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Ziya Gülgün

Division of Communication Systems
Department of Electrical Engineering (ISY)
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The true logic for this world is the calculus of probabilities,
which takes account of the magnitude of the probability

which is, or ought to be, in a reasonable man’s mind.

James C. Maxwell





Abstract

In this thesis, we focus on vulnerabilities and robustness of two wireless
communication technologies: global navigation satellite system (GNSS), a
technology that provides position-velocity-time information, and massive
multiple-input multiple-output (MIMO), a core cellular 5G technology. In
particular, we investigate spoofing and jamming attacks to GNSS and massive
MIMO, respectively, and the robust massive MIMO receiver against impulsive
noises. In this context, spoofing refers to the situation in which a receiver
identifies falsified signals, that are transmitted by the spoofers, as legitimate
or trustable signals. Jamming, on the other hand, refers to the transmission
of radio signals that disrupt communications by decreasing the signal-to-
interference-and-noise ratio (SINR) on the receiver side. The reason why we
investigate impulsive noises is that the standard wireless receivers assume
that the noise has Gaussian distribution. However, the impulsive noises may
appear in any communication link. The difference between impulsive noises
and standard Gaussian noises is that it is more likely to observe outliers
in impulsive noises. Therefore, we question whether the standard Gaussian
receivers are robust against impulsive noises and design robust receivers
against impulsive noises.

More specifically, in paper A we analyze the effects of distributed jammers
on massive MIMO and answer the following questions: Is massive MIMO
more robust to distributed jammers compared with previous generation’s
cellular networks? Which jamming attack strategies are the best from the
jammer’s perspective, and can the jamming power be spread over space to
achieve more harmful attacks?

In paper B, we propose a detector for GNSS receivers that is able to
detect multiple spoofers without having any prior information about the
attack strategy or the number of spoofers in the environment.

In paper C and D, we design robust receivers for massive MIMO against
impulsive noise. In paper C, we model the noise having a Cauchy distribution
and present a channel estimation technique, achievable rates and soft-decision
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metrics for coded signals. The main observation in paper C is that the
proposed receiver works well in the presence of Cauchy and Gaussian noises,
although the standard Gaussian receiver performs very bad when the noise
has Cauchy distribution. In paper D, we compare two types of receivers,
the Gaussian-mixture and the Cauchy-based, when the noise has symmetric
α-stable (SαS) distributions. Based on the numerical results, the Gaussian-
mixture receiver outperforms the Cauchy-based receiver.
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Özet

Bu tezde, iki kablosuz haberleşme teknolojisinin zayıflıkları ve sağlamlıkları
üzerine odaklanılmıştır: Küresel navigasyon uydu sistemi (GNSS), konum-hız-
zaman bilgilerini kullanıcıya sağlayan teknoloji, ve kitlesel çoklu-giriş çoklu-
çıkış (MIMO), 5G’ye ait önemli bir teknolojidir. Bu tezde, özellikle GNSS’e
karşı spoofing saldırıları ve kitlesel MIMO’ya karşı jamming saldırıları ve
kitlesel MIMO alıcıların dürtüsel gürültülere karşı sağlamlığı incelenmiştir. Bu
bağlamda, bir alıcının spoofer tarafından yollanan sahte bir sinyali algılaması
durumuna spoofing denir. Diğer yandan, radyo sinyalleri yollayarak sinyal-
girişim-gürültü oranını alıcı tarafında azaltıp haberleşme sistemine zarar
verme durumuna jamming denir. Genellikle kablosuz alıcılar gürültüyü Gauss
dağılımı olarak kabul eder. Fakat dürtüsel gürültü herhangi bir haberleşme
sisteminde gözükebilir. Dürtüsel gürültü ile Gauss gürültüsü arasındaki fark,
aykırı örneklerin dürtüsel gürültüde görülme ihtimalinin daha fazla olmasıdır.
Bu sebeplerle, standart Gauss alıcıların dürtüsel gürültülere karşı sağlamlığını
araştırdık ve dürtüsel gürültülere karşı sağlam alıcılar önerdik.

Makale A’da çevreye dağıtılmış jammerların kitlesel MIMO’ya etkilerini
inceledik ve şu sorulara cevap verdik: Kitlesel MIMO, bir önceki jenerasyonun
hücresel sistemlerine göre dağıtılmış jammerlara karşı daha sağlam mıdır?
Hangi jammer saldırısı jammer açısından en iyisidir ve daha iyi jammer
saldırısı elde edebilmek için jamming power hücrede daha fazla dağıtılmalı
mıdır?

Makale B’de, GNSS alıcıları için çoklu spooferları tespit edebilen bir
detektör önerilmiştir. Bu detektör çevrede kaç tane spoofer olduğunu ve
saldırı stratejisini bilmeden çoklu spooferları tespit edebilmektedir.

Makale C ve D’de, dürtüsel gürültülere karşı sağlam kitlesel MIMO
alıcılar dizayn edilmiştir. Makale C’de, gürültü Cauchy dağılımı olarak kabul
edilmiştir ve kanal kestirim tekniği, erişilebilir hız ve kodlanmış sinyaller için
yumuşak karar metriği sunulmuştur. Temel gözlem şudur: Önerilen alıcı,
Cauchy ve Gauss gürültülerinde iyi performans gösterirken, standart Gauss
alıcısının performansı Cauchy gürültüsü varken çok kötüdür. Makale D’de,
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gürültü simetrik α-stabil dağılımıyken iki alıcı, Gauss-karışımı ve Cauchy-
temelli alıcılar, kıyaslanmıştır. Numerik sonuçlara göre, Gauss-karışımı alıcısı
Cauchy-temelli alıcıya göre daha iyi performans göstermiştir.
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Populärvetenskaplig
Sammanfattning

