
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2023

Visual-inertial SLAM using
a monocular camera and
detailed map data

Ludvig Berglund and Viktor Ekström



Master of Science Thesis in Electrical Engineering

Visual-inertial SLAM using a monocular camera and detailed map data

Ludvig Berglund and Viktor Ekström

LiTH-ISY-EX--23/5549--SE

Supervisor: Anton Kullberg
isy, Linköpings universitet

Jonas Nygårds
Swedish Defence Research Agency, FOI

Examiner: Gustaf Hendeby
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2023 Ludvig Berglund and Viktor Ekström



Abstract

The most commonly used localisation methods, such as GPS, rely on external sig-
nals to generate an estimate of the location. There is a need of systems which are
independent of external signals in order to increase the robustness of the localisa-
tion capabilities. In this thesis a visual-inertial SLAM-based localisation system
which utilises detailed map, image, IMU, and odometry data, is presented and
evaluated. The system utilises factor graphs through Georgia Tech Smoothing
and Mapping (GTSAM) library, developed at the Georgia Institute of Technol-
ogy. The thesis contributes with performance evaluations for different camera
and landmark settings in a localisation system based on GTSAM. Within the vi-
sual SLAM field, the thesis also contributes with a sparse landmark selection and
a low image frequency approach to the localisation problem. A variety of camera-
related settings, such as image frequency and amount of visible landmarks per
image, are used to evaluate the system. The findings show that the estimate im-
prove with a higher image frequency, and does also improve if the image fre-
quency was held constant along the tracks. Having more than one landmark
per image result in a significantly better estimate. The estimate is not accurate
when only using one distant landmark throughout the track, but it is significantly
better if two complementary landmarks are identified briefly along the tracks.
The estimate can also handle time periods where no landmarks can be identified
while maintaining a good estimate.
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1
Introduction

There are multiple localisation and position estimation methods that can be used
to track a vehicle’s movement and location, such as global navigation satellite sys-
tem (GNSS) or the further developed GNSS based method real-time kinematics
(RTK). In this thesis, a different method is evaluated, which utilises a simultane-
ous localisation and mapping (SLAM) algorithm using an inertial measurement
unit (IMU), odometry, image data, and detailed map data of the area. By col-
lecting the IMU and odometry data for a vehicle whilst driving, it is possible to
recreate the trajectory of the vehicle. Due to uncertainty in sensors and data in-
terference, only relying on an IMU and odometry model will cause integration
drift, which is when small errors and uncertainties are integrated over multiple
time steps, making them significantly impact the result [1].

In this thesis, images from a monocular pinhole camera are used to calibrate
the model to prevent integration drift. A simulated camera was used since the
localisation system process the measurements offline. The landmark global coor-
dinates can be found from the detailed map data. The chosen landmarks were
distinguishable trees, houses, or intersections with visible edges. The system
then continuously updates the estimate of the landmarks’ positions based on the
measurements. The camera projection error, which is the difference between ob-
served projection in the image and estimated projection based on vehicle location
and a camera model, is minimised with local bundle adjustments (LBA). The LBA
method aims to reconstruct the 3D object with optimal parameter settings such
as camera pose [2]. This can be used in the SLAM algorithm similar to structure
from motion (SfM) problems [3]. When data from all sensors are collected, the
visual-inertial SLAM problem can be solved. This is done with a method called
iSAM2 (incremental smoothing and mapping) which uses inference in graphical
models to estimate the trajectory. The main focus of this thesis is to evaluate the
localisation system in terms of accuracy, how different landmarks affect the local-
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2 1 Introduction

isation capability, and what impact image frequency imposes on the estimated
trajectory. The trajectory modelling, calibration, and localisation are performed
post-data collection and not in real-time. This work is conducted in affiliation
with the Swedish Defense Research Agency (FOI) who has requested an evalua-
tion of a GPS-denied localisation method using iSAM2 and the open source C++
library Georgia Tech Smoothing and Mapping (GTSAM) developed at Georgia
Tech.

1.1 Purpose

The purpose is to create a system that can be used to localise a vehicle, and eval-
uate certain key features of the developed system. The system will act as an
alternative to already established localisation methods such as GNSS, with high
localisation robustness as no external signals are needed. The system uses a cam-
era to identify landmarks with known global coordinates from detailed map data
and interpret IMU and odometry data to generate the vehicle position estimate.
The beneficial aspect of this system compared to GNSS is that it can be performed
without any active signal communication outside of the vehicle if the system has
access to the map data on a local data storage unit.

1.2 Problem statement

With a camera based localisation system, it is of interest to evaluate how different
frequencies at which images are captured affect the localisation capability. Each
image captured with the camera that contains a landmark will pose a constraint
on the vehicle position estimate. It is therefore of interest to evaluate different
landmark settings and see how the relative distance and translation between ve-
hicle and landmark, amount of landmarks visible in each image, and how the
amount of landmarks visible throughout the vehicle path affects the localisation
estimate. The problem of data association is assumed to be solved in this thesis,
meaning that it is known which landmarks are seen in each image. The projected
landmarks are assumed to be visible in all images regardless of possible vegeta-
tion that would exist in a real-world setting. Thus, this thesis aims to evaluate
the following aspects.

• How accurate is the localisation estimate of the system compared to the
ground truth track?

• How do different image frequencies affect the localisation estimate of the
system?

• How does the selection of landmarks in the images affect the localisation
estimate of the system?
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1.3 Division of labor

Ludvig was responsible for collecting map data. He also derived the odometry
model and the odometry Jacobian and implemented this into the localisation
model. Ludvig also had the main responsibility for evaluating the frequency and
amount of landmark setting impact on the estimate. Viktor was responsible for
the theoretical explanations to the probabilistic inference in the graphical mod-
els. Viktor also retrieved the data regarding the poses used as ground truth based
on RTK, INS, and odometry and evaluated the sparse landmark selection.

1.4 Outline

The thesis introduction clarifies which aspects that will be studied, and the prob-
lem statements that will be studied in the thesis. In Chapter 2 related work to the
visual SLAM field is presented to put the thesis in a wider context. All relevant
theory for the used localisation method is presented in Chapter 3. It contains
information about motion and measurement models, and probabilistic inference
using graphical models. The method used to gather data and answer the problem
statement is presented in Chapter 4, where the data collection, possible biases,
and data processing are discussed. The results can be found in Chapter 5 where
relevant data is presented and is further expanded upon in Chapter 6, where the
problem statement is elaborated with regards to the result. The method is also a
subject in the discussion chapter, where the method decisions are evaluated and
the result is discussed. In Chapter 7, conclusions based on Chapter 6 and possi-
ble future work is presented for the evaluated method. The appendix consists of
two parts. The first is related to the theory chapter and the second to the results.





2
Related work

There have been many interesting contributions to monocular vision-based local-
isation algorithms over the last decade, e.g., [4], [5] and [6]. The relevant con-
tributions within SLAM for this thesis can mainly be divided into visual SLAM
(vSLAM), which solely uses camera inputs and visual-inertial SLAM (viSLAM)
which is complemented with an IMU. Visual-inertial SLAM has gained increased
popularity because of the possibility to integrate IMU measurements between
images.

For vSLAM the methods can be divided into filter-based and keyframe-based
approaches [7]. The filter-based methods are derived from the original solu-
tions to the SLAM problem. These methods include EKF-based algorithms, for
instance, MonoSLAM [8]. It also includes FastSLAM and its monocular SLAM
correspondence which are derived from particle filters [9]. Another example of
an algorithm based on the EKF filter is the multistate constraint Kalman filter
(MSCKF) which contains a measurement model that can utilise geometric con-
straints from observing static features consecutively [10]. In general, these filter-
based methods estimate the landmarks’ positions as well as the camera’s pose,
using states expressed for both the landmarks and the camera. This could lead to
problems regarding computational scalability [7].

The keyframe-based approaches, on the other hand, can also be referred to
as optimisation-based approaches. These methods often descend from parallel
tracking and mapping (PTAM) [11]. The difference from the filter-based meth-
ods is that, instead of using a filter that keeps track of both the poses and map,
they utilise global optimisation. In a viSLAM setting, the process is often per-
formed by LBA which can be explained as minimising the re-projection error
between the predicted and observed image point of a landmark. Global optimisa-
tion can correct the drift effects, hence giving high accuracy. The higher accuracy
also comes with a decrease in computation speed. Therefore, before PTAM many
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6 2 Related work

of these methods were mainly implemented offline since the required computa-
tional power was too high [7].

An interesting approach, within the subject of GNSS-denied vehicle localisa-
tion using visual-inertial SLAM, was proposed by Chiu et al. [12]. They achieved
sub-meter navigation accuracy for a vehicle in a large-scale urban environment,
by using a navigation system that couples the data from an IMU with observa-
tions of pre-mapped visual landmarks.

Furthermore, a localisation method that integrates the constraints of 3D traf-
fic signs with LBA was proposed by Qu et al. in [13]. Their model was extended
to automatically match traffic signs in images to those in a 3D landmark database.
One can imagine the problem of outdoor landmarks having different appearances
depending on the time of year. This was addressed by Beall and Dellaert [14] who
integrated stereo imagery from different times of the year and used that as the ba-
sis for localisation. Many of the modern monocular visual SLAM algorithms are
derived from incremental SfM methods. A novel monocular SLAM method that
integrates recent advancements in SfM was made in [15]. They suggested a tech-
nique relating to graphical solutions that is more robust against errors in map
initialization and adopted a global SfM method for the pose-graph optimisation.

A visual SLAM method using an omnidirectional camera was developed at
Shanghai University, where an EKF was used to localise a vehicle in an unknown
environment. One noted benefit of using an omnidirectional camera was the
panoramic field of view which enabled each frame to capture more landmarks
than a regular directional camera would be able to. In their solution, corner fea-
tures were found in the images and later used for the EKF, which they concluded
gave a good result [16]. Another contribution within the monocular visual SLAM
field was the work of Andréz Díaz and Eduardo Caicedo who recreated the trajec-
tory of a camera using corner detection in an EKF and extracted the six degrees
of freedom pose of the camera. Their solution did not require any IMU or GNSS
measurements. In their implementation, as many as 40 landmarks were used in
each image, and images were captured at 10 Hz [17].

These methods generally rely heavily on identifying an abundance of land-
marks with unknown global coordinates in each image, and with a high fre-
quency. This thesis instead aims to utilise detailed map data of an area, lower the
frequency at which images needs to be captured, and few visible landmarks per
image to generate the estimate. The map data will associate landmarks with an
estimated location, which will be continuously updated by the SLAM algorithm.
The path estimate will be supported by IMU measurements and an odometry
model, which reduces the dependence on the camera measurements. To produce
a path estimate, an algorithm called iSAM2, implemented in the package GTSAM,
will be used [18],[19]. Some advantages of iSAM2 compared to implementing an
EKF are higher quality for nonlinear models, and that smoothing can be imple-
mented to perform updates in batches or incrementally [20]. It was however
shown by [21] that for some real-world implementations that difference in per-
formance between incremental smoothing and an EKF is small. The article also
states that there are possible benefits of using a smoothing approach such as easy
incorporation of delayed measurements.



3
Theory

To present a solution to the problem statement, a graph-based localisation system
has been implemented. In the following sections, the theory behind each signif-
icant component of the localisation system is explained. The theory behind the
used graphical models in the GTSAM C++ library will be presented, as well as
how iSAM2 is used to solve the estimation problem.

3.1 Model overview

The purpose of the model is to estimate the trajectory of a vehicle. This is achieved
by defining states for the landmarks, vehicle and camera, and then express motion-
and measurement models which describes these states’ transition between time
steps. The motion and measurement models are then included in a factor graph
where an incremental smoothing and mapping (iSAM2) algorithm is used to form
probability distributions of the states. The model uses states x, a motion model
f INS , measurement models h, control inputs u, state observations y, process
noise η and measurement noise e in the factor graph to find the maximum a
posteriori (MAP) estimate of the states. The estimate is driven by an inertial nav-
igation system (INS) based motion model f INS , using IMU measurements. In
addition to the motion model, there are three measurement models used in the
estimation problem, hodo, hcc, and hproj . Measurement model hodo measures the
vehicle’s position and orientation using an odometry model, hproj measures land-
mark projections in images, and hcc measures the rotational difference between
the vehicle and the vehicle-mounted camera.

7



8 3 Theory

3.2 States used in the estimation

To construct a GTSAM graphical model, a set of states and state correlation needs
to be set in each new time step. In GTSAM graphical models previous states
are stored in the graph making it possible to access states in time step k − n, if
n ≤ k. The state vector x consists of vehicle position p, vehicle velocity v, rotation
matrices Rcar and Rcam relative the global coordinate system and the landmarks’
positions L as

x =
[
pT vT RcarT RcamT LT

]T
, (3.1)

where the rotations Rcar and Rcam are notated as vectors with all the matrix com-
ponents. All states are defined in the global coordinate system. Each state is a
part of a variable in the factor graph representation where M = [pT , vT , RcarT ]T ,
C = Rcam and L is the landmark states. The motion model f INS sets state pro-
gression in p, v and Rcar between time step k and k + 1 according to

pk+1

vk+1

Rcark+1

 = f INS (pk , vk , R
car
k , uIMU

k , ηk), (3.2)

where the input uIMU
k consists of acceleration ak and angular velocity ωk mea-

surements from the IMU. The function f INS can be found in Section 3.7. State
correlations in the graph are also set using three different measurement models
that were implemented according to

yk =


yodok

ycck

y
proj
k

 =


hodo(xk , xk−1, e

odo
k )

hcc(xk , e
cc
k )

hproj (xk) + eprojk

 . (3.3)

The noise is not modelled as additive in hodo and hcc, as the measurement noise
is included in the measurement model functions where it develops non-linearly.
The measurement yodok correspond to an odometry motion model as described
in Section 3.8, and ycc is the relation between the orientation of the vehicle and
camera according to

ycck = ucamk . (3.4)

The input signal ucam is the relative pose between the vehicle and the camera.
Both the process noise ηk and measurement noise ek are approximated as Gaus-
sian noise for simplicity reasons and will be further described for the INS and the
measurement models. The yprojk measurement is a pixel coordinate of a projected
landmark in an image. The measurement functions h are defined as

hodo(pk , pk−1R
car
k , Rcark−1, e

odo
k ) =

[
pk − pk−1

RcarTk−1 Rcark

]
(3.5a)
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hcc(Rcark , Rcamk , ecck ) =
[
RcamTk Rcark

]
(3.5b)

hproj (rk , φ
cam
k , Lk) =


fx 0 cx
0 fy cy
0 0 1



R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz



Lx

Ly

Lz

1

 , (3.5c)

where all parameters in hproj (rk , φ
cam
k , Lk) are further explained and expanded

upon in Section 3.9.

