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POPULÄRVETENSKAPLIG SAMMANFATTNING

Enmobil robot, instruerad av enmänsklig operatör, agerar i enmiljö medmånga andra föremål.
För en autonomrobot bör detmänskliga ingripandet varaminimalt och endast vara instruktioner
på hög nivå, som den ultimata uppgiften eller destinationen. Neurala nätverk som tar en ström
av bilder som indata och lär sig en specifik datorseendeuppgift från stora mängder data, för att
efterlikna den förmåga som kommer naturligt för människor, har blivit avgörande i strävan efter
autonomi. I denna avhandling utforskar vi olika modeller, som var och en bidrar till att en högre
förståelse av omgivningen är möjlig.

I avhandlingens första bidrag undersöks en metod för objektföljning, för att hålla reda på ob-
jekt. En förmåga som är ett nyckelelement till hur omvärlden kan uppfattas. Metoden skattar en
detaljerad pixel-mask av objektet och klassificerar alla andra pixlar som bakgrund. De initiala
pixlarna av objektet spåras, så kallad videoobjektsegmentering, istället för att spåra position och
storlek. För efterföljande tidssteg ärmålet att lära sig utseendet av objektet från särdrag beräknat
av ett neuralt nätverk. Vi döpte vårmetod till A-GAME, baserad på den generativamodelleringen
av djupa särdrag, som skiljer på hur objektet och bakgrunden ser ut.

I det andra bidraget i denna avhandling detekterar, spårar och segmenterar vi alla objekt från
en uppsättning redan definierade objektklasser. Denna information är hur roboten kan öka sin
förmåga att uppfatta omgivningen. Vi experimenterar med ett neuralt nätverk från grafteori för
att vikta alla nya detekterade objekt och befintliga objektspår. Metoden, som bearbetar en bild i
taget och separerar visuellt och semantiskt liknande objekt, överträffar tidigare arbeten.

Det tredje bidraget undersöker en begränsning av detektorer som använder ankar-baserade ob-
jektkandidater. Dessa detektorer klassificerar redan definierade boxtyper för tänkbara objekt
som antingen negativa eller positiva och begränsad därmed vilka objekt som kan detekteras be-
roende på form. En idé är att lära sig en alternativ objektrepresentation. Vi experimenterar med
ett neuralt nätverk som förutsäger avståndet till närmaste objektkontur i olika riktningar från
varje pixel. Det neurala nätverket beräknar sedan en approximerad distansfunktion, för en bild
i taget, som innehåller information om de individuella objekten.

Till sist studerar denna avhandling ett koncept inom validering. Vi observerade att överanpass-
ning kunde öka prestandamått på dataset avsedda för jämförelse. Denna möjlighet är dock obe-
tydlig för oss i praktiken eftersommätningar, såsom längd eller vinklar, är storheter somanvänds
för att beskriva omgivningen. Det fjärde bidraget i denna avhandling är en utökad valideringstek-
nik för kamerakalibrering. Denna teknik använder en statistiskmodell för varje avvikelse mellan
ett observerat värde och en motsvarande förutsägelse av den projektiva modellen. Ett statistiskt
test beräknas över avvikelserna för att upptäcka om en sådan model är felaktig.
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ABSTRACT

Amobile robot, instructed by a human operator, acts in an environment withmany other objects.
However, for an autonomous robot, human instructions should be minimal and only high-level
instructions, such as the ultimate task or destination. In order to increase the level of autonomy,
it has become a foremost objective to mimic human vision using neural networks that take a
stream of images as input and learn a specific computer vision task from large amounts of data.
In this thesis, we explore several differentmodels for surround sensing, each ofwhich contributes
to a higher understanding of the environment being possible.

As its first contribution, this thesis presents an object trackingmethod for video sequences, which
is a crucial component in a perception system. This method predicts a fine-grained mask to
separate the pixels corresponding to the target from those corresponding to the background.
Rather than tracking location and size, the method tracks the initial pixels assigned to the target
in this so-called video object segmentation. For subsequent time steps, the goal is to learn how
the target looks using features from a neural network. We named ourmethod A-GAME, based on
the generative modeling of deep feature space, separating target and background appearances.

In the second contribution of this thesis, we detect, track, and segment all objects from a set of
predefined object classes. This information is how the robot increases its capabilities to perceive
the surroundings. We experiment with a graph neural network to weigh all new detections and
existing tracks. This model outperforms prior works by separating visually, and semantically
similar objects frame by frame.

The third contribution investigates one limitation of anchor-based detectors, which classify pre-
defined bounding boxes as either negative or positive and thus provide a limited set of handled
object shapes. One idea is to learn an alternative instance representation. We experiment with
a neural network that predicts the distance to the nearest object contour in different directions
from each pixel. The network then computes an approximated signed distance function contain-
ing the respective instance information.

Last, this thesis studies a concept within model validation. We observed that overfitting could
increase performance on benchmarks. However, this opportunity is insipid for sensing systems
in practice since measurements, such as length or angles, are quantities that explain the envi-
ronment. The fourth contribution of this thesis is an extended validation technique for camera
calibration. This technique uses a statisticalmodel for each error difference between an observed
value and a corresponding prediction of the projective model. We compute a test over the differ-
ences and detect if the projective model is incorrect.
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About the Cover: The front cover depicts the agent as a video camera
mounted on a trolley, capturing images of its environment. An analysis mod-
ule processes these images, which reduces the visual data into a segmentation
mask— a type of observation. In a typical reinforcement learning framework,
the observations influence the subsequent actions of the agent, affecting how
the agent perceives and interacts with the environment.
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Introduction

1.1 Motivation

Industries and researchers have long dreamed of creating robots that think
independently. Today we see and hear about greater steps towards such au-
tonomy in the automotive industry and applications for public safety. One
classical example could be that some cars can automatically follow roadmark-
ings and use amodular pipeline1 to prompt the driver to take over when it can
no longermaintain a safe perception of the direct course of the road. This loss
of perception to keep the car on the road would be a failure for a self-driving
car. Our sense of vision is crucial in providing us with information about our
surroundings. It allows us to determine our location, identify nearby objects,
and track theirmovement. In essence, vision is our primarymeans of perceiv-
ing andmaking sense of the world, which is the ability that this thesis aims for
a computer program to perform. This ability is the topic of computer vision
— an area involving the development of algorithms and techniques for ana-
lyzing, processing, and extracting information from images and video. Many
computer vision problems rely on machine learning techniques, mainly deep
neural networks. Aneural network is a flexiblemathematicalmodel— trained
to perform complex tasks, such as finding roadmarkings in images, by expos-
ing it to a large set of examples describing inputs and outputs. The strategy
is to ”show” the neural network batches of samples, and nudge it towards im-
proving with each new batch. This optimization strategy, called offline train-
ing, is a data- and computation-heavy part of finding an optimum where the
neural network performs similarly to the actual task.