I den här avhandlingen fokuserar vi p̊a s̊arbarheter och robusthet hos tv̊a
tr̊adlösa kommunikationstekniker: GNSS (eng: global navigation satellite sys-
tem), en teknologi som tillhandah̊aller position-hastighet-tid-information, och
massiv MIMO (eng: multiple-input-multiple-output), en central del av cellulär
5G-teknik. Framför allt undersöker vi spoofing- och störsändningsattacker
mot GNSS och massiv MIMO, samt robustheten hos massiv MIMO-mottagare
mot impulsiva brus. I den här kontexten refererar spoofing till situationen
där en mottagare identifierar förfalskade signaler, som sänds av spoofers,
som legitima eller p̊alitliga signaler. Störsändning, å andra sidan, refererar
till sändningen av radiosignaler som stör kommunikationen genom att sänka
signal-till-interferens-och-brus-förh̊allandet hos mottagaren. Anledningen till
att vi undersöker impulsiva brus är att vanliga tr̊adlösa mottagare antar
att bruset är Gaussiskt fördelat. Dock kan impulsiva brus uppst̊a i vilken
kommunikationslänk som helst. Skillnaden mellan impulsiva brus och vanliga
Gaussiska brus är att det är mer sannolikt att observera extremvärden i
impulsiva brus. Därför ifr̊agasätter vi om de vanliga Gaussiska mottagarna
är robusta mot impulsiva brus och konstruerar mottagare som är robusta
mot impulsiva brus.

Mer specifikt, i artikel A analyserar vi effekterna av distribuerad störsändning
mot massiv MIMO och svarar p̊a följande fr̊agor: Är massiv MIMO mer
robust mot distribuerad störsändning jämfört med tidigare generationers cel-
lulära nätverk? Vilka attackstrategier är bäst fr̊an störsändarens perspektiv,
och kan störsändareffekten spridas ut i rummet för att uppn̊a mer skadliga
attacker?

I artikel B föresl̊ar vi en detektor för GNSS-mottagare som kan detektera
multipla spoofers utan att ha n̊agon förhandsinformation om attackstrategin
eller antalet spoofers i miljön.
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I artikel C och D konstruerar vi mottagare för massiv MIMO som är
robusta mot impulsiva brus. I artikel C modellerar vi bruset med en Cauchy-
fördelning och presenterar en teknik för kanalskattning, uppn̊aeliga datatakter
och mjukbesultsmetriker för kodade signaler. Den huvudsakliga observationen
i artikel C är att den föreslagna mottagaren fungerar väl vid b̊ade Cauchy-
brus och Gaussiskt brus, medan den vanliga Gaussiska mottagaren presterar
väldigt d̊aligt när bruset är Cauchy-fördelat. I artikel D jämför vi tv̊a typer av
mottagare, en Gaussisk mixmottagare och en Cauchy-baserad mottagare, när
bruset har en symmetrisk alpha-stabil fördelning (SαS-fördelning). Baserat
p̊a numeriska resultat presterar den Gaussiska mixmottagaren bättre än den
Cauchy-baserade mottagaren.
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Chapter 1

Introduction and Motivation

From the first generation of wireless celluar technology to the current one,
5G (people have already started to talk about 6G), wireless technology has
gone through several evolution stages and these stages have occurred for
decades. When people invented mobile phones, the first and main intention
was to send speech signals successfully through a wireless medium. Nowadays,
however, we can do almost anything with our mobile phones such as accessing
social media, chatting and sharing pictures/videos with our friends and so
forth. Moreover, not only people communicate with each other, but also
people communicate with machines and also machines communicate with
each other. Therefore, there exist huge networks and the data rates in these
networks have grown exponentially [1]. In order to support the intense
demands of high data rate, communication engineers and researchers should
develop innovative but also realistic technologies. While developing new
technologies, it is inevitable that the vulnerabilities of these technologies
must be investigated. To motivate this statement, for a moment assume that
there is a riot in a city. Some protesters may want to prevent communication
among the police. Therefore, they may want to shut down or disrupt the
network by using some low-cost transmitters (jammers, software defined
radios, etc.). In this situation, chaos in the city may arise. We anticipate
that this type of threat will become more common in the future. In addition
to this, another issue may arise: how robust are the new technologies against
any changes in the communication link? For example, let us think that some
spikes suddenly appear in interference signals, e.g., noise. What happens to
the system performance in the presence of these spikes? How do the standard
receivers handle these spikes? These questions are open-ended questions that
researchers should work on.
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1 Introduction and Motivation

By considering the motivations mentioned previously, this thesis focuses
on the vulnerabilities of wireless technologies and robust receivers against
impulsive noises. The thesis has three main contributions. But before
explaining what these contributions are, we introduce two main wireless
communication technologies, massive multiple-input multiple-output (MIMO)
and global navigation satellite system (GNSS). Moreover, we mention some
malicious attacks on these technologies which are mainly jamming attacks
for massive MIMO and spoofing attacks for GNSS. In addition to this, we
briefly introduce the impulsive noises, more specifically symmetric α-stable
(SαS) noises, which are used in the thesis. We also review some scientific
works related to these areas from the literature.

1.1 Introduction to GNSS
A wireless technology that provides position, time and velocity to users is
GNSS [2]. Some countries have their own GNSS. For example, the United
States uses the global positioning system (GPS). The European Union uses
the Galileo navigation system. Russia uses the global navigation satellite
system (GLONASS). GNSS is the general name of the navigation systems
and it includes the GPS, Galileo and GLONASS.

Over the last decade, the use of GNSS technology has tremendously
increased. Especially today’s evolving technologies, such as unmanned aerial
vehicles and cars, are strongly relying on GNSS to obtain position information.
Therefore, providing secure GNSS technology is extremely crucial. However,
GNSS technology is vulnerable to malicious attacks, more specifically spoofing
in which the malicious device identifies itself as a legitimate device. In [3, 4],
the vulnerabilities of GNSS to the spoofing are evaluated. With today’s low-
cost software defined radio technology, one can easily spoof GNSS receivers
[5]. Therefore, effective countermeasure techniques should be developed for
spoofing attacks.

