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In kidney transplant biopsies, both inflammation and chronic changes are important features that
predict long-term graft survival. Quantitative scoring of these features is important for transplant
diagnostics and kidney research. However, visual scoring is poorly reproducible and labor intensive. The
goal of this study was to investigate the potential of convolutional neural networks (CNNs) to quantify
inflammation and chronic features in kidney transplant biopsies. A structure segmentation CNN and a
lymphocyte detection CNN were applied on 125 whole-slide image pairs of periodic acideSchiffe and
CD3-stained slides. The CNN results were used to quantify healthy and sclerotic glomeruli, interstitial
fibrosis, tubular atrophy, and inflammation within both nonatrophic and atrophic tubuli, and in areas of
interstitial fibrosis. The computed tissue features showed high correlation with Banff lesion scores of
five pathologists (A.A., A.Dend., J.H.B., J.K., and T.N.). Analyses on a small subset showed a moderate
correlation toward higher CD3þ cell density within scarred regions and higher CD3þ cell count inside
atrophic tubuli correlated with long-term change of estimated glomerular filtration rate. The presented
CNNs are valid tools to yield objective quantitative information on glomeruli number, fibrotic tissue,
and inflammation within scarred and non-scarred kidney parenchyma in a reproducible manner. CNNs
have the potential to improve kidney transplant diagnostics and will benefit the community as a novel
method to generate surrogate end points for large-scale clinical studies. (Am J Pathol 2022, 192:
1418e1432; https://doi.org/10.1016/j.ajpath.2022.06.009)
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Inflammatory Lesion Scoring with CNNs
Although much progress has been made toward the pre-
vention of acute kidney transplant rejection, long-term graft
loss remains a major issue for donor kidney survival.
Scarring of the kidney in the form of interstitial fibrosis and
tubular atrophy is the hallmark of progressive transplant
failure. Recently, several studies have additionally demon-
strated the prognostic value of inflammation and tubulitis in
regions with interstitial fibrosis and tubular atrophy (i-IFTA
and t-IFTA, respectively).1e4 Accurate scoring of these
chronic, inflammatory parameters is therefore pivotal in
strategies to prevent graft loss.

The commonly used scoring system for kidney transplant
biopsy assessment is the Banff classification system.5,6 This
system was the first standardized, international classification
system for kidney transplant diagnostics and facilitated
uniformity in the reporting of renal transplant pathology.7 It
is internationally applied by kidney researchers and physi-
cians, and it is the globally accepted quantification tool for
histopathologic transplant evaluation. However, it has
increasingly been criticized for its limited reproducibility
and its suboptimal patient stratification. Multiple studies
show poor to moderate interobserver agreement, specifically
for the scoring of fibrotic changes and inflammatory
lesions.8e12 Moreover, the Banff classification system is
based on semiquantitative scoring on an ordinal scale,
whereas inflammatory and chronic parameters represent a
continuous spectrum and should therefore preferably be
quantified on a granular, continuous scale.

Quantitative assessment of transplant biopsies may be
improved by the application of digital image analysis
techniques.13e15 Specifically, deep learning, the use of data-
driven learning systems where multilayered (deep) neural
networks are trained to generate output from input, has
proven to be a powerful tool for histopathologic tissue
assessment.16e19 The most widely applied neural networks
in medical image analysis are convolutional neural networks
(CNNs). CNN-based image analysis could benefit biopsy
assessment by increasing reproducibility and efficiency. In
addition, CNNs can output absolute values, which may
provide more insight into the stage of ongoing pathologic
processes. A second and important advantage of CNN-
based image analysis is the ability to decrease interob-
server variability, a major problem in any form of histologic
assessment by human observers.

The notable performance of CNNs on medical imaging
data has resulted in an increasing number of studies focused
on deep learning applications for kidney tissue. These efforts
were pioneered by the segmentation and classification of the
glomerulus and were expanded toward other applications,
such as multiclass segmentation, the segmentation of scle-
rotic glomeruli and interstitial fibrosis and tubular atrophy
(IFTA), and diabetic nephropathy classification.20e24

The current study investigated the potential of CNNs as
quantification tools for the assessment of chronic and in-
flammatory lesions, going beyond the current arbitrary
semiquantitative thresholds and showing the absolute
The American Journal of Pathology - ajp.amjpathol.org
quantification of tubulointerstitial inflammation as a
continuous parameter in areas with and without IFTA.
Ideally, CNNs can be used in addition to the Banff classi-
fication system to support kidney researchers and physicians
in their studies on chronic kidney tissue changes.

For this purpose, two previously developed CNNs aimed
at the segmentation of periodic acideSchiff (PAS)estained
tissue and detection of lymphocytes in immunohistochem-
istry (IHC) were used.25,26 The CNNs were retrained and
applied on a cohort of PAS- and CD3-stained kidney trans-
plant biopsy slides. Quantifications were performed on the
basis of the CNN results. The reliability of the CNN-based
quantifications was evaluated by assessing the correlation
with the following visually scored components of the Banff
classification system: glomerular count, total inflammation
(ti), interstitial inflammation (i), tubulitis (t), interstitial
fibrosis (ci), tubular atrophy (ct), i-IFTA, and t-IFTA.

Materials and Methods

A visual overview of this study can be found in Figure 1.

Patient Cohort

Tissue Samples
A total of 125 tissue blocks of Bouin-fixed, paraffin-
embedded needle-core biopsies obtained for cause (kidney
function decline without clear clinical cause) were used
from 73 patients who underwent kidney transplantation
between 2008 and 2012 in the Radboud University Medical
Center (Radboudumc; Nijmegen, the Netherlands). For 39
patients, a single biopsy was included. For the remaining
patients, biopsies acquired at two different time points (24
patients), three time points (4 patients), four time points (4
patients), or five time points (2 patients) were used. For the
comparison of automatically quantified tissue features and
pathologists’ visual Banff scoring, multiple biopsies from a
single patient were considered as independent samples as
they were obtained at different time points and originate
from different regions of the kidney. Recipient, donor, and
biopsy characteristics based on the original pathology re-
ports are included in Table 1. The local institutional review
board waived the need for approval of using Radboudumc
tissue blocks in this study (number 2016-2269).