Neural networks have proven superior tomost othermethods for tasks in-
volving single-image input, leading to significant progress in fields like image
classification and object detection. However, despite this success, challenges

1This classical approach breaks down autonomous mapping into independent pieces,
whereas ideas from [42] map input directly to control signals.
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1. Introduction

remain with tasks where the level of detail a neural network can capture is
a key determinant of its ultimate performance. For instance, while neural
networks are adept at decoding patterns in an input image to describe the ap-
pearance of a depicted object concisely, they may need additional guidance
to distinguish between overlapping or neighboring objects. This lack of abil-
ity connects to the optimization strategy since the offline training of neural
networks can sometimes limit their ability to adapt to variations in the input,
as they rely on pre-collected examples that may not account for future or un-
seen data. To ensure that the model performs well and is not overly flexible
or simple, it is common practice to test it on a previously unknown test set.
This test set can evaluate the model’s ability to generalize to new data beyond
what it learned from the provided examples.

Let us revisit the example we introduced in the beginning. In a dynamic
environment, an image stream also contains other traces of information, such
as nearby objects, that can assist with maintaining high-level human input,
thus, preventing humans from intervening. While humans possess a strong
visual system for understanding their environment, a neural network must
learn to perform the same task. The task could be to detect and store memo-
ries of other objects to track their movements and navigate the environment.
One approach is to let a detector suggest objects to the tracker. Once a track
is active, the tracker stores each object’s changes in appearance over time.
Saving these changes is learning how they look and occur online compared to
prior skills learned offline, like, e.g., object detection.

1.2 Outline

This thesis contains two parts. The first part divides the topics of imag-
ing, camera calibration, single-image, and multi-image analysis into four
chapters. Chapter 2 introduces simple imaging and camera geometry and
discusses statistical assumptions from the perspective of linear regression.
Chapter 3 studies the single-image tasks of image segmentation and detec-
tion. Chapter 4 studies a variant of object tracking in a stream of images,
where the object is segmented, called video object segmentation. Next, Chap-
ter 4 presents a method which detects, tracks, and segments objects. Last,
Chapter 6 concludes the thesis. The second part of the thesis contains its four
contributions. Paper A contributes to end-to-end learning of a mechanism
that models target appearance, leading to a state-of-the-art performance in
video object segmentation. Paper B proposes a training formulation for a
neural networkwhich tackles video instance segmentation. Paper C proposes
a neural network which predicts the distance to object contours to improve
the detection of arbitrary object shapes. Finally, paper D is a contribution to
validation in projective geometry.
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1.3. Included Publications

1.3 Included Publications

Paper A: A Generative Appearance Model for End-to-end
Video Object Segmentation
Joakim Johnander, Martin Danelljan, Emil Brissman, Fahad Shahbaz Khan,
and Michael Felsberg. “A generative appearance model for end-to-end video
object segmentation.” In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 8953–8962
Abstract: One of the fundamental challenges in video object segmentation is
to find an effective representation of the target and background appearance.
The best performing approaches resort to extensive fine-tuning of a convolu-
tional neural network for this purpose. Besides being prohibitively expensive,
this strategy cannot be truly trained end-to-end since the online fine-tuning
procedure is not integrated into the offline training of the network. To ad-
dress these issues, we propose a network architecture that learns a powerful
representation of the target and background appearance in a single forward
pass. The introduced appearance module learns a probabilistic generative
model of target and background feature distributions. Given a new image,
it predicts the posterior class probabilities, providing a highly discrimina-
tive cue, which is processed in later network modules. Both the learning and
prediction stages of our appearance module are fully differentiable, enabling
true end-to-end training of the entire segmentation pipeline. Comprehen-
sive experiments demonstrate the effectiveness of the proposed approach on
three video object segmentation benchmarks. We close the gap to approaches
based on online fine-tuning on DAVIS17, while operating at 15 FPS on a sin-
gle GPU. Furthermore, our method outperforms all published approaches on
the large-scale YouTube-VOS dataset.
Author’s contributions: Joakim Johnander and Martin Danelljan devel-
oped the method, and the author contributed to experiments and writing.
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1. Introduction

Paper B: Recurrent Graph Neural Networks for Video
Instance Segmentation
Emil Brissman, Joakim Johnander, Martin Danelljan, and Michael Felsberg.
“Recurrent Graph Neural Networks for Video Instance Segmentation.” In:
International Journal of Computer Vision (2022). doi: 10.1007/s11263-
022-01703-8

This publication is a journal extension of Johnander et al. [21]. Repro-
duced with permission from Springer Nature.

Abstract: Video instance segmentation is one of the core problems in com-
puter vision. Formulating a purely learning-based method, which models
the generic track management required to solve the video instance segmen-
tation task, is a highly challenging problem. In this work, we propose a novel
learning framework where the entire video instance segmentation problem is
modeled jointly. To this end, we design a graph neural network that in each
frame jointly processes all detections and amemory of previously seen tracks.
Past information is considered and processed via a recurrent connection. We
demonstrate the effectiveness of the proposed approach in comprehensive ex-
periments. Our approach operates online at over 25 FPS and obtains 16.3 AP
on the challenging OVIS benchmark, setting a new state-of-the-art. We fur-
ther conduct detailed ablative experiments that validate the different aspects
of our approach.
Author’s contributions: The method was developed jointly with Joakim
Johnander. The author contributed to the implementation, experiments, and
manuscript.
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1.3. Included Publications

Paper C: Predicting Signed Distance Functions for Visual
Instance Segmentation
Emil Brissman, JoakimJohnander, andMichael Felsberg. “Predicting Signed
Distance Functions for Visual Instance Segmentation.” In: 2021 Swedish Ar-
tificial Intelligence Society Workshop (SAIS). IEEE. 2021, pp. 1–6
Abstract: Visual instance segmentation is a challenging problem and be-
comes evenmore difficult if objects of interest varies unconstrained in shape.
Some objects are well described by a rectangle, however, this is hardly always
the case. Consider for instance long, slender objects such as ropes. Anchor-
based approaches classify predefined bounding boxes as either negative or
positive and thus provide a limited set of shapes that can be handled. Defining
anchor-boxes that fit well to all possible shapes leads to an infeasible number
of prior boxes. We explore a different approach and propose to train a neural
network to compute distance maps along different directions. The network
is trained at each pixel to predict the distance to the closest object contour
in a given direction. By pooling the distance maps we obtain an approxima-
tion to the signed distance function (SDF). The SDFmay then be thresholded
in order to obtain a foreground-background segmentation. We compare this
segmentation to foreground segmentations obtained from the state-of-the-
art instance segmentation method YOLACT. On the COCO dataset, our seg-
mentation yields a higher performance in terms of foreground intersection
over union (IoU). However, while the distance maps contain information on
the individual instances, it is not straightforward to map them to the full in-
stance segmentation. We still believe that this idea is a promising research
direction for instance segmentation, as it better captures the different shapes
found in the real world.
Author’s contributions: The author developed the method and wrote the
manuscript jointly with Joakim Johnander. The author took the lead in im-
plementation and experiments.
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Paper D: Camera Calibration without Camera Access - A
Robust Validation Technique for Extended PnPMethods
Emil Brissman, Per-Erik Forssén, and Johan Edstedt. “Camera Calibration
without Camera Access - A Robust Validation Technique for Extended PnP
Methods.” In: Accepted to SCIA. (2023)

Reproduced with permission from Springer Nature.