In the literature, there exist several countermeasure techniques to spoofing
attacks and we can classify these techniques as follows:

Signal Processing Techniques: In [6, 7], detectors are derived that use
the fact that GNSS receivers obtain the same position information
when they are affected by the same spoofer. In [8], a new statistical
test is proposed for the presence of multiple spoofers based on range
measurements observed by multiple GNSS receivers located on a rigid
body platform. In [9, 10], detectors are proposed based on the correla-
tion among the received signals. In [11], a countermeasure technique
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for spoofing is developed based on subspace projection. The GNSS
receivers can observe the abnormalities of the received signal strength
through the monitoring, for example automatic gain control [12,13] and
received power monitoring [14–16]. To detect spoofing attacks, GNSS
measurements can be compared with additional positioning informa-
tion such as inertial navigation system [17–19]. Receiver autonomous
integrity monitoring (RAIM) detects attacks with redundant GPS pseu-
dorange measurements [20, 21]. More specifically, if more satellites
are available than needed to obtain position information, the extra
pseudoranges have to be consistent with the obtained position. If not,
then RAIM raises flaw. In [22], the authors propose some statistical
tests for distance-decreasing attacks which is one type of replay attacks.

Encryption Techniques: In [23,24], novel navigation message authentica-
tion schemes for the GNSS signals are given. The technique proposed
in [23] combines two authentications of GPS, namely cryptographic
authentication and signal timing authentication based on a statistical
hypothesis test. In [25], a technique is presented for detecting spoofing
attacks against cryptographically-secured GNSS.

In Paper A, we propose a detection method for the mobile GNSS receiver
to detect multiple spoofers. This method falls into the signal processing
category. The strong and novel aspect of this work is that the detector can
operate if the GNSS receiver does not know the number of spoofers in the
environment and even if the GNSS receiver does not know the attack strategy
of the spoofers. A limitation is that at least two legitimate signals must be
spoofed by the same spoofer.

1.2 Introduction to Massive MIMO

Massive MIMO is a cellular network technology that was proposed for 5G
[26], [27] and is commercially deployed on a wide scale [28]. In this technology,
a base station (BS) having a massive number of antenna elements, around
one hundred, supported by independent radio frequency (RF) chains, serves
many terminals simultaneously in the same time-frequency resource. Massive
MIMO can serve the terminals concurrently thanks to two fundamental
phenomenon that are the result of the law of large numbers [29]: channel
hardening and favorable propagation [30]. These two phenomenon will be
introduced later.

Since massive MIMO is one of the main physical layer technologies used in
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5G, it is required to analyze the vulnerabilities of this technology to malicious
attacks, such as eavesdropping and jamming, and to compare with those
of previous generation cellular systems. For example in [31], it is shown
that the spectral efficiency (SE) between the BS and passive eavesdropper
remains same when the number of antennas at the BS increases, though the
SE between the BS and the legitimate user increases. It is concluded that
massive MIMO is robust to passive eavesdropping, since only the legitimate
communication benefits from the array gain [31]. However, it is also shown
that an active attack, like jamming, on the BS during the training phase can
be harmful [31].

Jammers are able to send any signals. For example, in [32], the jammers
are assumed to know the pilot signals and the vulnerabilities of massive
MIMO are analyzed when the jammers send the pilot signals to the BS
during training phase. In [33–35], some countermeasure techniques are
proposed when the jammers send the pilot signals as the attack signals.
Jammers may also send random attack signals. In [36], a jamming-resistant
massive MIMO is proposed when the jammer transmits random signals.
In [37,38], the jammers transmit random attack signals.

When we look at the literature, some unanswered questions exist: Is
massive MIMO more vulnerable or more resistant to jamming attacks than
previous cellular systems? Do we need to spread the jamming power over the
space? If there exist multiple jammers in the environment, what is the best
attack strategy for the jammers? In Paper B, we answer these questions.

In the massive MIMO literature, almost all works model the noise as
additive white Gaussian noise (AWGN). Based on this assumption, they
design their receiver models. However, in reality, the noise may be non-
Gaussian. For example, in [39], it is shown that the noises can be non-
Gaussian, more specifically impulsive, and they can be modeled by using
Gamma or Cauchy distributions based on some measurements. Actually,
it is well known that the Gaussian receiver works poorly when the noise
is heavy-tailed so there exist some robust estimation techniques such as
M−estimator in the literature [40]. However, the literature on the robust
massive MIMO receiver design against the impulsive noise is sparse, and the
impulsive noise is cast as one of the physical layer challenges for the 6G [41].
Therefore we ask the following questions: When the noise is non-Gaussian,
what happens to the performance of the standard Gaussian receiver assuming
the noise is Gaussian? How robust is the standard Gaussian receiver against
the impulsive noises? How should we design the receiver when the noise is
impulsive? To answer these questions, we use the SαS distribution that is
one way to model the impulsive noises. In Paper C, we particularly focus
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on massive MIMO with Cauchy noise, one type of the SαS distributions. In
Paper C, we point out the channel estimation problem and present some
achievable rate expressions and the soft-decision metrics for coded signals.
In Paper D, we compare two receivers for massive MIMO by tuning the
impulsiveness of SαS distributions. These receivers are the Gaussian-mixture
receiver using the Gaussian-mixture as a model, and the Cauchy-based
receiver using the probability density function (pdf) of Cauchy distribution
as a model.