PAS-CD3 Restaining and Whole-Slide Image Preparation
One tissue section (3 mm thick) was cut from every tissue
block and placed onto a coated microscope slide. All slides
were stained with PAS and digitized using a Pannoramic
P1000 whole slide scanner (3DHISTECH, Budapest,
Hungary) at a resolution of 0.24 mm per pixel. Subse-
quently, the slides were washed with an acetone solution to
remove the cover film. Potential glue residue was removed
by washing the slides in xylene, followed by dehydration in
95% ethanol. The slides were washed in tap water and
boiled for epitope retrieval in 10� diluted Tris-borate-
1419
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Figure 1 Overview of the visual and automated evaluation. The periodic acideSchiff (PAS) slides are digitized, followed by CD3-positivity visualization
through immunohistochemistry. The PAS whole-slide images (WSIs) are scored by a panel of pathologists, and a convolutional neural network (CNN)
segmented the tissue into relevant tissue classes. After a washout period, the pathologists repeat the visual scoring using the PAS WSI in combination with the
digitized CD3 slide. CD3-positive cells are detected by a second CNN in the CD3 WSI. Spatial alignment of PAS and the CD3 WSIs allows for cell quantification
inside the segmented structures.
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EDTA (VWR Life Sciences, Boxmeer, the Netherlands)
buffer. After cooling down, the slides were washed in 3%
hydrogen peroxidase solution for endogenous peroxidase
blocking, followed by washing in phosphate-buffered saline
buffer. After pre-incubation with 1% phosphate-buffered
saline/bovine serum albumin, the slides were incubated for
1 hour at room temperature with CD3 antibody solution
(1:40; clone SP7; rabbit monoclonal antibody; RM-9107-S;
Thermo Scientific, Waltham, MA). After washing in
phosphate-buffered saline, the slides were incubated with a
horseradish peroxidase (HRP)econjugated secondary anti-
body (Poly-HRP-GAMs/Rb IgG; VWRKDPVO999HRP;
Immunologic, Duiven, the Netherlands), followed by visu-
alization with 3,30-diaminobenzidine (Bright-DAB;
VWRKBS04; Immunologic) and a counterstaining with
hematoxylin. The restained slides were digitized using a
Pannoramic P1000 whole slide scanner at a resolution of
0.24 mm per pixel. As a result of this procedure, every tissue
sample yielded two whole-slide images (WSIs): one of the
PAS-stained slide and one of the restained slide with CD3.

Regions of Interest
The cortical regions were manually annotated using the
automated slide analysis platform software version 1.9
1420
(https://github.com/computationalpathologygroup/ASAP,
last accessed June 13, 2022). The pathologists (A.A., A.
Dend., J.H.B., J.K., and T.N.) were asked to perform
their analyses within these regions of interest, and the
CNN-based quantifications were performed within these
same regions. Tissue folds, subcapsular inflammation, and
inflammatory infiltrates surrounding large arteries were
excluded from the regions of interest.

Visual Pathologists’ Assessment of the Patient Cohort
Biopsies

Five pathologists (A.A., A.Dend., J.H.B., J.K., and T.N.),
specialized in kidney transplant pathology, manually coun-
ted the number of glomeruli and scored the following Banff
lesion categories on the PAS WSI according to criteria listed
in Supplemental Table 1 (based on Banff 20185): ti, i, t, ci,
ct, i-IFTA, and t-IFTA. After a washout period of 4 weeks
minimum, the pathologists repeated the scoring for the
Banff ti, i, t, i-IFTA, and t-IFTA categories, now using the
PAS WSI in combination with the CD3 WSI. The interob-
server variability was assessed for both scenarios by
calculating quadratic weighted Cohen k coefficients. The
visual glomerular counts and Banff ti, i, t, ct, ci, i-IFTA, and
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Baseline Cohort Characteristics

Characteristics Values

Recipients (n Z 73)
Age, years 49.1 (19.8 to 70.3)
Female sex 30 (41.1)
Dialysis type
Hemodialysis 43 (58.9)
Peritoneal dialysis 18 (24.6)
Preemptive 12 (16.4)
Panel-reactive antibodies �6 52 (71.2)
Patients with retransplants 11 (15.1)

Graft characteristics (n Z 73)
Donor age, years 57.0 (31.0 to 73.0)
Living 35 (47.9)
Deceased, donation after
circulatory death

16 (21.9)

Deceased, donation after brain
death

22 (30.1)

HLA-A mismatch 1 (0 to 2)
HLA-B mismatch 1 (0 to 2)
HLA-DR mismatch 1 (0 to 2)
HLA mismatch total 3 (0 to 6)
Cold ischemia time, hours 11.2 (1.8 to 26.5)
Need for dialysis <3 months
after transplantation

27 (37.0)

Biopsy characteristics (n Z 125)
Time between transplantation
and biopsy, days

40 (3 to 906)

Original diagnosis
Rejection* 34 (27.2)
Borderline T-cellemediated
rejection

21 (16.8)

Calcineurin inhibitor toxicity 43 (34.4)
Cytomegalovirus 1 (0.8)
Acute tubulus necrosis 16 (12.8)
Recurrence original diseasey 2 (1.6)
De novo focal segmental
glomerulosclerosis

1 (0.8)

No diagnostic abnormalities 7 (5.6)

Data are given as median (minimum to maximum) or number
(percentage).
*Humoral rejection, cellular rejection, or humoral and cellular rejection.
yMembranous glomerulonephritis or membranoproliferative

glomerulonephritis.
HLA, human leukocyte antigen.