Abstract: A challenge in image based metrology and forensics is intrinsic
camera calibration when the used camera is unavailable. The unavailability
raises two questions. The first question is how to find the projection model
that describes the camera, and the second is to detect incorrectmodels. In this
work, we use off-the-shelf extended PnP-methods to find themodel from 2D-
3D correspondences, and propose a method for model validation. The most
common strategy for evaluating a projection model is comparing different
models’ residual variances—however, this naive strategy cannot distinguish
whether the projection model is potentially underfitted or overfitted. To this
end, wemodel the residual errors for each correspondence, individually scale
all residuals using a predicted variance and test if the new residuals are drawn
from a standard normal distribution. We demonstrate the effectiveness of
our proposed validation in experiments on synthetic data, simulating 2D de-
tection and Lidarmeasurements. Additionally, we provide experiments using
data from an actual scene and compare non-camera access and camera access
calibrations. Last, we use our method to validate annotations in MegaDepth.
Author’s contributions: The method was developed together with Per-
Erik Forssén. The author was the main contributor to the implementation,
experiments, and manuscript.
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1.4. Omitted Publications

1.4 Omitted Publications

The author has been part of an additional publication omitted from this the-
sis. The IJCV paper [5] covers the DAGM GCPR paper [21], about video in-
stance segmentation.

Recurrent Graph Neural Networks for Video Instance
Segmentation
Joakim Johnander, Emil Brissman, Martin Danelljan, and Michael Felsberg.
“Video Instance Segmentation with Recurrent Graph Neural Networks.” In:
Pattern Recognition: 43rd DAGM German Conference, DAGM GCPR 2021,
Bonn, Germany, September 28–October 1, 2021, Proceedings. Ed. by Chris-
tian Bauckhage, Juergen Gall, and Alexander Schwing. Cham: Springer In-
ternational Publishing, 2021, pp. 206–221. doi: 10 . 1007 / 978 - 3 - 030 -
92659-5_13
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Camera Models

incident light

sensor plane 

image element I(u,v)

u

v

Figure 2.1: Each grid element samples the intensity of incident light from a
specific direction. The image element or pixel is the quantized intensity.

Thanks to evolution, the human eye has developed into an advanced vi-
sual sensor that allows us to perceive intensity and color and signal this to
the brain. This evolution enables us to hit a tennis ball, track a fly, recognize
family members, and spot a Phasmatidae (stick insect) in front of a back-
ground of branches and leaves. The source of these abilities is light, focused
on the retina, forming an image of the visual world. Consequently, light is one
medium extending our ability to act in an environment. This chapter first in-
troduces image acquisition such that a computer can make sense of incident
light. Figure 2.1 provides an illustration of the imaging surfacemimicking the
mechanisms of the retina. Next, the projective model — describing a sensor’s
relative position and characteristics — is introduced with a discussion laying
the basis for Paper D.
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2. Camera Models

2.1 Image Acquisition

Taking a picture with a camera mimics how light projects onto the human
eye’s retina but onto an image sensor. This sensor contains small individual
elements (pixels) arranged in rows u and columns v. As light falls onto the
pixels, it creates different amplitude electrical currents that produce a con-
tinuous digital signal based on the light intensity. The image sampling pro-
ceeds with quantizing or encoding the signal into a discrete function I(u, v),
where each function value is a positive integer, enabling a computer to store
the image.

The data in a grayscale image consists of a single channel (intensity) map
where each pixel is between the value zero, the minimum brightness (black),
and 255, the maximum brightness (white). Other types of images, such as
color and binary images are represented differently. For instance, most color
images are based on the intensity levels of three primary colors, red, green
and blue and stored in three separate channels 1. The binary image is an in-
tensity image where the pixels only take one of two values, zero or one, and is
sometimes used tomask precise information—for example, indicating broken
pixels that do not record any incident light.

Even though camerasmimic how the human eye captures light, they work
differently. For instance, a camera focuses by moving its lens back and forth,
while the lens in the human eye changes its shape. Additionally, most cam-
eras have a lens, but an image sensor can work without one. To understand
this, let us consider the simplest type of camera.

2.2 Pinhole Camera

The pinhole camera is one of the simplest camera models and helps under-
stand the fundamental optical components of a camera. Around the 16th
century, Giovanni Battista della Porta [1], experimented with the camera ob-
scura [47] to acquire a photo, by using the pinhole model principle. In prac-
tice, a flat light-sensitive material is placed inside a black box, with a small
hole (aperture) perpendicular to the material on the opposite side. The aper-
ture enables light to pass through, which irradiates the material and results
in a sharp image being formed. An illustration of the camera obscura in Fig-
ure 2.2 shows its geometry, the optical center O, and the camera coordinate
system (X ′, Y ′, Z ′). The distance f (focal length) between the image plane
and O determines the scale of the projection. The opening radius of O also
affects the projection. A small radius will let a small amount of directed light
in, and the image will be dim but focused. A larger radius will let inmore light

1We refer to the notion of channels as the encoding of input data, or a signal, into a channel
representation, describing one or more features of the input [10].

12



2.2. Pinhole Camera

Z´
Y´

X´

image plane 

optical axis
f

Figure 2.2: Geometry of the pinhole camera.

that will make the image brighter — but also blurrier: allowing light from dif-
ferent directions to contribute to a larger area in the picture.

Compared to the geometry depicted in Figure 2.2, computer vision ap-
plications model the pinhole camera using the image plane in front of O for
mathematical convenience. Consider a 3D point X = [x, y, z]⊺ rotated by R

and translated by t such that is is expressed in the camera coordinate system
as,

X̂ =RX + t . (2.1)

The perspective projection then ”beams” the point, trough the optical center
O onto the image plane by:

X̃ =
⎛
⎜
⎝

fx̃

f ỹ

f

⎞
⎟
⎠
= f
ẑ

⎛
⎜
⎝

x̂

ŷ

ẑ

⎞
⎟
⎠
. (2.2)

Lens Distortion
Since we know the problem of the trade-off between obtaining a focused im-
age or a bright image using the pinhole camera, it becomes less practical. In
reality, cameras use glass lenses or systems of optical lenses to increase aper-
ture, let more light in, while at the same time focussing the light on the image
plane. An effect of lenses is image distortion, altering the image from the ideal
image. The joint projection of (2.1) and (2.2), express the ideal image and an
affine linear transformation that keeps straight lines in the world as straight
lines in the image. Lenses only approximate this property, causing the lines to

13



2. Camera Models

become distorted. The distortion depends on the aberrated light before image
sampling, dependent on the physical characteristic of the lens and aperture.
Typically the type of characteristic, barrel or pincushion, is more prominent
towards the image borders and less around the image centre. Such radial dis-
tortion is modelled by

y′ = g (y,θ) , (2.3)

a non-linear function g that aligns the pixels similar to (2.2). Paper D uses
results linked to a special case of (2.3),

y′ = 1 + θ1∣∣y∣∣2 + θ2∣∣y∣∣4 + θ3∣∣y∣∣6 , (2.4)

using up to three distortion coefficents θ.