1.3 Contributions of The Thesis
The thesis has three main contributions: (i) We propose a detector for GNSS
receivers that is able to detect multiple spoofers without having any prior
information about the attack strategy or the number of spoofers in the
environment in Paper A. (ii) We analyze the effects of distributed jammers
on massive MIMO in Paper B. (iii) We design robust receivers for massive
MIMO against impulsive noises which can be modeled by using the SαS
distributions in Paper C and Paper D. The main observation in Paper C
is that the designed receivers work well with the standard Gaussain noise,
although the standard Gaussian receiver performs poorly when the noise is
impulsive.

Paper A: Multiple Spoofer Detection for Mobile GNSS Receivers
Using Statistical Tests
Authored by: Ziya Gülgün, Erik G. Larsson, Panos Papadimitratos
Published in: IEEE Access, vol. 9, pp. 457-469, 2021.

Abstract: We consider global navigation satellite system (GNSS) spoofing
attacks and devise a countermeasure appropriate for mobile GNSS receivers.
Our approach is to design detectors that, operating after the signal acquisition,
enable the victim receiver to determine with high probability whether it is
under a spoofing attack or not. Namely, the binary hypothesis is that either
the GNSS receiver tracks legitimate satellite signals, H0, or spoofed signals,
H1. We assume that there exists an unknown number of multiple spoofers
in the environment and the attack strategy (which legitimate signals are
spoofed by which spoofers) is not known to the receiver. Based on these
assumptions, we propose an algorithm that identifies the number of spoofers
and clusters the spoofing data by using Bayesian information criteria (BIC)
rules. Depending on the estimated and clustered data we propose a detector,
called as generalized likelihood ratio (GLRT)-like detector. We compare the
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performance of the GLRT-like detector with a genie-aided detector in which
the attack strategy and the number of spoofers is known by the receiver.

Paper B: Is Massive MIMO Robust Against Distributed
Jammers?
Authored by: Ziya Gülgün, Emil Björnson, and Erik G. Larsson
Published in: IEEE Transactions on Communications, vol. 69, no. 1, pp.
457-469, January 2021.

Abstract: In this paper, we evaluate the uplink spectral efficiency (SE) of
a single-cell massive multiple-input-multiple output (MIMO) system with
distributed jammers. We define four different attack scenarios and compare
their impact on the massive MIMO system as well as on a conventional
single-input multiple-output (SIMO) system. More specifically, the jammers
attack the base station (BS) during both the uplink training phase and
data phase. The BS uses either least squares (LS) or linear minimum mean
square error (LMMSE) estimators for channel estimation and uses either
maximum-ratio-combining (MRC) or zero-forcing (ZF) decoding vectors. We
show that ZF gives higher SE than MRC but, interestingly, the performance
is unaffected by the choice of the estimators. The simulation results show
that the performance loss percentage of massive MIMO is less than that of the
SIMO system. Moreover, we consider two types of power control algorithms:
jamming-aware and jamming-ignorant. In both cases, we consider the max-
min and proportional fairness criteria to increase the uplink SE of massive
MIMO systems. We notice numerically that max-min fairness is not a good
option because if one user is strongly affected by the jamming, it will degrade
the other users’ SE as well. On the other hand, proportional fairness improves
the sum SE of the system compared with the full power transmission scenario.

Paper C: Massive MIMO with Cauchy Noise: Channel
Estimation, Achievable Rate and Data Decoding
Authored by: Ziya Gülgün and Erik G. Larsson
Paper submitted to IEEE Transactions on Wireless Communications (Under
Major Revision)

Abstract: We consider massive multiple-input multiple-output (MIMO)
systems in the presence of Cauchy noise. First, we focus on the channel
estimation problem. In the standard massive MIMO setup, the users transmit
orthonormal pilots during the training phase and the received signal at the
base station is projected onto each pilot. This processing is optimum when

6



1.4. Excluded Papers

the noise is Gaussian. We show that this processing is not optimal when
the noise is Cauchy and as a remedy propose a channel estimation technique
that operates on the raw received signal. Second, we derive uplink-downlink
achievable rates in the presence of Cauchy noise for perfect and imperfect
channel state information. Finally, we derive log-likelihood ratio expressions
for soft bit detection for both uplink and downlink, and simulate coded
bit-error-rate curves. In addition to this, we derive and compare the symbol
detectors in the presence of both Gaussian and Cauchy noises. An important
observation is that the detector constructed for Cauchy noise performs well
with both Gaussian and Cauchy noises; on the other hand, the detector for
Gaussian noise works poorly in the presence of Cauchy noise. That is, the
Cauchy detector is robust against heavy-tailed noise, whereas the Gaussian
detector is not.
Paper D: Channel Estimation in Massive MIMO with
Heavy-Tailed Noise: Gaussian-Mixture versus Cauchy Models
Authored by: Ziya Gülgün and Erik G. Larsson
To appear in the 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP)

Abstract: Impulsive noise can appear in communication links. In the
literature, it was demonstrated that when the noise is impulsive, standard
Gaussian receivers perform poorly because of the outliers in the noise. There-
fore, appropriate receivers must be used when the noise is impulsive. In
this paper, we compare two types of massive multiple-input multiple-output
(MIMO) receivers, namely those based on a Gaussian-mixture assumption
and those based on a Cauchy assumption, in terms of channel estimation
quality, when the noise is impulsive. Symmetric α-stable (SαS) noises are
used to model impulsive noises in the paper. In the numerical results, the
Gaussian-mixture receiver outperforms the Cauchy-based receiver.

1.4 Excluded Papers
The papers in Table 1 are excluded from the thesis because they are the
preliminary versions of the included papers.
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Table 1: Excluded papers

Z. Gülgün and E. G. Larsson, “Channel Estimation for Massive MIMO
in the Presence of Cauchy Noise,” in IEEE International Conference on
Communications (ICC), Seoul, South Korea, 2022, pp. 1769-1774.