3.3 An introduction to factor graphs in GTSAM

GTSAM is a C++ library created by a team at the American university Georgia
Tech [22]. The library implements sensor fusion for robotics and computer vi-
sion applications. The areas of implementation are mainly SLAM, visual odome-
try, and SfM. GTSAM is also compatible with both python and MATLAB, which
will be used in this project. The toolbox is built around factor graphs which are
graphical models that can be used when modelling estimation problems.

A factor graph is a bipartite graph, i.e., a graph where the nodes can be di-
vided into two independent and disjoint sets called factors and variables. It can
be described as a graphical model of the probability distribution P (X |Y ) where X
are the states and Y the measurements. The factor graph structure implemented
in this thesis can be seen in Figure 3.1. The variables contain states that are part
of the motion and measurement models and are visualised in the figure as vehicle
pose and velocity M, camera rotations C, and the landmarks L to intuitively rep-
resent how the hardware and map components correlate. The connecting dots
represent the factors that contain probabilistic information about the variables.
The factors that connect the camera poses to the landmarks are called projection
factors in this thesis and correspond to local bundle adjustment, which is when a
landmark projection pixel coordinate from the camera model is compared to the
observation. There are a priori factors connected to the variable M1 and all land-
marks L in the factor graph, which corresponds to an initialisation of the states.
A brief description of the factors used in the implemented factor graph can be
seen in Table 3.1.

Table 3.1: Description of the different factors in Figure 3.1.

Factor Description
ψcar Prior on the first vehicle pose

ψlandmark Prior on a landmark’s position
ψINS Factor between two car poses using the INS
ψodo Factor between two car poses using odometry
ψcc Factor that constrains the car and camera poses
ψproj Factor that uses the projection of the landmark
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Figure 3.1: A factor graph consisting of three variable node types; vehicle
pose and velocity, Mk , camera pose, Ck at time step k = 1, 2. As well as two
landmarks, L1 and L2.

3.4 Bayesian inference

The states are found through statistical estimation, where observations are the
basis for acquiring knowledge about said states. Updating the inferred state infor-
mation as new measurements are obtained is called recursive estimation. Within
the framework of Bayesian estimation, both observations and the states used in
the estimation are stochastic variables. In this section, the general solution will
be presented in terms of Bayesian recursions, and differences between general fil-
tering and smoothing methods will be defined within a Bayesian framework. The
information in this section is mainly obtained from [23].
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3.4.1 Optimal filtering and smoothing

Both optimal filtering and smoothing methods aim to estimate unknown states
X = {x0, . . . , xn}, given noisy measurements, Y = {y1, . . . , yn}. The measurements
yield information about the states through indirect observations. From a Bayesian
point of view, the problem is to find the posterior distribution P (X |Y ), through
means of probabilistic inference. According to [24], two assumptions are needed
to find the desired information from the probability distribution. The first is that
the prior distribution of the state vector is known, i.e., P (X) is known. The sec-
ond assumption is that there exists a likelihood P (Y |X) which couples the obser-
vations to the states. From these assumptions, it is possible to define the posterior
distribution through Bayes’ law as

P (X |Y ) =
P (Y |X)P (X)

P (Y )
. (3.6)

The prior P (X) is assumed to be a Markov sequence, i.e., future states only de-
pend on the present state. Thus, the prior can be described by P (x0) and P (xk+1|xk).
The term P (Y |X) corresponds to the measurement’s likelihood function and de-
scribes the dependence between a measurement yk and state xk . The term P (Y )
is a normalising constant and can through marginalisation be written as

P (Y ) =
∫
P (Y |X)P (X)dX. (3.7)

Note that the formulation in (3.6) corresponds to the full posterior distribution,
i.e., it contains all states and all measurements. Solving this would yield the
optimal solution but would also have a negative impact on the required compu-
tational power. This is because an added measurement would require the entire
distribution to be recalculated. Many different approaches exist to solve this prob-
lem, some through recursions with marginal distributions. The marginal distri-
butions used for Bayesian filtering methods consist of the current state xk , given
the current and previous measurements y1:k , i.e. P (xk |y1:k). This differs from
smoothing methods which keep previous states, making it possible to re-estimate
them when new measurements are obtained. This method requires more compu-
tational power and is described in Section 3.6.2.

Probability densities with many dimensions can often be factorised to contain
several densities where each covers a smaller dimension. The product of these
yields the entire probability density. Assuming a Markov sequence

P (X) = P (x0)
n∏
k=0

P (xk+1|xk), (3.8)

P (Y |X) =
m∏
k=1

P (yk |xk), (3.9)

where the distributions are assumed to be multivariate Gaussian distributions
and are, in this thesis, modelled with a factor graph. The distribution for the
state transitions P (xk+1|xk) is obtained from the INS motion model f INS as
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P (xk+1|xk) =
1√

|2πΣINS |
exp

(
− 1

2

∣∣∣∣∣∣f INS (xk , uk) − xk+1

∣∣∣∣∣∣2
ΣINS

)
, (3.10)

where the variable ΣINS denotes the covariance for the INS. The mathematical
notation ||e||2Σ is defined as∣∣∣∣∣∣e∣∣∣∣∣∣2

Σ
� eTΣ−1e =

∣∣∣∣∣∣Σ−1/2e
∣∣∣∣∣∣2

2
, (3.11)

where || · ||22 is the squared Euclidean norm. The distribution for the measurement
models is formulated with

P
(
y ik |xx

)
=

1√
|2πΣi |

exp
(
− 1

2

∣∣∣∣∣∣hi(xk) − y i ∣∣∣∣∣∣2Σi ), (3.12)

where y i and hi correspond to the measurements and their respective measure-
ment model.

3.4.2 Maximum a posteriori inference

There are different methods to obtain point estimates the state X. A common
method, which is used in this thesis, is the maximum a posteriori estimate. It
finds the states that maximise the posterior density P (X |Y ) as

XMAP = arg max
X

P (X |Y ) = arg max
X

P (Y |X)P (X)
P (Y )

. (3.13)

3.5 Inference in factor graphs

Factor graphs, as described in Section 3.3, contain factor nodes ψi ∈ Ψ corre-
sponding to control inputs and measurements, and variable nodes {Mi , Ci , Li} ∈
Xi that are assigned to a factor ψi . The states presented in Section 3.2 can be seen
as sub-states to the different variable nodes, hence the variable notations in the
factor graph will be used from this point. MAP inference in factor graphs simply
maximizes the posterior probability

XMAP = arg max
X

∏
i

ψi(Xi). (3.14)

The different factors are defined as Gaussian distributions in the factorisations
presented in (3.10) and (3.12), and are expressed as

ψINS (Mk+1, Mk) = P (xk+1|xk), (3.15a)

ψodo(Mk , Mk−1) = P (yodok |xk), (3.15b)
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ψcc(Mk , Ck) = P (ycck |xk), (3.15c)

ψproj (Ck , Lk) = P (yprojk |xk). (3.15d)

The MAP estimate can then be found by taking the negative log of (3.14), using
the factor definition in (3.15d), which gives a nonlinear least squares problem

XMAP = arg min
X

 I∑
i=0

∣∣∣∣∣∣f INS (Mi , u
IMU
i ) −Mi+1

∣∣∣∣∣∣2
ΣINSi

+

J∑
j=1

∣∣∣∣∣∣hodo(Mij , Mij−1
) − yodoj

∣∣∣∣∣∣2
Σodoj

+

K∑
k=1

∣∣∣∣∣∣hcc(Mik , Cik ) − y
cc
k

∣∣∣∣∣∣2
Σcck

+

N∑
n=1

∣∣∣∣∣∣hproj (Cin , Lin ) − yprojn

∣∣∣∣∣∣2
Σ
proj
n

+

O∑
m=1

∣∣∣∣∣∣Lim − L̂m∣∣∣∣∣∣2
ΣLm

,

(3.16)

where the last summation corresponds to priors for the landmarks with an initial
position estimate from the map data L̂m. From here (3.16) is linearised. Therefore
it is assumed that the system has an adequate linearisation point. By first defining
the state update vector ∆ ≜ Xi − X0

i with a linearisation point X0
i we can obtain

the following linear least squares problem

∆∗ = arg min
∆

 I∑
i=0

∣∣∣∣∣∣FINS,i−1
i M̃i + GINS,ii M̃i+1 − ai

∣∣∣∣∣∣2
ΣINSi

+

J∑
j=1

∣∣∣∣∣∣Hodo,ij
j M̃ij − bj

∣∣∣∣∣∣2
Σodoj

+

K∑
k=1

∣∣∣∣∣∣H cc,ik
k [M̃ik , C̃ik ]

T − ck
∣∣∣∣∣∣2
Σcck

+

N∑
n=1

∣∣∣∣∣∣Hproj,in
n [C̃in , L̃in ] − dn

∣∣∣∣∣∣2
Σ
proj
n

+

O∑
m=1

∣∣∣∣∣∣L̃im ∣∣∣∣∣∣2ΣLm
,

(3.17a)
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ai � M0
i+1 − f

INS (M0
i , ui), (3.17b)

bj � yodoj − hodo(M0
ij
, M0

ij−1
), (3.17c)

ck � ycck − h
cc(M0

ik
, C0

ik
), (3.17d)

dn � y
proj
n − hproj (C0

in
, L0
in

), (3.17e)

where the notation ( ·̃ ) is the deviation from the expected value for the respective
state. FINS is the Jacobian for the INS while GINS corresponds to a unit matrix in
the case of this thesis. Each matrix H is the observation Jacobian for its respective
measurement model. The component a corresponds to the prediction error of
the motion model while b, c, and d are observation residuals. The Jacobians and
residuals can be combined into one matrix A, called the measurement Jacobian,
and one vector q respectively. This is done by dropping the covariances by using
definition (3.11) as

Ai = Σ
−1/2
i Hi , (3.18a)

qi = Σ
−1/2
i (zi − gi(X0

i )), (3.18b)

for a measurement with a Jacobian Hi and covariance Σi . The term (zi − gi(X0
i ))

corresponds to the different residuals in (3.17). Then (3.17) can be written as

∆∗ = arg min
∆

||A∆ − q||22. (3.19)

where the measurement Jacobian A is a large, sparse matrix and has a structure
that is equivalent to the structure of the factor graph. This can be seen by first
separating the Jacobians for the factor between the car and camera which gives

H ccM =
∂hcc

∂M
, (3.20a)

H ccC =
∂hcc

∂C
, (3.20b)

where the Jacobian is split into one part that contains the dependencies for the
car and one for the camera. The same can be done for the projection factor with

HprojC =
∂hproj

∂C
, (3.21a)

HprojL =
∂hproj

∂L
, (3.21b)

where the Jacobian is split with one part for the camera and one for the landmark.
To show an example of the measurement Jacobian A we can use the the factor
graph presented in Figure 3.1 and for simplicity assume the covariances have
already been multiplied to each Jacobian. In this case A becomes
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A =

M1 M2 C1 C2 L1 L2



GINS,11 ψcar

FINS,12 GINS,22 ψINS

Hodo,1
2 Hodo,2

2 ψodo

H ccM,1
1 H ccC,1

1 ψcc

H ccM,2
2 H ccC,2

2 ψcc

H
projC,1
1 H

projL,1
1 ψproj

H
projC,2
2 H

projL,1
2 ψproj

H
projC,2
2 H

projL,2
2 ψproj

I3 ψlandmark
I3 ψlandmark

,

where each column correspond to a variable and each row to a factor in the factor
graph defined by the labels above and to the right of the matrix. As the matrix
and the graph have the same structure it possible to use a method called variable
elimination. In terms of linear algebra variable elimination can be explained as
factorising the measurement Jacobian into an upper-triangular matrix called the
square root information matrix Q which fulfills the expression

ATA = QTQ (3.22)

In graphical terms, variable elimination means to factorise the factor graph into
a Bayes net, which is a graphical representation of the probability distribution
P (X). This differs from the factor graph which contains the conditional probabil-
ity P (X |Y ). What this means for the graphical structure can, according to [25], be
described with the steps:

1. Choose a variable, here called ζj , for elimination.

2. Remove all factors ψi(Xi), that are adjacent to ζj , from the factor graph.

3. Define the separator Sj as all variables involved in those factors, excluding
ζj . A separator is a set of variables that separates two or more disjoint
subsets of variables in a factor graph, such that the subsets are conditionally
independent given the separator.