Calibration
The matrix K in [17] expresses a more accurate representation of (2.2) and
together with θ, they form the camera’s intrinsic parameters. Furthermore,
R and t are the extrinsic parameters and represent the relative camera pose
in a coordinate system from which the 3D pointX originates.

Letw = (R, t,K,θ). The total projection model,

x̃ = proj(X,w) , (2.5)

relates a depicted 3D point to its spatial counterpart x̃ = [u, v]⊺ in the pic-
ture and summarizes the discussion on extrinsic and intrinsic parameters.
For applications such as depth estimation or 3D reconstruction [43], it is es-
sential thatw is optimal such that results correspond to physical 3D proper-
ties. Zhang [50] suggest a controlled principle to form a dataset D required
for training, i.e., finding a good estimate of w. This principle includes tak-
ing pictures of a checkerboard pattern with equidistant squares of black and
white. The inner corners of the pattern, in each picture, form unambiguous
features that are easy to detect. Due to the controlled planar structure of the
inner corners, corresponding 3D points are easy to define explicitly. That is,
D = {Λj}Nj=1 is a set of corresponding 2D and 3D pointsΛj = (Xj ,xj,detected).

Alternatives to form pairs exist. In Paper D, the 3D points are not ex-
plicitly given from any structure. Instead, they originate from a Lidar, which
emits narrow laser beams in different directions that are reflected back, to
measure distances. The distances and directions result in 3D points. Such
points, with corresponding 2D points, are commonly used in Perspective-n-
Point problems [11].

2.3 Linear Regression

Let us consider the error residual ϵ = x̃ − xdetected for the discussion about
the optimal estimatew∗. After computing the estimate using D, the accurate
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2.3. Linear Regression

inference or projection, of (2.5) can be made given X. However, the accu-
racy depends on the quality of D. The point xdetected is usually annotated or
detected with a detection error, misaligning it from its ideal position. There-
fore, ϵ is random. Consequently, most annotated data is uncertain, except
if data originates from simulations. For instance, if humans mark out cor-
ner positions, we assume that some error exists. However, probability theory
uses the concept of random variables to make optimal predictions given all
the available data, even if the data is incomplete or ambiguous.

We return to our random variable ϵ and model its distribution p (ϵ ∣Λ)
given a correspondence pair to be Gaussian. Then the model is expressed as,

p (ϵ ∣Λ,w) =N (ϵ ;0, σ2I) = 1

2πσ
exp(− ϵ

⊺ϵ

2σ2
) . (2.6)

Specifically, we let the expectation of p (ϵ ∣Λ) be zero and the variance an un-
known hyper-parameter σ2. In Paper D, this noise variance is detailed and
modelled such that sources of uncertainties in D become known to detect in-
correct projection models.

To compute the parameters of the model (2.6), we apply the maximum
likelihoodmethodology,

argmax
w

N

∏
j=1

p (ϵj ∣Λj ,w) = argmin
w

−
N

∑
j=1

log p (ϵj ∣Λj ,w) . (2.7)

By inserting (2.6) in (2.7) and discarding unimportant constants, we can de-
rive the equivalent sum of squares loss,

L (w) =
N

∑
j=1

ϵ⊺j ϵj =
N

∑
j=1
∥ x̃j − xdetected,j ∥2 . (2.8)

Here, N is the number of corresponding 2D-3D pairs for a single camera.
In the linear case, the loss (2.8) allows a closed-form solution via its normal
equations. However, the projection in (2.5) computing the response x̃j is not
linear in its parameters. That is, the loss is a nonlinear least-squares problem,
a special case of unconstrained optimization [34].

Equation (2.7) also relies on the assumption of independent and identi-
cally distributed (i.i.d) residuals, which is fundamental to the least squares
problem. In Paper D, we build on this assumption by using it to detect incor-
rect models. Specifically, when the optimal projection model w∗ accurately
reflects the actual process and there is no systematic bias in the residuals, the
i.i.d. assumption is often true. Deviations from this assumption can then be
used to identify when the model is incorrect.
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3

Image Segmentation

Figure 3.1: Raw input (left), semantic segmentation (middle) and instance
segmentation (right). Images from [38].

Chapter 2 raises the question of what information in an image can serve
as the foundation for a mobile robot to act. This chapter introduces the seg-
mentation task, an image analysis task. The goal is not to enhance or alter the
image appearance but to extract meaningful information about its contents.
This task turns out to bemore challenging in practice thanwe, humans, would
expect. In Paper A, Paper B and Paper C, we train neural networks from data
to cover the task complexity.

3.1 Segmentation

In segmentation, we assume that an image encoder receives an image and
produces image features that a segmentation method uses to partition pix-
els into coherent, typically connected, and meaningful regions. The objective
of the segmentation method is to assign each pixel with a label, which corre-
sponds to a unique structure in the data. From corresponding image and label
samples, the task is learnt offline. A more straightforward approach, without
any learning, can threshold the original input based on the red, green and
blue (RGB) image intensity values. However, guessing one or more thresh-
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3. Image Segmentation

olds is not generally possible since, e.g., the same color can represent many
regions.

Motivation
Image segmentation extends the capabilities of image classification, not only
predicting a single global label for the image content but also localizing the
presence of the salient structure by outlining the boundaries. With computer
vision as the only reference to the real world, robots can use this information
to segment the observed object from the background or the observed objects
from the background to enable interaction with the environment.

That is, dividing an image into multiple segments or regions, each corre-
sponding to a specific object or part of the image enables a more fine-grained
image content analysis. Furthermore, segmentation as output from a neural
network can also help us to track objects. Chapter 4 presents this ability.

Types of Image Segmentation Tasks
Wedivide thenumber of image segmentation tasks into three groups based on
the level of information they provide on an image. (a) Semantic Segmenta-
tion [29] refers to classifying each pixel to a set of predefined semantic classes.
Semantic classes can be obtained by asking persons, e.g. children [27], to
name all things. Now, consider several objects of the same category. Zebras,
for instance. As such objects crowd, the semantic segmentation merges into
a blob, and we lose the in-depth details or information on the image. See
the centre mask in Figure 3.1. (b) Instance Segmentation [16][18] refines
the problem of image segmentation by classifying pixels based on instances
rather than just classes. Ideally, instance segmentation methods can differ-
entiate between similar objects and their surrounding objects using object
contours. The challenge is that the instance of each segmented region no
longer knows what they are. Also, larger portions of the image belong to the
background class, not providing further details of the surrounding. (c) The
Panoptic Segmentation [23] task is the combination of (a) and (b) provid-
ing information on the entire image. The panoptic task predicts instances of
predefined classes and segments the background into categories referred to
as ”stuff,” such as road, grass, and sky. Kirillov et al. [23] refers to panoptic
as ”a unified, global view of segmentation”.