Z. Gülgün, E. Björnson, and E. G. Larsson, “Performance Analysis of Massive
MIMO With Distributed Jammers,” in IEEE International Conference on
Communications (ICC), Dublin, Ireland, 2020, pp. 1–6.

Z. Gülgün, E. G. Larsson, and P. Papadimitratos, “Statistical method for
spoofing detection at mobile GNSS receivers,” in 16th International Sympo-
sium on Wireless Communication Systems (ISWCS), Oulu, Finland, 2019,
pp. 677-681.
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Chapter 2

GNSS

2.1 Signal Model
GNSS describes the collection of satellite positioning systems. The most
prominent satellite positioning system is GPS, belonging to the United States.
GLONASS, another satellite system, is operated by Russia. Galileo is a
civil GNSS system operated by the European Global Navigation Satellite
Systems Agency. China, Japan and India have GNSS systems as well. The
working principles of satellite positioning systems are similar [2]. Therefore,
we present a general GNSS system structure.

Suppose there are M visible satellites in the environment. A typical
complex baseband received GNSS signal can be expressed as:

y(t) =
M∑

m=1
AmDm(t − τm)Cm(t − τm) exp(j2π(fd

mt − fcτm)) + w(t), (1)

where Am is the complex amplitude, Dm(t) is the message signal, τm is
the propagation delay, Cm(t) is the spreading code, generally chosen from
pseudorandom noise (PRN) codes, fd

m is the Doppler frequency corresponding
to the mth satellite, fc is the carrier frequency, and w(t) is additive noise. It
is important to note that the propagation delay appears as a phase shift in
(1).

PRN codes are quasi-orthogonal with each other. Mathematically, we can
express this property as:

R(τm − τk)δmk ≈
∫

Cm(t − τm)C∗
k(t − τk)dt, (2)

where δmk is the Kronecker delta function, and R(τ) is the auto-correlation
function of any PRN code. If we normalize the PRN code, R(τ) = 1 for τ = 0.
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Figure 1: The auto-correlation function of a real-valued PRN code.

To visualize the quasi-orthogonality property, we present the auto-correlation
and cross-correlation functions of the real-valued PRN codes in Figure 1
and Figure 2, respectively. As illustrated in Figure 2, the cross-correlation
function is very close to zero, but never becomes zero. However, when we
compare the values of cross-correlation function and the peak value of the
auto-correlation function, we can conclude that the PRN codes are quasi-
orthogonal. This property enables the satellites to broadcast at the same
time and frequency and enables the GPS receiver to decode the satellites’
signals (code-division multiple access). However, more than one frequency
are used when a GPS signal is transmitted. For example, one frequency is
1575.42 MHz which is called L1, the other one is 1227.60 MHz which is called
L2.

The modulation type of GPS signals is the standard binary-phase-shift-
keying. This modulation is combined with PRN codes. This technique is
called direct-sequence-spread-spectrum. By implementing this technique, the
bandwidth of the transmitted signals is increased.

In the next section, we explain the position calculation performed the
GNSS receiver.
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Figure 2: The cross-correlation function of two real-valued PRN codes.

2.2 Position Determination of the GNSS Receiver
We assume that the propagation delay is perfectly estimated. The geometric
range between the mth satellite and the user can be expressed as:

rm = cτm, (3)

where c is the speed of light. However, the measurement in the GNSS receiver
is different from rm because of the clock offset in the satellite and in the
GNSS receiver. This measurement is called pseudorange, ρm, and can be
expressed as [2]:

ρm = rm + c(tu − δtm), (4)
where tu and δtm are the GNSS receiver and the satellite clock offsets,
respectively. The satellite clock offset, δtm, is the result of bias and drift
contributions. A system ground monitoring network (SATNAV) determines
corrections for these offsets and transmits corrections to the satellites. The
satellites rebroadcast these corrections to the users in the navigation message.
Therefore, the pseudorange can be expressed as:

ρm = rm + ctu. (5)
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For a 3-dimensional environment, rm can explicitly be written as:

rm =
√

(xm − xu)2 + (ym − yu)2 + (zm − zu)2, (6)

where {xm, ym, zm} and {xu, yu, zu} are the coordinates of the mth satellite
and the GNSS receiver based on the center of earth, respectively. In general,
four reference satellites are sufficient for position calculation [2]. We can
obtain the following set of non-linear equations:

ρ1 =
√

(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + ctu + ϵ1, (7)

ρ2 =
√

(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + ctu + ϵ2, (8)

ρ3 =
√

(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 + ctu + ϵ3, (9)

ρ4 =
√

(x4 − xu)2 + (y4 − yu)2 + (z4 − zu)2 + ctu + ϵ4, (10)

where ϵi is the measurement noise in ρi. These non-linear equations can be
solved based on linearization techniques and iterative methods such as the
Kalman filter and extended Kalman filter [42]. These iterative techniques
are out of the scope of the exposition here.

After calculation of the user position, it is easy to find the average velocity:

v = ∥u(t2) − u(t1)∥
t2 − t1

, (11)

where u(t) is the vector that contains the user position at time t.

2.3 Spoofing and Other Adversarial Attacks
Spoofing of GNSS is the broadcast of fake signals with the intent that the
victim receiver identifies them as authentic signals. Since the standards of
GNSS systems, for example GPS, are publicly available and low-cost radio
systems are widely accessible, it is easy to spoof a GNSS receiver.

A spoofer transmits falsified signals such as:

xs(t) =
N∑

m=1
As

mDs
m(t − τ s

m)Cm(t − τ s
m) exp(j2π(fd,s

m t − fcτ
s
m)), (12)

where N is the number of spoofed signals, As
m, Ds

m, τ s
m, fd,s

m are the complex
amplitude, the falsified message signal, the propagation delay and the Doppler
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frequency of the spoofed signal, respectively. From (12), the PRN codes that
are used by the satellites in (1) appear in the spoofed signals. It is important
to note that the falsified signals, Ds

m, give fake position, time and velocity
information to the GNSS receiver.

