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A B S T R A C T   

Methane (CH4), one of the key long-lived atmospheric greenhouse gases, is primarily produced from organic 
matter. Accordingly, net primary production of organic matter sets the boundaries for CH4 emissions. Plants, 
being dominant primary producers, are thereby indirectly sustaining most global CH4 emissions, albeit with 
delays in time and with spatial offsets between plant primary production and subsequent CH4 emission. In 
addition, plant communities can enhance or hamper ecosystem production, oxidation, and transport of CH4 in 
multiple ways, e.g., by shaping carbon, nutrient, and redox gradients, and by representing a physical link be
tween zones with extensive CH4 production in anoxic sediments or soils and the atmosphere. This review focuses 
on how plants and other primary producers influence CH4 emissions with the consequences at ecosystem scales. 
We outline mechanisms of interactions and discuss flux regulation, quantification, and knowledge gaps across 
multiple ecosystem examples. Some recently proposed plant-related ecosystem CH4 fluxes are difficult to 
reconcile with the global atmospheric CH4 budget and the enigmas related to these fluxes are highlighted. 
Overall, ecosystem CH4 emissions are strongly linked to primary producer communities, directly or indirectly, 
and properly quantifying magnitudes and regulation of these links are key to predicting future CH4 emissions in a 
rapidly changing world.   

1. Introduction 

Methane (CH4), one of the most important greenhouse gases (GHGs), 
is currently under scrutiny because of its high global warming potential 
in combination with uncertainties in the CH4 budget (Kirschke et al., 
2013; Saunois et al., 2020). Major sources of atmospheric CH4 are both 
anthropogenic and natural and include extraction and handling of fossil 
fuels, combustion processes, landfills, ruminants, rice cultivation, and 
emissions from wildfires. Other key CH4 sources are wetlands, marine- 
and freshwater environments (lakes, reservoirs, ponds, and streams) 
(Saunois et al., 2020). The two main CH4 sinks are considered to be 
upland soil microbial methane oxidation (ca. 10 %), and abiotic atmo
spheric oxidation (ca. 90 %). Terrestrial upland vegetation has also been 

suggested to be important for atmospheric CH4 exchange, although not 
always being mentioned in global CH4 budgets (Carmichael et al., 
2014). 

The atmospheric CH4 levels have sharply increased since pre- 
industrial times, but in contrast to the other long-lived GHGs (carbon 
dioxide and nitrous oxide), the increase has been irregular with variable 
growth rates among years and decades for reasons not yet fully under
stood (Dlugokencky et al., 2011). Several non-exclusive explanations for 
this variability have been proposed and one of them emphasise the 
potentially important role of wetland emissions (Nisbet et al., 2014; Lan 
et al., 2021). Moreover, the recent discovery of large CH4 emissions from 
inland waters, including lakes, ponds, reservoirs, and running water 
environments, resulted in a situation where the atmospheric CH4 growth 
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rates are considerably smaller than expected by summing estimated 
contributions from various sources, referred to as a mismatch between 
global top-down and bottom-up CH4 emission estimates, respectively 
(Kirschke et al., 2013; Saunois et al., 2020). The temporal irregularities 
in atmospheric CH4 growth rates and the mismatch between top-down 
and bottom-up flux estimates jointly highlight the current knowledge 
gaps regarding CH4 emission rates and source attribution. Although 
emission uncertainties exist for all types of fluxes, the large biogenic 
ecosystem CH4 fluxes, both natural and related with land use, have been 
considered the most uncertain (Saunois et al., 2020). 

It was recently suggested that up to half of the global CH4 emissions 
depend on fluxes from wet ecosystems, including various types of wet
lands, lakes, ponds, reservoirs, running water, ocean and coastal areas, 
and rice cultivation (Rosentreter et al., 2021). These fluxes are closely 
linked to mechanisms controlled by plant communities in or upstream of 
the aquatic environments. Regardless of where in the landscape CH4 
fluxes occur, primary production sets the boundaries for overall carbon 
cycling, and thereby for the CH4 production, and plants are the main 
primary producers in most ecosystems. In other words, the net 
ecosystem production by plants or other primary producers is a major 
indirect factor regulating ecosystem CH4 production. 

Human land use, including increased anthropogenic input of nutri
ents to ecosystems, as well as climate change, profoundly impacts plant 
communities around the world. There is already evidence of changes in 
growing season lengths, net primary productivity, plant biomass stocks, 
and plant community composition, exemplified by observations of 
global greening (Piao et al., 2020). There are also specific observations 
of rapid changes of e.g., aquatic macrophyte distribution in the arctic 
that can cause large perturbations of ecosystem CH4 emissions (Andre
sen et al., 2017). Consequently, a better understanding of present and 
future CH4 emissions is dependent on improved knowledge about plant 
community dynamics and particularly of the links between plant com
munities and ecosystem CH4 fluxes. 

This review will first briefly summarize key processes controlling 
ecosystem CH4 emissions, which is needed as a background for the 
subsequent discussion on how plants influence ecosystem CH4 fluxes. 
The aims are to (1) provide fundamental understanding on how plants 
play multiple important roles for ecosystem CH4 emissions, and (2) give 
examples from selected ecosystem types. The words “emission” and 
“flux” are used in similar contexts to make the language more varied, but 
with an important distinction: “Emission” is unidirectional and regards 
flux to the atmosphere, while “flux” is omnidirectional and regards 
transport from one location to another in any direction. 

2. Fundamental processes shaping ecosystem CH4 emissions 

2.1. CH4 production 

Biogenic CH4 is a major final degradation product from anaerobic 
organic matter decomposition, formed by methanogenic Archaea where 
or when alternative terminal electron acceptors such as nitrate, man
ganese (IV), iron (III), and sulfate are low in abundance (Segers, 1998; 
Garcia et al., 2000). Freshwater aquatic systems, and some saline sys
tems where salinity is caused by high carbonate levels, have low avail
ability of such alternate electron acceptors, and anoxic CH4 production 
can be extensive throughout all parts of the sediment or water saturated 
soils devoid of molecular oxygen (O2) (Bastviken, 2022). In marine 
systems, anoxic CH4 production is dominant deeper in the sediments, at 
depths where the alternative electron acceptors have been depleted by 
other organic matter degradation processes. CH4 production in anoxic 
waters are rarely considered and substantial anoxic CH4 production 
seems largely associated with sediments, soils, or particle-rich fluids 
(Bastviken, 2022). 

In addition to the anoxic CH4 production, CH4 formation can occur 
under oxic conditions. Stress on foliage from incoming light including 
ultraviolet radiation, rising temperature, and physical injury, has been 

reported to trigger oxic CH4 formation associated with terrestrial 
vegetation – in many cases from non-enzymatic processes and with 
suggested influence from reactive oxygen species and with variability 
among plant species (Liu et al., 2015; Martel and Qaderi, 2017; Ernst 
et al., 2022). In addition, oxic CH4 formation in surface water has been 
attributed to e.g., cyanobacterial photosynthesis with methyl
phosphonates and trimethylamine as precursors in surface lake water 
(Bižić et al., 2020). Overall, anoxic CH4 production is believed to 
dominate while the magnitudes of the oxic production may be consid
erable but are still uncertain (Carmichael et al., 2014; Günthel et al., 
2019; Peeters et al., 2019). 

2.2. CH4 oxidation 

The oxidation of CH4 in ecosystems is primarily performed by mi
crobes, while plants can substantially influence where conditions are 
suitable for this microbial CH4 oxidation and the extent to which CH4 
can bypass oxidation (discussed in Sections 2.3 and 3 below after 
describing fundamentals about the oxidation process here). Microbial 
oxidation of CH4 is a source of energy and carbon to microorganisms in 
habitats where CH4, being the most reduced organic compound, co- 
exists with suitable electron acceptors. CH4 oxidizing bacteria (MOB) 
are phylogenetically diverse (Smith and Wrighton, 2019) and are 
well-known to be able to rapidly consume large amounts of CH4 in the 
presence of O2 (Bastviken, 2022). Upon oxidation, CH4 is transformed to 
CO2 and H2O. Similarly, other microorganisms, often found to act in 
syntrophic consortia, can oxidize CH4 under anaerobic conditions in the 
presence of e.g., nitrate, manganese (IV), iron (III), and sulfate (Kallis
tova et al., 2017). The oxidation process is often most active where the 
abundance or re-supply rates of both CH4 and suitable electron acceptors 
are high enough, which is typically at redox transition zones in sedi
ments, soils, or water. The ecosystem balance between CH4 production 
and oxidation sets the limits for how much CH4 can be emitted, and 
zones with microbial CH4 oxidation can act as important biofilters 
preventing large amounts of emissions. It has been estimated that CH4 
oxidation removes 45 % to almost 100 % of the produced CH4 in lake 
ecosystems and 20–40 % in wetland soils before emission (Whalen, 
2005; Bastviken et al., 2008; Bastviken, 2022). 