3.2 Detecting Objects

We often refer to instance segmentation as object detection or a detector. But
the implication is different for all three. The detector is the method that tack-
les the task of either instance segmentation or object detection. Although the
tasks themselves are related, they differ. Object detection seeks to find objects
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in an image and represent them using a bounding box. In contrast, instance
segmentation adds details about object shapes using segmentation masks as
object representation.

Trained detectors typically predict class confidence from a predefined set
of classes, a bounding box, and a segmentation mask describing the spatial
extent of all potential objects. The class confidence tells us two pieces of infor-
mation — the object class membership and the detector’s overall confidence
in the detection.

Detection Network Designs
The standard principle for most state-of-the-art object detectors is to evalu-
ate and classify a predefined set of object candidates. Sliding windows de-
fine candidates as all possible shifts of a bounding box. They can precisely
localize where in an image objects reside, however, at the expense of compu-
tational power and time. Other approaches to defining candidates are region
proposals and anchor boxes utilized in famous detectors such as the two-
stage MaskRCNN [18] and the one-stage YOLACT [3], respectively. Both ap-
proximate the slidingwindow approach, and each sparsely defines candidates
on a grid or predicts salient regions in a pre-processing step. For instance,
YOLACT [3] parametrizes anchor boxes as position, width, and height, with
each anchor using its own set of parameters. Then, by learning bounding box
regression, the boxes are adjusted to encapsulate the objects accurately.

Generally, object detectors should solve two tasks; (a) finding objects
and (b) classifying all found objects, estimating their sizes and segmentation
masks. The anchor boxes solve the first subproblem and give prior informa-
tion about the second task, such that the detector methods focus on classi-
fication and refinement. Methods applying a two-stage approach first pre-
processes the candidates to find salient ones (region proposals) such that the
second stage only predicts class, bounding box, and segmentation for a sub-
set of object candidates. The single-stage method directly predicts the output
on a sparse grid of anchor boxes. Then, a post-processing step ranks the de-
tections according to their confidence. Using anchors boxes, the Single Shot
MultiBox Detector [28] formulate a direct loss for training a neural network
for the object detection task.

Evaluation
The MSCOCO [27] dataset is the most commonly used dataset for training
detectors and Average Precision (AP) is the standard measure by which to
compare new methods. Often, by denoting the metric as just AP when it is
mean AP over the number of categoriesK in the dataset to which it refers,

mAP = 1

K ∣Π∣

K

∑
i=1
∑
e∈Π

APi (e) . (3.1)
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3. Image Segmentation

Each class specificAPi (e) in (3.1) is calculated with the help of other metrics
such as the intersection over union (IoU), true positives (TP), false positives
(FP), false negatives (FN), precision and recall. First, the IoU is used to mea-
sure the overlap between the areas of predicted boxes and the ground-truth
boxes. As the name suggests, the formula is a simple division of the spatial
region areas — the intersection of two boxes divided by their union. Then,
the predecided IoU threshold set Π divides detections into subsets. Next, the
ground truth is used to calculate the number of TPs, FPs, and FNs for the
subset detections that depend on a certain intersection-over-union threshold,
such as IoU > 0.5. The final step involves sorting the detections based on their
predicted confidence levels, which leads to the generation of the precision and
recall curve. Next, equation (3.2) integrates this curve to determine the AP for
a particular class and IoU threshold. Here, η is the number of different confi-
dence threshold values. Note that the AP computation considers confidence
ranking between different detections. Hence, the performance measure will
reward true positives with high confidence and false positives with low con-
fidence.

APi (e) =
η−1
∑
j=1
(Recall [j] −Recall [j + 1]) ∗Precision [j] (3.2)

3.3 Object Representation

We now turn to the Paper C method, which proposes an implicit representa-
tion of instances and continues our discussion of anchor boxes.

Imagine a long, narrow object, e.g., a broom, snake or lamp post. Also,
consider the many ways to depict these items. It is now evident that anchor
boxes can, occasionally, not describe some object shapes well. So specula-
tively, from a statistical perspective, the prior becomes too uniform to pro-
duce an accurate posterior — a refined bounding box that encloses the ob-
ject extremes. Another difficulty is when, e.g., the snake winds its way up
the broom shaft. The bounding boxes surrounding each object will likely
represent the same image region, making them ambiguous. Thus, segmen-
tation masks can benefit a robot as they accurately separate the broom and
snake structures, accurately representing their spatial extent. However, even
though segmentation masks may ultimately represent the objects, the actual
instance still relies on the bounding box as its foundation. For instance, we
can compare Mask R-CNN [18] and YOLACT [3], which use region propos-
als and anchors, respectively. The performance difference is 5.9% mAP in
favor of Mask R-CNN and 24.9 frames per second in favor of YOLACT. Con-
sequently, the approach which approximates object candidates is important
for detection performance.
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3.3. Object Representation

In Paper C, we take inspiration from Neven et al. [33] trading accuracy
for computational speed. They demonstrate an approach free from anchor
boxes by proposing the instance segmentation problem as clustering of learnt
spatial embeddings. The spatial embeddings pull the pixels into instances
that implicitly define objects’ segmentation masks.
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4

Video Object Segmentation

SVOS

SVOS

SVOS

t0

t1

t2
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Image + Mask Input Image Image + Mask

UVOS
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UVOS

UVOS

Figure 4.1: Most of the literature divides video object segmentation into semi-
supervised (SVOS) and unsupervised (UVOS) [37]. SVOS utilises the first
frame, and in UVOS, tracking shall advance without prior information. Im-
ages from [38].

Having analyzed single images, we now turn to visual tracking using a
stream of images. This process enables capturing dynamic changes in the
scene, which a robot can leverage in planning. The tracking objective is to
locate an object in a sequence of images, using its initial position in the first
frame as a reference. A successful tracker should be able to identify and follow
the object in all subsequent frames, even if it moves, changes appearance, or
is partially occluded. This chapter introduces the Video Object Segmentation

23



4. Video Object Segmentation

(VOS) problem that is an extension of Visual Object Tracking [24] (VOT),
which uses segmentation masks instead of bounding boxes. We tackle the
VOS problem in Paper A by directly training a neural network that uses a
mechanism that learns how the object looks to track and segment an object
at a time.

4.1 VOS Architecture

Since the publication of the Densely Annotated Video Segmentation (DAVIS)
benchmark in 2016 [37], the task of VOS has experienced a considerable in-
crease in interest. Figure 4.3 presents data that supports the DAVIS bench-
mark as a milestone for the field. DAVIS is still considered the most influ-
ential benchmark for state-of-the-art comparison, with annotations of high
quality. The videos in DAVIS are few and usually short, between 30 and 120
frames at high resolution, and targets are typically large. The annotations
of each frame consist of fine-grained segmentation masks, where the value 1
marks the targets if they are visible.