Inflammatory Lesion Scoring with CNNs
t-IFTA scores were compared with their equivalent tissue
feature, quantified by CNNs (listed in Supplemental Table 2
and described in detail in Automated Assessment of the
Patient Cohort Based on CNN Results).

Structure Segmentation CNN Development

The authors previously presented a U-net architectural CNN
for the multiclass structure segmentation of PAS-stained
kidney sections into relevant tissue classes, such as healthy
and globally sclerotic glomeruli, interstitium, and proximal,
distal, and atrophic tubuli.25 For the current study, this CNN
The American Journal of Pathology - ajp.amjpathol.org
was improved by including more training data and improved
post-processing techniques (see below). There was no
overlap between the cases that were used for CNN devel-
opment and the slides that were used in the formerly
described PAS-CD3 patient cohort. A novel method was
developed for the segmentation of interstitial fibrosis based
on image processing of the multiclass structure segmenta-
tion results, further described in Indirect Segmentation
Method for Interstitial Fibrosis and IFTA.

Ground Truth
For development of the structure segmentation network, the
data set (60 WSIs) that was described in the authors’ earlier
publication on kidney tissue segmentation25 was com-
plemented with 36 additional PAS-stained transplant bi-
opsies (Radboudumc, n Z 19; Mayo Clinic, Rochester,
MN, n Z 17) and 3 tumor nephrectomy samples (Mayo
Clinic), resulting in 99 WSIs. The slides were digitized on a
Pannoramic 250 Flash II digital slide scanner (3DHIS-
TECH; Radboudumc) or an Aperio ScanScope XT System
scanner (Leica Biosystems, Nussloch, Germany; Mayo
Clinic) at a resolution of 0.24 and 0.49 mm/pixel, respec-
tively. The data set was annotated using automated slide
analysis platform software, applying the following pre-
defined classes: glomeruli, sclerotic glomeruli, empty
Bowman capsules, proximal tubuli, distal tubuli, atrophic
tubuli, capsule, arteries/arterioles, interstitium, and border
(being the basement membranes of the tubuli). All annota-
tions were checked and corrected where necessary by a
pathologist (J.K.). The WSIs were randomly divided into
training (n Z 63), validation (n Z 16), and test (n Z 20)
sets. The total number of annotations per tissue class is
listed in Supplemental Table 3. Mayo Clinic tissue samples
were scanned with institutional review board approval
(numbers 17-002391 and 10-004644), and digital image file
transfer was approved under institutional review board
number 18-005592.

Network Design
A U-net architecture was used as the structure segmentation
network design.27 The network was trained for 95 epochs at
512 iterations per epoch with a batch size of eight patches
(412 � 412 pixels at a resolution of 1.0 mm/pixel). Adam
was used as weight optimization algorithm and categorical
cross entropy as loss function.28 Spatial and color
augmentation techniques were applied to increase the net-
work’s robustness for variations in tissue morphology,
staining intensity, and image quality. Before inference of the
structure segmentation network, a tissue-background seg-
mentation network was applied, separating tissue from
background and removing dust particles and tissue
artifacts.29

Post-Processing
Post-processing was used to optimize the structure seg-
mentation results, applying the following steps at a pixel
1421
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Hermsen et al
spacing of 1.0 mm/pixel: i) pixels classified as empty
glomeruli positioned at the edge of the biopsy were
removed; ii) pixels classified as border or interstitium were
temporarily set to 0, grouping pixels of all the other classes
into discrete objects; iii) holes (ie, value 0 regions) with an
area <150 pixels inside objects were filled with their
dominant surrounding object label; iv) objects with an area
<300 pixels were considered noise and set to the inter-
stitium class; v) objects that consisted of more than one
tubule class were assigned to the predominant tubule class,
and objects that consisted of more than one glomerulus class
were assigned to the predominant glomerulus class; vi) re-
gions <50 pixels inside objects were assigned to their
dominant surroundings; vii) objects classified as glomeruli,
having an area <2500 pixels, were set to the interstitium
class; and viii) pixels classified as border were labeled as
interstitium, and all interstitium pixels were subsequently
placed back unless they were filled during step 3. The de-
cision to use a minimum area of 2500 pixels for glomeruli
was based on the knowledge that the diameter of a complete
glomerulus ranges from approximately 100 to 200 mm,
depending on the level of sectioning. This corresponds to a
minimum area of 7854 pixels [based on the following for-
mula: area Z (diameter2 * p)/4]. By using 2500 pixels as a
minimum area, corresponding to a diameter of approxi-
mately 56 mm, we avoided the risk of excluding complete
glomeruli.

Structure Segmentation Performance
The segmentation performance of the network was assessed
by calculating the CNN’s precision, recall, and Dice score
on pixel level on the test set, where:

precisionZ
true positive detections ðTPÞ

true positive detections ðTPÞ þ false positive detections ðFPÞ
ð1Þ

recallZ
true positive detections ðTPÞ

true positive detections ðTPÞ þ false negative detections ðFNÞ
ð2Þ

F1Z2$
precision $ recall
precisionþ recall

ð3Þ

The test set that was used to assess the performance
metrics of the structure segmentation CNN was composed
of PAS-stained slides from the Mayo Clinic and Radbou-
dumc. Because the material from the current patient cohort
contains PAS-stained biopsies from Radboudumc, it can be
assumed that the performance on the test set will correspond
with that on this patient cohort. Therefore, the performance
metrics of the structure segmentation CNN were not
additionally calculated for the patient cohort.