2.3. CH4 transport processes 

The processes controlling CH4 transport through the ecosystems – 
from locations of CH4 production towards the atmosphere – determine 
the residence times in different ecosystem habitats (e.g. oxic and anoxic 
zones), and thereby the extent to which oxidation can consume CH4 
before it is emitted. Hence, the different transport processes are of great 
importance for overall ecosystem CH4 emissions. This section therefore 
briefly outlines major transport types because they are important for the 
understanding of how plants can influence ecosystem fluxes. 

The movements of dissolved CH4 in soil, sediment, and surface water 
can occur in two fundamental ways. If there is a net water movement 
over significant distances, dissolved CH4 follows moving water, i.e., is 
transported by advection. If the movement of the water itself is small 
over larger distances, the transport can be better described as Fickian 
transport, i.e., transport of dissolved compounds from locations with 
higher concentrations towards locations with lower concentrations in 
ways that can be described by Fick’s Law (Hemond and Fechner, 2015). 

The Fickian transport includes molecular diffusion and eddy diffu
sion where turbulence eddies greatly speed up the transport rates 
(Hemond and Fechner, 2015). The Fickian transport rates are deter
mined by the concentration gradient representing the change in con
centration with distance, and the diffusion coefficient describing the 
transport rate given the physical conditions. In the absence of turbu
lence, the slow molecular diffusion limits transport. This can happen in 
deep undisturbed sediment or soil pore waters with little subsurface 
water flow, or across the diffusive boundary layers, including the water 
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surface diffusive boundary layer at the water-air interface. Where there 
is turbulence in the water, the Fickian transport is dominated by the 
faster eddy diffusion, often represented by greater diffusion coefficients 
(Hemond and Fechner, 2015). During advective transport with the 
water flow, Fickian transport occur simultaneously and distribute the 
solutes within the flowing water volume. In sediments or soils, particles 
can influence this process by dispersion (Hemond and Fechner, 2015). 

Accordingly, CH4 produced in anoxic soils or sediments and dis
solved in the pore water may move slowly by Fickian transport or faster 
by advection via ground water movement. When reaching the air-filled 
pores in soil, gas exchange occurs if the CH4 concentrations in the water 
and air are not at equilibrium. The CH4 exchanged into the gas phase is 
further transported by advection or Fickian transport at rates given by 
the local air movement or diffusion coefficient. In aquatic environments, 
solutes reaching the top of the sediment will be transported through the 
water column by advective transport or eddy diffusion depending on 
local hydrodynamic conditions. Thermo- or halocline stratifications can 
greatly reduce the diffusion coefficients and thereby effectively limit 
transport rates across such gradients. Finally, when dissolved CH4 rea
ches the water surface, the diffusive boundary layer at the interface 
between water and air is the final limiting step for the emission of dis
solved CH4 to the atmosphere – often termed diffusive emission. CH4 
formed under oxic conditions in surface water, an additional source of 
dissolved CH4, can also be emitted via diffusive emission. 

The dissolved CH4 often has a relatively long residence time of CH4 in 
the ecosystem (days or more; Bastviken et al., 2008), in turn allowing 
anaerobic and aerobic CH4 oxidation to consume large amounts of the 
CH4 before being emitted. However, upon episodes of high turbulence 
and extensive mixing, emission by diffusive flux can be rapid. One 
example is water column turnover in stratified lakes where bottom 
waters develop anoxia during the stratification, and therefore can store 
and subsequently release large amounts of CH4. In such cases the turn
over generates a very steep CH4 gradient across the air-water interface 
that can drive large and rapid emissions (Johnson et al., 2022). 

Because CH4 has a low solubility in water, bubbles often form in 
sediments and where CH4 formation rates are high enough. These 
bubbles will grow and if the sediments are sufficiently loose or have pore 
space allowing bubble migration towards the surface, and they are 
eventually released and rapidly rise to the atmosphere by ebullition. In 
many aquatic environments with open water surfaces, ebullition is a 
dominant flux pathway (Bastviken et al., 2004, 2011). Within such 
ecosystems, ebullition seems most prominent at shallow waters and/or 
where the sediment organic matter accumulation is high (e.g., accu
mulation bottoms, river/stream inlet areas, or near littoral areas with 
high primary productivity) (DelSontro et al., 2011; Sobek et al., 2012; 
Natchimuthu et al., 2016). Ebullition can also be a dominant emission 
mechanism in peatlands (Christensen et al., 2003). Ebullition release is 
too rapid to be directly influenced by CH4 oxidation as the bubbles pass 
too quickly through the oxic sediment zone or water column, but 
ebullition from deep sediments can lead to substantial dissolution of CH4 
from the rising bubbles into the water (McGinnis et al., 2006), and this 
dissolved CH4 can be oxidized as described in Section 2.2. 

Vascular plants represent important conduits for CH4 from the root 
zone to the atmosphere (Fig. 1). For more details about this topic please 
see (Vroom et al., 2022). Briefly, many plants with roots in 
water-saturated soils or sediments have internal gas transport systems 
for supplying root cells with O2 (Joabsson et al., 1999; Laanbroek, 
2010). This is particularly prominent in many aquatic macrophytes with 
aerenchyma tissue specially adapted for gas transport. To maintain 
pressure, the aerenchyma tissue transports gases both downwards and 
upward in the plant between roots and leaf stomata, or stem lenticels on 
trees, where the gas is exchanged with the atmosphere. Accordingly, 
gases entering roots may rapidly be transported via the aerenchyma to 
the atmosphere (Yavitt and Knapp, 1998). At least two types of transport 
via plants have been suggested – molecular diffusion (passive) and 
convective flow (active) (Kim et al., 1998). The convective flow is driven 

by a pressure gradient in the plant and the interplay between molecular 
flux and convective flux has been suggested responsible for diel vari
ability in the plant-mediated fluxes (Bendix et al., 1994; Brix et al., 1996; 
Whiting and Chanton, 1996; Kim et al., 1998; Kaki et al., 2001; Ding 
et al., 2004; Juutinen et al., 2004; Duan et al., 2005). However, some 
studies over multiple day-night cycles indicate negligible diel flux 
variability from areas dominated by vascular plants in high-latitude 
wetlands (Bäckstrand et al., 2008; Milberg et al., 2017). Beyond the 
explicit diel day-night variability in the plant-mediated flux, temporal 
variability in CH4 flux is linked with multiple factors including tem
perature, light, humidity, and plant biomass (Chanton et al., 1993; Brix 
et al., 1996; Hirota et al., 2004; Juutinen et al., 2004; Duan et al., 2005; 
Kankaala et al., 2005; Wang and Han, 2005; Bergstrom et al., 2007; 
Milberg et al., 2017). The plant-mediated flux regulation may be 
strongly dependent on plant species (Armstrong and Armstrong, 1991; 
Chanton and Whiting, 1996; Joabsson et al., 1999). However, there are 
also observations of similar long-term mean emissions per m2 from 
nearby plant species, suggesting little importance of specific species for 
long-term mean areal fluxes (Milberg et al., 2017). Additionally, trans
port of CH4 via tree stems has relatively recently been demonstrated to 
be important (Barba et al., 2019). 

Overall, plant mediated emissions allow CH4 formed in sediments to 
bypass pore water or water column oxidation before emission. This type 
of transport can dominate CH4 emissions in habitats with emergent 
aquatic macrophytes (Juutinen et al., 2003; Larmola et al., 2004; 
Bergstrom et al., 2007; Pangala et al., 2017). There are indications of a 
possible trade-off with reduced ebullition from areas with substantial 
plant-mediated emission (Noyce et al., 2014; Aben et al., 2022). 