The method in Paper A employs a Siamese encoder-decoder architec-
ture [35], illustrated inFigure 4.2, and is a semi-supervised [37] (SVOS) based
approach we call A-GAME. At inference, the segmentation mask of the first
frame is given andmarks out the entire object. Compared to noprior informa-
tion about the target, as in unsupervisedVOS [37] (UVOS). For the difference,
see Figure 4.1.

t0

ti

Enc.

Reference
feature map

Enc.

Reference
image + Mask

Target Image Target 
feature map

Matching Dec.

Target image + Mask

Resulting 
feature map

Figure 4.2: The Siamese encoder-decoder VOS architecture. Our approach
proposes to represent object and background appearances using generative
models. Instead of directly matching feature-to-feature [44], we update the
generative models at each subsequent frame that explicitly can predict if a
feature is a sample from the object or background appearance distribution.
Images from [38].
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Image Features
In Section 2.1, we formulated our discussion on image sampling as encoding
incident light to three separate channels, the intensity of the red, green, and
blue light. For the VOS task, we can similarly describe the representation of
the underlying image content, such as color, shape, orientation, and more.
In Figure 4.2, the Siamese architecture first extracts (encodes) features. For-
mally a mapping y = ψ(I(u, v)) that takes the input image I ∈ R3×h0×w0 and
outputs a feature map y ∈ Rd×h×w. In a neural network, or deep learning [13],
these features or descriptors in some way simplify the task.

In detail, for VOS, a reference feature representing the object is compared
to features in a target map. For instance, suppose a specific operator g de-
scribes the translation of the reference object to the target frame. We expect
its features to be equivariant,

ψ(g(I)) = g(ψ(I)) , (4.1)

such that a feature in the referencemap has the same ”values” as some feature
in the target map but possibly at a different spatial location. Comparing fea-
tures produces a new feature map that indicates the likelihood of the target
location in the target frame.

The feature extractor usually comprises a deep Convolutional Neural Net-
work (CNN), a pre-trained image classificationmodel on ImageNet data [25].
Paper A uses one of two pre-trained CNN methods, ResNet50 [19] or
ResNet101 [19], as its encoder. However, as the purpose of these networks
differs from that of VOS, a reference feature from a ResNet may still contain
semantic information that can deceive the method. As a result, it may strug-
gle to distinguish the target object from background objects belonging to the
same category. Hence, the tracker expects the mapping function ψ to gener-
ate discriminant features suitable for the task. For instance, after comparing
these features, the method will produce a score map with a single, distinct
supremum that supports a more precise segmentation mask prediction.

4.2 Appearance

In Paper A, the set of features positivelymasked by the previous segmentation
mask represent the object’s appearance. Negatively masked features repre-
sent the background appearance. We enhance the discriminative power by
jointly modelling both sets using a generative model—amixture of Gaussians
where we update

µi
k = (1 − λ)µi−1

k + λµ̃i
k (4.2)

and
Σi

k = (1 − λ)Σi−1
k + λΣ̃i

k (4.3)
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in a single forward pass. Two Gaussians model the object’s appearance, and
two others model the background appearance. In each subsequent frame i,
we learn the parameters of (4.2) and (4.3) in the different Gaussians online
at a rate of λ. This method enables our approach to be trained end-to-end
and to explicitly predict a binary class probability, how likely it is for the fea-
tures to be part of the object or the background appearance. A subsequent
approach byRobinson et al. [40] proposes a closer analysis of the background
and tracks each distractor to enhance the tracking of the target object.

Training End-to-End
What we mean by end-to-end learning is that each level or filter in a neural
network affecting some input should be differentiable such that a final loss,
describing what a model shall learn, can propagate back to optimize how the
levels or filters should operate from the original input. In Paper A, we ana-
lyze the impact and show a 7.2% overall performance drop when we disable
differentiation through themechanism thatmodels object appearance. Thus,
end-to-end is an excellent tool for solving elaborate tasks but has also been
limiting [14].

4.3 Performance Evaluation

The question is how well G fits M , given a ground truth mask G and a pre-
dictedmaskM for a particular frame. The VOS task commonlymeasures two
complementary factors. First, the Jaccard index J compares the segmenta-
tion masks’ similarity, i.e., the number of mislabeled pixels by,

J = ∣M ∩G∣
∣M ∪G∣

. (4.4)

Secondly, the segmentation contour accuracy F is computed by,

F = 2PcRc

Pc +Rc
. (4.5)

Here, Pc and Rc are the contour-based precision and recall between contour
points c(M) and c(G), computed via bipartite graph matching. The average
value of (4.4) and (4.5) results inJ&F = (J +F)/2, whichmeasures the over-
all VOS performance [37]. In Figure 4.3, the performance metric J&F is re-
ferred to as score for methods evaluated on the 2017 DAVIS benchmark [38].
From the figure, we see our final performance J&F from Paper A on 70%.
In 2019, A-GAME was state-of-the-art for causal VOS methods without any
online fine-tuning. A third metric T also exists, measuring the smoothness
of contour transition between frames. However, most works do not report T ,
probably explained by its incapability to handle objects under occlusion and
strong deformations [37].
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In Voigtlaender et al. [46], they argue that the performance for state-of-
the-art methods is starting to saturate on benchmarks such as DAVIS and
therefore introduce a new benchmark, TAO-VOS, that is aimed to progress
VOS further. In Figure 4.3, the score ofmost VOSmethods is plotted between
2017 and 2022, except 2022, which only contains one sample. Computing the
mean and variance over each year between 2017 and 2021 indicates some cre-
dence to their general claim on the 2017 DAVIS benchmark [38]. Regardless
of how the methods work, XMem [8], e.g., achieves approximately 90% accu-
racy, a 20% increase from A-GAME in Paper A.

Compared to DAVIS, TAO-VOS features 833 different classes of objects
and consists of 500 videos for training, 988 videos for validation, and 1419
videos for testing. The dataset has an average of 5.9 objects per video, and
the average sequence length is 36.9 seconds. However, it is important to note
that both values are averages, and the actual numbersmay vary for individual
videos. Furthermore, even if the frame rate is lower in TAO-VOS, new objects
often appear and disappear, which is rare in DAVIS. Therefore, from a prac-
tical point of view, I argue for TAO-VOS, which is more diverse and test more
realistic scenarios.
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Figure 4.3: The J&F score for VOS methods from 2017 to 2022. All meth-
ods have been evaluated on the DAVIS17 [37] test set. We also plot the
mean score and 1σ interval in grey between 2017 and 2021, and the meth-
ods [2][7][8][30][35][36] as black triangles for comparison to our method.
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4.4 Merging Multiple Objects

In Paper A, we evaluate our method on several benchmarks, including those
with multiple objects annotated. However, the task definition in VOS is for
single objects. Paper A match the strategy of [35] and runs the method N
times during inference, once for each target.