4. Create the product factor, which contains the parts of the matrices A and q
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that are involved in the elimination of said variable, as

Γ (ζj , Sj ) =
∏
i

ψi(Xi),

= exp
{
− 1

2

∑
i

||AiXi − qi ||22
}
,

= exp
{
− 1

2
||Āj

[
ζj Sj

]T
− q̄j ||22

}
.

For instance, if the variable L1 is to be eliminated, the matrix Āj would
contain the Jacobians of the three involved factors as

Āj =


I3

H
projL,1
1 H

projC,1
1

H
projL,1
2 H

projC,2
2


5. The next step is to factorise the product Γ (ζj , Sj ) which, in this thesis is

done with QR factorisation. GTSAM does however also supports other fac-
torisation alternatives, such as Cholesky factorisation. QR factorisation can
be described as expressing a matrix as the product between an orthogonal
matrix and an upper triangular matrix. An elaborate description of QR
factorisation can be found in [25]. In GTSAM it is done by first using the
augmented matrix [Āj |q̄j ] based on the product factor in step 4 as

[Āj |q̄j ] = Q

[
R̃j T̃j q̃j

Ãτ q̃τ

]
where K is an orthogonal rotation matrix. Q̃j , T̃j and q̃j are contributions to
the square root information matrix Q with its equivalent graphical model,
the Bayes net. Ãτ and q̃τ gives information about new factors created based
on the eliminated variable’s separator. From here Γ (ζj , Sj ) can be factorised
as

Γ (ζj , Sj ) = exp
{
− 1

2
||Āj

[
ζj Sj

]T
− q̄j ||22

}
= exp

{
− 1

2
||R̃jζj + T̃jSj − q̃j ||22

}
exp

{
− 1

2
||ÃτSj − q̃τ ||22

}
= P (ζj |Sj )τ(Sj )

where P (ζj |Sj ) is a conditional probability added to the Bayes net while
τ(Sj ) is a new factor that is added to the factor graph and will be removed
when one of the variables in the separator Sj is eliminated.

6. Repeat the steps with the next variable subject to elimination.
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Figure 3.2: The process of variable elimination with the ordering
(L1, L2, C1, C2, M1, M2) based on the factor graph in Figure 3.1. The steps
consist of a combination between factor graphs and Bayes nets in order to
show the procedure. The grey variable in each graph is the variable subject
to elimination and dotted lines show the factors created according to step 5
as previously described. The final product is a Bayes net made up of condi-
tionals.

After these steps, both a Bayes net and its matrix equivalence Q, has been
obtained. The structure of the Bayes net can differ depending on the order of
the elimination since the new factor τ will differ depending on the separators.
The effects of this were however not analysed in this thesis, instead, the built-in
elimination process in GTSAM was used.



18 3 Theory

Further, the matrix Q can be used to obtain all covariances according to Σ ≜
(QTQ)−1. This operation has a high computational cost since Q becomes a large
matrix over time, hence marginal covariances are computed according to [26].
The process and the final Bayes net obtained from variable elimination, with the
elimination order (L1, L2, C1, C2, M1, M2), on the factor graph in Figure 3.1 can
be seen in Figure 3.2. Figure 3.2 shows the process of building the Bayes net
of conditionals according to the described steps. It results in a graph where all
factors have been removed and the entire net is described through conditional
probabilities. In short, the elimination process factorised the factors ψ(X) to a
probability distribution P (X), which for the Bayes net in Figure 3.2 looks like

P (X) =P (L1|C1, C2)P (L2|C2)

P (C1|M1, C2)P (C2|M1, M2)

P (M1|M2)P (M2),

(3.23)

where the prior on M2 comes from the fact that the separator is empty when
eliminating the last variable, in this case, M2, hence resulting in a prior. This
will be true regardless of what variable is eliminated last. From this point, back-
substitution can be performed in the reverse order of the elimination to obtain
the MAP estimate, for a detailed explanation see [25].

3.6 Incremental smoothing and mapping

In order to obtain an estimate of the trajectory after each step given the available
sensor data, an incremental inference algorithm from the optimization library
incremental smoothing and mapping (iSAM) was used. The incremental attribute
of the algorithm means that it updates the estimate when new measurements
are obtained. In this thesis, the algorithm used is called iSAM2 and is based
on [18]. It uses a data structure in form of a Bayes tree in order to improve
efficiency. This section describes the Bayes tree, how its updated, and the Bayes
tree relinearisation.

3.6.1 Bayes tree

From the Bayes net obtained by variable elimination in Section 3.5, a Bayes tree
will now be derived. This is possible since the net is chordal [18]. The nodes
in the Bayes net correspond to cliques C̃k in the Bayes tree, thus the Bayes net
contains the information from the obtained square root information matrix R. A
clique can be described as a subset of nodes to which every node is connected.
Further, a distribution P (F̃k |Sk) is established where Sk can be described as the
variables that are contained in both a clique Ck and its parent Πk , i.e. C̃k ∩Πk . F̃k
contains the remaining variables defined as F̃k � C̃k \ Sk . The notation \ means
that F̃k is defined as the parts of C̃k that are not contained within Sk . The clique
notation is C̃k = F̃k : Sk which shows what variables in a clique also is a part of
its parent.
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Figure 3.3: Bayes tree, based on the Bayes net in Figure 3.2.

As an example, the cliques for the final Bayes net in Figure 3.2 would be

C̃r = {M1, M2, C2}, (3.24)

C̃2 = {C1} : {M1, C2}, (3.25)

C̃3 = {L1} : {C1, C2}, (3.26)

C̃4 = {L2} : {C2}, (3.27)

where the separator is empty for Cr since it is the root of the tree. These cliques
result in the Bayes tree presented in Figure 3.3. Note that the Bayes tree will
differ depending on the elimination order just as the Bayes net.

3.6.2 Bayes tree update and relinearisation

This part will cover a brief description of the problem of updating the Bayes
tree and dealing with nonlinear factors by only performing relinearisation when
needed. For a more elaborate theory, see [18] and [25]. An update is equivalent
to receiving a new measurement which means the addition of a new factor to the
factor graph. Since all information is stored in the Bayes tree we need to convert
the parts of the tree that are affected back into the form of a factor graph. The
parts that shall be converted are found from the variables in the factor about to
be added. The cliques in the Bayes tree that contain these variables are removed
as well as all the parent cliques up to the root and converted to a factor graph.
The parts of the tree that are unaffected are stored. The new factor can then be
added to the converted factor graph which goes through the process of variable
elimination and creates a Bayes net. A new Bayes tree is then created from this
Bayes net in combination with the previously stored parts. In Algorithm 1 these
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steps are described in a simplified update process, and for a more detailed version
see [18].

Algorithm 1 Bayes tree update

In: Bayes tree T , new factor ψnew(ζi , ζj )
Out: Updated Bayes tree T ′

1. Remove cliques containing the variable ζi or ζj and all the parent cliques
up to the root.

2. Store the unaffected parts of the tree as Tstore.

3. Create a factor graph from the removed cliques and add the factor
ψnew(ζi , ζj ).

4. Retrieve a Bayes net by performing variable elimination.

5. Create a Bayes tree, T ′ from the Bayes net.

6. Insert the previously stored parts, Tstore, into T ′ .

When the Bayes tree has been updated with additional measurements, the
solution needs to be updated as well. This could be solved by performing back-
substitution, beginning at the root and proceeding downwards through the entire
tree. It is however not desirable to perform this operation for the entire tree since
it over time becomes inefficient. Thus, a process called fluid relinearisation is
implemented [18]. Relinearisation can be explained as changing the values of al-
ready computed variables when new measurement factors have been added. And
fluid refers to only performing relinearisation where it is needed. The motivation
behind this is that updates to the tree usually only have an impact on the local
parts of the tree. If a variable is to be relinearised or not depends on if its de-
viation from the linearisation point exceeds a threshold value. If the deviation
exceeds this value, all parts of the tree containing this variable need to be modi-
fied. In short, this is done by replacing the affected parts of the tree with the in-
formation obtained from relinearising the corresponding nonlinear factors. This
means finding a new linearisation point for the affected variables and inserting
the result into the Bayes tree. For further information, see [18].

3.7 Inertial navigation system

Inertial navigation is used to track position and orientation relative to an initial
state. The INS receives measurements from an IMU containing a gyroscope and
accelerometer, oriented in the vehicle’s local coordinate system. The coordinate
systems for the INS can be seen in Figure 3.4 where B corresponds to the local
coordinate system, referred to as the body frame. Figure 3.4 also shows TWB
which is the transformation between the body frame and the navigation frame



3.7 Inertial navigation system 21

Figure 3.4: Coordinate systems and transformations for the INS. The three
vehicle poses each correspond to the pose at a time step when an image is
captured. A factor ψINS is created from preintegrated measurements be-
tween the time steps.

W in terms of rotation RWB and position pW . The purpose of the INS is to find
information about the pose of the vehicle (R, p) and its velocity v.

The INS used in the thesis comes from [27], where all possible rotations of a
vehicle can be represented as tangents of a spherical manifold, that locally resem-
bles Euclidean space. Exponential mapping is used to connect the tangent space
to the manifold itself, according to Figure 3.5. Preintegration is performed on
the manifold by using the exponential map, which means that the IMU measure-
ments between time steps with images are contracted to create one INS factor
using the rotational manifold expression, accessible by the exponential map con-
version. The orientation will be defined with a 3x3 rotation matrix. In the context
of the INS the exponential map transforms small rotation vectors, expressed as
3x3 skew-symmetric matrices, into rotation matrices. A skew-symmetric matrix
is defined as

ω∧ =


ω1

ω2

ω3


∧

=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3.28)

The inverse of the exponential map is called the logarithmic map and transforms
a rotation matrix into a skew-symmetric matrix. The exponential map is notated
with ( · )∧, while the logarithmic map is notated with ( · )∨. The full notations for
the map transformations can then be expressed as

Exp : φ→ exp(φ∧),

Log : R→ log(R)∨,
(3.29)
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Figure 3.5: Visualisation of the manifold to the left, the tangent space to the
right and the mapping between them.

Note that Exp denotes the exponential mapping, while exp denotes the ex-
ponential function. A visualisation of the manifold, the tangent space and its
mapping can be seen in Figure 3.5. The term δφ is called perturbation which is
a small incremental change to the skew-symmetric matrix. The variable Jr is the
right Jacobian which is the derivative of the exponential map with respect to a
small rotation. It is used to relate the additive perturbation in the tangent space
to multiplicative perturbation on the manifold and is defined as

Jr (φ) = I −
1 − cos(||φ||)
||φ||2

φ∧ +
||φ|| − sin(||φ||)

||φ3||
(φ∧)2. (3.30)

This approach is used in this thesis to ensure that the INS estimates of the vehi-
cle’s motion are consistent with the constraints on the vehicle and improve the
estimate’s accuracy. Since the usage of manifolds and exponential mapping is
not the focus of this thesis, see [28] for a more detailed description. There are
however some important relationships that are needed, such as the first-order
approximation of the exponential map

exp(φ∧) ≈ I + φ∧, (3.31)

and the first-order approximation of the mapping of perturbations

Exp(φ + δφ) ≈ Exp(φ) Exp(Jr (φ)δφ). (3.32)

The IMU measures the rotation rate ω̃ and acceleration ã of the vehicle in the
body frame as

ω̄B = ωB(t) + bg (t) + ηg (t), (3.33a)

āB(t) = RTWB(t)(aW (t) − gW ) + ba(t) + ηa(t), (3.33b)
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Figure 3.6: Visualisation of the sampling rates for the IMU and camera
where each x corresponds to a measurement.

where bg and ba correspond to the gyroscope and accelerometer bias, respectively,
while ηg and ηa are assumed as additive white noise. To find the desired infor-
mation a kinematic model is defined as

ṘWB = RWBω
∧
B , (3.34a)

v̇W = aW , (3.34b)

ṗW = vW , (3.34c)

where aw = RWBaB. Discretisation and assuming that the measurements aW and
ωW are constant between t and t + ∆t, while using the measurement equations
(3.33) yields

R(t + ∆t) = R(t) Exp
(
(ω̃(t) − bg (t) − ηgd(t))∆t

)
, (3.35a)

v(t + ∆t) = v(t) + g∆t + R(t)
(
ã(t) − ba(t) − ηad(t)

)
∆t, (3.35b)

p(t + ∆t) = p(t) + v(t)∆t +
1
2
g∆t2 +

1
2
R(t)

(
ã(t) − ba(t) − ηad(t)

)
∆t2, (3.35c)

where the subscripts for the body and world frame has been dropped for simplic-
ity. Note that the rotation matrix R refers to Rcar for the INS model. It is also
worth noting that the orientation R(t) is assumed to be constant for the integra-
tion between two measurements. The superscript d in ηgd and ηad corresponds
to it being discrete-time noise.

