which discretize the
integral form instead of the differential strong form. This leads to piecewise
constants that are assembled to reproduce the global solution, see Figure 2.3.
The key prospect of this possibility is its encapsuling of shocks. Introducing

Figure 2.3: Illustration of the Finite Volume method

the grid (xj , t
n) = (jh, kn) where k and n are the spatial and temporal uniform

grid size, respectively. xj+1/2, xj−1/2 marks the cell boundaries.

∂

∂t

∫
Dx

u dx+ f(u(xj+1/2))− f(u(xj−1/2)) = 0. (2.21)

or the formulation on a single finite volume cell

∫ x+1/2

x−1/2

[u(x, tn+1)− u(x, tn)] dx =

−
∫ tn+1

tn
[f(u(xj+1/2, t))− f(u(xj−1/2, t))] dt.

(2.22)
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The cell averages are

un =
1

h

∫ xj+1/2

xj−1/2

u(x, tn) dx (2.23)

and the flux

Fn
j+1/2 =

1

k

∫ tn+1

tn

f(u(xj+1/2, t)) dx. (2.24)

Hence we have the numerical scheme known as the Finite Volume (FV) method

un+1
j = un

j − k

h

[
Fn
j+1/2 − Fn

j−1/2

]
. (2.25)

This is shock-preserving [9] but changes our unknown to be the cell average. A
key stage at this point for the thesis is the introduction of the numerical flux.
Each interface, x±1/2 is shared between two cells. The flux at these interfaces
therefore needs to be computed by some flux function. The function takes
the values of the solution from the left and right and return a unique value of
the flux up to the sign of an outward pointing normal vector, to ensure global
conservation. To construct these fluxes we back up a bit.

2.5 Monotonicity and conservation
Conservation in the continuous sense means that

d

dt
||u|||L2 = 0. (2.26)

The numerical method must carry this property. To ensure this we use [9,
eq 4.1], if a scheme can be written as

Un+1
j = Un

j − k

h

[
Fn
j+1/2 − Fn

j−1/2

]
(2.27)

then it is in conservation form. Here the numerical flux is

Fj+1/2n = F (Un
j−p, ..., U

n
j+q), Fj−1/2n = F (Un

j−p−1, ..., U
n
j+q−1) (2.28)

and p, q is the number of left and right cells that the scheme depends on as
time integrates. Building upon this we use theorem 4.3 from Hesthaven [9];
If conservation form is established and the flux fulfills consistency, Lipschitz
continuity and the scheme converges to total variation bounded solution in L1,
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then the solution to the discrete form is a weak solution to the conservation
law. Hence, if the constructed numerical flux fulfills consistency and Lipschitz
continuity, we can expect that the computed solution is conservative. Now, to
better connect the results above and the implemented schemes, we return to the
general conservative form

Un+1
j = Un

j − k

h

[
Fn
j+1/2 − Fn

j−1/2

]
= G(Un

j−p−1, ..., U
n
j+q) = G(Un). (2.29)

The scheme is called monotone if the operator G(·) is non-decreasing in all argu-
ments. With monotonicity follows stability and guarantees that no oscillations
can be created by the numerical approximation. It also implies that the scheme
holds the desired properties of the continuous case and a solution obtained by
a monotone flux satisfies all entropy conditions [9].

There are many monotone fluxes to consider but in this thesis we will con-
sider upwind, downwind and central flux. While Lax-Friedrichs flux is regularly
used in the FV community it relies on a limiter depending on wavespeed. As we
formulate our method for the KdV solution it shall be clear how this approach
does not always work. Listed below are several choices of the numerical flux
function, including the central, upwind and downwind flux where uL, uR are
the left and right values of u at an interface xj±1/2 [9]. Upwind and downwind
flux originates from the characteristics of the problem and wave propagation,
where information travels upwind with the wave if a > 0 and hence the left
hand value is solely used. Vice-versa for downwind. Upwind and downwind
often gives excellent results for strictly advection problems [9]. The fluxes are
constructed as follows;

• Lax-Friedrichs flux

FLF (uL, uR) =
f(uL) + f(uR)

2
− C

2
(uR − uL), C ≥ max |f ′(u)|. (2.30)

• Central flux
û(uL, uR) =

uL + uR

2
(2.31)

• Upwind flux
û(uL, uR) = uL (2.32)

• Downwind flux
û(uL, uR) = uR (2.33)
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and in turn F (uL, uR) = f(û) for the three latter fluxes. The last term in
Lax-Friedrichs flux is the speed limiter which also adds some dissipation, often
helpful to remove numerical oscillations. However, the strength of monotonicity
comes at cost. In fact, a monotone scheme is, at most O(h) accurate and for
discontinuous solutions we cannot expect better than O(

√
h) for the FV method,

this is the classical result of Godunov [9, sec 5.2]. This is highly discouraging
as we seek high order approximations at low computational cost.

In essence, the FV scheme left is of a explicit semi-discrete form which
offers high flexibility in the choice of time-solver. It is also highly localized thus
allowing parallel computation of each cell average and it imposes no condition on
the grid structure, allowing high geometric flexibility [10]. The main drawback
being O(h) convergence at best.