Indirect Segmentation Method for Interstitial Fibrosis and
IFTA
The structure segmentation CNN was subsequently applied
to the 125 PAS WSIs from the patient cohort (see Materials
1422
and Methods; Patient Cohort; Tissue Samples). Interstitial
fibrosis regions were derived from the structure segmenta-
tion masks by computing distance maps for interstitial
pixels with respect to atrophic tubuli and to all other
structures. Pixels were assigned to the interstitial fibrosis
class if they were closer to atrophic tubuli than to any other
structure, under the biological assumption that interstitial
fibrosis and tubular atrophy develop in tandem. This
allowed for the quantification of interstitial fibrosis alone
and IFTA. Because the CNN was not directly trained on
interstitial fibrosis and IFTA, Dice score, precision, and
recall could not be calculated for these classes. Instead, three
human observers (A.Deni., D.v.M., and J.K.) visually esti-
mated the percentage interstitial fibrosis and IFTA on 20
cases from the patient cohort. Similar to the automated
scoring method, the visual score was a continuous score,
ranging from 0% to 100%, and was not limited to cate-
gories. To assess the soundness of our automatic interstitial
fibrosis/IFTA scoring method, the intraclass correlation
coefficient (ICC) was calculated for the percentages given
by the human observers and the percentages based on CNN
results.
Lymphocyte Detection CNN

A recently developed lymphocyte detection CNN was
adapted and used for the detection of lymphocytes in this
study. This network was developed in a previous study,26 in
which four network architectures were trained with 171,166
manually annotated CD3þ and CD8þ lymphocytes: a fully
convolutional network, a U-net, a you only look at lym-
phocytes once network, and a locally sensitive method
network. The networks were evaluated for their detection
performance of lymphocytes within normal tissue, artifacts,
and immune cell clusters, using IHC-stained sections orig-
inating from nine medical centers. The best performing
network for all the tasks was used in the current study (U-
net). Because this network was trained on conventional
IHC, it was retrained for the current study using 6237
lymphocyte annotations (15 WSIs) in restained kidney
slides (PAS-CD3) in addition to the original training data.
This retrained network was subsequently used for the cell
detections in this study.
Automated Assessment of the Patient Cohort Based on
CNN Results

The PAS WSI and the CD3 WSI were analyzed using the
structure segmentation network and the lymphocyte detec-
tion network, respectively. This resulted in three masks per
case: a structure segmentation mask, dividing the tissue in
capsule, interstitium, arteries and arterioles, glomeruli,
sclerotic glomeruli, proximal tubuli, distal tubuli, and atro-
phic tubuli; an interstitial fibrosis mask (based on the
structure segmentation results, as described); and a
ajp.amjpathol.org - The American Journal of Pathology
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Inflammatory Lesion Scoring with CNNs
lymphocyte detection mask, marking all CD3þ cells in the
tissue.

Image Registration
The PAS WSI and the CD3 WSI pairs display the same
biopsies and are therefore roughly aligned. Nevertheless,
tissue deformations may occur during IHC staining, and the
rescanning of the slides causes a slight alteration of the
tissue’s coordinates in the image. This was corrected by
nonlinear image registration, using the noncommercially
available software HistokatFusion (version 2019; Fraunhofer
MEVIS lab, Bremen, Germany). The software offers a
three-step registration pipeline, consisting of a manual or
automated pre-alignment, a parametric registration
computed on coarse resolution images, and an accurate
nonlinear registration.30 This allowed for an accurate
spatial translation of tissue features between slides and
corresponding masks.

Automatically Quantified Tissue Features
On the basis of the registered results of the structure seg-
mentation CNN and the lymphocyte detection CNN, the
following features were calculated: the number of
nonsclerotic glomeruli and globally sclerotic glomeruli; the
highest CD3þ cell count inside proximal tubuli or distal
tubuli; the highest CD3þ cell count inside atrophic tubuli;
the CD3þ cell density inside the total cortical area; the
CD3þ cell density inside the cortical area, excluding inter-
stitial fibrosis; and the CD3þ cell density inside regions of
interstitial fibrosis.

Correlation between Automated Feature Quantification
and Visual Banff Lesion Scoring

To assess the correlation of glomerular counting performed
by pathologists with automated glomerular quantification,
the average ICC of the pathologists and the average ICC of
the pathologists and the CNN are reported.

Spearman correlation coefficients of interstitial fibrosis
(pixel percentage), tubular atrophy (object percentage),
(total) inflammation (cells/mm2), inflammation in fibrotic
regions (cells/mm2), tubulitis (highest cell count), and
tubulitis in atrophic tubuli (highest cell count) were calcu-
lated with the average ci, ct, ti, i, i-IFTA, t, and t-IFTA score
of the pathologists, respectively (Supplemental Table 2).

Correlation between Automated and Visual Scoring of
Chronic Lesions and the Course of Kidney Function

In contrast to the ordinal scoring by human observers, the
deep learningebased results are reported as a continuum. It
should be investigated whether these continuous values
hold more prognostic information than the current lesion
scoring system. As an illustration for such a validation
study, we assessed the correlation between manually and
automatically scored chronic lesions and long-term change
The American Journal of Pathology - ajp.amjpathol.org
in kidney function. More extensive validation should be
performed on a larger data set, specifically designed for
this purpose. The D estimated glomerular filtration rate
(DeGFR) was defined as the difference between eGFR
measured at 1 week before the biopsy procedure (accord-
ing to the Modification of Diet in Renal Disease formula)
and the eGFR measured at 2 years after the biopsy pro-
cedure. These data were available for 46 cases. One biopsy
sample per patient was used for these analyses. When
biopsy samples from multiple time points were included
from a single patient in the patient cohort, only the last
sample was included (n Z 39). Cases were only included
if no clinical event occurred (defined as the need for a
biopsy for cause) between the biopsy procedure and eGFR
measurement 2 years after the biopsy procedure (n Z 29).
Subsequently, 11 cases were excluded, where the biopsy
for cause was obtained <60 days after transplantation to
avoid that early transplantation-related lesions, such as
acute tubular necrosis, would distort the analyses. This
resulted in 18 eligible cases for the correlation assessment.
Spearman correlation was calculated to assess the rela-
tionship between DeGFR and visually scored i-IFTA, t-
IFTA, ci, and ct scores. The Spearman correlation was also
calculated between DeGFR and automatically quantified
CD3þ cell density inside fibrotic regions, CD3þ cell
counts per atrophic tubuli, area percentage of interstitial
fibrosis, and percentage of atrophic tubuli.