Since the IMU has a high sample rate and the camera yields measurements at
a low rate we only want to add the states, obtained from measurements, when
an image is taken. This is shown in Figure 3.6 where the IMU measurements be-
tween two images taken at time step i and j, as previously stated, are contracted
to one measurement which yields a single factor. This factor, called preintegrated
IMU factor, sets constraints on the pose between the time steps of two images. If
we assume that the measurements from the IMU are synchronised with the im-
ages from the camera we can summarise all IMU measurements by calculating



24 3 Theory

the integration in Equation (3.35) for each ∆t between the image taken at time
step i and j. This gives

Rj = Ri

j−1∏
k=i

Exp
(
(ω̃k − b

g
k − η

gd
k )∆t

)
, (3.36a)

vj = vi + g∆tij +
j−1∑
k=i

Rk(ãk − bak − η
ad
k )∆t, (3.36b)

pj = pi +
j−1∑
k=1

(vk∆t +
1
2
g∆t2 +

1
2
Rk(ãk − bak − η

ad
k )∆t2), (3.36c)

where ∆tij = tj − ti . As stated in [27], the problem with (3.36) is that it would
have to be computed each time the linearisation point at time ti changes. In order
to avoid this we formulate equations, that are independent of both the pose and
the velocity at time ti , as

∆Rij =̇R
T
i Rj =

j−1∏
k=i

exp(ω̃k − b
g
k − η

gd
k ), (3.37a)

∆vij =̇R
T
i (vj − vi − g∆tij ) =

j−1∑
k=i

∆Rik(ãk − bak − η
ad
k )∆t, (3.37b)

∆pij =̇R
T
i (pj − pi − vi∆t −

1
2
g∆t2ij ) =

j−1∑
k=i

(∆vik∆t +
1
2
∆Rik(ãk − bak − η

ad
k )), (3.37c)

where

∆Rik � R
T
i Rk ,

∆vik � R
T
i (vk − vi − g∆tik).

(3.38)

(3.37) gives a relation between the images taken at two different time steps with
the measurements from the IMU. In this thesis the bias is assumed to be constant
between two images.

In order to reach the MAP estimate we need to define the densities of the
measurements. We do this by manipulating (3.37), which means to isolate the
noise terms. For the rotation increment ∆Rij we use (3.32) and then a property
of the exponential map which is

Exp(φ)R = R Exp(RTφ), (3.39)

and then we get
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∆Rij ≈
j−1∏
k=i

(
Exp

(
(ω̃k − b

g
i )∆t

)
Exp

(
− Jkr η

gd
k ∆t

))
,

= ∆R̃ij

j−1∏
k=i

Exp
(
− ∆R̃Tk+1j J

k
r η

gd
k ∆t

)
,

� ∆R̃ijExp(−δφij ),

(3.40)

where the preintegrated rotation measurement ∆R̃ij �
∏j−1
k=i Exp((ω̃k − b

g
i )∆t) and

its noise δφij has been defined. Then we can substitute (3.40) to the expression
for ∆vij in (3.37) and use the first order approximation from (3.31) to replace
Exp(−δφij ). From this we obtain

∆vij ≈
j−1∑
k=i

∆R̃ik(I − δφ∧ik)(ãk − b
a
i )∆t − ∆R̃ikη

ad
k ∆t,

= ∆ṽij +
j−1∑
k=1

(
∆R̃ik(ãk − bai )

∧δφik∆t − ∆R̃ikηadk ∆t

)
,

� ∆ṽij − δvij ,

(3.41)

where the preintegrated velocity measurement ∆ṽij �
∑j−1
k=i ∆R̃ik(ãk − b

a
i ) and its

noise δvij is defined. We then substitute (3.40) and (3.41) in to (3.37) to express
∆pij as

∆pij ≈
j−1∑
k=1

(
(∆ṽik − δvik)∆t +

1
2
∆R̃ik(I − δφ∧ik(ãk − b

a
i )∆t

2 − 1
2
∆R̃ikη

ad
k ∆t2

)
,

= ∆p̃ij +
j−1∑
k=i

(
− δvik∆t +

1
2
∆R̃ik(ãk − bai )

∧δφik∆t
2 − 1

2
∆R̃ikη

ad
k ∆t2

)
,

� ∆p̃ij − δpij ,
(3.42)

where the preintegrated position measurement ∆p̃ij and its noise δpij has been
defined by again using the first-order approximation from (3.31). By finally sub-
stituting the three preintegrated measurements to the definitions of ∆Rij , ∆vij
and ∆pij in (3.37) we get

∆R̃ij = RTi Rj Exp(δφij ), (3.43a)

∆ṽij = RTi (vj − vi − g∆tij ) + δvij , (3.43b)

∆p̃ij = RTi (pj − pi − vi∆tij −
1
2
g∆t2ij ) + δpij , (3.43c)
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which is our preintegrated measurement model where the contracted measure-
ments are defined as a function of the states to be estimated and added noise.

3.8 Odometry motion model

The odometry motion model uses measurements from wheel encoders mounted
on the rear wheels of the vehicle. The odometry model generates a two dimen-
sional pose, which then is transformed into a three dimensional pose to be used
in the factor graph. The measurements contain information about the angular
velocity ωwheel of the individual wheels through pulse signals, from which a ve-
locity V wheel for each individual wheel can be calculated. In order to calculate
the velocity, a conversion from the wheel encoder analog signal has to be done
to obtain a digital signal. As the measurement noise gets converted accordingly,
the noise is not Gaussian due to quantisation effects which can be summarized as
errors in the conversion from analog to digital signals. However, for simplicity,
the noise is still assumed Gaussian. The vehicle’s absolute velocity is estimated
to be the mean value of the rear wheel’s velocities. The vehicle yaw rate can be
calculated from the difference between the velocities obtained from the two rear
wheels, divided by the length of the rear axis daxis. The left rear wheel is denoted
V wheel

3 and the right rear wheel is denoted V wheel
4 These two measurements cor-

responds to V and ω and are found from

V =
V wheel

3 + V wheel
4

2
, (3.44)

ω =
V wheel

4 − V wheel
3

daxis
. (3.45)

The odometry model is derived from Figure 3.7, where the vehicle orientation in
time step k and k − 1 is modelled in the local coordinate system [X0, Y0, θ0]T , as
well as its trajectory between these orientations. Three states are defined in each
time step; [x, y, θ]T . Between time step k and k − 1 it is assumed that the vehicle
travels in an arc with constant velocity. The angle ωk−1∆t determines the rotation
center for the trajectory.

The resulting distance travelled is denoted Dk−1. The body frame in which
the measured velocity was collected is denoted [Xk−1, Yk−1, θk−1]T , where Xk−1 is
oriented in the vehicle travelling direction while Yk−1 is perpendicular to Xk−1. If
the relationship between the global navigation frame and [X0, Y0, θ0]T is known,
then [x, y, θ]T can be expressed in the global navigation frame, resulting in the
odometry model as

pxk = pxk−1 +
2Vk−1

ωk−1
sin

(ωk−1∆t
2

)
cos

(ωk−1∆t
2

+ θk−1

)
, (3.46a)

p
y
k = p

y
k−1 +

2Vk−1

ωk−1
sin

(ωk−1∆t
2

)
sin

(ωk−1∆t
2

+ θk−1

)
, (3.46b)
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Figure 3.7: Relevant angles from which to derive the odometry model.

φzk = φzk−1 + ωk−1∆t, (3.46c)

which corresponds to a two dimensional pose, where φz is a part of Rcar , which
can be transformed to a three dimensional pose containing the vehicle states p
and Rcar with a high uncertainty in the unknown directions. A detailed descrip-
tion of how the odometry motion model and its Jacobian was derived can be
found in Appendix A.

3.9 Camera model

The camera model used in the GTSAM toolbox is given by


u

w

1

 =


fx 0 cx
0 fy cy
0 0 1

︸         ︷︷         ︸
K


R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz

︸                       ︷︷                       ︸
[R|T ]


Lx

Ly

Lz

1

 , (3.47)

where
Tx = −

[
R11 R12 R13

]
pk , (3.48a)
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Ty = −
[
R21 R22 R23

]
pk , (3.48b)

Tz = −
[
R31 R32 R33

]
pk . (3.48c)

It is possible to find the pixel coordinates [u, w]T of a projected landmark with the
global navigation frame coordinates [Lx, Ly , Lz]T , given the camera matrix K and
rotation translation matrix [R|T ] which corresponds to the camera’s pose. The fx
and fy elements in the camera matrix K denote the focal lengths of the camera
expressed in pixels, while the elements cx and cy denote the principal point in
pixels, which is the center of the captured images. The rotation translation matrix
[R|T ] transforms the landmark’s global coordinates [Lx, Ly , Lz]T to the camera-
oriented coordinate system [Lc,x, Lc,y , Lc,z]T . The camera coordinate system is
oriented in such a way that the x and y axis forms the image plane, while the z-
axis is perpendicular to the image plane. The camera model (3.47) can be written
in a simpler form to clearly show the relation between the camera coordinate
system and the pixel coordinates [u, w]T as

Lc = R(L − r)

Lc,x ′ = Lc,x
Lc,z

Lc,y ′ = Lc,y
Lc,z

u = fx · Lc,x ′ + cx

w = fy · Lc,y ′ + cy

, (3.49)

where u and w correspond to the output from the measurement function hproj

that gives the landmark’s estimated pixel coordinates based on the current cam-
era pose. The measurement yproj , on the other hand, simply is the landmark’s
pixel coordinates in the image. The camera model Jacobian for a monocular pin-
hole camera can be found by first expressing a landmark in the local camera
coordinate system with

Lc = R(L − r). (3.50)

A projection of the landmark is then given by

z =
[
Lc,x
Lc,z

Lc,y
Lc,z 0

]T
, (3.51)

where the principal point c has been dropped since it is placed in cx = cy = 0
in this thesis. The measured projection coordinates yproj from the measurement
model hproj are found from (3.51) and the camera matrix K according to

yproj = Kz. (3.52)

From (3.50)–(3.52) the Jacobian is then

∂yproj

∂L
=
∂yproj

∂z
∂z
∂Lc

∂Lc

∂r
∂r
∂L

= −K ∂z
∂Lc

R, (3.53)
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where
∂yproj

∂z
= K, (3.54a)

∂Lc

∂r
= −R, (3.54b)

∂z
∂Lc

=


1
Lc,z 0 − Lc,x

(Lc,z )2

0 1
Lc,z − Lc,y

(Lc,z )2

0 0 0

 , (3.54c)

∂r
∂L

= 1. (3.54d)

3.9.1 Map data

The map data consists of topographical data and images. The topographical data
is a point-cloud data set with a density of up to 15-20 points per square-meter.
This data was collected by a private company, ordered by Linköping municipality,
in 2013 [29].

The map image data is a combination of global coordinates and aerial footage
that are distributed by the Swedish Authority Lantmäteriet [30]. The image data
makes it possible to associate each landmark Li with an estimated global coor-
dinate [Lxi , L

y
i , L

z
i ]
T . An uncertainty is added to these coordinates as the exact

global coordinate can not be extracted from the map, which enables the SLAM
algorithm to alter the landmark coordinates.

3.10 Performance metrics

To analyse the estimation a few different metrics regarding the performance were
computed. The first is the well known mean squared error (MSE)

MSE =
1
N

N∑
i=1

∣∣∣∣∣∣pi − p̂i ∣∣∣∣∣∣22 (3.55)

where pi − p̂i corresponds to the error between the true and estimated vehicle
positions. The squared Euclidean norm is then used to find the MSE for the
entire trajectory. The second method is called average normalised estimation
error squared (ANEES) and takes the estimated covariance into account and is
formulated as

ANEES =
1
N

N∑
i=1

(pi − p̂i)TΣ−1
i (pi − p̂i) (3.56)

with the marginal covariance matrix Σi , given by the localisation system at it-
eration i. The covariance was obtained after the entire simulation since it may
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change when new measurements are obtained due to the smoothing implementa-
tion. The optimal value of ANEES in this case is 3 (because we analyse the error
with 3 degrees of freedom) which means that the estimated error and covariance
are equal. ANEES equal to 3 means that the model is credible while values larger
or smaller mean that the model is either optimistic or pessimistic [31].

The third and final method was to analyse the indicated standard deviation.
The standard deviation was obtained by taking the square root of the diagonal in
the covariance matrix Σi at each iteration i.



4
Method

To be able to evaluate the proposed localisation system, data has been collected
with a real vehicle. The vehicle was equipped with cameras, GNSS receivers, a
controllable board fixture, IMU, wheel encoders, and computers during the data
collection. Data were collected along three different tracks on the public road
with different speed limits, amount of turns, and landmarks. The collected data
contained IMU measurements for the inertial navigation, wheel encoder data for
the odometry model, and GNSS measurements to generate ground truth data for
the tracks and images along the tracks from which to find visible landmarks. A
simulated camera was later used to project the landmarks instead of finding the
landmark pixel coordinates in the real images. This was done in order to enable
better comparison between different landmark setups as the IMU and odometry
data would be the same for the different camera settings, making it possible to
draw conclusions based on the camera and landmark constraints alone. The sim-
ulated camera is assumed to have no restrictions regarding the speed at which it
can rotate in different directions. The simulated camera data consisted of each im-
age’s landmark projection pixel coordinates and the corresponding camera pose
relative to the vehicle. The images collected with the real camera contained in-
formation on what was seen in the real scenario, which was used to implement
realistic landmark selections and compare them with the map data. This made it
possible to present realistic localisation estimates for the vehicle along the three
tracks.

31
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Figure 4.1: The data collection system.

4.1 Data collection

The general system used to collect the image, GNSS, odometry and IMU data
can be found in Figure 4.1. The data was collected in and around the suburb
Lambohov, near Linköping in Sweden.

Here follows a description of the different system components and their inter-
actions with each other, as found in Figure 4.1.

Vehicle

The vehicle used during the data collection was a Toyota Landcruiser, as seen
in Figure 4.2. This vehicle had been used for similar purposes before and was
therefore already prepared with various mountings on the roof.

Computers

Two regular computers were used for the data collection. One computer was
used to collect the images, GNSS signals, and steer the control board, while the
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Figure 4.2: The vehicle used during the data collection, equipped with the
data collection equipment.

other computer stored the IMU and odometry data. These computers acted as
two separate data collection systems.