2.6 Quadrature
Before proceeding with the Discontinuous Galerkin methods, we equip ourselves
with tools to numerically solve integrals, like those present in the weak formu-
lation of the PDE (2.19). Explicitly solving integrals is not a cheap operation
and not always an easy task to do analytically, especially in higher spatial di-
mensions or on general element geometries. Hence, we approximate the integral
with quadrature [1] ∫ b

a

u(x) dx =

N∑
k=0

u(xk)wj + E (2.34)

where xk, wk are the abscissas and weights respectively and E is the approxi-
mation error. The choice of abscissas and weights are called quadrature rules.
The quadrature rules that provides maximum precision, i.e. being exact for
the highest order polynomials are Gauss quadrature rules. Further reading on
quadrature is referred to Kopriva [1]. There are many types of Gauss quadra-
ture rules to consider but for this thesis Legendre Gauss Lobatto rules will be
utilized. The associated abscissas and weights are

xk = +1,−1 and zeros of L′
m(x) (2.35)

wk =
2

m(m+ 1)

1

[Lm(xk)]2
(2.36)

for k = 0, ..,m which are exact for all polynomials of order 2m − 1 or less.
The Legendre polynomials Lm(x) can be constructed and evaluated from the
recursion formula [1]
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Lm+1(x) =
2m+ 1

m+ 1
xLm(x)− m

m+ 1
Lm−1(x) (2.37)

with L0(x) = 1, L1(x) = x. There are alternatives such as Jacobi-Gauss quadra-
ture and Legendre-Gauss which relaxes our abscissas to exclude the endpoints
-1,+1, increasing the exactness to 2m + 1 or less. However, the inclusion of
endpoints is of great importance as they allow precise evaluation of boundary
contributions, prevalent in the DG methods.

2.7 Discontinuous Galerkin methods
Combining the best aspects of the FE method and FV method, Discontinuous
Galerkin methods embeds the idea of numerical flux and slope limiters from
the FV method with the geometric flexibility and basis functions of the FE
method. It is a method where the FE method is applied locally and glued
together globally using the FV method. The resulting combination gives DG
methods the following strong advantages [7]:

• The order of the approximation depends on the exact solution, its smooth-
ness, and by choosing an approximation of sufficient degree .

• The discontinuous elements results in a block diagonal mass matrices and
the size of these matrices depend on the degree of freedom within each
loacl element. Compare this to the FE method where the mass matrix
is defined globally [9, pg 382]. Hence the invertion of these blocks are
parallelizable.

• As the underlying elements are arbitraryily choosen, DG methods are well
suited for complicated geometries.

• DG methods does not require a complicated treatment of the boundary
conditions to acquire high-order accuracy.

• DG methods allows flexibility in the choice of flux which in turn incorpo-
rates desired physical properties.

We shall now investigate how this is achieved.

2.8 Basis functions
To relax the requirement on uniform spatial grid Ωx, just as the FE, DG methods
split the space to arbitrary nonoverlapping, elements Dj
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Figure 2.4: Illustration of the Discontinuous Galerkin method with a polynomial
approximation on each element.

Ωx =

N⋃
j=1

Dj , Dj = [xj−1/2, xj+1/2]. (2.38)

In 1D each element is a line segment but as the dimension increases, this ap-
proach allows the spatial elements of general polygons. The key difference to
the FE method is that the basis functions in DG are defined locally on each
element, instead of the entire computational domain. From here on uh will
drop the subscript h to improve readability and unless stated otherwise uj is
the approximate solution. Hence for each element j we get an approximation
uj with the basis expansion on a given element,

uj(x, t) =

m∑
i=0

ûj,i(t)φj,i(x) (2.39)

where φj,i ∈ Sm :=
{
φj,i ∈ L2(R) : φj,i |Dj∈ Pm

}
, the function space of inte-

grable polynomials order m restricted on Dj . Similarly the collocated flux can
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be expressed as

fj(x, t) =

m∑
i=0

f̂j,i(t)φj,i(x) (2.40)

We notice that this representation does not impose the need of continuity be-
tween each element as in FE method and also allows different basis functions for
each element, although the latter is rarely a used property in practice [10]. Now,
for each element Dj the local solution, built on locally defined basis functions
φj,i will be evaluated at xj−1/2 and xj+1/2, resulting in duplicate unknowns as
neighbouring interfaces overlap at the interface, yielding a vector of unknowns

u = [u1/2, u3/2︸ ︷︷ ︸
D1

, u3/2, u5/2︸ ︷︷ ︸
D2

... uN−1/2, uN+1/2︸ ︷︷ ︸
DN

]T (2.41)

which is 2N long instead of N +1 as in the FE method. With the local solution
represented by uj and the residual required to be orthogonal to the polynomial
function space Sm we have found a way to recover the N local statements

∫
Dj

(
∂uj

∂t
+

∂f(uj)

∂x

)
φj,i(x) dx = 0 ∀i ∈ 0..m,∀j ∈ 1...N. (2.42)

At this stage we have several local solutions and seek a method to find a
suitable global solution which promises uniqueness despite the endpoints being
multiply defined across element interfaces. If we select the constant basis func-
tion φj,0 = 1/hj we recover the FV method for which this exact issue has been
solved [10]. By partially integrating fxφ of equation (2.42), we obtain∫