Fig. 1. Examples of how plants and other primary producers can influence 
terrestrial and aquatic ecosystem CH4 fluxes. The colours on numbers and ar
rows represent CH4 production (brown), transport (blue), oxidation (grey), and 
source of organic substrate (green). Plant drawings are generic to vascular non- 
woody and woody plants but are intended to represent all primary producers, 
although not all illustrated mechanisms are relevant for non-vascular plants. 
This figure represents a simplification (for a more extensive list of mechanisms 
and their global implications please see e.g., Carmichael et al., 2014; Liu et al., 
2015; Bodmer et al., 2021). 
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3. Mechanisms by which plants can influence ecosystem CH4 
emission 

Terrestrial and aquatic plants and other primary producers can 
stimulate CH4 emissions in many ways at ecosystem scales (Fig. 1). 
Examples include: 

+ Primary production provides the primary substrates for both 
anoxic and oxic CH4 formation in most environments. For e.g., 
wetland and standing water environments, higher CH4 emissions are 
commonly observed under conditions and locations with higher 
primary production (see examples in Section 4 below). 
+ Plants can provide favourable sites for CH4 formation inside or on 
the plants themselves (Covey and Megonigal, 2019). At the larger 
scale the foliage of vegetation (both terrestrial and aquatic) repre
sents a large surface area for abiotic CH4 production (Keppler et al., 
2006; Carmichael et al., 2014). 
+ Plant communities in aquatic environments contribute to trapping 
of particulate organic matter to the sediment where stands of plants 
reduce turbulence (Braskerud, 2001; Duarte et al., 2013; Bodmer 
et al., 2021; Work et al., 2021) increasing the potential for sediment 
CH4 production 
+ Plant mediated transport by rooted vascular plants substantially 
enhance emissions by speeding up transport and reducing exposure 
to CH4 oxidation (Vroom et al., 2022). 

Plants can also hamper CH4 emissions in several ways:  

– Rooted vascular plants transport O2 down to the root zone leading to 
O2 leakage into the sediment or soil, which can favour CH4 oxidation 
there and reduce emissions (King et al., 1998).  

– Plants, including trees and mosses, can offer large surface areas for 
CH4 oxidizing microorganisms in ecosystems (Sundh et al., 1995; 
Basiliko et al., 2004; Kip et al., 2010; Sundqvist et al., 2012; Stęp
niewska et al., 2018).  

– Dense floating vegetation can also trap bubbles temporarily before 
they reach the atmosphere, which increases the CH4 residence time 
in the system, favouring CH4 oxidation (Bartlett et al., 1988; Kosten 
et al., 2016; Oliveira Junior et al., 2021).  

– Dense aquatic vegetation stands can influence turbulence and 
thereby the transport of dissolved CH4 towards and across the at
mospheric interface in several ways. Dense floating macrophyte 
populations can reduce the wind-induced turbulence in the water, in 
turn reducing gas exchange rates, and increasing the potential for 
oxidation before emission (Kosten et al., 2016; Oliveira Junior et al., 
2021). Diel differences in temperature between open water and 
floating plant mats, together with basin scale water movements, can 
cause lateral advection so that dissolved gases from vegetated areas 
are exported and emitted elsewhere (Amaral et al., 2022). In flooded 
forests, where winds are also reduced, turbulence-driven gas ex
change rates can be regulated by a combination of shear from 
wind-driven water movements induced outside the forest and from 
convection associated with nocturnal cooling (MacIntyre et al., 
2019). Accordingly, dense aquatic vegetation can not only influence 
gas exchange directly, but also the relative importance of different 
processes regulating transport and emissions of dissolved CH4 (Oli
veira Junior et al., 2021). 

Other plant effects on fluxes can be logically inferred or hypothesized 
although hitherto seemingly not being studied or quantified:  

○ Roots of aquatic macrophytes may stabilize sediments, preventing 
the release of sediment bubbles and reducing ebullition rates.  

○ In dryer environments, transpiration by rooted vegetation can lower 
the soil water level, increasing the depth of the aerated CH4 oxida
tion zone in the upper soil – reducing emissions. 

Further studies are needed to fully explore the quantitative impor
tance of these potential plant-related effects on CH4 emissions across 
different ecosystems. 

4. Interactions between vegetation and CH4 emission in example 
ecosystems 

4.1. General primary producer influences on ecosystem CH4 cycling 

Given the many and complex processes by which plants influence 
ecosystem carbon fluxes as outlined in Section 3 above and in Fig. 1, it is 
difficult to quantitatively assess the total plant contributions to total CH4 
flux, and such knowledge is missing in many ecosystems. Accordingly, 
the sections below should be seen as attempts to integrate existing 
conceptual knowledge with available scattered quantitative information 
on the importance of plants for CH4 fluxes in example ecosystems (some 
of them illustrated in Fig. 2). 

Common to all ecosystems is that primary productivity controls the 
availability of substrates for CH4 production over time. Increasing 
amounts of evidence indicate that CH4 production and emissions are 
stimulated by the production of labile organic matter and by high pri
mary production (Whiting and Chanton, 1993; Bellisario et al., 1999; 
King and Reeburgh, 2002; King et al., 2002; Bäckstrand et al., 2008; 
Bastviken et al., 2008; Davidson et al., 2015; West et al., 2015; Grasset 
et al., 2018; Kuhn et al., 2021; Aben et al., 2022). The link between 
primary production and CH4 production and emission can be delayed 
(example at the end of Section 4.4 below), and for full consideration 
integration across long enough time periods is necessary. The indirect 
influence of plant communities on CH4 fluxes has been acknowledged in 
many ecosystem models where ecosystem primary productivity proxies 
are used as an important emission driver (Wania et al., 2013). 

Several links between whole-ecosystem carbon cycling and CH4 have 
been made for lakes, ponds, or wetlands, including: 

– Anaerobic CH4 production was estimated to 13 % of primary pro
duction (Rudd and Taylor, 1980) and 20–56 % of organic matter 
respiration across multiple ecosystems (Capone and Kiene, 1988; 
Kuivila et al., 1988; Bédard and Knowles, 1991; Mattson and Likens, 

Fig. 2. Examples of ecosystems where plant influences are important for total 
net CH4 emissions: A) Lentic open water (lakes, ponds, and reservoirs) and 
freshwater marsh, bog, and fen ecosystems along a hydrological gradient 
characteristic of higher latitudes; B) upland forests; C) floodplain forests and 
wetlands exemplifying lower latitudes; D) coastal vegetated areas (salt marshes, 
mangroves, and seagrass meadows); E) rice fields. See Fig. 1 and text for 
illustration of mechanisms by which the plant communities influence CH4 
fluxes in the respective ecosystems. 
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1993; Boon and Mitchell, 1995; Hamilton et al., 1995; Ford et al., 
2002).  

– Oxic CH4 oxidation can be similar to primary production rates during 
limited time periods in aquatic ecosystems (Rudd and Taylor, 1980; 
Kankaala et al., 2006).  

– The production of CH4 oxidizing bacteria was found to be 0.3 to 
> 10 % of primary productivity and their biomass constituted 
1.4–41 % of total bacterial biomass in lakes of different types 
(Utsumi et al., 1998; Bastviken et al., 2003; Eller et al., 2005; Sundh 
et al., 2005).  

– CH4 emissions have been reported to correspond to 24–37 % of 
summer productivity in a small shallow hypereutrophic lake (Strayer 
and Tiedje, 1978), and plant-mediated CH4 fluxes from stands of 
Typha sp. and Cladium jamaicense in the Everglades were 3–14 % of 
net ecosystem production (Chanton et al., 1993). 

Collectively, these findings illustrate the large general importance of 
plant primary production for CH4 production, and a large quantitative 
importance of CH4 in relation to overall carbon cycling in aquatic 
ecosystems. 

Aerobic CH4 production associated with surfaces of terrestrial up
land vegetation or litter has been comprehensively reviewed (Carmi
chael et al., 2014; Liu et al., 2015). Experimental studies observed CH4 
production on upland plants that if extrapolated would result in 
> 200 Tg CH4 per year (up to 36 % of the total global CH4 budget), 
while other experiments showed much smaller or negligible production 
(Carmichael et al., 2014). Most of this information rely on small-scale 
incubation studies and field-scale observations of associated fluxes are 
rare. Given the large vegetation and litter surface area, potential asso
ciated ecosystem fluxes could be important as discussed further in Sec
tion 4.6 below. Other interactions between terrestrial upland vegetation 
includes the supply organic substrates for microbial CH4 production in 
soil. However, most of this upland soil CH4 may be oxidized in aerated 
top soils (Saunois et al., 2020), unless high soil moisture lead to emis
sions (Lohila et al., 2016) or lateral export with soil and ground water 
lead to emissions in recipient streams (Natchimuthu et al., 2017; Lupon 
et al., 2019). 