GPS

One computer was fitted with a GPS time receiver (Meinberg PEX180). This was
to prevent any clock drifts during the data collection. The vehicle was also fitted
with two GNSS receivers (Ublox Zed-F9P) which were used to generate the RTK
data. The RTK data processing was handled by FOI.

Landmäteriet base-station

In order to increase the accuracy of the RTK data, it was post-calibrated with the
phase of the GNSS carrier wave, which Lantmäteriet collected. This data post-
calibration was handled by FOI.

Cameras

Both a thermal camera (FLIR SC655) and a visual camera (Dalsa Genie Nano
C1920) were used. The thermal camera would capture an image when it received
a signal from the computer, and would in turn send a trigger signal to the visual
camera. The visual camera would then capture an image and send a trigger signal
back to the thermal camera, confirming that the sequence was completed and
the computer would then store the paired images. The image signal stream was
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handled through ethernet. The thermal camera was used to complement the
data collection for future use for FOI, and the only image data of interest for the
estimation model was from the visual camera. The visual camera data was mainly
of interest during the evaluation of a realistic landmark setting as a simulated
camera was ultimately implemented to replace an actual implementation of the
captured images.

Pan/tilt unit

Both cameras were mounted on a pan/tilt unit (PTU FLIR 300E). The pan/tilt
unit was controlled through a joystick, enabling the cameras to be controlled in-
dependently of the vehicle’s orientation. This makes it possible to aim the camera
at landmarks, or in general directions of interest.

IMU

The IMU used was an MTi-670-Dk from the supplier Xsens, and it was mounted
in the vehicle above the center of the rear wheel axis to minimise any leverage
interactions from the vehicle’s rotation. The IMU data collection was done using
a different computer than what was used to collect GPS and camera data.

Wheel encoders

The wheel encoders were pre-installed in the vehicle by the manufacturer. The
data was collected from the controller area network bus. The same computer that
was used to collect IMU data was used to collect the wheel encoder data.

4.2 Data collection trajectories

Three different tracks were used to gather data, hereafter referred to as the coun-
try roads track, the highway track, and the urban track in accordance with their
distinguishable characteristics.

4.2.1 Country roads track

The country roads track data was mainly collected on country roads. The path
was 3930 meters long and took 448 seconds to complete. The RTK path can be
found in Figure 4.3. The track characteristics can be divided into segments along
the path. Initially, houses are visible around the vehicle which provides multi-
ple clear landmarks. After approximately 100 meters, there are no close visible
houses as the initially visible houses are hidden behind a small hill. For the fol-
lowing 1100 meters, the landscape consists of open fields and sparse vegetation.
A few buildings are visible along the way but most of the time the scenic view
consists of open fields, traffic signs, power lines, and sparse vegetation. Close
to the first roundabout, there is a large building that is easy to identify from ap-
proximately 300 meters. After the first roundabout, there is a fair amount of



4.2 Data collection trajectories 35

Figure 4.3: The ground truth trajectory for the country roads track. The
vehicle travelled counterclockwise along the path.

distinguishable landmarks until the last 400 meters of the track. In these last
400 meters, there are once again mostly open fields and sparse vegetation that
are visible. The houses that were initially visible are hidden behind vegetation
and are therefore not visible until the end of the path. This track was selected
as it contained different segments which were of interest, both the open fields,
the roundabouts, and various speed sections. Generally, along the open fields,
there was not much traffic to take into account, enabling a constant speed to be
maintained during large sections of the path.

4.2.2 Highway track

The highway track data set contained both low and high-speed sections. The
path was 6568 meters long and took 675 seconds to complete. The RTK path
can be found in Figure 4.4. The vehicle travelled at a higher speed during sec-
tions of this data set compared to the other data sets. Many landmarks were
visible along the track, both houses, bushes, bus stops, trees, and power lines.
The vehicle travelled clockwise during the data collection. The highway track
begins and ends in a parking lot, and stretches towards an industrial area after
approximately 1000 meters. Here the track circle around an area containing both
vegetation and buildings, only to reconnect with itself. The track then leads to
the highway, where a much higher speed is maintained compared to the other
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Figure 4.4: The ground truth trajectory for the highway track.

tracks, ultimately reaching a roundabout from where the initial parking lot is the
final destination during a path with moderate speed and partial vegetation.

The highway track was selected mainly due to the high-speed sections, as an
addition to the other tracks. Due to issues with the data, it was not possible to
give a visual representation of the highway track terrain, so the background is
disregarded from these plots.

4.2.3 Urban track

In the urban track data set, the vehicle maintained a very low speed with many
sharp turns and regular stops in an urban area. The path was 2489 meters long
and took 587 seconds to complete. The RTK path can be found in Figure 4.5.
The urban track characteristics were unique compared to the country roads track
and the highway track, as an abundance of clearly distinguishable landmarks are
visible in each image, which all were very close to the path of the vehicle. There
are many houses, road signs, intersections, and vegetation visible in each image.
Due to the proximity of the houses, few images capture possible landmarks at
further distances. At the beginning of the path, the vehicle travelled north until
a roundabout was encountered, at which point the vehicle returned from where
it came. It then travelled along narrow roads with many close buildings, until it
eventually returned to the approximate starting area.
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Figure 4.5: The ground truth trajectory for the urban track.

The urban track was selected due to the low speed, the many sharp corners,
and the complex path.

4.3 Data processing

Due to the usage of two separate computers during the data collection, there was
an issue when matching the timestamps at which the data was collected between
these computers. This has in turn most likely led to small deviations between the
data sets. This has affected the result to some degree and is difficult to accurately
compensate for due to the data collection setup.

4.3.1 Generating the RTK

RTK data was generated from the two GNSS measurements. From the RTK data,
a heading could also be calculated. The data was also post calibrated using Lant-
mäteriet Base-station to generate accurate data.

4.3.2 Ground truth poses

In order to generate simulated camera data, both the relative pose between the ve-
hicle and camera, as well as the landmark projection in the images had to be gen-
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erated. This information would be found from the control signal to the pan/tilt
unit and the landmarks found in the images respectively during real data col-
lection. Both the true vehicle poses and simulated landmarks was required to
generate this data. The first part of retrieving the poses was to make sure that the
measurements from the different sensors were in sync. All data from the three dif-
ferent tracks were collected on the same day, and the GNSS measurements were
collected continuously throughout the entire data collection session of all three
tracks. The IMU and odometry data however, were only collected while driving
along the three tracks. To synchronize the measurements, the RTK data was gen-
erated from the GNSS measurement and was then differentiated to estimate a
velocity, which was matched to the velocity obtained from the odometry model.
These were lined up for each trajectory, making sure that the measurements with
the right time stamps were used with as good accuracy as possible.

The vehicle poses were generated from IMU, odometry, and RTK data, and
were found through iSAM2, generating an estimate of the pose with each RTK
measurement point. These vehicle pose estimates were then treated as ground
truth and were used to generate the relative camera pose. Camera poses could
then be set with zero translation difference from the ground truth vehicle poses
and rotated independently depending on which landmark it was supposed to
project.

By placing landmarks along the tracks and aiming the simulated camera to-
wards these, it was possible to define which landmarks were visible from the
camera poses, and the simulated camera could project these landmarks in an im-
age as if captured from the real path, to generate the pixel coordinates (u, w)T .
The generated pixel coordinates are then used as the simulated images with land-
mark projections for the different setups. The relative pose between the vehicle
and camera, and the landmark projections were estimated for all ground truth
vehicle poses along the track in this manner.

4.4 Description of the localisation system

The localisation system generates and appends state information to a factor graph,
which then is transformed into Bayes net, from which the MAP estimate can be
found. The general localisation system algorithm can be found in Algorithm 2.
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Algorithm 2 The localisation algorithm

The localisation system creates factor graphs with each new image, containing
information about the variables at that time. The iSAM2 solver transforms
these factor graphs into a Bayes net and finds the MAP estimate. The algorithm
variable notation coincides with Figure 3.1.

1. Landmark positions are generated from the map data or simulated ac-
cording to the test scenario.

2. A factor graph is generated and the landmarks are appended as variables
Li , with a priori factors ψlandmark(Li) to constrain the landmark positions.
Each landmark has a unique identifier.

3. A priori which will be set on the first vehicle variable M1 is appended to
the factor graph as a factor ψcar (M1).

4. An image j is captured, and a camera and vehicle variable is added to the
factor graph. The j:th image will generate the j:th camera and vehicle
variable, i.e, the first image will generate C1 and M1 and so forth.

5. The INS and odometry model is appended as the factors ψINS (Mj−1, Mj )
and ψodo(Mj−1, Mj ) between the vehicle´s new and previous pose, Mj
and Mj−1.

6. The control board settings are used to generate the relative pose factor
ψcc(Mj , Cj ) between the vehicle Mj and camera Cj variables.

7. Landmarks are identified in the captured image, and the pixel coordi-
nates in the image which best denote the landmark positions from the
map data are selected and added to the factor graph as the projection
factor ψproj (Cj , Li). If there are image data denied periods, the landmark
projection data will be discarded during these measurement periods.

8. The factor graph is added to the iSAM2 solver which transforms the
graph into a Bayes net and stores it in a Bayes tree.

9. The iSAM2 solver finds the MAP estimate and updates the uncertainties
and variable estimates, including the landmark positions.

10. With each new image captured, the algorithm returns to step 4.

4.5 Parameters

Three important aspects that had an impact on the result were image frequency,
landmark selection, and covariances. Different image frequencies and landmark
setups were tested for the three tracks.
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4.5.1 Image frequency

To answer the problem statement and evaluate the impact of the image frequency,
both constant and varied image frequency was tested. The image frequency was
set to 0.1 Hz, 0.5, Hz, 1 Hz, and 2 Hz for the constant image frequency tests.

While testing varied image frequencies, two different setups were tested. Firstly,
the image frequency was randomly varied in an interval of 0.1-2 Hz. The purpose
behind this test was to simulate a camera trigger based on landmark identifica-
tion, which most likely would not remain constant throughout the tracks due to
varied visibility. Secondly, longer periods of no visible landmarks were simulated,
denying the system any landmark observations. The purpose was to be able to
evaluate if it is possible to see landmarks and capture images for a period of time,
followed by a period of time where no landmarks can be seen. This would be
repeated during the path 6 times. The periods where no landmarks could be
identified were set to 10, 20, and 40 seconds for each track. During these peri-
ods of no visual landmarks, the factor graph still received new information at the
same rate as when landmarks were visual, with the difference that all landmark
projection data was discarded. This allowed the estimate to be updated based on
the INS and odometry model alone.

4.5.2 Landmark setups

To adequately answer the problem statement, different landmark setups were
used for the same track in the simulations.

Evenly distributed landmarks

The evenly distributed landmarks setup corresponds to landmarks appearing
evenly along the ground truth trajectory. Further, the landmarks alter between
being on the right and left side of the path, and are located approximately the
same distance from the path. This setup was chosen as it gives uniform con-
straints for the model, meaning it always has available landmarks that follow the
same distance pattern between landmark and vehicle path. This landmark setup
was used while testing the image frequency impact on the estimate.

Different number of landmarks

In the different number of landmarks setup, multiple landmarks could be found
in one image. More landmark observations in each image should intuitively re-
sult in more constraints and therefore also a better estimate of the camera pose.
For this test, it is of interest to analyze how the number of landmarks seen in each
image affects the localisation estimate. The setup was implemented by adding ad-
ditional landmarks a few meters next to each landmark in the evenly distributed
landmarks setup.
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Sparse landmark selection

The sparse landmark setup has much fewer landmarks compared to the other
setups. The setup can be used to evaluate the localisation performance if only
a distant landmark, such as a church tower, can be identified from the map. To
evaluate the localisation performance in these cases, two landmark setups will
be tested. Firstly when only one distant landmark is identified along the entire
track, and secondly when two supporting landmarks are added along the track
but only visible within a short range.

Realistic landmarks selection

The last landmark setup, realistic landmarks selection, is chosen to be as real-
istic as possible. This is done by identifying landmarks in the real images and
correlating these to the map data. Some landmarks are assumed to be visible
in the simulated images despite not being visible in the real images due to the
orientation of the camera.

4.5.3 Model covariance, uncertainties, and initialization

The covariance and bias uncertainties used for the IMU can be seen in Table 4.1-
4.2. The covariance is taken from the datasheet while the bias uncertainties were
initialised with high values since the system computes the bias for each set of
preintegrated measurements and low initial uncertainties showed poor results.
Note that there are only three covariance values each for the gyroscope and ac-
celerometer. These are used as the diagonal of a covariance matrix where the
non-diagonal values are set equal to zero.

Table 4.1: IMU covariance

σ
φ̇
x σ

φ̇
y σ

φ̇
z

Gyroscope [ rad
2

s2
] 0.17 · 10−3 0.17 · 10−3 0.17 · 10−3

σ ax σ ay σ az
Accelerometer [m

2

s4
] 0.87 · 10−5 0.87 · 10−5 0.87 · 10−5

Table 4.2: IMU bias uncertainties

φ̇x [ rads ] φ̇y [ rads ] φ̇z [ rads ] ax [m
s2

] ay [m
s2

] az [m
s2

]
σbias 1 1 1 0.5 0.5 0.5

Moreover, the implemented initial pose uncertainties can be seen in Table 4.3.
The uncertainties σ , similar to the IMU covariance, are the elements in the diago-
nal matrix corresponding to the factor graph variables. The values are arbitrarily
selected with respect to the order of the expected values. How these are imple-
mented is described in Section 4.4.
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Table 4.3: Initial pose uncertainties

φx [rad] φy [rad] φz [rad] px [m] py [m] pz [m]
σcar 0.05 0.05 0.05 0.1 0.1 0.1

σcamera 0.05 0.05 0.05 0.1 0.1 0.1
σlandmark - - - 0.1 0.1 0.1
σcarCamera 0.0001 0.0001 0.0001 0 0 0

Furthermore, the projection uncertainty, presented in Table 4.4, is a normally
distributed noise of 0.2 pixels that are added to the projection received from the
camera projection factor. This is done to simulate some measurement noise to
the projected landmarks. The purpose of this is to get a closer correspondence to
the projections from a real camera. The initial velocity uncertainty can be seen in
Table 4.5.