Dj

∂uj

∂t
φj,i dx−

∫
Dj

fj
dφj,i

dx
dx = − [fiφj,i]

xj+1/2

xj−1/2
. (2.43)

We recall the nodal expression (2.5) and express u with a Lagrange interpolation
basis

u(x, t) =

m∑
i=0

u(xi, t)li(x), xi ∈ {x0, x1, ..xm} ∈ Dj (2.44)

Approximating u and f in their basis expansion form on the left hand side we
get ∫

Dj

∂

∂t

(
m∑
i=0

uj(xi, t)li(x)

)
φj,i(x) dx−

∫
Dj

(
m∑

k=0

f(uj(xk, t)lk(x)

)
∂φj,i

∂x
(x) dx =

− [fiφj,i]
xj+1/2

xj−1/2

(2.45)
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We now apply the Galerkin approximation ansatz as in the FE method, i.e.
φi(x) = li(x). At this stage we notice the need to modify our equations for
quadrature application. The gauss-type quadratures lives on the interval [-1,1]
where as the elements are of length hj . To solve this we use a variable mapping
in order to apply the quadrature rules. The mapping looks as follows

x(r) = xj−1/2 +
1 + r

2
(xj+1/2 − xj−1/2), ∀x ∈ Dj , r ∈ [−1, 1] (2.46)

and with this we get, focusing on a specific element Dj (dropping index j),

h

2

∫ 1

−1

∂

∂t

m∑
k=0

u(rk, t)lk(r)li(r) dr−∫ 1

−1

m∑
k=0

f(u(rk, t)lk(r)
∂li
∂r

(r) dr =

− [fili]
1
−1 .

(2.47)

In (2.47), the factor h
2 dropped out of the first term as the Jacobian from the

variable swap, h being the element size. This cancels itself out due to the
derivative present on the second term. We have assumed collocation on the flux
values to make the factorization possible. We move the time dependent u, f out
of the integrals as they are indepentent of r. (2.47) now looks as follows,

hj

2

m∑
k=0

∂

∂t
u(rk, t)

∫ 1

−1

lk(r)li(r) dr−

m∑
k=0

f(u(rk, t)

∫ 1

−1

lk(r)
∂li
∂r

(r) dr =

− [fili]
1
−1 .

(2.48)

We approximate the integrals with quadrature, discussed in section 2.6. The
integrand is the product of the polynomial basis functions, namely lk(r)li(r)
and is thus of order 2m. This means that LGL inexactly evaluates the inte-
grand and we lose 1 order of exactness. By deciding the interpolation nodes
li, lk to collocate with the LGL abscissas {rl}ml=0 we can utilize the Kronecker
delta property of the Lagrange polynomial. While collocation makes mass- and
stiffness matrices very computationally efficient, it introduces an aliasing error.
The error introduced can lead to a reduction of one in the rate of convergence,
but not more than that.
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Theorem 2.8.1 If u ∈ L2 and Imu ∈ Pm, the aliasing error introduced by
the interpolation operator Im is

||u− Imu||L2(Dj) ≤ N (−1/2)|u|Dj ,1 (2.49)

where
|u|2Dj ,q = ||u(q)||2L2(Dj)

, (2.50)

is the Sobolev seminorm and u(q) is the qth derivative of u.

Proof can be found in theorem 12.6 in Hesthaven’s Numerical Methods for
Conservation Laws [9] with q = 0, p = 1 applied. With the numerical aliasing
error of collocation stated, we continue by looking at the gain by using the
collocation. We first state the quadrature approximated version of (2.48)

h

2

m∑
k=0

∂

∂t
u(rk, t)

m∑
l=0

lk(rl)li(rl)wl−

m∑
k=0

f(u(rk, t)

m∑
l=0

lk(rl)
∂li
∂r

|rl wl

(2.51)

and the corresponding mass- and stiffness matrices’ entries

Mki =
h

2

m∑
l=0

lk(rl)li(rl)wl (2.52)

and

Ski =

m∑
l=0

lk(rl)
∂li
∂r

|rl wl. (2.53)

With the kronecker delta property of the collocated quadrature points and La-
grange polynomials

li(rl) = δil =

{
1, i = l
0, i ̸= l

(2.54)

the mass matrix will become diagonal and is trivially inverted. The differen-
tiation of the Lagrange polynomial, required in the stiffness matrix, is done
accordingly
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∂li
∂r

|r=
∂

∂r

m∏
k=0
k ̸=1

r − rk
rj − rk

=
1

ri − r0

∏m
k=1
k ̸=i

(r − rk)∏m
k=1
k ̸=i

(ri − rk)

+ ...

...+
1

ri − rm


∏m−1

k=0
k ̸=i

(r − rk)∏m−1
k=0
k ̸=i

(ri − rk)

 =

m∑
n=0
n̸=i


∏m

k=0
k ̸=i
k ̸=n

(r − rk)∏m
k=0
k ̸=i

(ri − rk)


(2.55)

With the time dependent unknown solution values u = [u(x0, t), ., u(xm, t)]T ,
collocated flux values f = [f(u(x0, t)), .., f(u(xm, t))]T and basis functions l =
[l0(r), ..., lm(r)]T , we arrive at the semi-discrete weak form of the local DG
scheme,

Mut − Sf = − [f l]1−1 ⇐⇒

ut = M−1
(
Sf − [f l]1−1

)
.