There can be important, yet complex interactions between plants and 
temporal variability of CH4 emissions. There is growing support for a 
positive exponential relationship between ecosystem CH4 emissions and 
temperature (Yvon-Durocher et al., 2014; Aben et al., 2017). This tem
perature regulation interacts with supply rates of organic substrates for 
CH4 production from plant primary production, and with the other plant 
effects on CH4 dynamics, including availability of plant-mediated 
transport pathways (Fig. 1). Accordingly, there can be plant-induced 
enhancement of ecosystem CH4 emissions in synergy with the direct 
temperature effect, by increased plant productivity, biomass, or pro
longed plant growing seasons (Andresen et al., 2017). For example, 
synergies between nutrient additions and temperature treatments have 
been confirmed in experimental studies with submerged or floating 
macrophytes (Elodea canadensis, Potamogeton crispus, Ceratophyllum 
demersum, Myriophyllum spicatum, and Azolla filiculoides) (Davidson 
et al., 2018), and in some cases plant productivity and composition ef
fects have been found more important for CH4 emissions than temper
ature changes (Davidson et al., 2015, 2018; Aben et al., 2022). Another 
study in less productive nitrogen limited boreal lakes found weak in
fluence of whole lake nitrogen additions on CH4 emissions (Klaus et al., 
2018), indicating that the importance of plant-effects versus effects of 
other factors for CH4 emissions may differ among ecosystem types. 

4.2. High latitude wetlands 

In high latitude wetlands, the water table position and nutrient status 
determine the plant community composition that then affects CH4 flux 
through influence on production, oxidation, and transport as has been 
comprehensively discussed in earlier reviews on wetland methane 

emissions (Bartlett and Harriss, 1993; Bubier and Moore, 1994; Blodau, 
2002; Whalen, 2005; Lai, 2009; Bridgham et al., 2013; Abdalla et al., 
2016; Kuhn et al., 2021). Early studies on CH4 fluxes showed the cor
relation between water table position and daily flux, where water tables 
near the surface had the highest emissions and correlated with vegeta
tion composition and moss types (Bubier, 1995). Further research 
demonstrated the role of vascular plants in controlling CH4 emissions 
from high latitude wetlands by influencing both substrate availability 
through recent photosynthates, oxidation and the transport pathways 
(Joabsson et al., 1999). However, time lags between photosynthesis and 
CH4 production as well as the storage of CH4 in sediments can mask the 
relationship between primary productivity and emissions, which may 
become clearer when integrated over seasonal to annual time scales 
(Blodau, 2002). 

Recent syntheses have shown that broader wetland classes can be 
used to predict fluxes because these capture the mean water table po
sition and dominant vegetation types (Olefeldt et al., 2013; Turetsky 
et al., 2014; Treat et al., 2018; Kuhn et al., 2021). The major classes have 
been defined broadly as freshwater marshes, fens with sedges and 
mosses, and bogs with Sphagnum mosses (Table 1). CH4 emissions are 
variable within and across these classes, with highest emissions from 
marshes, followed by fens and bogs, respectively (Table 1). The presence 
of permafrost is also a key control on CH4 emissions; emissions from 
permafrost wetlands are on average 60 % lower than from northern 
wetlands without permafrost (Treat et al., 2018). Coastal 
tidal-influenced and saline marshes have generally been considered 
separately but observations are limited for many northern regions 
(Poffenbarger et al., 2011). Other northern ecosystems such as upland 
tundra and boreal forests can also emit CH4 (Lohila et al., 2016; Zona 
et al., 2016). While these wetland or land cover classes show consider
able variability within each class, likely because these classes include 
the variability among the plot and community scale vegetation 
composition discussed above, these are useful categories because there 
are significant differences in CH4 flux among them (Table 1). Further
more, often they can be distinguished with some success from remote 
sensing observations or machine learning analysis (Webster et al., 2018; 
Matthews et al., 2020; Olefeldt et al., 2021). Until now, uncertainties in 
the distribution of different wetland types and water bodies have pre
vented comparisons between high latitude emissions from models that 
prescribe wetland emissions based on area coverage (Melton et al., 
2013) and observations (Olefeldt et al., 2013; Turetsky et al., 2014; 
Treat et al., 2018; Kuhn et al., 2021). 

Temperature provides another broad control on CH4 flux across high 
latitude wetlands by controlling the timing and length of the growing 
season (also influenced by radiation) and by influencing the soil tem
perature. Generally, annual CH4 fluxes increase with annual tempera
ture in wetlands (Delwiche et al., 2021), with temperate wetlands 
having higher annual emissions (median: 13.3 g CH4 m− 2 yr− 1) than 
similar types of wetlands in boreal (7.2 g CH4 m− 2 yr− 1) or Arctic re
gions (6.2 g CH4 m− 2 yr− 1; (Treat et al., 2018). This is likely due to the 
direct influence of temperature on rates of microbial CH4 production 
(Dunfield et al., 1993; Yavitt et al., 1997; Treat et al., 2015), but also the 
indirect effects of vegetation productivity. In northern soils where 
freezing is common, peak temperatures in soils lag peak air tempera
tures. This causes a delay in peak CH4 emissions relative to the peak 
season GPP that can range from nearly simultaneous to as much as 60 
days (Delwiche et al., 2021). Due to these warm soil temperatures into 
the fall, as well as CH4 storage in sediments, emissions outside of the 
growing season can account for a substantial portion (13–47 %) of 
annual emissions (Treat et al., 2018). Thus, even in the absence of 
vegetation activity, CH4 emissions can occur in northern wetlands 
(Mastepanov et al., 2008; Zona et al., 2016). 

Questions remain about the response of CH4 flux in northern wet
lands to disturbance, including permafrost thaw, fire, flooding, and 
other extreme events, such as excessive heat and drought. However, 
there are only a few sites with long enough records of CH4 fluxes to be 
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able to discern these types of events, and due to lag times between 
production and emission, measurements should continue beyond the 
growing season into the shoulder seasons and winter. 

4.3. Rice paddies 

Rice probably represents the plant genus responsible for most plant- 
mediated CH4 emissions. Rice field emissions are estimated to be 
24–40 Tg CH4 yr− 1 (Bridgham et al., 2013; Saunois et al., 2020). The 
CH4 production in rice paddies is stimulated by the release of labile 
organic matter synthetized by photosynthesis via the roots. More than 
50 % of the rice CH4 emission is generated from the root exudates or 
decomposed plant material (Lu and Conrad, 2005). Rice production 
demands the establishment and maintenance of flooded conditions that 
reduce the presence of oxygen and other electron acceptors (e.g., nitrate 
or sulfate) favouring CH4 production. The high sediment CH4 produc
tion rates result in high CH4 emissions via rice aerenchyma to the at
mosphere, bypassing the sediment oxic-anoxic interface. 

Most of the global production of rice happens at lower latitudes 
where the temperatures and also CH4 production rates are high (Fer
nando, 1993), and the rice paddies act as landscape emission hotspots. 
Considering that CH4 production is positively correlated with temper
atures (Yvon-Durocher et al., 2014), increasing global temperatures may 
trigger an increase in overall rice-mediated CH4 fluxes. Furthermore, 
given the predicted increase in global world population from the present 

8 to > 10 billion by 2100 (Ezeh et al., 2012), the growing demand for 
food will likely increase rice paddy cultivation and increase CH4 fluxes 
from rice paddies in the future. 

Several management approaches have been tested in order to mini
mize the CH4 emissions from rice paddies, with the application of gyp
sum and phosphogypsum, and the application of sulfate with N fertilizer 
(e.g., ammonium sulfate) being the most common practices (Liu et al., 
2018). Sulfate reduction is an anaerobic process energetically more 
favourable than methanogenesis and therefore sulfate addition de
creases CH4 production and emissions without affecting the rice growth 
or yield. Other strategies have focused on management of the flooding 
regime or straw amendment (Belenguer-Manzanedo et al., 2022). Ge
netic modifications have also been successful in regulating CH4 emis
sions, e.g., the addition of a transcription barley gene SUSIBA2 to 
experimental rice strains, promoted a shift in rice carbon flow 
decreasing its CH4 emissions (Su et al., 2015). A decrease in 50 % CH4 
emission with the SUSIBA2 japonica and SUSIBA2 indica rice types have 
been reported, due to a decrease in organic carbon to the soil, without 
decreasing rice yield (Du et al., 2021). We do not intend to claim that 
genetically modified rice strains should indiscriminately replace 
non-modified rice types, and this controversial topic is out of the scope 
of this study. More relevant in the frameworks of this review is that these 
findings exemplify how plant physiology and genetic traits of plant 
communities can influence ecosystem CH4 cycling. 

Table 1 
Examples of net CH4 emission ranges observed in ecosystem habitats with different primary producer communities. Flux denotes range as measured by min-max or IQR 
(interquartile range). Global CH4 budget estimates are provided at the lower part of the Table to enable easy comparisons.  