Results

Visual Banff Lesion Scoring of the Patient Cohort by
Pathologists

The patient cohort consisted of 125 WSI pairs of PAS-
stained slides and CD3 restained slides from 73 patients
(Table 1). A panel of five kidney pathologists (A.A.,
A.Dend., J.H.B., J.K., and T.N.) visually assessed the PAS
WSI for the number of glomeruli, and scored i, t, ti, ci, ct,
i-IFTA, and t-IFTA Banff lesions according to the criteria
listed in Supplemental Table 1 (based on Banff 20185).
After a washout period of 4 weeks minimum, the pathol-
ogists repeated the scoring for the Banff i, t, ti, i-IFTA,
and t-IFTA categories, using the PAS WSI in combination
with the CD3 WSI. The pathologists achieved moderate to
good agreement using the PAS WSI (Supplemental
Figure 1). Including the CD3 WSI caused a larger
spread in Cohen k values with a lower median interob-
server agreement (Supplemental Figure 1). The patholo-
gists’ scores based on only PAS were therefore considered
to be most reliable to compare with CNN data.

Structure Segmentation Performance of the CNN

The structure segmentation performance was assessed on an
unseen test set of 20 WSIs from PAS-stained slides. Table 2
displays the precision, recall, and Dice score per class and
1423
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Table 2 Performance of the Structure Segmentation Network

Tissue class Precision Recall Dice

Glomeruli 0.96 0.94 0.95
Sclerotic glomeruli 0.78 0.90 0.84
Empty Bowman capsule 0.38 0.58 0.45
Proximal tubuli 0.96 0.88 0.92
Distal tubuli 0.85 0.86 0.86
Atrophic tubuli 0.44 0.63 0.52

Hermsen et al
the weighted average of the classes combined. The highest
Dice score was observed for the glomeruli class, followed
by interstitium, proximal tubuli, distal tubuli, sclerotic
glomeruli, arteries and arterioles, capsule, atrophic tubuli,
and empty Bowman capsules. The confusion matrix,
providing insight into how the various predicted classes
correspond to the true classes, is depicted in Supplemental
Figure 2.
Arteries/arterioles 0.60 0.93 0.73
Interstitium 0.91 0.89 0.90
Capsule 0.53 0.90 0.66
Weighted average d d 0.88

d, Not calculated.
Validation of the Indirect Interstitial Fibrosis and IFTA
Segmentation Method with Visually Estimated
Percentages

The correlation of automatically generated interstitial
fibrosis and IFTA percentages with percentages provided by
human observers was assessed to validate the indirect seg-
mentation method of fibrotic regions. The average ICC of
three human observers for scoring interstitial fibrosis was
0.655, and the average agreement of the observers and the
CNN was 0.667. For the scoring of interstitial fibrosis and
tubular atrophy, these values were 0.866 and 0.793,
respectively. Visual assessment of the indirect segmentation
results of interstitial fibrosis supported these positive find-
ings (Figure 2). This validation confirmed the rationale of
the indirect interstitial fibrosis and IFTA segmentation
strategy and justified the use of this method to define fibrotic
Figure 2 Automated indirect interstitial fibrosis segmentation. A, C, and E: A
boxed areas on the low-resolution images represent the areas depicted in the hi
structure segmentation convolutional neural network is visualized in green. E and
to any other structures (excluding interstitium) were assigned to the interstitial
cortical area in this figure is 1% for the nonfibrotic biopsy and 36% for the fibrotic
resolution).
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tissue regions in the entire patient cohort. These regions
were used to automatically include and exclude interstitial
fibrotic regions in CD3þ cell density calculations and to
quantify interstitial fibrosis.
Segmentations and Cell Detections of the Patient
Cohort by the CNNs

An example of a fully automatically assessed PAS-CD3
image pair is depicted in Figure 3. Figures 4 and 5 depict
examples of successful and unsuccessful segmentations of
nonfibrotic biopsy. B, D, and F: Visualization of a fibrotic biopsy. AeF: The
gh-resolution images. C and D: The segmentation of atrophic tubuli by the
F: Using image processing, pixels in closer proximity to atrophic tubuli than
fibrosis class (green). The interstitial fibrosis (IF) percentage based on the
biopsy. Scale bars: 500 mm (A and B, low resolution); 50 mm (A and B, high
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Figure 3 Periodic acideSchiff (PAS)eCD3 image pair with segmentations and cell detections. Representative image of a restained and automatically
analyzed biopsy. This image depicts a PAS whole-slide image (A), structure segmentation mask (B), interstitial fibrosis mask (C), and the corresponding
restained CD3 whole-slide image (D) with the cell detection mask (E). Scale bars: 1 mm (low resolution); 100 mm (high resolution).

Inflammatory Lesion Scoring with CNNs
glomeruli, sclerotic glomeruli, proximal tubuli, distal tubuli,
and atrophic tubuli. Image registration allowed for suc-
cessful alignment of structure segmentation and cell detec-
tion results.