(2.56)

From these N expressions, which each denotes the solution on each of the ele-
ments, we now assemble the global solution much like in the FV method with
the help of numerical fluxes, f̂ at each interface.

The performance of the DG scheme highlights its composition of the best
from both FV and FE schemes, Hesthaven shows that DG with a monotone flux
is stable and satisfies all cell entropy conditions [9, thm 12.8], i.e. d

dt ||uh||L2 ≤ 0
for a scalar nonlinear conservation law. He also shows that it converges O(hm+1)
for linear convection equations with upwind flux [9, pg 384]. This is the DG
method for a conservative law containing a single spatial derivative. While this
is well used and tested the question now is how it should be modified to work
on the KdV equation which contain a spatial derivative of third order. But
before that we notice that we only have a method which discretizes in space
explicitly. We have so far not mentioned how to move forward in time with the
semi-discrete expression.

2.9 Time stepping
The explicit semi-discrete form allows flexibility in the choice of time stepper.
A third order Runge Kutta seems sufficient for most DG problems and will thus
be used in this thesis [9, 11]. The size of the explicit time step itself is however of
great importance as the time step dictates how quickly an approximate solution
can be obtained numerically. If the highest wave-speed is a and ak/h < 1/2
the physical wave will travel faster than our numerical wave and information
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disappears [9], thus violating the physics of the problem and leading to a numer-
ical instability. The Courant–Friedrichs–Lewy (CFL) condition is derived from
this physical perspecive and ensures stability. It means that the discrete wave
information travels at a rate that respects the continuous domain of dependence
[13]. By defining CFL= max |f ′|∆t

∆x to be the Courant number, we can expect
stable time integration by bounding the CFL number [9]. For the conservation
law the time step will scale as, presuming a uniform gridsize hj ,

k ≤ CFL1
h

max |f ′|
(2.57)

where CFL1 scales on the polynomial order for the basis functions of the scheme
by CFL1 ∝ m−2 for DG methods [9]. For second-order time-dependent prob-
lems, i.e.

∂u

∂t
+

∂f

∂x
=

∂

∂x
νj(u)

∂u

∂x
(2.58)

where νj is the viscosity coefficient we expect [9, eq 12.74]

k ≤ CFL2
h2

max |νj |
, CFL2 ∝ m−4. (2.59)

2.10 Approximating higher-order derivative with
DG methods

Applying DG methods to the KdV equation requires some modification due to
the nonlinearity and third spatial derivative. Recall the KdV equation

ut + uxxx + 6uux = 0 (2.60)

and imagine that a direct application of the DG methodology to the nonlinear
flux function f(u) = uxx + 3u2. But as Hesthaven shows in [10, pg 244] this
methodology leads to an unstable numerical scheme that lacks convergence.
Instead, other discretization techniques are sought. To motivate such an alter-
native discretization strategy, we take inspiration from the heat equation

ut − uxx = 0, (2.61)

discussed in Hesthaven’s books [10, 9] as well as the article of Shu and Yan
[11]. The general idea is to introduce an auxiliary variable q such that the heat
equation can be written as a system of first order equations
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ut − uxx = 0 ⇐⇒

{
ut = qx

q = ux.
(2.62)

Designing the fluxes for the auxilary variable q requires a more care as the
idea of a wave speed, such as with the Lax-Friedrichs flux (section 2.5), does
not translate to these artificial variables. While u represent waves the auxiliary
variables holds no such property and hence the Jacobian and characteristics
strategy breaks. As q is introduced for the design of high-order derivative terms
such as with the heat equation, where information flows both ways across the
interfaces, it makes sense to use a Bassi-Rebay 1 coupling, or a central numerical
flux [6, 4]

q̂ =
q+ + q−

2
. (2.63)

The other option is to use upwind alternated with downwind as based on Shu’s
and Yan’s work [11]. The alternating upwind, downwind flux is motivated by the
general good convergence rates that we have in the case of one spatial derivative
and is constructed as

ûj±1/2 = u−
j±1/2, q̂j±1/2 = q+j±1/2 or vice versa, (2.64)

ûj±1/2 = u+
j±1/2, q̂j±1/2 = q−j±1/2. (2.65)

The choice between alternating fluxes, known as Local Discontinuous Galerkin
(LDG), or central fluxes is problem-dependent as we shall see in in the impor-
tant results below which highlights what happens when a system of first order
equations is applied to the heat equation.

• Theorem 7.2 and 7.3 from [10]; the heat equation with central flux is stable
and converges as O(hm) if m is odd and O(hm+1) if m is even. Meaning
that there is some sub-optimal order of accuracy for odd m.

• Equation 1.11 and theorem 12.27 from [11, 9] respecively; Local Discon-
tinuous Galerkin (LDG) shows O(hm) applied to the heat equation for
both odd and even m.