Consider the neural network in Paper A to output a log-likelihood score si
to a binary classification problem to determine the presence or absence of a
target in every pixel. The score is transformed into a probability pi = S(si),
indicating how likely it is for the target i to occupy a pixel. Here, S(⋅) refers
to the sigmoid function and the pixel is labelled as occupied by the target if
pi > 0.5. The suggestion from [35] is to merge multiple objects by,

p̂i =
pi/(1 − pi)

∑N
j=1 pj/(1 − pj)

, i ≠ 0 . (4.6)

As in (4.6), the normalising strategy that applies softmax to the target logits
is similar to, e.g. semantic segmentation [29]—that output per-class proba-
bilities. However, in VOS the background i = 0 is treated separately. Naively,
we construct the merged background probability from the separate inverse
target probabilities as,

p̂0 =
N

∏
j=1

1 − pi . (4.7)

In contrast to Paper A, [35] tracks all objects as a single target and computes
the merged background by subtracting the target’s foreground probability
from one.
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Video Instance Segmentation
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Figure 5.1: Video instance segmentation is detecting, tracking and segment-
ing all objects from a predefined set of object classes. Images from [38].
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The most challenging in VOS is the distractors in the background, such
as objects that are semantically similar to the target object. Another impor-
tant challenge is dealing with occlusions caused by other objects, obstacles,
or stuff1. In Section 4.2, wementioned amethod that models the background
more deeply. They suggest separating distractors from the background and
handling them independently as an additional class. To this end, they mod-
ify [2] to track distractors.

A robot also plans its nextmove effectively from distractors, not only from
specific targets, as they can influence its ability to perceive the environment.
This idea of increased awareness leads us to Paper B, where the Video In-
stance Segmentation (VIS) task is studied. This task extendsVOSbydetection
of objects to then track, classify and segment them. This chapter begins by
discussing the expansion of instance segmentation to videos. Subsequently,
we discuss target and detection association and feature embeddings, and we
end by presenting a specific application.

5.1 Tracking Multiple Objects

The visual multi-object tracking (MOT) task [9][26] resembles VIS, but only
output bounding boxes. In [45], Voigtlaender et al. introduces multi-object
trackingwith segmentationmasks as output forMOT, now closely resembling
VIS but different concerning evaluation and the datasets.

The Video Instance Segmentation Task
Different from instance segmentation (Section 3.1), video instance segmen-
tation [49] aims for the detection, tracking and segmentation of all object
instances in a video by,

Q = {κm}m = VIS ({It}Tt=0) . (5.1)

In VIS, detections in a single image are exchanged for tracks κm, one for each
instancem, andholds a track confidence value, a class, and a series of segmen-
tation masks over time t = {0, . . . , T}. The output between the two tasks (in-
stance segmentation and VIS) differs only for the segmentation mask, which
extends on the temporal axis in VIS.

Similar to instance segmentation, a single VIS-AP metric (Section 3.2)
evaluates the performance of VISmethods. The difference is that it composes
both tracking quality and per-frame detection quality. Paper A and Paper B
demonstrate causal VOS and VIS methods. However, it is important to note
that VIS-AP is not causal. VIS methods evaluated using this metric compute
it first after evaluating each sequence with the method.

1See MSCOCO [27].
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In contrast, the MOT evaluation metric needs to address five error
types [31]. These are the number of; true positives, where the ground truth
exists but is not associated with a prediction; false positives, where a track
prediction exists for no ground truth track; identification switches, swap-
ping tracks which can happen when objects get closer and closer; deviation,
which is the reinitialization of a previously tracked object; and fragmenta-
tion, which occurs when a track suddenly stops getting updated but ground
truth still exists.

For computer vision problems, the category set C = {1, . . .K} is typically
predefined and limited, with K representing the number of categories. The
categories in MOT are only associated with vehicles or pedestrians and how
they can interact or be affected by other objects [9].

Figure 5.2: Images from YouTubeVIS [49]. The first row shows two consec-
utive frames of a zebra. In the second image, its characteristic stripes are no
longer visible. The second row shows two consecutive frames of a cat from
another sequence, which rapidly change appearance.

VIS methods are commonly evaluated on the YouTubeVIS [49] dataset,
consisting of various object categories. A more versatile set compared to
MOT. Like VOS, YouTubeVIS has short sequences, around 30 frames, with
a rate of 5 frames per second (FPS) that contains diverse scenes. In con-
trast, MOT considers fewer but longer scenes with a much higher frame rate.
Such dense data enables MOT approaches to train and evaluate complex sit-
uations in videos where, e.g., crowds form from many pedestrians moving
around. In YouTubeVIS [49], the objects can be blurry and change appear-
ance rapidly due to low FPS. For instance, see Figure 5.2. This observation
about the dataset is similar to when data ismissing during inference, e.g., due
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to occlusion. We exclusively use a generative model for this purpose in Paper
A and Paper B.

Measurements for VIS
The tracking-by-detection paradigm has recently become the dominant
method for MOT. It works by independently detecting objects in a frame and
associating each with a track. A straightforward strategy is to use bounding
box IoUs between tracks κm and detections δi, where (5.2) finds the greedy
association mapping between all E available tracks and Z available detec-
tions.

A (m) = argmax
i∈{1,...,Z}

(IoU (κm, δi)) (5.2)

The concept in Paper B is to predict an altogether new association mapping
by learning a probability distribution over i,

P (δi∣m) = A∗ (m) . (5.3)

Thus, the method predicts how likely a detection matches a specific track,
considering the joint set of detections and tracks. In practice, we use a Graph
Neural Network (GNN) that outputs the probabilities from observing ap-
pearance similarities between detections and tracks. The Hungarian algo-
rithm [32] typically solves the problem of optimal association, but it can slow
down inference when E and Z are large.

At inference, we want a different behavior for a method that is supposed
to run in real time. A strategy is to assume that the number of tracks will be
far less than the number of detections. Thus, a gate that thresholds detec-
tions over their confidences can decrease computational time. In Paper B,
we set this threshold at a level that keeps the number of new detections low
and prevents objects from being missed. Furthermore, the association for-
mulated in Equation (5.3) directly predicts association probabilities, where
low probability predictions identify detections not caused by the object we
want to track. This approach forms the key contribution of Paper B. Another
important property of the GNN is that it can handle input of different sizes, as
the number of tracks and detections can differ between frames. Additionally,
as the VIS method proceeds frame-by-frame, it predicts when to create new
tracks and decides when they should become inactive.

In Paper B, we utilize the single-stage detector YOLACT [3] to detect ob-
jects (Section 3.2). This detector evaluates all candidate anchor boxes and
producesmultiple detections for each frame containing a predicted class, con-
fidence, and segmentation mask.
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5.2 Position Embeddings

Kalman filters [12] work with objects’ spatial states — positions and possible
directions in which they will move and can clear our detections likely not gen-
erated by any track. We hypothesize that the GNN needs help incorporating
similar functionality.