Agreement between Automated Feature Quantification
and Visual Banff Lesion Scoring

The results of the structure segmentation CNN and the
lymphocyte detection CNN were used to quantify
numerous tissue features from the patient cohort. ICCs and
Spearman correlations were calculated between these fea-
tures and the average Banff lesion scoring of five kidney
pathologists (A.A., A.Dend., J.H.B., J.K., and T.N.). The
mean ICC of the CNN and the panel of pathologists for
glomerular counting was 0.941. As supported by Figure 4,
visual assessment of the segmentation result showed highly
accurate segmentations with occasional false-positive seg-
mentations of sclerotic glomeruli. Limiting the automated
glomerular count to nonsclerotic glomeruli led to a mean
ICC of the CNN and the pathologists of 0.972 (Table 3).

Next, the CNN assessment of interstitial fibrosis (pixel
percentage), tubular atrophy (object percentage), inflam-
mation in the total tubulointerstitium (cells/mm2), inflam-
mation in nonfibrotic regions (cells/mm2), inflammation in
fibrotic regions (cells/mm2), tubulitis (highest cell count),
and tubulitis in atrophic tubuli (highest cell count) was
compared with the average score of pathologists for the
following Banff categories: ci, ct, ti, i, i-IFTA, t, and t-IFTA
(Table 4 and Figure 6). The highest correlation was reported
for automatically assessed CD3þ cell density in the total
cortical area with the mean ti score of the pathologists,
followed by the CD3þ cell density in non-scarred cortical
regions and the mean i score of the pathologists. Good
The American Journal of Pathology - ajp.amjpathol.org
correlations were reported for automatic and visual assess-
ment of interstitial fibrosis and tubular atrophy, as well as
for CD3þ cell density in scarred cortical regions and the
mean i-IFTA score of the pathologists. The lowest correla-
tions are reported for the highest CD3þ cell count in non-
atrophic tubuli and the mean t score of the pathologists, and
the highest CD3þ cell count in atrophic tubuli and the mean
t-IFTA score of the pathologists.
Correlation between Chronic Tissue Scores and the
Course of Kidney Function

The correlation of ci, ct, i-IFTA, and t-IFTA with the long-
term course of kidney function was evaluated for the CNN-
based quantification method and the visually assessed Banff
scores. On average, an improvement of eGFR was found
over time in this subset of the patient cohort. Nevertheless,
moderate inverse correlations were found between the
DeGFR and the average i-IFTA score of the pathologists
(ICC Z e0.567; P Z 0.014) (Supplemental Figure 3A),
and DeGFR and automatically assessed cell density inside
interstitial fibrotic regions of the cortex (ICC Z e0.515;
P Z 0.029) (Supplemental Figure 3B). The highest CD3þ

cell count inside atrophic tubuli segmented by the structure
segmentation CNN also inversely correlated with DeGFR
(ICC Z e0.782; P < 0.001) (Supplemental Figure 4B). A
weaker inverse correlation was found between the average
t-IFTA score of the pathologists and DeGFR compared with
the correlation with the automated method (ICC Z e0.568;
P Z 0.014) (Supplemental Figure 4A). The visual ci and ct
Banff score and the automatically assessed interstitial
fibrosis area percentage and tubular atrophy percentage did
not correlate with DeGFR.
1425
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Figure 4 Examples of glomeruli and sclerotic glomeruli segmentations. A: Three representative correct glomerulus segmentations are depicted. B: An
example of a missed glomerulus at the biopsy edge and two examples of false-positive glomeruli segmentations in inflammatory regions (black arrowheads).
C: Three correctly segmented sclerotic glomeruli are depicted. D: Two examples depicted of false-positive sclerotic glomerulus segmentations inside fibrotic
regions and one example where (possibly) a residue of an atrophic tubule is wrongly segmented as sclerotic glomerulus (black arrowheads). Scale bars Z 100
mm (AeD).

Hermsen et al
Discussion

In this study, deep learning was used to quantify both
inflammation and chronic lesions in kidney transplant bi-
opsies. Two CNNs were applied: a structure segmentation
1426
CNN for PAS-stained kidney tissue and a lymphocyte
detection CNN for IHC-stained slides. Nonlinear image
registration allowed quantitative inflammation assessment in
specific regions of kidney biopsies, based on individual
CD3þ cell detections. The reliability of the CNN-based
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Examples of tubuli segmentations. A: Good segmentations of proximal tubuli (left panels), distal tubuli (middle panels), and atrophic tubuli
(right panels), with the top row displaying the periodic acideSchiff images and the bottom row displaying network segmentations. B: Left panels: Two false
proximal tubule segmentations inside an arteriole (black arrowheads). Middle panels: How an inflammatory interstitial region is (partially) incorrectly
segmented as distal tubule (black arrowheads). Right panels: A more superficially cut glomerulus incorrectly segmented as an atrophic tubule (black
arrowhead). Scale bars Z 100 mm (A and B).

Inflammatory Lesion Scoring with CNNs
quantifications was assessed by evaluating the correlation of
the automatically quantified tissue features with patholo-
gists’ Banff lesion scoring. Automatically quantified inter-
stitial fibrosis and tubular atrophy correlated well with Banff
ci and ct scoring. Total cortical inflammation, inflammation
in non-scarred cortical regions, and inflammation in areas
with interstitial fibrosis correlated with Banff ti, i, and i-
IFTA scoring, respectively. In addition, glomerular counts
based on CNN results correlated highly with visual
glomerular counts. A correlation was found between higher
The American Journal of Pathology - ajp.amjpathol.org
inflammatory cell density inside areas of interstitial fibrosis
and long-term decline in eGFR. Lower kidney function also
correlated with higher inflammatory cell count inside atro-
phic tubuli. This was in agreement with the correlations that
were found for visual Banff i-IFTA and t-IFTA scoring with
long-term changes in eGFR.