Spoofed signals can be generated if the structure of legitimate signals is
known by the malicious devices. Another way to generate the spoofed signals
is that the malicious devices record the legitimate signals and re-transmit them
with some modifications such as to the time-delays or the Doppler frequencies.
This spoofing technique is called meaconing or replay attacks [43]. Security
code estimation and replay attack is one of the meaconing attacks where the
attackers try to estimate the encrypted codes and re-transmit adversarial
signals that are the imitations of the original signals [25, 44]. Another
meaconing attack type is the distance-decreasing attack. In this attack
type, the malicious device can modify the time-of-flight of the legitimate
signals [45,46].

In Paper A, we propose a detector for the mobile GNSS receiver, which
does not have any prior knowledge about the number of spoofers or which
legitimate signals are spoofed by which spoofer. The proposed detector
implements a statistical test. The attack model in Paper A is simple compared
with the other attack models such as replay attacks or distance-decreasing
attack, but to prevent the attack strategy in Paper A is not straightforward
because there are distributed spoofers that can generate falsified signals. Since
there are distributed spoofers, this gives more chances and more flexibility
to the spoofers to spoof the GNSS receiver.
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Chapter 3

MIMO and Massive MIMO

3.1 Stages of MIMO Technology

We first give some information about general MIMO technology before
describing massive MIMO in detail. The MIMO technology is not a new
technology. For example, in 1919, transatlantic radio communication was
achieved by an antenna array which provided directional beamforming [47].
However, researchers started to understand this technology rigorously in the
late 1990s [48–50]. One may classify the MIMO technology as:

• Point-to-Point MIMO: The structure is that a BS equipped with an
antenna array serves a user equipped with an antenna array. In a rich
scattering environment with independent Rayleigh fading, one can show
that the capacity of point-to-point MIMO can scale with min(M, K)
in high signal-to-noise ratio (SNR) regime where M and K are the
number of antennas at the BS and the user, respectively [51, Chapter 8].
There are some limitations of point-to-point MIMO. For example, the
user has more than one antenna and this increases the complexity at
the user side. Another limitation is that the Point-to-Point MIMO
depends on propagation environment to obtain min(M, K) independent
streams.

• Multiuser MIMO: Unlike point-to-point MIMO, in multiuser MIMO,
the users have a single antenna and they are distributed in the environ-
ment. In multiuser MIMO, to achieve the downlink spectral efficiency
expression presented in [30, Chapter 1], the users and the BS have
channel state information (CSI) and it requires complicated signal
processing algorithms.
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• Massive MIMO: Massive MIMO is a scalable form of multiuser MIMO.
In massive MIMO, the BS estimates the channel. Simple signal process-
ing algorithms are applied in downlink and uplink based on the channel
estimates. In [30, Chaper 1], it is demonstrated that the performance
of massive MIMO is close the capacity bound of AWGN. More details
about massive MIMO will be given in the next chapter.

• Cell-free massive MIMO: The terminology cell-free first appeared in [52],
although distributed wireless system is not a new technology [53]. The
structure is that many access-points, possibly having more than one
antenna, are distributed in the environment and serve more than one
user concurrently [54]. The main advantage of cell-free massive MIMO
is that the cell-free massive MIMO offers higher signal-to-interference-
and-noise ratio (SINR) compared to massive MIMO within the coverage
area [55] especially for the edge users. The reason is that the macro-
diversity gain of cell-free massive MIMO is higher than that of standard
massive MIMO [54].

3.2 Massive MIMO
A single-cell massive MIMO system consists of a BS having M antennas and
K single-antenna users. We assume that each antenna in the BS has one RF
chain. Therefore, the BS can digitally control the relative phase between all
of its antenna elements.

A wireless channel is a medium over which data can be transmitted and
received. The characteristics of wireless channels may vary over time and
frequency. We can describe these changes in terms of two main concepts [51]:
Large scale fading, due to path loss of signal as a function of distance,
frequency and shadowing by large obstacles, and small scale fading, due to
the constructive and destructive interference of the multiple signal paths
between the transmitter and receiver. A coherence block is a block where
the small scale fading can be assumed to be constant and the channel model
is called as block-fading model.

The channel between the BS and the kth user including multipath prop-
agation, attenuation, and shadowing, can be characterized as a complex
vector, gk ∈ CM , based on the baseband representation of the signals [56,57].
Depending on the channel models, such as Rayleigh, Rician fading and line-
of-sight (LoS) models, gk can be characterized [30,51,58]. Throughout this
thesis, we only use the Rayleigh fading channel model, i.e., gk ∼ CN (0, βkI)
where βk is the large scale fading coefficient corresponding to the kth user.

16



3.2. Massive MIMO

Moreover, the channel statistic for each user is independent of each other.
The channel vector has dimension M . By using the law of large numbers,

we can obtain the following results:

∥gk∥2

E {∥gk∥2}
a.s.→ 1, as M → ∞, (13)

gH
k gk′√

E {∥gk∥2}E {∥gk′∥2}
a.s.→ 0, as M → ∞, k ̸=k′. (14)

The result in (13) is called channel hardening [30,59]. It means that in
the limit case of M , the channel behaves deterministically. The result in
(14) is called favorable propagation which implies that in the limit of large
M , the channels of two different users are orthogonal to each other [30,59].
These are two fundamental phenomena in massive MIMO. Obviously, the
asymptotic behavior in M has no physical meaning. However, these results
give some intuitions for massive MIMO where M is large.

In this thesis, the block Rayleigh fading model is used. In the next
sections, we explain how this block is divided for the data transmissions:
training, uplink and downlink phases.