Table 4.4: Projection uncertainty

u [pixel] w [pixel]
σprojection 0.2 0.2

Table 4.5: Initial velocity uncertainty

vx [ms ] vy [ms ] vz [ms ]
σvelocity 0.0028 0.0028 0.0028
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Result

The result section has been divided into segments corresponding to the problem,
where each section consists of a different setup regarding the image frequency
or landmark setup. The results from the country roads track can be found in
the result section, while the urban and highway tracks results can be found in
Appendix B. The vehicle pose translation that was created from odometry, IMU,
and RTK data as described in Section 4.3.2 is considered to be the ground truth
path. The performance is measured by absolute positional error, the estimates’
standard deviation, MSE, and ANEES as described in Section 3.10. These perfor-
mance data are calculated on an image frequency basis, so each image captured
generates a data point. During periods of denied image data, the landmark pro-
jections are disregarded but the model still receives new data from the INS and
Odometry model. The px, py , and pz-positions in the figures regarding the abso-
lute positional error and standard deviation refer to the global navigation frame
coordinate system as previously described.

5.1 Ground truth result

In Table 5.1 the MSE values between the ground truth poses, generated as de-
scribed in Section 4.3.2, and the RTK measurements are shown.

Table 5.1: MSE between the ground truth translation and RTK data.

MSE [m]
Country roads track 7.6183 · 10−5
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Figure 5.1: The estimated path for the country roads track compared to
ground truth with 1 Hz image frequency.

5.2 Image frequency

The image frequencies tested were 0.1 Hz, 0.5 Hz, 1 Hz, and 2 Hz. The landmark
setup remained the same while testing the different image frequency settings,
with the landmarks being placed 40-60 meters from the path, with at least 110
meters between each landmark. Only one landmark was visible in each image.
The resulting MSE and ANEES values can be found in Table 5.2 for the country
roads track at the different image frequency settings.

Table 5.2: MSE and ANEES of the estimated path at different image frequen-
cies.

0.1 Hz 0.5 Hz 1 Hz 2 Hz
MSE Country roads track [m] 5.4643 1.154 0.7266 0.56464

ANEES Country roads track [-] 3.8592 9.2137 12.5022 17.0959

The landmark setup for the country roads track can be seen in Figure 5.1
The error between the estimate and ground truth, as well as the approximated

standard deviation in each image captured along the country roads track, can be
found in Figure 5.2. During the data collection, 45, 224, 448, and 896 simulated
images were captured at 0.1, 0.5, 1, and 2 Hz respectively.



5.2 Image frequency 45

0 5 10 15 20 25 30 35 40 45

Frame [-]

0

0.5

1

1.5

2

2.5

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [
m

]

Standard deviation at 0.1 Hz, 1 landmark

0 5 10 15 20 25 30 35 40 45

Frame [-]

0

1

2

3

4

A
b
s
o
lu

te
 e

rr
o
r 

[m
]

Error in each position at 0.1 Hz, 1 landmark

0 50 100 150 200

Frame [-]

0

0.2

0.4

0.6

0.8

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [
m

]

Standard deviation at 0.5 Hz, 1 landmark

0 50 100 150 200

Frame [-]

0

0.5

1

1.5

2

2.5
A

b
s
o
lu

te
 e

rr
o
r 

[m
]

Error in each position at 0.5 Hz, 1 landmark

0 50 100 150 200 250 300 350 400

Frame [-]

0

0.1

0.2

0.3

0.4

0.5

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [
m

]

Standard deviation at 1 Hz, 1 landmark

0 50 100 150 200 250 300 350 400

Frame [-]

0

0.5

1

1.5

2

2.5

A
b
s
o
lu

te
 e

rr
o
r 

[m
]

Error in each position at 1 Hz, 1 landmark

0 100 200 300 400 500 600 700 800

Frame [-]

0

0.1

0.2

0.3

0.4

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [
m

]

Standard deviation at 2 Hz, 1 landmark

0 100 200 300 400 500 600 700 800

Frame [-]

0

0.5

1

1.5

2

2.5

A
b
s
o
lu

te
 e

rr
o
r 

[m
]

Error in each position at 2 Hz, 1 landmark

Figure 5.2: Absolute errors and the standard deviations of the estimates at
0.1, 0.5, 1 and 2 Hz image frequency during the country roads track.
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5.3 Varied image frequency

The image frequency was varied along the path. This was done in two different
setups. For the first setup, an image was captured in an interval of 0.5 - 10 sec-
onds after the previous image. The time in the interval was randomised, hence
a slightly different estimation can be expected each time. For the second setup,
the localisation system was denied new images for a fixed amount of time during
certain parts of the track.

5.3.1 Frequency interval 0.1 - 2 Hz

With a varied image frequency in the interval of 0.1 - 2 Hz, a of total 448 simu-
lated images were captured for the country roads track, which is the same amount
of images as a constant image frequency of 1 Hz would generate. The path was es-
timated five times in order to describe the characteristics of the varied frequency
impact more accurately, as the varied frequency would yield different results for
each iteration. The generated MSE and ANEES values for these tests can be found
in Table 5.3.

Table 5.3: MSE and ANEES of the estimated country roads track at varied
image frequencies.

MSE [m] ANEES [-]
Test 1 1.5233 22.5381
Test 2 1.3137 18.4358
Test 3 1.419 22.4734
Test 4 1.571 22.3003
Test 5 1.1907 18.2362

5.3.2 Denied images

The results when the system was denied new image data for parts of the path, in
terms of MSE and ANEES, can be seen in Table 5.4.

Table 5.4: MSE and ANEES of the estimated country roads track with peri-
ods of denied image data.

Denied image time MSE [m] ANEES [-]
Test 1 10 0.8675 11.0352
Test 2 20 1.2363 10.5455
Test 3 40 2.2984 10.0073

The estimated path for the country roads track where the localisation system
is denied image data for 40 seconds 6 times along the track can be found in Figure
5.3, along with the covariance ellipse for the estimated path.
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Figure 5.3: Estimated path for the country roads track with uncertainties
and 40 seconds of denied image data at 6 instances.

In Figure 5.4 the absolute errors and standard deviations are presented for 10,
20 and 40 second periods of denied image data.
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Figure 5.4: Absolute errors and the standard deviations of the estimates at 1
Hz image frequency for the country roads track, with 6 instances of 10, 20,
and 40 seconds denied image data.
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Figure 5.5: Absolute errors and the standard deviations of the estimates at
1 Hz during the country roads track with 2 and 4 landmarks visible in each
image.

5.4 Amount of visible landmarks per image

Using the same landmark setup as in Section 5.2, different amounts of visible
landmarks in each image were tested. Either two or four visible landmarks in
each image were simulated. The MSE and ANEES values for the country roads
track can be seen in Table 5.5. In Figure 5.5 the resulting standard deviation and
absolute error using 2 and 4 landmarks can be seen for the country roads track.
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Table 5.5: MSE and ANEES of the estimated path with multiple visible land-
marks.

Visible in each image 2 Landmarks 4 Landmarks
MSE Country roads track [m] 0.56138 0.47978

ANEES Country roads track [-] 11.9004 11.5932

5.5 Sparse landmark selection

For these tests, a landmark selection as described in Section 4.5.2 was used. Two
different setups were tested for the tracks. In the first setup, only a distant land-
mark was visible in each image, and in the second setup two additional land-
marks were added, but they were only visible if the vehicle was within a range
of 30 meters from the landmarks. These tests were performed with an image fre-
quency of 1 Hz. The country roads track presents figures for both the standard
deviation and absolute error in the estimates for one distant landmark and where
two additional landmarks are used, to visualize the difference.

While testing these setups on the country roads track, a landmark was placed
5 km west, 1 km north and 100 meters above the vehicle starting position. The
results for this sole landmark can be seen in Figure 5.7. For this track, two com-
plementary landmarks were added at one roundabout and one cross-section and
the results can be seen in Figure 5.8. The values of MSE and ANEES for the two
tests can be found in Table 5.6.

Table 5.6: Values of MSE and ANEES for the two sparse landmark setups.

MSE [m] ANEES [-]
Distant landmark 88.9824 53.7327

3 landmarks 13.6859 40.5009
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Figure 5.6: Absolute errors and the standard deviations of the estimates at
1 Hz during the country roads track with one unique landmark, and where
two complementary landmarks are added along the track.

Furthermore, the path when using one distant landmark during the entire
track can be found in Figure 5.7, and the path with the additional complementary
landmarks can be seen in Figure 5.8, both with their covariance ellipses.
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Figure 5.7: Estimated path with uncertainties using a distant landmark the
entire trajectory.

Figure 5.8: Estimated path with uncertainties using a distant landmark and
two complementary landmarks.
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Figure 5.9: The estimated path with realistic landmarks for the country
roads track.

5.6 Realistic landmark selection

For this part, the landmarks were selected according to Section 4.5.2 from the
real images. The results are presented as an estimated path, absolute error, and
standard deviation for the country roads track. The values for MSE and ANEES
can be found in Table 5.7.

Table 5.7: MSE and ANEES of the estimated country roads track at realistic
landmark setups.

MSE [m] ANEES [-]
Country roads track 0.54252 12.6524

The estimated path for the country roads track with realistic landmarks is
shown in Figure 5.9 while the absolute errors and standard deviations are shown
in Figure 5.10.
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Figure 5.10: The estimated path with realistic landmarks for the country
roads track.
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Discussion

Here, the findings in Section 5 and how the findings were obtained in Section 4,
are discussed and analysed. The general work in a wider context is also discussed.

6.1 Results

The different setups in Section 5 are discussed with respect to the problem state-
ment.

6.1.1 Ground truth

The estimated ground truth vehicle poses had a similar translation compared to
the RTK data, as seen by the MSE between the two data sets in Tables 5.1 and B.1.
This can be interpreted as the ground truth having high accuracy with regard to
the vehicle’s position during the tracks. The MSE value for the urban track is
higher compared to the other tracks which could suggest that some interference
occurred during the data collection session. During the urban track, there were
multiple speed bumps that could introduce noisy measurements compared to the
other tracks, but it should not be significant enough to affect the entire estimation
to this degree.

Furthermore, it is difficult to determine the credibility of the vehicle’s orienta-
tion estimate regarding roll and pitch since they do not get any constraints from
the odometry model as the yaw does. The RTK data generated from the GNSS
measurements needed to be synced with the odometry model and IMU measure-
ments to generate the vehicle pose estimates. This sync was sensitive, where just
a small sync error would generate poor pose estimates. As these poses were then
used for the simulated camera, they could have had an impact on the estimation.

55
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6.1.2 Image frequency

Three different image frequency settings were tested to evaluate the impact of the
image frequency on the path estimation.

Constant frequencies

The general correlation between image frequency, MSE, and ANEES are found in
Table 5.2 for the country roads track, and in Tables B.2 and B.3 for the highway
and urban tracks respectively. The findings show that the estimate becomes bet-
ter with higher frequency, but also more overconfident. The increased accuracy is
intuitive as more constraints and smaller integration drifts should yield a better
estimate. The reason the ANEES increases is however an issue that can have mul-
tiple explanations. The optimal trend would be that the ANEES remains the same
or approaches its optimal value as more images are included in the estimation.

One of the probable reasons is that the measurements consist of both collected
data and simulated data, which do not fully coincide. Despite the high accuracy
between the estimated ground truth path and RTK data, there is a pose difference.
Another possible reason is that with higher image frequency, the preintegrated
IMU factor and odometry factor gets lower uncertainties due to fewer integrated
measurements between images. This is also taken into account by the estimation.
While the error decreases between the estimate and ground truth, the uncertainty
decreases even more. This could result in higher ANEES for the higher frequen-
cies. Another possible explanation is that the camera-related uncertainties are
set too low, and do not yield the increased accuracy that the model expects. Com-
paring the tracks, a significant improvement can be found at 0.5 Hz compared to
0.1 Hz. At 1 Hz the MSE is below 1 m for the country roads and highway tracks
with ANEES values of 12.5 and 14.2. At 2 Hz the MSE is lower but the ANEES
values become 17.1 and 22.4 which states higher estimation overconfidence.

Looking at the country roads track error and standard deviation in Figure 5.2,
it is clear that the general characteristics are similar between 0.5, 1, and 2 Hz.
The resulting error at 0.1 Hz has poor resolution and does not follow the same
characteristics as the higher frequencies, particularly after 25 images. The error
peaks are visible throughout each of these plots, where the most distinguishable
error peaks are reflected as an increased standard deviation for those images.
Looking at the uncertainties, they also get lower with a higher frequency with
similar characteristics. It is clear however that the higher frequency affects the
px- and py-position uncertainties more than pz-position uncertainty. A likely
explanation for this is that the landmarks are set with no significant translation
in pz-position compared to the track, which would pose less of a constraint in
this direction.