Biome and 
ecosystem 

Habitat Flux range (mg 
CH4 m-2 d-1) 

Global flux (Tg CH4 yr-1) 
(seasonally integrated) 

Refs. 

High-latitude 
wetlands 

Bogb -4.3 to 278; 7–57 
(IQR) 

9 (permafrost region) (Bao et al., 2021; Kuhn et al., 2021; Treat et al., 2021) 

Fena -30 to 371; 20–107 
(IQR) 

21.5 (permafrost region) 

Marshc -38 to 761; 71–200 
(IQR) 

2.6 (permafrost region) 

Rice fields   25–38 (Saunois et al., 2020) 
Lakes, reservoirs, 

and ponds 
Open water emission 0.1–2497; 9–153 

(IQR) 
31–73 Measured fluxes: (Rosentreter et al., 2021). Seasonally integrated 

global flux; (Johnson et al., 2021, 2022). 
Littoral with emergent plants 8–1392 6–15d (Juutinen et al., 2003, 2004; Kankaala et al., 2003; Duan et al., 2005; 

Bastviken et al., 2011; Milberg et al., 2017; Kyzivat et al., 2022) 
Tropical 

floodplain 
forests 

Global flooded tree flux  37.1 (stem flux) (Pangala et al., 2017; Gauci et al., 2022) 
Non-flooded tree flux  6.4 (stem flux) (Gauci et al., 2022) 
Amazonian flooded forest 1–6504 (stem m2) 12.7–21.1 (stem flux) (Pangala et al., 2017; Gauci et al., 2022) 
Aquatic diffusive flux 2.5–50.5  (Barbosa et al., 2020) (data from flooded forest only) 
Aquatic ebullition 45–168  (Barbosa et al., 2021) (data from flooded forest only) (Barbosa et al., 

2020) 
Amazon aquatic total flux 36–617 9.7 ± 5.2 (Pangala et al., 2017) (Amazon flooded forest) 

Global forests Stem flux in upland and 
wetland forests 

-14 to 6504 (stem 
m2) 

60 (Covey and Megonigal, 2019) 

Abiotic CH4 production on 
plant and litter surfaces  

8–176 (Carmichael et al., 2014; Liu et al., 2015) 

Coastal vegetation Mangroves -1.1 to 1169 1.5–4.0 (Al-Haj and Fulweiler, 2020; Rosentreter et al., 2021). 
Salt marshes -1.5 to 1510 1.1–2.0 
Seagrass meadows 0.02–6.4 0.5–1.0 

Global CH4 flux estimates for 2008–2017 extracted from Saunois et al. (2020) for comparison 
Flux category Tg CH4 yr-1 (mean and range; bottom-up estimates) 
Total global emissions (top-down)  576 [550–594] (Saunois et al., 2020) 
Total global emissions (bottom-up)  737 [594–881] 

Fossil fuel production and use  128 [113–154] 
griculture and waste  206 [191–223] 
Biomass and biofuel burning  30 [26–40] 
Wetlands  149 [102–182] 
Other natural emissions (total)  222 [143–306]  

Freshwater  159 [117–212]  
Biogenic open ocean and coastal 6 [4–10]  

a Variable hydrological connectivity and productivity; Sphagnum, sedges, shrubs. 
b Ombrotrophic; low productivity; Sphagnum-dominated. 
c Minerotrophic, high productivity; emergent macrophytes, sedges, often in standing water. 
d Based on estimates of 10 Tg CH4 yr− 1 or 21 % of open water emissions (see references). 
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4.4. Lakes, reservoirs, and ponds 

Substrates for CH4 production in lakes, reservoirs, and ponds 
(standing water systems collectively referred to as lentic waters) include 
organic matter from plant primary production in upstream catchments 
and littoral zones, and from phytoplankton and periphyton production. 
The catchment organic matter contributions can fuel substantial CH4 
emission also in systems with low internal primary production. Positive 
relationships between in-system primary productivity (aquatic plants, 
periphyton, and phytoplankton supplying the most labile organic ma
terial) and CH4 production have also been suggested (Bastviken et al., 
2008; Duc et al., 2010; Davidson et al., 2015; West et al., 2015; Grasset 
et al., 2018). 

Most available CH4 emission measurements from lentic ecosystems 
consider fluxes from the open water surface, where diffusive flux and 
ebullition dominates. From a mechanistic point of view, such emissions 
are not directly linked to primary productivity or CH4 production rates, 
and instead represent a balance between multiple processes, including 
CH4 production, different transport pathways, and CH4 oxidation. 
However, for reservoirs, a recent meta-analysis found a clear relation
ship between open water fluxes and chlorophyll-a levels, representing a 
proxy for in-system phytoplankton primary productivity (Deemer and 
Holgerson, 2021). If the recently suggested oxic surface water CH4 
production is primarily linked with planktonic photosynthesis, this adds 
a direct link between phytoplankton metabolism and CH4 emissions 
(Bižić et al., 2020; Günthel et al., 2020). A whole-lake experiment where 
the primary producers were 13C-labelled by adding 13C-bicarbonate to 
two lakes provides relevant information to evaluate this possibility. The 
experiment showed that the dissolved surface water CH4 responded 
most strongly to the 13C addition approximately one month after the 13C 
signal reached the particulate organic carbon (Bastviken et al., 2008). 
This indicates a delayed link between dissolved CH4 and lake primary 
production (Fig. 3). Accordingly, this whole-lake C tracer experiment 
points towards the importance of the longer, indirect link between pri
mary production and epilimnetic CH4 via anoxic sediment CH4 pro
duction, rather than direct, oxic surface water CH4 production linked to 

photosynthesis in the studied small lakes. However, conditions may 
differ among systems and the debate about the ecosystem implications 
of oxic surface water CH4 production (Günthel et al., 2019; Peeters et al., 
2019; Hartmann et al., 2020) requires additional consideration. 

Littoral zones include areas with submerged, floating-leaved (rooted 
or non-rooted), and emergent vegetation. Few field studies have focused 
on submerged macrophytes but their potential importance was recently 
highlighted (Hilt et al., 2022), and experimental studies with submerged 
plants have indicated high importance for system CH4 dynamics and 
emissions in interaction with nutrient concentrations (see Section 4.1) 
(Davidson et al., 2015, 2018; Aben et al., 2022). Free-floating plants can 
also have important effects on CH4 fluxes by providing substrates for 
CH4 production while also influencing CH4 transport, as outlined in 
Section 3 and being detailed elsewhere (Kosten et al., 2016; Oliveira 
Junior et al., 2021). In a field study of a tropical floodplain lake, open 
water fluxes within 0–20 m of dense floating macrophyte populations 
(Eichhornia sp.) was shown > 2-fold greater than from areas being 
> 45 m away from such vegetation belts with no depth difference 
among locations (Peixoto et al., 2015). This indicates substantial local 
contributions of decaying plant biomass for ebullition. 

A number of field studies in littoral zones have focused on emissions 
from emergent vascular aquatic macrophytes (Juutinen et al., 2003; 
Larmola et al., 2004; Bergstrom et al., 2007). Littoral flux measurements 
and regulation seem largely consistent with wetland observations (see 
Sections 2.3 and 4.2 above). It has been suggested that the littoral zones 
with plant mediated fluxes can contribute a large share of the total flux 
(the sum of vegetated and open water fluxes) if the vegetated area is 
extensive enough. Littoral vegetated zones contributed 66–77 % of the 
ice-free period integrated CH4 fluxes from three Finnish lakes (Juutinen 
et al., 2003). In a Canadian lake, a detailed study showed that 26 % of 
the area covered by emergent macrophytes contributed 80 % of the 
mean daily CH4 flux during the ice-free season, and that 34 % of the flux 
from the vegetated area was emitted via plant mediated flux while 62 % 
was emitted by ebullition among the plants (Desrosiers et al., 2022). 
This study also showed that plant community composition was impor
tant for determining the predominant flux pathway. 

In some cases, littoral plant-mediated CH4 emissions are large 

Fig. 3. Results from a whole-lake experiment where 13C-labelled sodium bi
carbonate were added to the epilimnion to act as 13C tracer of primary pro
duction in the ecosystem (Pace et al., 2004). The shaded area denotes the time 
period of 13C addition. The response of epilimnetic particulate organic carbon 
(POC; including phytoplankton) and CH4 is shown and were offset in time. 
Black squares and open triangles are Paul and Peter Lake, respectively, Wis
consin, USA. Results illustrate a clear but delayed link between recent primary 
production and dissolved CH4 in a whole-lake context. 
(Modified from Bastviken et al., 2008.). 