3.2.1 Training Phase

Let us assume that the length of coherence block is T . Some sub-block, say of
length τ , from the coherence block should be reserved for channel estimation.
In the training phase, the kth user sends a pilot vector, ϕk ∈ Cτ , which is
orthonormal to the other pilot vectors to the BS such that:

∥ϕk∥2 = 1, ϕH
k ϕk′ = 0 k ̸=k′. (15)

Therefore, the received signal in the BS can be expressed as:

Y =
K∑

k=1

√
τρulgkϕT

k + N, (16)

where Y and N are M × τ received signal and noise matrices, respectively.
The elements of N are i.i.d. random variables characterized by CN (0, σ2).
ρul is the uplink transmit power.

To estimate the kth user’s channel, the BS processes the received signal
as:

yk = Yϕ∗
k = √

τρulgk + n, (17)
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where n is a noise vector whose entries are i.i.d. again with CN (0, σ2) because
the unitary multiplication does not change the statistics of the Gaussian
distribution.

The large scale fading coefficient, βk, is usually assumed to be known.
Therefore, the minimum mean-square error (MMSE) estimator of gk can be
written [60]:

gMMSE
k =

√
τρulβk

σ2 + τρulβk
yk. (18)

An alternative estimator is the least-squares (LS). The LS estimator can
be expressed as [60]:

gLS
k = yk√

τρul
. (19)

When we compare (18) and (19), the only difference is the scaling factor.
These estimators are used for decoder and precoder designs by the BS.

3.2.2 Uplink Phase

In the uplink phase, the users send their data to the BS. The kth terminal
transmits the following weighted symbol:

xk = √
ηkqk, (20)

where qk is the data symbol with zero mean and unit variance and ηk is
the power control coefficient satisfying 0 ≤ ηk ≤ 1. Moreover, the symbols
transmitted by all users are uncorrelated. Based on this model, the received
signal vector can be expressed as:

y = √
ρul

K∑
k=1

√
ηkgkxk + n. (21)

The BS creates normalized decoder vectors, ak, based on the imperfect
channel estimates to infer each user’s transmitted data. After decoding, the
signal corresponding to the kth user can be written as:

rk = aH
k y (22)

= √
ρulηkE

{
aH

k gk

}
xk + √

ρulηk

(
aH

k gk − E
{

aH
k gk

})
xk

+
K∑

k′=1,k′ ̸=k

√
ρulηk′aH

k gk′xk′ + aH
k n.
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When we observe the four terms in (22), they are uncorrelated. Therefore,
we can consider the first term as the desired signal and the remaining terms
as effective noise. After this, the effective (SINR) can be written:

SINRUL
k =

ρulηk

∣∣∣E{aH
k gk

}∣∣∣2∑K
k′=1 ρulηk′E

{∣∣aH
k gk′

∣∣2}− ρulηk

∣∣E {aH
k gk

}∣∣2 + σ2E {∥ak∥2}
.

(23)
If we apply capacity-bounding techniques, we can obtain the following:

CUL
k ≥ log2(1 + SINRUL

k ), (24)

where CUL
k is the uplink capacity. The bounding technique is called use-and-

then-forget bound in [30]. The theory behind use-and-then-forget bound is
the Jensen’s inequality [61] and the fact that the channel estimate is not used
as side information to calculate SE.

There are two main decoder vectors that are widely used in the massive
MIMO literature [30,58]: maximum-ratio-combining (MRC) and zero forcing
(ZF). These decoder vectors are explicitly written as:(

aMRC
k

)H
= ĝH

k , (25)

(
aZF

k

)H
=
(
ĜHĜ

)−1

kthrow
ĜH, (26)

where ĝk is any channel estimate vector either from (18) or (19), and Ĝ is
an M × K matrix whose kth column is ĝk.

3.2.3 Downlink Phase

In the downlink phase, the BS generates symbols for each user, qk, which
are zero mean, unit variance and uncorrelated with each other. To transmit
these symbols, the BS creates the normalized precoder vectors such that:

x = √
ρdl

K∑
k=1

√
ηkpkqk, (27)

where x and pk are the M × 1 transmitted signal and the precoder vector,
∥pk∥2 = 1, respectively. ρdl is the downlink transmit power and ηk is the
power control coefficient satisfying:

K∑
k=1

ηk ≤ 1. (28)
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For the precoding vectors, the BS can use the channel estimates because
massive MIMO operates in time-division duplex (TDD) mode, which implies
that the uplink and downlink channels are reciprocal. The precoder vectors
are generally chosen as maximum-ratio or ZF precoders.

The kth user receives the following signal:

zk = √
ρdlηkgT

k pkqk + √
ρdl

K∑
k′=1,k′ ̸=k

√
ηk′gT

k′pk′qk′ + nk, (29)

where nk is noise with CN (0, σ2). Applying the same manipulation as in
(22), we obtain:

zk =√
ρdlηkE

{
gT

k pk

}
qk + √

ρdlηk

(
gT

k pk − E
{

gT
k pk

})
qk (30)

√
ρdl

K∑
k′=1,k′ ̸=k

√
ηk′gT

k′pk′qk′ + nk,

and the effective SINR is:

SINRDL
k =

ρdlηk

∣∣∣E{gT
k pk

}∣∣∣2∑K
k′=1 ρdlηk′E

{∣∣gT
k pk′

∣∣2}− ρdlηk

∣∣E {gT
k pk

}∣∣2 + σ2
. (31)

If we apply the use-and-then-forget bound technique, we obtain:

CDL
k ≥ log2(1 + SINRDL

k ), (32)

where CDL
k is the downlink capacity.