The highway track characteristics found in Figure B.2, are harder to interpret.
There are fewer characteristics in the error plot, and the errors are poorly repre-
sented in the standard deviation plot. There is one clear characteristic across the
standard deviation plots, that the uncertainty at images 45, 230, 470, and 920
are surrounded by a spike in py position at 0.1, 0.5, 1, and 2 Hz respectively. A
correlating absolute error for this increased uncertainty can be found at 0.1 and
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0.5 Hz, but not at 1 and 2 Hz in the figure. The error coincides with the turn in
the top right of Figure B.1. With higher frequency, this uncertainty becomes less
distinct, as does the error.

The urban track characteristics found in Figure B.4 show the same charac-
teristics in the absolute error and standard deviation plots for 0.5, 1, and 2 Hz.
Similar to the country roads track 0.1 Hz provides a poor resolution with a sig-
nificantly worse estimate. During the midsection of the urban track, a significant
error spike occurs in both px- and pz-position, which is reflected in the standard
deviation.

These findings show that the estimation accuracy increases with frequency,
but also that the estimate becomes more overconfident. This could be due to
the combination of simulated and collected data, which slightly contradicts each
other, resulting in growing overconfidence with frequency. Another reason could
be that the camera measurement noise is underestimated in the model. To prop-
erly make use of higher frequency without compromising the estimate credibil-
ity, the model parameters should be better tuned with uncertainties and only use
collected data to prevent these kinds of errors. Arguably, the trend shows that
the estimation accuracy for 0.1 Hz is lower and that 0.5 Hz is the minimum fre-
quency from which to generate a reasonable estimate. The trade-off between low
MSE and the most optimal ANEES makes the frequency selection of 1 Hz the best
setting for the localisation model in its current state.

Varied frequencies

Tables 5.3, B.4 and B.5 shows the MSE and ANEES values where a random uni-
formly distributed image frequency was used along the country roads, highway,
and urban tracks respectively. Each image timestamp varied between 0.5 - 10
seconds after the previous image, resulting in the same total amount of images
as if a constant frequency of 1 Hz was used, which makes it possible to compare
the varied frequency setup with the constant 1 Hz setup. In Table 5.2 the MSE
was found to be 0.7266 m at 1 Hz for the country roads track, and 0.69463 m
and 1.4292 m at 1 Hz for the highway and urban track in Table B.2. Comparing
this with the findings in Tables 5.3, B.4 and B.5, the MSE becomes worse for the
country roads track and the highway track with varied image frequencies, but
very similar with the urban track. The ANEES values in Table B.3 was 12.5022,
14.2338, and 28.6026 at 1 Hz. These values compared with Tables 5.3, B.4 and
B.5 shows that the ANEES became significantly worse for the country roads track,
slightly worse for the highway track and better for the urban track.

While the varied image frequency is difficult to interpret, the MSE becomes
worse for the country roads track and urban track which has the most reliable
simulated data, from which one arguably can conclude that a constant image fre-
quency yields a better result. When it comes to a realistic scenario, it is important
to know how accurate the estimate is, and with much more widely distributed
MSE and ANEES values at varied frequencies, it is more reliable to use a constant
frequency.
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Periods of denied image data

In Tables 5.4, B.6 and B.7, the MSE and ANEES can be found from the different
tracks, with a denied image data period of 10, 20 and 40 seconds 6 times along
the tracks. The MSE values become higher with an increased amount of denied
images, however, the ANEES values stay approximately the same for each track.
This implies that the IMU and odometry uncertainties propagate fairly similarly
to the error during the denied image data period. In Figures 5.3, B.5 and B.7,
the estimates’ covariance ellipses are plotted along the tracks when image data is
denied to the model for 40 seconds intervals 6 times along the tracks. In Figure
5.3 and B.5 the ellipse sizes can be seen to increase when image data is denied
and the ellipses reach their maximum size during the middle of the image data
denied path, only to decrease towards the section where image data is available
again. In straight parts of the paths, the uncertainty propagates faster sideways
than it does in the vehicle’s moving direction. For the country roads track, Figure
5.4 confirms that the standard deviation for an estimate increases significantly 6
times along the track, and scales correctly with the absolute error. The same can
be said for the highway track in Figure B.6.

One interesting section is the fifth period of denied image data during the
highway track in Figure B.5. It is represented in Figure B.6 as an increased abso-
lute error and standard deviation in py-position. This reflects a probable reason
why Figure B.7 shows higher standard deviations. The urban path contains many
narrow corners, starts, and stops which makes the INS and odometry uncertainty
propagate in all directions since the vehicle turns frequently. Comparing the
MSE of the path estimate with denied image data from Tables 5.4, B.6 and B.7
with the MSE of the path estimate where images were captured continuously at 1
Hz in Tables 5.2 and B.2, shows that the MSE becomes higher with denied image
data.

These findings show that it is possible to get a decent path estimate even when
no landmarks can be found, or images captured for a period of time. However,
the estimated error increases with the duration of the denied image data period
and strongly depends on the track characteristics. It is better to deny image data
to the localisation system during straight sections of a path than when there are
many corners present.

6.1.3 Landmark selection

Three different landmark setups were investigated as presented in the result.
Each of these is described for their respective section from Chapter 5.

Amount of visible landmarks per image

The first landmark setup was tested to analyse how the performance depends on
the number of visible landmarks in each image. One can see that the MSE, pre-
sented in Tables 5.5 and B.8, is small for all tracks meaning that the estimation is
close to the ground truth. The MSE decreases for all tracks when increasing the
number of landmarks per image. This corresponds to the intuitive result; that
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more information gives a better estimate. This is intuitive since the landmark
placement is set with high accuracy, and the camera uncertainty is relatively low
compared to the IMU measurements. The values for ANEES, presented in Tables
5.5 and B.9, are higher than the optimal value of 3 meaning that the estimates are
optimistic, i.e, overconfident. The ANEES values for the country roads and high-
way track are similar for both two and four visible landmarks per image, while
the ANEES value decreases for the urban track. One reason why the urban track
differs from the other two could be because of what was described in Section 6.1.1.
One possible explanation for the high ANEES values can be seen from the abso-
lute errors and standard deviations in Figure 5.5. The figures show that the stan-
dard deviations does not increase significantly at the high spikes for the errors.
Since the values for standard deviation are correlated to the covariance matrix
this means that the system is too certain about the estimation compared to how
close to the ground truth the estimation is. Based on the findings, more land-
marks per image result in a better estimate without compromising confidence,
but the estimate is overconfident for all setups.

Sparse landmark selection

The sparse landmark setup was tested to see how the estimate was affected by
not having many visible landmarks along the tracks. In Figure 5.7 one can see
the implications when only having one landmark several kilometers away from
the vehicle. The figure shows that the standard deviation is low at the start, but
increases over the entire path. When comparing this with Figure 5.8 one can see
the impact of identifying another landmark closer to the vehicle for just a few
seconds. In the figure, one can see that the standard deviation increases between
the complementary landmarks and becomes small for all nearby estimates. This
happens because the entire trajectory gets re-estimated after each image, mean-
ing that the standard deviation of the estimate will decrease both before and after
a complementary landmark is seen. This can also be seen from the standard devi-
ation result in Figure 5.6 where the standard deviation decreases distinctly when
the two complementary landmarks are seen in the images. The same characteris-
tics can be found in the results for both the highway and urban tracks.

Furthermore one can see that the MSE values in Tables 5.6, B.10 and B.11
becomes lower with the additional landmarks. The most significant improve-
ment is for the country roads track where the MSE is six times higher while only
seeing one distant landmark, compared to also seeing the two complementary
landmarks. The high MSE is mainly due to the error in the pz-direction. Despite
the high error, the estimate is still overconfident as seen in the ANEES values.
One explanation for this could be poor initialisation, meaning that the pose is
estimated with a faulty initial pitch with too high a certainty. Since the odome-
try model has high uncertainties regarding the pitch, the camera becomes more
important in this estimation. When adding two landmarks for just a few seconds
at ground level this error becomes much smaller. However, the estimate still is
still too confident compared to the resulting error. The estimation for the high-
way and urban track does have similar characteristics with MSE decreasing and
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the ANEES increasing. Only having one distinct landmark generates an estimate
which deviates significantly from the ground truth track compared to the previ-
ously discussed tests. By finding two complementary landmarks, the absolute
error, and standard deviation decrease significantly. Based on this it is arguably
necessary to have a few complimentary landmarks if one distant landmark is
mainly used.

Realistic landmark selection

The realistic landmark setup was chosen to give a closer resemblance of how
the localisation system would perform in real-world settings. From Figures 5.9,
B.15 and B.17 one can see the landmark setups derived from the real images.
The country roads track does have some parts with sparse landmark availability.
The impact of this can be seen in Figure 5.10 where path sections with sparse
landmarks contain corresponding spikes in the standard deviation plot. The MSE
and ANEES values, as seen in Tables 5.7 and B.12, are low which means that the
path estimates overall are close to the ground truth tracks. The values for ANEES
show an optimistic system that is overconfident in its estimates as previously
stated. In general, the realistic landmark setup confirms that the estimates are
accurate and generate a sufficient localisation estimate for the vehicle.

6.2 Method

The method used contained both positive and negative aspects. The data collec-
tion tracks and setups were performed in a structured manner, but the estimated
ground truth poses for the vehicle led to issues. This could have been avoided by
finding the real landmark projections instead of using a simulated camera, but
that in turn would make it difficult to evaluate the different landmark setups. By
using the real images, some kind of algorithm would have to be implemented
to efficiently find the landmark pixel coordinates in each image. This would sig-
nificantly increase the scope of this thesis, and should instead be investigated
separately in future works.

In order to minimize the potential impact of temporary disturbances during
the data collection, it would be optimal to collect data multiple times on the
same tracks. The collected data could then be compared for different sessions
on the track to potentially identify data collection issues or outside factors that
should be considered. The tracks were only driven once with data being col-
lected in this thesis. The reasoning behind this was that it would have been more
time-consuming and result in too much data to analyze. However, it would be
beneficial to investigate this in future works.

The data should also have been collected on one computer instead of two, so
the timestamps can be accurately used to structure the data. This was a mistake
during the data collection which proved to take a lot of time to counteract. It is
also probable that this affected the outcome of the result.

The result was also affected by the set system parameters. The uncertainties
set in the system need to be tuned further, to ensure the camera, IMU, and odom-



6.2 Method 61

etry uncertainties propagate realistically throughout the estimated tracks. This is
one probable reason why the ANEES values for almost every estimate are higher
than the optimal ANEES value.

Further, the landmark and frequency setups that were tested in the estima-
tion were adapted to the problem statement. It covered all parts that were to be
investigated. More testing could have been done between the different setups to
show other interesting trends, but that would be beyond the scope of the problem
statement.





7
Conclusions and future work

In this chapter, conclusions will be made concerning the problem statement. In-
teresting areas for further research will also be presented.

7.1 Conclusions

Based on the findings it is possible to draw conclusions for all the questions in the
problem statement. The realistic landmark selection reflects how an actual imple-
mentation of the localisation system would perform. Compared to the ground
truth, the localisation system estimated the path within an MSE of 0.4 - 0.63 m
for the three tracks which arguably is a good estimate.

The MSE becomes lower with a higher image frequency, however, due to mod-
elling errors, the estimate becomes overconfident. Two probable reasons behind
this were found, both based on incorrect modelling of certainties. Either the INS
and odometry integration factor uncertainty did not propagate fast enough at
high frequencies, or the camera related uncertainty was set too low. A higher
frequency did however yield a better result, which coincides with the intuitive
solution. There was a clear difference between using a constant image frequency
of 1 Hz and varying the time steps between images along the tracks, even if the
same total amount of images were used. In short, this implies that a constant
frequency is preferable. The localisation system showed promising results while
it was denied new image data, as the esimate still was perceived as good. The un-
certainty propagated in an intuitive manner during the periods of denied image
data, and a decent estimation of the vehicle path was maintained aswell, which
is a valuable attribute in a realistic implementation of the localisation system.

While testing how the localisation estimate was affected by having multiple
landmarks visible in each image, the clear trend was that the estimate became bet-
ter, with lower MSE values, and the ANEES values were fairly similar for these
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tests. The largest impact was seen during the urban track, as its MSE value im-
proved more than the other tracks, while its ANEES value went from 17.87 to
13.38 as 2 and 4 landmarks were visible respectively. This implies that multiple
landmarks in the images lead to a better path estimate without compromising
estimate confidence.

Having a sparse landmark setup poses some significant issues. With only
one visible landmark along the track, the localisation system presents a poor es-
timate, particularly if there are large distances between the track and the land-
mark. A few landmarks along the track improved the estimate significantly and
is arguably necessary to maintain a good path estimate.

The localisation system shows promise and could prove beneficial for society
as a localisation estimation method where no GNSS signals are available. How-
ever, no association issues were considered between landmarks and map data.
In a real implementation, this would have to be evaluated as well. Due to the
generated ground truth poses for the vehicle, which was of importance for the
simulated cameras, these findings can contain slight misrepresentations of a true
localisation system implementation.