Our method in Paper B selects a maximum of 30 detections in each frame
from those with the highest confidence above a low threshold. Generally,
the number of false positives remains high, which we let the GNN handle.
The GNN predicts probabilities for all the detections from information about
mask IoU and appearance between all detections and tracks. In this way, as-
sociate the best detections with the respective track. Although the method in

ResNet50 MaskPool

Position 
Embeddings

Detector

Masks

D1
D2
D3

Figure 5.3: In contrast to the original version [21], Paper B adds positional
encodings to the ResNet [19] feature map.

Paper B works well, we observed that objects near each other cause the detec-
tor to output false positive detections more than usual, leading to lost tracks
or objects that switch track representation. Switching was sometimes sur-
prising since objects could only be slightly occluded but at the same positions
as in the previous frame. Nevertheless, tracks changed to represent incor-
rect instances. Similar to VOS, semantically similar objects yield ambiguous
track-detection similarities from the otherwise spatially invariant appearance
representations, which could explain the problem.

Paper B investigates this problem by embedding positional informa-
tion [44] into the appearance vectors from the detector. See Figure 5.3. This
information will increase the similarity likelihood by

s̃im = ⟨happ.
i ,κapp.

m ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
detection-track

similarity

+ ⟨pi, p̂m⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

position-position
similarity

, (5.4)

as long as the relative distance between the fixed sinusoidal positional encod-
ings pi (for detection i) and p̂m (for trackm) is less than 50 pixels [48]. For
longer distances, the position-to-position similarity in (5.2) will attenuate,
and the similarity will only be in appearance.
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5. Video Instance Segmentation

5.3 General Performance

General performance refers to how well our model can learn from data and
apply that to the actual task, so the model is still accurate under challenging
situations. In Section 5.1, we discussed the differences between the data used
for MOT and VIS, including that subsampling YouTubeVIS into a low FPS
can cause information loss. We also explained how we addressed this issue
for VIS. Paper B also demonstrates the importance of challenging training se-
quences to achieve generalization focusing on occluded objects and crowded
scenes. Compared to YouTubeVIS [49], the Occluded Video Instance Seg-
mentation [39] (OVIS) dataset focuses precisely on this and contains longer
sequences that include more objects. Nevertheless, the datasets are similar
in many aspects, and it is easy to concatenate their training sets into a sin-
gle one. Data concatenation is a standard regularization method to help a
model generalize better. We observed that our approach in Paper B gained
considerable performance on the YouTubeVIS test set when trained on the
concatenated data but very little, or nothing, on the OVIS test set.

Application
Monitoring animal welfare has become increasingly important in agricul-
ture. For instance, there is a growing interest in using technology to mon-
itor pigs [41]. Such monitoring ensures that all pigs maintain a healthy and
consistent weight. To quickly identify individual pigs that are not meeting
this goal, Smart Agritech Solution AB are exploring ideas from the field of
computer vision, such as those used in the VIS task [20].

Figure 5.4: Our VIS method in Paper B tracks the pigs, each with a different
color mask, but randomly classifies them as rabbit, bird or monkey. The im-
age is reproducedwith permission from theAgTech2030AI instance analyze
project and Smart Agritech Solution AB.
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5.3. General Performance

This application is ambiguous and challenging for the method in Paper
B because the pig class is not an item in the YouTubeVIS or OVIS category
sets. At the same time, all pigs look very similar. Still, our method general-
izes by distinguishing instances of this previously unseen category. The de-
tector seems to grasp the concept of saliency and outputs those as false posi-
tive detections to the Paper B tracker, which successfully filters the noise and
isolates instances. For instance, see Figure 5.4, where the pigs are classified
randomly as rabbit, bird, or monkey, with a low probability but with segmen-
tations masks correctly labeled.

35



36



6

Concluding Remarks

This thesis has a distinct direction about how a robot can understand its sur-
rounding environment. In Papers A to C, we investigated techniques to track
and find new objects in the environment. In Paper A, we studied the appear-
ance of objects for semi-supervised tracking. We trained a neural network to
output segmentation masks that mark objects’ exact pixel-wise occurrences
in a video. The core of our approach was appearance modeling, learning the
look of objects. This method was especially effective for missing data, e.g.,
objects not previously seen during offline training.

Tracking objects in videos is an important ability for a robot to understand
its surroundings toweigh its actions. In real-world applications, detecting ob-
jects in an image or video frame is usually the first step, followed by tracking
their movements over time. In Paper B, we experimented with detecting and
tracking multiple objects in videos and implemented the tracker as a graph
neural network. The high dynamicity of memory over the number of tracks
presents a challenge in formulating an error loss to train this model, which is
responsible for associating detections to tracks and initializing new tracks in
each frame.

We tested to generalize a detector in Paper C by training a neural network
to predict an alternative object representation that is more common in volu-
metric 3D rendering but also copes with complex 2D shapes. The model is an
implicit function that was difficult to integrate into a complete instance seg-
mentation method. Nevertheless, we believe implicit functions have a future
due to their properties in euclidian space — differentiable and gradients with
norm one preventing them from vanishing and an infinite resolution.

In practice, we humans use our sense of depth originating from our two
eyes to, e.g., grasp objects or evaluate efforts for different movements, and
we do so precisely. Therefore, paper D investigated if the ability to measure
length and angles in images could be verified simply using the output noise.
The hypothesis was that a particular distribution of input noise was consis-
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6. Concluding Remarks

tent, even after applying the model. Therefore, we developed a framework
to test, solely based on the noise, if the model was incorrect. In Paper D,
we experimented with 2D to 3D correspondences to motivate the method for
camera calibration without access to the physical camera. The ability to get
related measurements of real objects and the application encourages the idea
of more autonomy and less human intervention for robots.

6.1 Ethical Reflection

The Uppsala Code of Ethics for Scientists1 puts the responsibility on the in-
dividual, and the research should, ”not aim at applications or skills for use
in war or oppression”. I do not find any of the methods studied in this thesis
directly contributing to or in any way problematic in an ethical aspect. How-
ever, it does notmean that they could not become helpful in surveilling the lo-
cal population, military equipment, or agriculture applications. Usually, the
ethical aspect of what one does is individual but is contextualizedwith respect
to the group, e.g., a company. So, whether we want to or not, we can see our
research in products that can track our movements, build personal profiles
and amuse us for hours. There are several less positive examples of computer
vision usage in general, but there are also many positive applications and ar-
guments from which society can benefit. For instance, surveillance can con-
tribute to safer cities or the wealth of farm animals. Other applications can be
for medical purposes, such as early detection of malignant melanoma, or the
autonomous car for optimized transportation, beneficial for the environment.

One difficult ethical dilemma today, February 2023, whichmarks one year
ofwar near the Swedish border, is the development ofmilitary equipment and
its performance enhancement, allowing any government the opportunity to
become lethal. I am vehemently opposed to offensive attempts regardless
of the practitioner; however, reality thinks differently. William James, who
wrote the seminal essay ”The Moral Equivalent of War” in 1910, suggested
that warfare is prevalent because of its positive psychological effects on the
individual and society. To this end, advances in computer vision can also
contribute to developing defensive systems, thus controlling this pathological
behavior and protecting the democratic society.

1See Gustafsson et al. [15].
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