• The LDG tends to be stiff, i.e. requiring small time steps to fulfill the
CFL condition [10].

With this in mind for a diffusion type problem, we turn our heads to the KdV
equation, a convection-diffusion type problem. Hence one could expect some of
these properties to be prevalent as we move forward.
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Results

As the KdV equation is a convection-diffusion type problem, i.e. quantity both
travels in our spatial domain and diffuse, a brief look at the strictly diffusion
problem, the heat equation, can inspire the numerical flux design. We formulate
KdV as a system of first order equations, just as with the heat equation, in the
following way,

ut + uxxx + 6uux = 0 ⇐⇒


ut = −(3u2 + q)x

q = px

p = ux.

(3.1)

This allows us to use the same DG method for the convection equation to solve
3.1. That is, we seek approximations u, q, p ∈ Vh such that for all test functions
φ, ϕ, θ ∈ Vh ∫

Dj

utφdx−
∫
Dj

(3u2 + q)φx dx = −
[
( ˆ3u2 + q̂)φ

]1
−1

(3.2)∫
Dj

qϕ dx+

∫
Dj

pϕx dx = [p̂ϕ]
1
−1 (3.3)∫

Dj

pθ dx+

∫
Dj

uθx dx = [ûθ]
1
−1 (3.4)

where ˆ3u2, û, q̂ and p̂ is the numerical flux functions that we are yet to construct.
Following a similar discretization strategy of high-order LGL quadratures and
collocations we had in DG Section 2.7 we determine the semidiscretization on

H.Mediaa, 2023. 23
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each element

Mux − S(3u2 + q) = −
[
( ˆ3u2 + q̂)l

]1
−1

(3.5)

Mq + Sp = [p̂l]1−1 (3.6)

Mp + Su = [ûl]1−1 (3.7)

The numerical flux for the nonlinear flux term 3u2 grants some flexibility in
the choice as long as it is entropy conservative [9]. We use the classical Lax-
Friedrichs flux defined in Section 2.5 but other monotone fluxes which yield
entropy conservation could also be used. Recall the Lax Friedrichs flux,

FLF (uL, uR) =
f(uL) + f(uR)

2
− C

2
(uR − uL), C ≥ max |f ′(u)|. (3.8)

C can be a global estimate over the entire domain or a local estimate only
involving the values of uL and uR. Both holds but in this thesis C will be based
on the global domain. For u, q, p we will use either central flux or alternating
upwind and downwind flux. The key conditions for alternating fluxes to work
is that q̂ = q+ and not q̂ = q− otherwise it will not numerically converge [11].

3.1 Choice of time step
Likely, the DG semidiscretization will be very stiff as it works on the KdV
equation based on the discussion in Section 2.9. We loosely follow the pattern
induced by the order of derivative and should expect a stable stepsize in time
by

k ≤ CFL
h3

max |f ′|
, CFL ∝ m−6. (3.9)

This time step restriction will be numerically tested by first running the central
and LDG fluxes with a time step neglecting temporal errors to produce L2

errors for each m,N , denoted em,N,exact. From these results CFL tests will be
conducted where the L2 error for different CFL numbers, em,N,CFL is compared
to em,N,exact. The tests will begin with CFL= 0.9 and will be multiplied with
0.9 until relative error

|em,N,CFL − em,N,exact|
em,N,CFL

= em,N,relative (3.10)

is less than some ϵ.
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3.2 Convergence and stability for the KdV equa-
tion

For LDG methods, stability for the non-linear case and convergence for the
linear case is proved by Shu and Yun [11]. Convergence, although only proved
in the linear case

ut + ux + uxxx = 0 (3.11)

follow the inequality

||u− uh||2L2 =

∫
Ωx

(u(x, t)− uh(x, t))
2
dx ≤ Ch2m+1 (3.12)

where u, uh is the exact and approximate solution and C depends on the deriva-
tives of u and time t. For the central flux, stability and convergence is demon-
strated accordingly.

Theorem 3.1 The Discontinuous Galerkin method applied on the KdV equa-
tion with central flux for u and the auxilary variables as well as the entropy
conservative Burgers’ flux for the nonlinear f is stable

Proof of thm 3.1 We seek to prove

d

dt
||uh||2L2(Ωx)

≤ 0, (3.13)

i.e. discrete stability. The proof is inspired by [10] for the heat equation. Recall
the KdV equation in first order form (3.1), where we replace the nonlinear flux
3u2 with the value f

ut + uxxx + 6uux = 0 ⇐⇒


ut = −(f + q)x

q = px

p = ux.