7.2 Future work

There are several aspects of this thesis that could be interesting to develop fur-
ther. To begin with, it would of course be more realistic if the real image data was
used to create the projection constraints. This would require some image-based
recognition algorithm, and would need to be very accurate so as not to impose
misassociations in the localisation system. Currently, the localisation system re-
linearises often which makes the processing speed slow. This could be further
improved which would be required for real applications. The localisation sys-
tem parameters in terms of uncertainties need to be more precisely tuned. The
current setup continuously proves to be overconfident, which can and should be
improved.
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A
Theory

A.1 Odometry motion model

The odometry motion model is derived from Figure 3.7. The initial state of the
local coordinate system is set as (X0, Y0, θ0). With a measured angular velocity
ωk , time step ∆tk and velocity vk it is possible to calculate the distance travelled
for each k in the (X0, Y0, θ0) coordinate system. In order to find the distance
Dk , the velocity in direction Xk needs to be projected onto Dk , integrated with
respect to the time step ∆tk , and then divided into its corresponding ∆pxk and
∆p

y
k components. The ∆tk , ∆p

x
k and ∆p

y
k components are defined as

∆tk = tk+1 − tk (A.1a)

∆pxk = pxk+1 − p
x
k (A.1b)

∆p
y
k = p

y
k+1 − p

y
k (A.1c)

To project the velocity onto Dk , the angle δ needs to be found. From Figure
3.7, three triangles can be described by

ωk∆tk + 2ϕ = π (A.2a)

ωk∆tk +
π
2

+ γ = π (A.2b)

δ + γ + π − ϕ = π (A.2c)

By replacing γ and ϕ in (A.2c) with ϕ from (A.2a) and γ from (A.2b), δ can
be described as a function of ωk∆tk as
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δ =
ωk∆tk

2
(A.3)

The distance travelled Dk is then found by integrating the projected velocity.

VD = Vk cos δ (A.4a)

Dk =

t2∫
t1

VD dt (A.4b)

Dk =
2Vk
ω

sin
ωk∆tk

2
(A.4c)

The ∆xk and ∆yk components can then be derived from (A.4c) together with
the angle relative to the initial coordinate system (X0, Y0, θ0) by projecting Dk on
the (X0, Y0) axes.

∆pxk =
2Vk
ωk

sin
(ωk∆tk

2

)
cos

(ωk∆tk
2

+ θk
)

(A.5a)

∆p
y
k =

2Vk
ωk

sin
(ωk∆tk

2

)
sin

(ωk∆tk
2

+ θk
)

(A.5b)

The total translation in time step k in the (X0, Y0, θ0) coordinate system can be cal-
culated from (A.1b)–(A.1c) and (A.5a)–(A.5b), while the state transition of θk+1
is purely additive between the k and k + 1 time step, resulting in the full state
transition expressions (A.6a)–(A.6c) for the odometry model.

pxk+1 = pxk +
2Vk
ωk

sin
(ωk∆tk

2

)
cos

(ωk∆tk
2

+ θk
)

(A.6a)

p
y
k+1 = p

y
k +

2Vk
ωk

sin
(ωk∆tk

2

)
sin

(ωk∆tk
2

+ θk
)

(A.6b)

θk+1 = θk + ωk∆tk (A.6c)

The noise propagation wk needs to be estimated for the model. By calculating
the Jacobian of the measured data Vk and ωk , it is possible to see how measure-
ment noise would propagate in the time steps. In (A.7), the partial derivatives of
the states concerning the measured data are calculated.

G =


∂pxk+1
∂Vk

∂pxk+1
∂ωk

∂p
y
k+1

∂Vk

∂p
y
k+1

∂ωk
∂θk+1
∂Vk

∂θk+1
∂ωk

 (A.7)

Each elements in (A.7) can be found in (A.8a)–(A.8f).
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∂pxk+1
∂Vk

=
2
ωk

sin
(ωk∆tk

2

)
cos

(ωk∆tk
2

+ θk
)

(A.8a)

∂pxk+1
∂ωk

=
−Vk
ω2
k

(
∆tkωk sin

(
∆tkωk

2

)
sin

(
∆tkωk

2
+ θk

)
+

(
2 sin

(
∆tkωk

2

)
−∆tkωk cos

(
∆tkωk

2

))
cos

(
∆tkωk

2
+ θk

)) (A.8b)

∂p
y
k+1

∂Vk
=

2
ωk

sin
(ωk∆tk

2

)
sin

(ωk∆tk
2

+ θk
)

(A.8c)
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∂θk+1

∂Vk
= 0 (A.8e)

∂θk+1

∂ωk
= ∆tk (A.8f)

The F matrix is the Jacobian of the states in time step k + 1 with the partial
derivatives with respect to the states in time step k as

F =
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The elements in (A.9) can be found in (A.10a)–(A.10i).

∂pxk+1
∂pxk

= 1 (A.10a)

∂pxk+1

∂p
y
k

= 0 (A.10b)

∂pxk+1
∂θk

= −
2Vk sin

(
ωk∆tk

2

)
sin

(
θk + ωk∆tk

2

)
ωk

(A.10c)



70 A Theory
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B
Results

Here the results from the highway and urban tracks are presented. The different
setups are modestly described, as they are identical to the settings presented for
the country roads track in Chapter 5.

B.1 Ground truth result

In Table B.1 the MSE values between the ground truth and RTK measurements
are shown.

Table B.1: MSE between the ground truth and RTK data.

MSE [m]
Highway track 3.9836e-5

Urban track 0.0013308

B.2 Image frequency

The MSE and ANEES for the highway and urban track with an image frequency
setting of 0.1 Hz, 0.5 Hz, 1 Hz and 2 Hz can be found in Table B.2 and B.3.

Table B.2: MSE of the estimated path at different frequencies.

0.1 Hz 0.5 Hz 1 Hz 2 Hz
MSE Highway track [m] 7.7215 1.0622 0.69463 0.63192

MSE Urban track [m] 6.7864 1.9565 1.4292 1.3612
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Figure B.1: The estimated path for the highway track compared to ground
truth with 1 Hz image frequency.

Table B.3: ANEES of the estimated path at different frequencies.

0.1 Hz 0.5 Hz 1 Hz 2 Hz
ANEES Highway track [-] 5.8523 9.9593 14.2338 22.4062

ANEES Urban track [-] 2.7062 16.9872 28.6026 44.3066

B.2.1 Highway track

The landmark setup for the highway track can be found in Figure B.1.
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Figure B.2: Absolute errors and the standard deviations of the estimates at
0.1, 0.5, 1, and 2 Hz image frequency during the country roads track.

In Figure B.2 the error and standard deviation at each captured image can be
found. During the data collection 67, 337, 675, and 1349 virtual images were
captured at 0.1, 0.5, 1, and 2 Hz respectively.

B.2.2 Urban track

The landmarks used during the frequency testing for the urban track can be
found in Figure B.3.
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Figure B.3: The estimated path for the urban track compared to ground
truth with 1 Hz image frequency.

The error between the estimate and ground truth, as well as the approximated
standard deviation in each image data point along the country roads track, can
be found in Figure B.4. During the data collection 57, 286, 572, and 1143 virtual
images were captured at 0.1, 0.5, 1, and 2 Hz respectively.
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Figure B.4: Error and the standard deviations of the estimates at 0.1, 0.5, 1,
and 2 Hz image frequency during the country roads track.

B.3 Varied image frequency

Two image frequency settings were tested. Firstly where an image was captured
in an interval of 0.5 - 10 seconds after the previous image, and secondly where
new images were denied for a set period of time, 6 times along the tracks.

B.3.1 Frequency interval 0.1 - 2 Hz

In total 675 and 572 virtual images were captured for the highway track and
urban track respectively, which is the same amount of images as a constant image
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frequency of 1 Hz would generate. The generated MSE and ANEES values for
these iterations can be found in Table B.4 - B.5.

Table B.4: MSE and ANEES of the estimated highway track at varied fre-
quencies.

MSE [m] ANEES [-]
Test 1 0.8266 15.0623
Test 2 0.87566 15.1269
Test 3 0.93802 16.8289
Test 4 0.88803 16.3797
Test 5 0.85592 14.0831

Table B.5: MSE and ANEES of the estimated urban track at varied frequen-
cies.

MSE [m] ANEES [-]
Test 1 1.8809 27.0327
Test 2 1.2991 21.2511
Test 3 1.1868 19.6703
Test 4 1.6288 26.1947
Test 5 1.3321 20.6331

B.3.2 Denied images

The results in terms of MSE and ANEES while denying image data to the estimate
during parts of the trajectory can be found in Table B.6 - B.7.

Table B.6: MSE and ANEES of the estimated highway track at varied fre-
quencies.

Duration of denied image data MSE [m] ANEES [-]
Test 1 10 0.76659 12.7941
Test 2 20 1.0278 13.4491
Test 3 40 2.171 12.8501

Table B.7: MSE and ANEES of the estimated urban track at varied frequen-
cies.

Duration of denied image data MSE [m] ANEES [-]
Test 1 10 1.3741 23.7388
Test 2 20 1.6043 22.4938
Test 3 40 2.9575 24.8455
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Figure B.5: Estimated path for the highway track with uncertainties and 40
seconds of no camera measurements at 6 instances.

Highway track with denied images

For the highway track the estimated path, when not taking images for 40 seconds
at 6 instances, can be seen in Figure B.5.

Furthermore, the standard deviations and absolute errors for the three differ-
ent time intervals can be seen in Figure B.6.
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Figure B.6: Absolute errors and the standard deviations of the estimates at
1 Hz image frequency for the highway track, with 6 instances of 10, 20, and
40 seconds denied image data periods.

Urban track with denied images

The estimation of the urban track, with 40 seconds of no camera measurements,
can be seen in Figure B.7.
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Figure B.7: Estimated path for the urban track with uncertainties and 40
seconds of no camera measurements at 6 instances.

In Figure B.8 the absolute errors and standard deviations are presented where
10, 20, and 40 seconds periods of image data is denied.
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Figure B.8: Absolute errors and the standard deviations of the estimates at
1 Hz image frequency for the urban track, with 6 instances of 10, 20, and 40
seconds denied image data periods.

B.4 Amount of visible landmarks per image

The values for MSE and ANEES for the highway and urban tracks when two or
four landmarks were visible in each image can be seen in Table B.8 and B.9.
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Table B.8: MSE of the estimated path with multiple visible landmarks.

Visible in each image 2 Landmarks 4 Landmarks
MSE Highway track [m] 0.52473 0.40376

MSE Urban track [m] 0.52037 0.30561

Table B.9: ANEES of the estimated path multiple visible landmarks.

Visible in each image 2 Landmarks 4 Landmarks
ANEES Highway track [-] 11.2073 11.6676

ANEES Urban track [-] 17.8713 13.3808

B.4.1 Highway track

For the highway track, the results can be seen in Figure B.9 when using 2 or 4
landmarks.
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Figure B.9: Absolute errors and the standard deviations of the estimates at 1
Hz during the highway track with 2 and 4 landmarks visible in each image.

B.4.2 Urban track

In Figure B.10 the result for the urban track can be found while using 2 or 4
landmarks in each image.
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Figure B.10: Absolute errors and the standard deviations of the estimates at
1 Hz during the urban track with 2 and 4 landmarks visible in each image.

B.5 Sparse landmark selection

For these tests, a landmark selection as described in 4.5.2 was used.

B.5.1 Highway track

For this trajectory, a distant landmark was placed 5 km east, 1 km south, and 100
meters above the vehicle’s starting position. In Figure B.11 the result where only
one distant visible landmark per image can be found, and where two complemen-
tary landmarks are added along the track.
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Figure B.11: Absolute errors and the standard deviations of the estimates at
1 Hz during the highway track with a distant landmark and 2 complemen-
tary landmarks.

The estimated path with the complementary landmarks can be seen in Figure
B.12. The values of MSE and ANEES for the two tests can be seen in Table B.10.

Table B.10: Values of MSE and ANEES for the two landmark setups.

MSE [m] ANEES [-]
Distant landmark 12.8197 7.3256

3 landmarks 10.0988 18.4555
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Figure B.12: Estimated path with uncertainties using a distant landmark
and two complementary landmarks.

B.5.2 Urban track

For this trajectory, a distant landmark was placed 200 m west, 5 km north, and
100 meters above the vehicle’s starting position. In Figure B.13 the result where
only one distant visible landmark per image can be found, and where two com-
plementary landmarks are added along the track. The estimated path can be seen
in B.14. The values of MSE and ANEES for the two tests can be seen in Table B.11.
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Figure B.13: Absolute errors and the standard deviations of the estimates at
1 Hz during the urban track with a distant landmark and 2 complementary
landmarks.

Table B.11: Values of MSE and ANEES for the two landmark setups.

MSE [m] ANEES [-]
Distant landmark 8.7762 6.2901

3 landmarks 3.4817 15.4020
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Figure B.14: Estimated path with uncertainties using a distant landmark
and two complementary landmarks.

B.6 Realistic landmark selection

For this part, the landmarks were selected according to Section 4.5.2 from the
real images. The values for MSE and ANEES can be found in Table B.12.
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Table B.12: MSE and ANEES of the estimated country roads track at realistic
landmark setups.

MSE [m] ANEES [-]
Highway track 0.6254 9.8007
Urban track 3 0.40266 16.342

B.6.1 Highway track

In Figure B.15 the estimated path for the highway track can be seen with the
chosen landmarks. The absolute errors and standard deviations can be seen in
Figure B.16.
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Figure B.15: The estimated path with realistic landmarks for the highway
track.
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Figure B.16: Absolute errors and the standard deviations of the estimates
with realistic landmarks for the highway track.

B.6.2 Urban track

For the urban track, the estimated path and its landmarks can be seen in Figure
B.17 while the absolute errors and standard deviations can be seen in Figure B.18.
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Figure B.17: The estimated path with realistic landmarks for the urban
track.



92 B Results

0 100 200 300 400 500

Frame [-]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [
m

]
Standard deviation

0 100 200 300 400 500

Frame [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
b
s
o
lu

te
 e

rr
o
r 

[m
]

Error in each position

Figure B.18: Absolute errors and the standard deviations of the estimates
with realistic landmarks for the urban track.
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