Fig. 4. Image of a lake shore with a hyperspectral camera optimized for sen
sitive detection of CH4 (Gålfalk et al., 2016). Panel A shows the visible light 
image of the scene and Panel B shows mean CH4 mixing ratio along each line of 
sight from the camera to the background. The wind comes from the lake to
wards the shore which moves emitted CH4 towards the lower parts of the 
image. Some CH4 emissions from the outer reed belts (Phragmites australis) are 
visible via slightly elevated nearby mixing ratio with a somewhat patchy 
appearance depending on local wind mixing. Larger CH4 emissions from the 
near-shore sedge vegetation are clearly visible. For methods behind the imag
ing, see Gålfalk et al. (2017). 
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enough to create CH4 flux gradients along lake shores (Fig. 4). Recent 
airborne imaging spectroscopy has identified hot spot zones within 40 m 
from standing water, possibly indicating the importance of combined 
emissions from open water and littoral zones (Elder et al., 2020). Recent 
mapping of > 4500 arctic-boreal lakes showed that the area with 
emergent vegetation comprised 16 % of the lake area and including CH4 
fluxes from this area was suggested to increase estimates of total lake 
CH4 emissions by 18–25 % (Kyzivat et al., 2022). One challenge is 
ensuring that regional scaling of CH4 fluxes does not double-count lake 
littoral zones as both a part of the lake CH4 emission estimate and as a 
part of the wetland CH4 emission estimate. 

The issue of double-counting CH4 emissions from lakes and wetlands 
are further discussed elsewhere (Thornton et al., 2016). Fundamentally, 
this is a question about matching land cover categories with flux mea
surements. There may be a mismatch between the traditional definition 
of lakes including their littoral zones versus a more “methanocentric” 
land cover categorization based on underlying mechanisms and regu
lation. The latter leads to a potential conclusion that all vegetated 
aquatic environments – also in lakes, ponds, and reservoirs – are better 
categorized as wetlands of different types, while open water, being more 
easily distinguished by remote sensing and being dominated by other 
CH4 flux pathways and other flux regulation, represents another main 
land cover category. Such a methanocentric land cover categorization 
may have many advantages for CH4 emission extrapolation but require 
replacing traditional ecosystem definitions with land cover categories 
based on predominant biogeochemical processes. Overall, littoral zones 
require additional attention to properly quantify lentic CH4 emissions, 
and efforts developing a clear distinction of how all CH4 emitting land 
cover types are classified and combined with the most relevant flux 
observations are critically needed (Kuhn et al., 2021; Olefeldt et al., 
2021). 

Most examples above from lentic systems indicates that presence of 
plants increases CH4 emissions. However, in hypereutrophic aquatic 
systems which emit large amounts of CH4, such as agricultural dams 
(Grinham et al., 2018; Ollivier et al., 2019), there are observations that 
increased presence of vegetation can result in less nitrogen and phos
phorous in the water, more dissolved oxygen, and lower methane 
emissions (Malerba et al., 2022). Speculated reasons could include 
combinations of factors mentioned above such as root zone oxygenation 
and trapping of bubbles along with more surfaces suitable for CH4 oxi
disers, and possibly also reduced phytoplankton production if there was 
light competition. 

4.5. Amazon floodplain forests 

The Amazonian lowland basin forest is an example of a vast tropical 
floodplain forest (Melack and Hess, 2011; Hess et al., 2015). It repre
sents a highly diverse, yet unique environment constituted by a rich 
mosaic of terrestrial, aquatic and transitional ecosystems subjected to 
seasonal and permanent waterlogging (Junk et al., 2011). The Amazon 
River flows 4000 km from the Andes to the Atlantic, carrying more 
water than any other river. The basin includes an extensive system of 
riverine flooded forests, which in some cases are flooded on a seasonal 
basis and in other cases are flooded all through the year. Hot tropical 
temperatures, extensive tree cover with continuous supply of fresh 
carbon substrates and anoxia due to flooding create favourable condi
tions for CH4 production and emission(Wassmann et al., 1992). There
fore, it is not surprising when this region alone is responsible for 
emitting ~ 8 % (46.2 ± 10.3 Tg CH4 yr− 1) (Basso et al., 2021) of the 
global CH4 emissions estimated to 576 Tg CH4 yr− 1 (Saunois et al., 
2020). 

The floodplain forests experience extensive flooding, and the flood
ing depth and duration is linked to the type of forest (low várzea, high 
várzea or chavascal), location (upstream or downstream of the river) 
and draining catchment characteristics (Junk et al., 2011). Since the late 
1980s, attempts have been made to quantify different CH4 sources of 

tropical floodplain forests and significant CH4 emissions are reported 
from the flooded forest soils, floating and rooted macrophytes, aquatic 
sources within the flooded forest and adjoining open waters of lakes and 
rivers (example data in Table 1) (Bartlett et al., 1988; Devol et al., 1988; 
Bastviken et al., 2010; Sawakuchi et al., 2014; Barbosa et al., 2020, 
2021). The trees are adapted to anoxic environment through morpho
logical and physiological traits, including gas transport to supply root 
cells with O2, to survive flooding (Junk et al., 2010; Parolin and Witt
mann, 2010). As other woody plants experiencing flooding, they have 
lenticels on the stems for such gas exchange and the gas exchange 
contribute to an extensive recently discovered plant mediated CH4 flux 
from tree stems (Gauci et al., 2010). 

Large seasonal variation in inundation period and areas is a key 
challenge to identifying the variability in space and time of CH4 emis
sions from the Amazon flooded forests (Barbosa et al., 2021). This is 
further complicated when new CH4 emissions pathways such as those 
from flooded trees are discovered, when regionalization of emissions 
from previously known CH4 sources in the Amazon basin is already a 
challenging task (Melack et al., 2022). In recent years, flooded trees are 
not only known to influence CH4 dynamics through their fresh carbon 
supply stimulating methanogenesis and root-zone O2 leakage stimu
lating CH4 oxidation - they are also known to emit CH4 (Pangala et al., 
2017). Further, stem flux from flooded trees were estimated to 
contribute nearly half the regional Amazon basin CH4 emissions (Pan
gala et al., 2017). Apart from the tree-mediated flux of CH4 from the root 
zone to the atmosphere, enhanced by morphological adaptations in 
flooded trees, recent studies now suggest that trees themselves can 
produce CH4 within their tree stems albeit at lower rates (Covey et al., 
2012; Covey and Megonigal, 2019). 

CH4 emissions from 13 forested floodplains along the Amazon River 
in Brazil were measured, attempting to capture spatial variability 
(Pangala et al., 2017). The measurements were made during a single 
high-water event leading to uncertainty in extrapolations over time. In a 
recent study, tree stem CH4 emissions were reported to continue 
throughout all four hydrological distinct seasons (rising, flooded, 
receding and low water period), albeit at lower rates (Gauci et al., 2022). 
The study also found a strong relationship between water table depth 
below the surface and tree CH4 emission and highlighted that riparian 
floodplain margins with water table below-ground contribute an addi
tional 2.3–3.9 Tg CH4 yr− 1 to the atmosphere. Applying this to global 
tropical wetlands yield a non-flooded riparian tree CH4 emission esti
mate of 6.4 Tg CH4 yr− 1 with recognition that the area-related extrap
olation is uncertain (Gauci et al., 2022). 

While studies so far suggest CH4 emissions from the floodplain forest 
are significant, the variability and regulation remains largely unknown, 
including the extent to which the spatial variability is driven by soil 
dynamics, climate, flooding regime, or tree species traits. For instance, 
white-water (carrying sediments from the Andes), clear-water (draining 
the ancient shields) and black-water (draining white sand areas and soils 
with humic substances) are known to emit different quantities of CH4 
(Pangala et al., 2017), thereby greatly influencing the rates and overall 
regional annual CH4 estimates in synergy with ecosystem processes 
including plant influences on CH4 fluxes (Fig. 1). The nutrients associ
ated with water types strongly determine the floodplain forest ecology 
and species composition. While studies in other forested wetlands 
highlight a link between tree traits and tree CH4 flux (Barba et al., 2019; 
Covey and Megonigal, 2019), the Amazonian flooded forest tree species 
influence on CH4 flux remains unclear. 