The literature on kidney tissue segmentation using deep
learning has expanded drastically over the past few
years.31e34 Many of the models described in the literature
were trained in a binary manner (ie, glomeruli versus
1427
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Table 3 ICCs among the Pathologists and for the Pathologists
and the CNN for Glomerular Counts

Group ICC

Mean pathologists 0.977
Mean pathologists: CNN (NSG) 0.972
Mean pathologists: CNN (NSG þ GSG) 0.941

CNN, convolutional neural network; GSG, globally sclerotic glomeruli
object segmentations; ICC, intraclass correlation coefficient; NSG, non-
sclerotic glomeruli object segmentations.

Hermsen et al
non-glomeruli or tubuli versus nontubuli). The current study
demonstrates a segmentation performance for healthy and
globally sclerotic glomeruli comparable to that reported in
literature, despite the challenge of nonbinary
segmentation.35e37 Also, glomerular quantifications based
on our CNN results correlated highly with glomerular
counts performed by five pathologists (A.A., A.Dend.,
J.H.B., J.K., and T.N.).

In a study by Jayapandian et al,38 multiple networks were
presented for segmenting glomerular, vascular, and tubular
structures. The authors are one of the few to report separate
segmentation performance of proximal and distal tubular
segments, with impressive results. Unfortunately, atrophic
tubuli were not included in this study.38 Bouteldja et al36

demonstrated a multiclass segmentation network for PAS-
stained kidney tissue, showing excellent segmentation per-
formances. However, healthy and atrophic tubuli were
combined in their evaluation. The current study presents the
only multiclass structure segmentation CNN that is devel-
oped for the segmentation and classification of the inter-
stitium, healthy and sclerotic glomeruli, and proximal,
distal, and atrophic tubuli. Such discrimination (especially
that between healthy and atrophic/sclerotic structures) is
crucial for developing an assay that yields clinically relevant
and actionable data.

Interstitial fibrosis and tubular atrophy have been shown
to correlate with chronic kidney disease and chronic
Table 4 Spearman Correlation Coefficients for the Computed Tissue Fe

Computed feature Ban

(Interstitial fibrosis pixels/total cortical area pixels) �
100%

Inte

(Atrophic tubuli objects/total tubuli objects) � 100% Tub
CD3þ cell density in total cortical area, cells/mm2 Tota
CD3þ cell density in cortical areaeinterstitial fibrosis, cells/
mm2

Infl

Highest CD3þ cell count inside nonatrophic tubuli object
segmentations

Tub

CD3þ cell density in interstitial fibrosis area, cells/mm2 Infl
in
at

Highest CD3þ cell count inside atrophic tubuli object
segmentations

Tub
in
at
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rejection in kidney transplants. The quantification of fibrosis
has been the subject of several studies.39e42 Artificial neural
networks have been developed for the assessment of
fibrosis in trichrome-stained kidney slides43,44 and recently
the first neural network for sclerotic glomeruli and IFTA
segmentation in PAS-stained slides was presented, showing
good agreement with manual annotations in deceased-donor
tissue.24 In the current study, a novel approach was pre-
sented for the segmentation of interstitial fibrosis by
generating an interstitial fibrosis mask based on atrophic
tubuli segmentations resulting from the structure segmen-
tation CNN. The segmentation of pixels in closer proximity
to atrophic tubuli than to other structures resulted in a
convincing definition of interstitial fibrotic regions. The
correlation of the manual scoring of interstitial fibrosis
percentage by three human observers was similar to the
correlation between manual scoring and the automated
method. In addition, the automated quantification of inter-
stitial fibrosis showed high correlations with the average
Banff ci lesion scores of five kidney pathologists. These
results convincingly show that the presented CNN can be
used as a valid quantification tool for interstitial fibrosis in
kidney tissue.
Although the segmentation performance of atrophic tubuli

has significantly improved since earlier studies, the Dice
coefficient is still relatively low compared with that of some
of the other classes. The confusion matrix in Supplemental
Figure S2 shows that this can largely be attributed to mix-
ups with distal tubuli and interstitium. It can be doubted
whether the confusion with distal tubuli can be entirely pre-
vented as the transition from a healthy tubule to an atrophic
tubule is a continuous process. However, the false-positive
atrophic tubuli segmentations inside (inflamed) interstitium
possibly result from a relatively low number of inflamed
interstitial regions in the training set. This can be improved in
future work, by expanding training data sets.
Over the past two decades, studies have demonstrated the

detrimental effect of inflammation within areas of interstitial
atures with the Average Banff Scores of the Pathologists

ff lesion Spearman r P value

rstitial fibrosis (ci) 0.785 <0.001

ular atrophy (ct) 0.773 <0.001
l inflammation (ti) 0.838 <0.001
ammation (i) 0.806 <0.001

ulitis (t) 0.551 <0.001

ammation in regions with
terstitial fibrosis and tubular
rophy (i-IFTA)

0.706 <0.001

ulitis in regions with
terstitial fibrosis and tubular
rophy (t-IFTA)

0.632 <0.001
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Figure 6 Scatterplots automated and visual assessment of the patient cohort. The computed tissue features by the convolutional neural network (CNN) are
depicted on the y axes. The average Banff lesion score of five kidney pathologists is depicted on the x axes. Ci, interstitial fibrosis; ct, tubular atrophy;
i, interstitial inflammation; i-IFTA, inflammation in regions with interstitial fibrosis and tubular atrophy; t, tubulitis; ti, total inflammation; t-IFTA, tubulitis in
regions with interstitial fibrosis and tubular atrophy.
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fibrosis and tubular atrophy on kidney transplant out-
come.1e4,45e47 As a result, inflammatory fibrosis (i-IFTA)
was introduced to the Banff lesion scoring system in 2015.6