(3.14)

The corresponding weak form of this first order system is∫
Dj

utφdx−
∫
Dj

(f + q)φx dx = −
[
(f̂ + q̂)φ

]
∂Dj

(3.15)∫
Dj

qϕ dx+

∫
Dj

pϕx dx = [p̂ϕ]∂Dj
(3.16)∫

Dj

pθ dx+

∫
Dj

uθx dx = [ûθ]∂Dj
. (3.17)
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We now apply partial integration on the second integral in each row one more
time to achieve the strong form

∫
Dj

utφdx+

∫
Dj

(f + q)xφdx =
[
(f + q − (f̂ + q̂))φ

]
∂Dj

(3.18)∫
Dj

qϕ dx−
∫
Dj

pxϕdx = − [(p− p̂)ϕ]∂Dj
(3.19)∫

Dj

pθ dx−
∫
Dj

uθx dx = − [(u− û)θ]∂Dj
. (3.20)

We define the bilinear operator, Bh over an element Dj to be

Bh(u, q, p;φ, ϕ, θ) =∫
Dj

utφdx+

∫
Dj

(f + q)xφdx−
[
(f + q − (f̂ + q̂))φ

]
∂Dj

+∫
Dj

qϕ dx−
∫
Dj

pxϕdx+ [(p− p̂)ϕ]∂Dj
+∫

Dj

pθ dx−
∫
Dj

uθx dx+ [(u− û)θ]∂Dj
.

(3.21)

It therefore follows that Bh = 0 from the strong form definition if φ, ϕ, θ are
choosen from PN , when u, q, p is a weak solution. Selecting the test functions
to be φ, ϕ, θ = u,−p, q yields

Bh(u, q, p;u,−p, q) =∫
Dj

u · ut dx+

∫
Dj

(f + q)xu dx−
[
(f + q − (f̂ + q̂))u

]
∂Dj

+∫
Dj

q(−p) dx−
∫
Dj

px(−p) dx+ [(p− p̂)(−p)]∂Dj
+∫

Dj

pq dx−
∫
Dj

uqx dx+ [(u− û)q]∂Dj
.

(3.22)

Note that∫
Dj

u · ut dx =

∫
Dj

∂

∂t

u2

2
dx =

1

2

∂

∂t

∫
Dj

u2(x, t) dx =
1

2

∂

∂t
||u||2L2(Dj)

(3.23)

and since we require
Bh = 0 (3.24)
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and
1

2

∂

∂t
||u||2L2(Dj)

≤ 0 (3.25)

it follows that we must show, after rearranging terms,∫
Dj

ufx dx+

∫
Dj

uqx dx−
[
(f + q − (f̂ + q̂))u

]
∂Dj

+∫
Dj

pdp− [p(p− p̂)]∂Dj
−
∫
Dj

qdu+

[(u− û)q]∂Dj
≥ 0

(3.26)

for the stability proof to hold. Summarizing, what we have done so far is inte-
grate all the first order equations over the domain and applied partial integration
to achieve the weak form. Afterwards the boundary terms has been replaced by
the numerical fluxes and the entire system was then partially integrated again
to achieve the strong form of the DG approximation. Now,∫

Dj

ufx dx = [uf ]∂Dj
−
∫
Dj

uxf dx = [uf ]∂Dj
−
∫
Dj

uxf
∂x

∂u
du =

[uf ]∂Dj
−
∫
Dj

f du = [uf ]∂Dj
− F (u)

(3.27)

where
F (u) =

∫
Dj

f du

with similar definitions for
∫
uqx dx and Q(u). Without loss of generality, we

consider the interface between two elements and defining the contribution from
the left and right element as ξL and ξR respectively to have

ξ = −F (u) + uf̂ − p2

2
+ pp̂− 2Q(u) + uq − ûq. (3.28)

According to (3.26) we seek to prove that ξL − ξR ≥ 0. Thus it is sufficient to
examine

ξL − ξR = −F (u−) + u−f̂ − (p−)2

2
+ p−p̂− 2Q(u−) + u−q− − ûq−(

−F (u+) + u+f̂ − (p+)2

2
+ p+p̂− 2Q(u+) + u+q+ − ûq+

) (3.29)

where we define the jump between two quantities to be [·] = (·)+ − (·)−. With
some algebraic manipulations we rewrite (3.29) to be

ξL − ξR = [F (u)]− [u] f̂ + 2 [Q(u)]− 2 [u] q̂. (3.30)
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Now, with central flux for q, q̂ = q++q−

2 , we get with the integral mean value
theorem applied to the quantity Q(u) with α ∈ [u−, u+]

[Q(u)] = Q′(α)[u] = q(α)[u] =⇒ (q(α)− q̂) [u] ≥ 0. (3.31)

The inequality in (3.31) is a result from the standard condition for monotone E-
flux [9]. With the entropy conservative Burgers’ flux f̂ = (u+)2+u+u−+(u−)2

we see that

[F (u)]− [u]f̂ = (u+)3 − (u−)3 − (u+ −u−)((u+)2 +u+u− +(u−)2) = 0. (3.32)

We highlight that Lax Friedrichs flux also yields an acceptable inequality as
follows

[F (u)]− [u]f̂ = (u+)3 − (u−)3 − (u+ − u−)((u+)2 + u+u− + (u−)2)

+
1

2
C[u]2 =

1

2
C[u]2 ≥ 0

(3.33)

as [u]2 and C is always positive and thus also fulfills the desired inequality
but with added dissipation. Thus, assuming periodic boundary conditions all
elementwise inequalities above will cancel itself out as we sum over all elements.
This leaves us with ∂

∂t ||u||
2
L2(Ωx)

≤ 0. ■

3.3 Numerical tests
The setup for all numerical simulations are as follows. The DG method is
applied on the KdV first order form (3.1). The parameters for our simulations
will be

• Ωx = [−10, 12], runtime T = 0.5
• True solution: u(x, t) = 2sech2(x− 4t)
• Initial conditions: u(x, 0) = 2sech2(x)
• Boundary conditions: Periodic
• Mesh: Non-uniform, LGL
• N = 32, 64, 128, 256
• m = 1, 2, 3, 4.