In recent years there has been a renewed threat to Amazon forests 
from the expansion of cattle ranching, low-productivity agriculture, 
dams, mining, fire, deforestation and intensified flooding and prolonged 
dry period, changing the face of the flooded forests at an alarming rate. 
How CH4 emissions, particularly from flooded trees, respond to such 
change is still unclear. Amazonian tree mortality rates are already 
increasing in many intact forests and Amazonian forest species compo
sition has been affected by flooding and recent droughts. The mortality 
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of wet-affiliated Amazonian tree genera has increased in places where 
the dry season has intensified (Aleixo et al., 2019) or where the hy
drology was changed by damming (Assahira et al., 2017). Such changes 
may have profound impact on the CH4 dynamics from flooded forests 
and on future tropical CH4 emissions. 

4.6. Vegetation-related CH4 emissions in other forests 

Beyond the Amazon floodplain, the number of CH4 flux measure
ments from tree stems growing on temperate and tropical peatlands, in 
upland forest ecosystems and in riparian forests has been increasing. 
Temperate ecosystems growing in both riparian lowland ecosystems and 
peatlands have demonstrated CH4 emissions from both ash trees (Frax
inus mandschurica; (Terazawa et al., 2007), alder (Alnus glutinosa; (Gauci 
et al., 2010; Pangala et al., 2015) and birch (Betula pubescens; (Pangala 
et al., 2015). All trees tended to demonstrate a decrease in stem emis
sions with distance from the forest floor as found in many other studies 
of wetland tree emissions. The two species birch and alder measured in a 
UK alder carr ecosystem, tended to operate differently in terms of their 
seasonal CH4 emissions with birch giving a large range of emissions 
depending on season of up to ~ 200 µg m− 2 h− 1 in summer and as low as 
~ 50 µg m− 2 h− 1 in winter. This is in contrast to alder, where emissions 
ranged between ~ 100 µg m− 2 h− 1 in winter and around ~ 180 µg m− 2 

h− 1 in summer (Pangala et al., 2015) suggesting differences in the CH4 
transport mechanisms from soil to emission, between the tree species. 
More controlled mesocosm experiments with alder saplings gave further 
insights into factors controlling the size of emissions (Pangala et al., 
2014) with pore water CH4 concentrations and stem lenticel density 
exhibiting a major control over emissions. 

Further controls over tree stem emissions have been found for 
Southeast Asian peat swamp forests where a large range of CH4 fluxes 
measured from 10 peatland tree species (zero to ~ 200 µg m− 2 h− 1) 
seemed to be controlled by wood specific density (with the higher the 
wood density, the lower the emission), soil pore water CH4 concentra
tions and stem diameter (Pangala et al., 2014). Cumulatively, emissions 
from tree stems in these ecosystems, as with those from the Amazon 
floodplain, dominated ecosystem emissions when scaled. This is in 
contrast to emissions from trees in neotropical peatlands in Panama 
where trees contributed ~ 30 % of total ecosystem emissions where 
factors such as species identity, stem diameter, water level and soil 
temperature explained much of the observed variance in tree stem 
emission (Sjögersten et al., 2020). Fluxes, were, however larger than 
those from SE Asian peat swamps with individual stem fluxes, particu
larly near the stem base in the range 1–30 mg m− 2 d− 1. While palm 
emissions in these Panamanian peat swamps tended to be negligible, 
confining tree-stem emissions solely to hard wood trees, in Peruvian 
peatlands palm stems tended to emit substantial quantities of CH4 
(Soosaar et al., 2022). 

In upland ecosystems, trees inhabit areas of lower water availability 
given free draining soils and substrates and so there is less soil CH4 being 
produced in relatively sparse anaerobic microsites. That said, emissions 
are still observed, particularly at the stem bases (30 cm above the forest 
floor) in Panamanian upland trees where emissions at around 
~ 100 µg m− 2 h− 1 were comparable to those observed in Borneo peat 
swamps and temperate alder carr. Other results, tend to conflict with 
some trees demonstrating some emission, but with no clear vertical 
pattern of exchange and with high variability (Pitz et al., 2018; Barba 
et al., 2019, 2021) though net uptake has been observed in other studies 
(Machacova et al., 2021; Gauci et al., 2022). 

While trees are clearly capable of emitting soil-derived CH4 at their 
stem bases, uptake of CH4 further up the tree stem has been suggested 
(Jeffrey et al., 2020; Gauci et al., 2022). In parallel, there is a growing 
literature regarding abiotic oxic CH4 production at plant and litter sur
faces generating emissions (reviewed by Carmichael et al., 2014; Liu 
et al., 2015). This literature is based on observations of CH4 release from 
plant tissue enclosed in CH4-free vials or chambers. Mechanisms are 

discussed and plant produced molecules with detachable methyl groups 
are potential precursors. The CH4 release seem enhanced by UV-light, 
increasing temperature, reactive oxygen species and other types of 
plant stress. Measured CH4 production rates are often low in absolute 
numbers in the experimental settings but scaling to large plant surface 
areas results in global emission estimates in the order of 8–176 Tg CH4 
y− 1 (Carmichael et al., 2014; Liu et al., 2015) to a large extent from 
forests, or 1–31 % of the global CH4 emissions (using a global top-down 
estimate of 576 Tg CH4 yr− 1; Table 1). Because of the high uncertainty in 
extrapolation of small-scale incubation studies and limited field scale 
observations, this flux was not yet specifically considered in recent 
global CH4 budgets (Saunois et al., 2020), and large emissions from 
aerobic CH4 production on plants and forests are challenging to recon
cile with in-situ observations at present. There may be some bias in 
in-situ flux measurements if not properly capturing UV-effects, but 
top-down inversion estimates based on atmospheric concentration gra
dients in space and time should capture all emissions. Hence, overall tree 
and vegetation emissions at ecosystem scales remain enigmatic and 
represent an important challenge to constrain and predict the global CH4 
budget. 

4.7. Coastal ecosystems 

Globally, vegetated coastal areas including salt marshes, mangroves 
and seagrass meadows are estimated to emit 3.6–6.2 Tg CH4 yr− 1, with 
the highest fluxes observed in salt marshes followed by mangroves and 
seagrass meadows (Table 1) (Al-Haj and Fulweiler, 2020; Rosentreter 
et al., 2021). As previously described in other environments, the roots 
can transport CH4 from the sediments directly to the atmosphere 
bypassing the CH4 oxidation in the sediments. In an Australian 
mangrove, tree emissions from pneumatophores (roots growing up
wards into the air for gas exchange increasing root system O2 access) 
accounted for ~ 26 % of the mangrove emissions (Jeffrey et al., 2019). 
Although no direct evidence of plant-mediated emissions from seagrass 
have been found in the literature, it has been suggested that dead sea
grass or detached parts deposited in the sediment can provide methyl
ated compounds that can sustain CH4 production for a long time (Schorn 
et al., 2022). As in other freshwater environments, plants and cyano
bacteria have a key role as suppliers of organic matter. A main difference 
from freshwater environments is that coastal environments tend to be 
sulfate-rich areas, and sulfate-reducing microorganisms outcompete 
methanogens for organic substrates limiting CH4 production (Oremland 
and Polcin, 1982; Schorn et al., 2022). Zhuang et al. (2018) observed 
that methylotropic methanogenesis contributed to 43–87 % of the total 
CH4 production in the sulfate reduction zone at the top layer of the 
sediment, and the remaining produced by hydrogenotrophic methano
genesis. The lower layers of the sediment, where sulfate was depleted, 
67–98 % of the CH4 was produced by hydrogenotrophic methano
genesis. Acetoclastic methanogenesis contributed a maximum of 31 % of 
the CH4 production in organic-rich sediment (Zhuang et al., 2018). Due 
to the thicker sediment redox gradient where sulfate metabolism dom
inates, CH4 production is confined to deeper sediment layers than in 
freshwaters. Therefore, plant mediated CH4 emissions in coastal areas 
may be more extensive via plants with deeper roots. Despite this limi
tation, methylotropic methanogenesis can still maintain significant CH4 
production, sustaining a sediment-water flux of approximately 1.7 mg 
CH4 m− 2 d− 1 in seagrass sediments (Schorn et al., 2022). Coastal envi
ronments are estimated to account for up to ~ 1 % of the global CH4 
budget and contribute more than 60 % of the marine CH4 emission 
(Al-Haj and Fulweiler, 2020). 

Sulfate reduction is associated with anaerobic oxidation of CH4 
(AOM), which can significantly influence the fluxes of CH4 from the 
sediment to the water column in coastal areas (Egger et al., 2018). In 
addition to AOM, rooted plants transport oxygen to the root zone and 
sediment, where aerobic methane oxidation can occur. Fluxes from 
deforested mangroves and cut seagrass indicate an increase in CH4 
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emissions that was attributed to cessation of the O2 transport and 
oxidation in the sediment (Giani et al., 1996). 