Accurate scoring of i-IFTA requires the visual exclusion of
non-scarred parenchyma, followed by an estimation of in-
flammatory burden inside the scarred region. This makes i-
IFTA hard to score, also considering the novelty of the
category. The low interobserver agreement for the scoring
of i-IFTA in the current study (with and without IHC
available) emphasizes the necessity of a supporting scoring
tool as presented in this study. Yi et al48 recently presented
the so-called composite damage score, composed of
abnormal interstitium areas and tubuli density and areas of
mononuclear leukocyte infiltration. Although the authors
did not directly compare composite damage score with i-
IFTA, it was shown to be predictive for late eGFR decline
and patient survival and will possibly approximate this
Banff category.48

Instead of presenting an entirely new scoring system, the
aim of this study was to stay close to the commonly used
definitions while increasing the scoring granularity, accu-
racy, and reproducibility. To do so, the automatically
generated segmentations and cell detections were combined
using an award-winning image registration technique.49

This allowed us to calculate CD3þ cell density within
scarred and non-scarred parenchyma and perform absolute
CD3þ cell counts in healthy and atrophic tubuli, enabling
comparison to ti, i, t, i-IFTA, and t-IFTA scores. Auto-
matically quantified cell densities in the complete cortical
area were highly correlated to the average ti scores of the
pathologists. Excluding scarred regions from the analysis
allowed for the calculation of an equivalent for the Banff i
score, which showed a high correlation with visual scoring
as well. The Banff ti and i scores and their computational
equivalents require minimal segmentation of the tissue in
specific compartments. This may explain why the highest
interobserver agreements and the highest correlations be-
tween automated and visual assessment were found for
these categories. Lower correlations were found for cell
densities inside regions of interstitial fibrosis with visual i-
IFTA scores. This was possibly partially due to the low
interobserver agreement among pathologists. In addition,
false-positive tubuli detections were observed in inflamed
interstitial regions. Therefore, the automatically generated
interstitial fibrosis mask will not reach these regions,
causing an underestimation of i-IFTA. In return, these false-
positive segmentations can lead to an overestimation of
(atrophic) tubulitis. This can be improved by including more
inflamed interstitial regions during development of the
structure segmentation network.

Finally, the correlation between the change in kidney
function and automatically and visually scored ci, ct, i-
IFTA, and t-IFTA was assessed as a proof of principle.
Higher serum creatinine levels at time of the biopsy could
cause an artifact when looking at DeGFR. To avoid this
artifact, we used the eGFR measured 1 week before the
1430
biopsy for cause as a baseline. In reality, the serum creati-
nine levels appeared to be close on both time points [mean
eGFR at minus 1 week: 29.53 mL/minute per 1.73 m2 (SD,
8.70 mL/minute per 1.73 m2); mean eGFR at time of biopsy:
28.26 mL/minute per 1.73 m2 (SD, 7.99 mL/minute per 1.73
m2)]. This causes most patients to show an improvement of
eGFR over time. Nonetheless, a significant, inverse, corre-
lation was found between the inflammatory burden inside
areas of interstitial fibrosis and the subsequent course of
kidney function. This held for the automated quantifications
by the CNNs and the visual lesion scoring by pathologists.
This shows that the presented method can support uniform
assessment of inflammatory burden inside fibrotic and
nonfibrotic kidney tissue.
There were some limitations in this study. First, the

method presented in this article relies on the restaining of
PAS-stained slides with IHC, followed by image registra-
tion. Most clinical centers will not include these methods in
their routine transplant diagnostics procedure. Therefore,
future studies shall be targeted at the development of an
inflammatory cell detection network for PAS-stained sec-
tions, targeted at macrophages, B lymphocytes, and T
lymphocytes. Second, our automated method does not cor-
rect for tangential sectioning. Third, the data show a trend
toward an inverse correlation between visual and automated
scores of inflammation inside areas of interstitial fibrosis
and tubular atrophy and the course of kidney function.
However, the number of patients eligible for these analyses
was too small to draw strong conclusions from these results.
The predictive potential of automated quantification of
specific tissue features should be assessed in a larger cohort
that was designed for this purpose. Finally, cortical regions
were manually annotated as regions of interest for visual
and automated assessment. A cortex segmentation CNN is
required for fully automated assessment and will therefore
be developed in future work.
Although this study supports a positive view toward the

inclusion of CNN-based quantifications in routine transplant
diagnostics, the true, short-term, clinical value of this study
can be found in the application of CNNs for prospective
kidney (transplantation) research. The results demonstrate
that the presented CNNs produce reliable quantifications of
(inflammatory) fibrotic regions that could be used to
monitor pathologic processes in detail over time in a uni-
form manner. In particular, the CNN-based results can be
used as surrogate end points in large-scale clinical studies,
relieving pathologists from tedious scoring tasks. Predictive
models often require histologic revisions of large cohorts,
where uniform assessment is challenged by variation be-
tween countries, laboratories, and observers. The presented
CNNs can be used to compute tissue features in a repro-
ducible manner, which can subsequently function as input
for a clinical prediction model. The continuous output of the
CNNs can be used to reevaluate the thresholds of the Banff
categories, which might result in a different patient grouping
and a better prognostic system.
ajp.amjpathol.org - The American Journal of Pathology
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In conclusion, two CNNs were developed, applied, and
combined for the segmentation of kidney tissue and the
detection of CD3þ inflammatory cells. Good correlations
were found for the automated quantification of glomeruli,
interstitial fibrosis, and (total) inflammation with the manual
scoring of their equivalent Banff lesion categories. The
segmentation performance of (atrophic) tubuli should be
improved to achieve better correlation with visual scoring of
(atrophic) tubulitis and i-IFTA. Analyses on a small subset
indicate an inverse correlation between long-term changes
in eGFR and inflammation within scarred regions, based on
both automated and visual assessment. Further validations
are necessary to continuously assess the prospects of deep
learning in kidney transplant pathology.
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