With these global parameters and functions implemented in Matlab we will
investigate the numerical performance of central flux and LDG, alternating up-
wind and downwind fluxes. The CFL number is taken small enough to ne-
glect temporal errors while investigating m,N convergence for LDG and central
fluxes. To evaluate the stiffness of the LDG and central approximations, i.e.
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how small the CFL number has to be for stability, different CFL numbers will
be compared to a very small CFL number of 0.00005. The largest CFL num-
bers which yield a relative error ≤ 0.05 will indicate which method is the stiffest,
LDG or central flux. For further details on the implementation and numerical
testing routines see the code included in the appendix.

3.4 Central flux results

The DG methods with central flux (CF) for u, q, p and Lax-Friedrichs flux (3.8)
for f produced L2 errors in table 3.1. The CFL value is 0.00005, small enough
to rule out temporal errors. N being the number of elements and m indicating
the overall order of the method.

L2 error, KdV equation
m\N N=32 N=64 N=128 N=256

1 8.0907e-01 2.5353e-01 8.2056e-02 2.7785e-02
2 1.7439e-01 1.8033e-02 2.0180e-03 3.1716e-04
3 9.5370e-03 7.6100e-04 1.1627e-04 1.6374e-05
4 1.4098e-03 6.3536e-05 1.5385e-06 7.9098e-08

Table 3.1: KdV eqution ut + uxxx + 6uux = 0. u(x, 0) = 2sech2(x). Periodic
boundary condition. Non uniform meshes with N elements. L2 error for central
flux

To investigate stable CFL numbers, i.e., CFL numbers for which the relative
error is 0.05 or less, numerical results are displayed in table 3.2.

Stable CFL numbers for central flux
m\N N=32 N=64 N=128 N=256

1 5.9049e-01 2.0589e-01 4.2391e-02 9.6977e-03
2 9.2651e-02 1.9076e-02 4.3640e-03 1.1093e-03
3 2.6167e-02 5.9863e-03 1.3695e-03 3.4810e-04
4 1.0138e-02 2.3192e-03 5.8951e-04 1.4985e-04

Table 3.2: Stable CFL numbers. DG on KdV. Central flux. Relative error
≤ 5%.

To better illustrate the converging results we plot the exact solution and
the central flux approximation for the example problem stated in Section 3.3
for m = 1, 2 and N = 32, 64 in Figure 3.1,3.2,3.3 and 3.4. Here the exact
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solution is black dashed and the approximate solution is colored differently for
each element.

Figure 3.1: CF, m = 1, N = 32 Figure 3.2: CF, m = 1, N = 64

Figure 3.3: CF, m = 2, N = 32 Figure 3.4: CF, m = 2, N = 64

3.5 Alternating flux (LGD) results

The L2 errors for alternating flux, i.e. û = u−, q̂ = q+ and p̂ = p+ are shown
in table 3.3. Similarly to the central flux, Lax-Friedrichs flux is chosen for f .
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L2 error, KdV equation, LDG
m\N N=32 N=64 N=128 N=256

1 1.0374e+00 5.3071e-01 1.9033e-01 7.0300e-02
2 9.9424e-02 1.5605e-02 2.7361e-03 4.8217e-04
3 1.0690e-02 8.1607e-04 7.4421e-05 6.6309e-06
4 4.9140e-04 4.7418e-05 2.1528e-06 1.0864e-07

Table 3.3: KdV eqution ut + uxxx + 6uux = 0. u(x, 0) = 2sech2(x). Periodic
boundary condition. Non uniform meshes with N elements. L2 error for LDG.
CFL = 0.00005.

And stable CFL numbers are displayed in table 3.4.

Stable CFL numbers, LDG
m\N N=32 N=64 N=128 N=256

1 2.8243e-01 9.8477e-02 2.7813e-02 7.0697e-03
2 2.7813e-02 1.0775e-02 2.7389e-03 6.5501e-04
3 2.7389e-03 2.4650e-03 6.2658e-04 1.4985e-04
4 6.2658e-04 6.2658e-04 2.1847e-04 5.8053e-05

Table 3.4: Stable CFL numbers. DG on KdV. Central flux. Relative error ≤ 5%

Similarly as we did in the central flux, we plot the exact solution and the
LDG approximation for the example problem stated in Section 3.3 for m = 1, 2
and N = 32, 64 in Figure 3.5,3.6,3.7 and 3.8. Here the exact solution is black
dashed and the approximate solution is colored differently for each element.
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Figure 3.5: LDG, m = 1, N = 32 Figure 3.6: LDG, m = 1, N = 64