As in any other aquatic ecosystem, plants have a major role as source 
of organic substrates. Therefore, CH4 emissions from coastal environ
ments may increase with intensified land-use and eutrophication of 
coastal areas leading to greater primary production and organic matter 
sediment load (Rosentreter et al., 2021). 

5. Conclusions and need for future studies 

Overall, primary production is indirectly the foundation for all 
contemporary non-fossil CH4 emissions, corresponding to approxi
mately 80 % of the annual atmospheric CH4 budget, or 431–671 Tg CH4 
yr− 1 including fluxes from agriculture, forestry, other land use, biomass 
burning, and from the waste sector (Saunois et al., 2020; bottom-up 
fluxes 2008–2017 used). In addition, plants can influence the extent 
and dynamics of ecosystem CH4 fluxes in many ways (Fig. 1). Impor
tantly, plant communities respond rapidly to environmental change. 
Therefore, adequate understanding and predictions of relevant plant 
community features are key to adequate assessments of future landscape 
CH4 emissions. To approach such understanding, improved quantitative 
knowledge on CH4 fluxes from plant habitats under varying conditions 
are needed. This leads to several demands on future ecosystem-level 
research of vegetation-related CH4 fluxes including:  

• All CH4 sources and sinks associated with vegetation need to be 
properly identified and quantified, and fluxes with different regula
tion need to be distinguished.  

• Flux variability should be examined across spatial and temporal 
scales of relevance for local habitat/vegetation communities to 
distinguish short-term local variability from long-term large-scale 
trends.  

• Comprehensive long-term ecosystem CH4 flux assessments are 
needed, simultaneously quantifying plant-related emissions and 
other major types of emissions, along with careful characterization of 
properties and processes in studied ecosystems that can provide 
regulatory or predictive understanding. This should be done at sites 
representative of different vegetation types, to support dynamic 
ecosystem scale modelling of CH4 flux.  

• Tropical ecosystems need increased scientific attention, given their 
great importance for contemporary and future CH4 emissions.  

• For flux extrapolation, more accurate areal distributions of key 
ecosystems and habitats based on criteria optimized for estimating 
CH4 emissions are needed. This includes, e.g., distinguishing 
different types of vegetated wetlands, such as the respective areas of 
bogs, fens and marshes in precise and dynamic ways that capture 
changes over time (Melack and Hess, 2022). 

Addressing these key knowledge gaps effectively would greatly 
benefit from improvements in the methodologies to assess greenhouse 
gas emissions, vegetation dynamics, and potential driver variables at 
high resolution across landscapes (Bastviken et al., 2022). Because plant 
communities can change quickly in response to land use, hydrology, and 
climate, an appropriate understanding of present and future plant 
community dynamics are essential to predict CH4 emissions in a rapidly 
changing world. 
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tropical rain forest on volcanic Réunion Island. New Phytol. 229, 1983–1994. 
https://doi.org/10.1111/nph.17002. 

MacIntyre, S., Fernandes Amaral, J.H., Barbosa, P.M., Cortés, A., Forsberg, B.R., 
Melack, J.M., 2019. Turbulence and gas transfer velocities in sheltered flooded 
forests of the Amazon Basin. Geophys. Res. Lett. 46, 9628–9636. https://doi.org/ 
10.1029/2019GL083948. 

Malerba, M.E., Lindenmayer, D.B., Scheele, B.C., Waryszak, P., Yilmaz, I.N., Schuster, L., 
Macreadie, P.I., 2022. Fencing farm dams to exclude livestock halves methane 
emissions and improves water quality. Glob. Change Biol. 28, 4701–4712. https:// 
doi.org/10.1111/gcb.16237. 

Martel, A.B., Qaderi, M.M., 2017. Light quality and quantity regulate aerobic methane 
emissions from plants. Physiol. Plant. 159, 313–328. https://doi.org/10.1111/ 
ppl.12514. 

Mastepanov, M., Sigsgaard, C., Dlugokencky, E.J., Houweling, S., Strom, L., Tamstorf, M. 
P., Christensen, T.R., 2008. Large tundra methane burst during onset of freezing. 
Nature 456, 628–U658. https://doi.org/10.1038/nature07464. 

Matthews, E., Johnson, M.S., Genovese, V., Du, J., Bastviken, D., 2020. Methane 
emission from high latitude lakes: methane-centric lake classification and satellite- 
driven annual cycle of emissions. Sci. Rep. 10, 12465. https://doi.org/10.1038/ 
s41598-020-68246-1. 

Mattson, M.D., Likens, G.E., 1993. Redox reactions of organic matter decomposition in a 
soft water lake. Biogeochemistry 19, 149–172. https://doi.org/10.1007/ 
BF00000876. 

McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E., Wuest, A., 2006. Fate of rising 
methane bubbles in stratified waters: how much methane reaches the atmosphere? 
J. Geophys. Res. Oceans 111. https://doi.org/10.1029/2005jc003183. 

Melack, J., Hess, L.L., 2022. Areal extent of vegetative cover: A challenge to regional 
upscaling of methane emissions. Aquatic Botany Solicited review submitted for 
publication for the same special issue as this manuscript. Reference to be completed 
once details become available. 

Melack, J.M., Basso, L.S., Fleischmann, A.S., Botía, S., Guo, M., Zhou, W., Barbosa, P.M., 
Amaral, J.H.F., MacIntyre, S., 2022. Challenges regionalizing methane emissions 
using aquatic environments in the Amazon Basin as examples. Front. Environ. Sci. 
Eng. 10. https://doi.org/10.3389/fenvs.2022.866082. 

Melack, J.M., Hess, L.L., 2011. Remote sensing of the distribution and extent of wetlands 
in the Amazon Basin. In: Junk, W.J., Piedade, M.T.F., Wittmann, F., Schöngart, J., 
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Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.M., 
Joos, F., Kleinen, T., Krummel, P.B., Langenfelds, R.L., Laruelle, G.G., Liu, L., 
Machida, T., Maksyutov, S., McDonald, K.C., McNorton, J., Miller, P.A., Melton, J.R., 
Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., 
Parker, R.J., Peng, C., Peng, S., Peters, G.P., Prigent, C., Prinn, R., Ramonet, M., 
Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A., Simpson, I.J., Shi, H., Smith, S. 
J., Steele, L.P., Thornton, B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A., 
Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R. 
F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., 
Zheng, B., Zhu, Q., Zhu, Q., Zhuang, Q., 2020. The global methane budget 
2000–2017. Earth Syst. Sci. Data 12, 1561–1623. https://doi.org/10.5194/essd-12- 
1561-2020. 

Sawakuchi, H.O., Bastviken, D., Sawakuchi, A.O., Krusche, A.V., Ballester, M.V.R., 
Richey, J.E., 2014. Methane emissions from Amazonian Rivers and their 
contribution to the global methane budget. Glob. Change Biol. 20, 2829–2840. 
https://doi.org/10.1111/gcb.12646. 

Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M., Lott, C., Liebeke, M., Lavik, G., 
Kuypers, M.M.M., Graf, J.S., Milucka, J., 2022. Diverse methylotrophic 
methanogenic archaea cause high methane emissions from seagrass meadows. Proc. 
Natl. Acad. Sci. USA 119, e2106628119. https://doi.org/10.1073/ 
pnas.2106628119. 

Segers, R., 1998. Methane production and methane consumption: a review of processes 
underlying wetland methane fluxes. Biogeochemistry 41, 23–51. https://doi.org/ 
10.1023/A:1005929032764. 
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Górski, A., Pytlak, A., Urban, D., 2018. Methane oxidation by endophytic bacteria 
inhabiting Sphagnum sp. and some vascular plants. Wetlands 38, 411–422. https:// 
doi.org/10.1007/s13157-017-0984-3. 

Strayer, R.G., Tiedje, J.M., 1978. In situ methane production in a small, hypereutrophic, 
hardwater lake: loss of methane from sediments by vertical diffusion and ebullition. 
Limnol. Oceanogr. 23, 1201–1206. https://doi.org/10.4319/lo.1978.23.6.1201. 

Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., 
Wang, F., Schnürer, A., Sun, C., 2015. Expression of barley SUSIBA2 transcription 
factor yields high-starch low-methane rice. Nature 523, 602–606. https://doi.org/ 
10.1038/nature14673. 

Sundh, I., Bastviken, D., Tranvik, L., 2005. Abundance, activity, and community 
structure of pelagic methane-oxidizing bacteria in temperate lakes. Appl. Environ. 
Microbiol. 71, 6746–6752. https://doi.org/10.1128/aem.71.11.6746-6752.2005. 
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