Figure 3.7: LDG, m = 2, N = 32 Figure 3.8: LDG, m = 2, N = 64

3.6 Comparing central flux to LDG

To better understand the accuracy and applicability of the results, we compare
convergence between central flux and LDG for m and N in figure 3.9 and 3.10.
As can be seen, the convergence rates for both methods are alike and of high
order. The errors drop almost spectrally for m and h-convergence is shown for
N . Comparing the two methods, no strong strengths or flaws can be concluded
except the alternating m convergence for central flux. Much like discussed when
it is applied to the heat equation, it shows lower convergence for m being even.
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Figure 3.9: m convergence Figure 3.10: N convergence

The CFL numbers required for converging computation, i.e. CFL numbers
which yield relative error < 0.05, are plotted for both central flux and LDG
in Figures 3.11 and 3.12 together with the expected stability requirements, h3

and m−6, we see results in favour of central flux which can approximately dou-
ble its timestep and still provide the same stability as LDG [9]. The stability
requirements, although not broken, appear to be very relaxed which could be
attributed to the smoothness of the KdV solution. Note that the stability re-
quirements are proportional and can therefore be shifted, it is the slope that is
of interest.

Figure 3.11: Converging CFL
numbers for m

Figure 3.12: Converging CFL
numbers for N
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Conclusion

The Discontinuous Galerkin method appears well suited for capturing Korteweg-
de Vries equation, see Figure 4.1. The high order approximation shows promis-

Figure 4.1: Korteweg-de Vries equation solved with Discontinuous Galerkin,
central flux, m = 2,N = 64. 5 seconds of wave propagation.

ing convergence, O(hm), despite the high spatial differentiation for alternating
fluxes. For even m, central flux also holds spectral convergence but shows some
sub-optimality when m is odd. This is likely due to the dissipation which is
to be expected as we discussed the heat equation in section 2.10. The solver
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is clearly stiff compared to a first order spatial derivative with the alternating
flux appearing twice as stiff as the central flux and thus the flux should be de-
cided depending on the problem at hand. Although the numerical results are
promising there is a lot left for future research. Questions could revolve around
stability and convergence in the multi-dimensional case. Additionally, analyti-
cal proof of nonlinear convergence for the central and alternating fluxes would
greatly strengthen the applicability of DG methods applied to the KdV. We also
highlight that the stiffness results relies on the semidiscrete formulation of the
DG. Perhaps implicit time integration method yields other stiffness results.



Bibliography

[1] David A. Kopriva. Implementing Spectral Methods for Partial Differential
Equations. Springer, 2009.

[2] Robert A.Adams and John J.F Fournier. Sobolov Spaces 2E. Elsevier Ltd,
2003.

[3] Khoei Amir R. Extended finite element method : theory and applications.
Wiley, 2015.

[4] Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella
Marini. Unified analysis of discontinuous galerkin methods for elliptic prob-
lems. SIAM journal on numerical analysis, 39(5):1749–1779, 2002.

[5] Szabo Barna Aladar. Introduction to finite element analysis: formulation,
verification and validation. Wiley, 2011.

[6] Francesco Bassi and Stefano Rebay. A high-order accurate discontinuous
finite element method for the numerical solution of the compressible navier–
stokes equations. Journal of computational physics, 131(2):267–279, 1997.

[7] George Cockburn, Bernardo & E. Karniadakis and Chi-Wang Shu(Eds.).
Discontinuous Galerkin Methods: Theory, Computation and Applications.
Springer, 2000.

[8] Peter D. Lax. Hyperbolic Partial Differential Equations. AMS, 2017.

[9] Jan S. Hesthaven. Numerical Methods for Conservation Laws From Analy-
sis to Algorithms. SIAM - Society for Industrial and Applied Mathematics,
2018.

[10] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin
Methods: Algorithms, Analysis and Applications. Springer, 2008.

H.Mediaa, 2023. 37



38 Bibliography

[11] Chi-Wang Shu and Jue Yan. A local discontinuous galerkin method for kdv
type equations. SIAM J. Numer. Anal., 40(2):769–791, 2002.

[12] Walter A Strauss. Partial Differential Equations- An Introduction 2E. John
Wiley & Sons Inc, United States, 2008.

[13] John C Strikwerda. Finite difference schemes and partial differential equa-
tions. SIAM, 2004.

[14] Gerald Beresford Whitham. Linear and nonlinear waves. John Wiley &
Sons, 2011.







Linköping University Electronic Press

Copyright
The publishers will keep this document online on the Internet – or its possible
replacement – from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for
anyone to read, to download, or to print out single copies for his/her own use
and to use it unchanged for non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional upon the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authentic-
ity, security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its www home page: http://www.ep.liu.se/.

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
från publiceringsdatum under förutsättning att inga extraordinära omständig-
heter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda
ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/.

© 2023, Markus Henrik Hellberg Mediaa

http://www.ep.liu.se/
http://www.ep.liu.se/

	Introduction
	Questions at the centre
	Method

	Background
	Approximation space
	Shocks and weak solutions
	Finite Element method
	Finite Volume method
	Monotonicity and conservation
	Quadrature
	Discontinuous Galerkin methods
	Basis functions
	Time stepping
	Approximating higher-order derivative with DG methods

	Results
	Choice of time step
	Convergence and stability for the KdV equation
	Numerical tests
	Central flux results
	Alternating flux (LGD) results
	Comparing central flux to LDG

	Conclusion