3.2.4 Jamming

In this section, we analyze the effect of jamming on massive MIMO. Suppose
there is a jammer in the single-cell massive MIMO environment, that attacks
the BS in the training and the uplink phase. The jammer may also attack
some particular users but the aim of jamming is to collapse the whole network.
The received signal in (16) can be rewritten as:

Y =
K∑

k=1

√
τρulgkϕT

k + ρjhjjT + N, (33)

where hj is the M × 1 channel vector for the jammer, modeled as Rayleigh
fading with variance βj , ρj is the power of the jamming signal, and j is the
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jamming vector of dimension τ ×1. In general, the jamming signal is modeled
by Gaussian signals so j is characterized as CN (0, I). The projected signal
for the kth user can be re-expressed:

yk = Yϕ∗
k = √

τρulgk + √
ρjhjjT ϕ∗

k + n. (34)

From (34), it is clear that the projected signal is contaminated by the jamming
signals and it affects the channel estimation quality of gk.

A closed form MMSE estimator of gk does not exist in general because
the noise term including the jamming part in (34) is not Gaussian. Therefore,
we present the linear minimum mean-square error (LMMSE) estimator of
gk [60]:

gLMMSE
k =

√
τρulβk

σ2 + τρulβk + ρjβj
yk. (35)

It is important to note that the BS should know or estimate the power of
the received jamming signal which appears in the scaling factor in (35).

The LS estimator is:
gLS

k = yk√
τρul

. (36)

Again, the fundamental difference between these two estimators is a scaling
factor.

Now let us focus on the uplink phase. The received signal under the
jammer attack can be written as:

y = √
ρul

K∑
k=1

√
ηkgkxk + √

ρjhjs + n, (37)

where s is the attack signal with distribution CN (0, 1). Based on the signal
model in (37), the effective SINR for the kth user is written:

SINRUL,j
k = (38)

ρulηk

∣∣∣E{aH
k gk

}∣∣∣2∑K
k′=1 ρulηk′E

{∣∣aH
k gk′

∣∣2}− ρulηk

∣∣E {aH
k gk

}∣∣2 + ρjE
{∣∣aH

k hj

∣∣2}+ σ2E {∥ak∥2}
.

From (38), we observe that there is additional interference in the denomi-
nator because of the jamming signal. Moreover, the decoder vector, ak, is
contaminated by the jammer. Therefore,

SINRUL
k > SINRUL,j

k . (39)

In Paper B, we analyze the effects of distributed jammers on massive
MIMO for different power control schemes.

21



3 MIMO and Massive MIMO

22



Chapter 4

Symmetric Alpha-Stable
(SαS) Distributions

In this thesis, SαS distributions are used to model impulsive noises. Therefore,
we explain the SαS distributions in this chapter.

4.1 Real SαS Distributions
Let us consider a real random variable denoted as X with an α-stable
distribution. The characteristic function of this distribution is [62]:

ϕ(t) = exp(jδt − γ|t|α(1 + jβ sign(t)h(t, α))), (40)

where

h(t, α) =
{

tan
(

απ
2
)

if α ̸= 1
2
π log |t| if α = 1,

sign(t) =


1 if t > 0
0 if t = 0
−1 if t < 0,

and
−∞ < δ < ∞, 0 < α ≤ 2, γ > 0, −1 ≤ β ≤ 1, t ∈ R.

The α-stable distributions are characterized by four parameters:

• δ: the location parameter.

• α: the characteristic exponent. A smaller α implies a more impulsive
distribution, and vice versa.
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Figure 3: The pdf of SαS distributions for different α (γ = 1 and δ = 0). If α
decreases, the distribution becomes more impulsive.

• γ: the dispersion parameter. It can be any positive number and behaves
like the variance.

• β: the skewness parameter. When β is zero, the distribution is sym-
metric around δ.

When β is zero, the distribution becomes SαS, and the characteristic function
in (40) simplifies to:

ϕ(t) = exp(jδt − γ|t|α). (41)

In Figure 3, we plot the pdf of SαS distributions with different α when γ
and δ are 1 and 0, respectively. From Figure 3, the impulsive characteristic
of SαS distributions increases when α decreases. In Figure 4, we analyze
the tails of SαS distribution. From Figure 4, it is clear that the decaying
rate of the SαS distribution increases with increasing α. This implies that
when α decreases, the SαS distribution becomes more heavy-tailed and the
probability that we obtain outliers increases. From now on, we focus on the
SαS distribution with δ = 0. When α = 1 and α = 2, the SαS distributions
become Cauchy and Gaussian distributions, respectively. These distributions
have closed-form pdfs. The pdf of Cauchy distribution is:

cX(x) = γ

π(γ2 + x2) , (42)
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Figure 4: The tails of the SαS distribution for different α (γ = 1 and δ = 0). A
smaller α implies more heavy-tailed distribution.

and the pdf of the Gaussian distribution is:

gX(x) = 1√
4πγ

exp
(

− x2

4γ

)
. (43)

For other α we do not have a closed-form pdf. For example when α satisfies
0 < α < 1, the pdf becomes [63, Chapter 3]:

fX(0<α<1)(x) = 1
πx

∞∑
k=1

(−1)k−1

k! Γ(αk + 1)x−αk sin
(

kαπ

2

)
, (44)

and for 1 < α < 2, the pdf is:

fX(1<α<2)(x) = 1
πα

∞∑
k=1

(−1)k

2k! Γ
(2k + 1

α

)
x2k, (45)

where Γ(x) is the standard gamma function, defined by:

Γ(x) =
∫ ∞

0
tx−1 exp(−t)dt. (46)

From (42) and (43), we can draw the following conclusions: The variance of
the Gaussian distribution is 2γ. The mean and the variance of the Cauchy
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distribution are undefined and infinite, respectively. Indeed, we can generalize
the moment property of SαS distributions as follows [62]:

E|X|p = ∞, if p ≥ α; 0 < α < 2
E|X|p < ∞, if 0 ≤ p < α; 0 < α < 2 (47)
E|X|p < ∞, if p ≥ 0; α = 2.

There are two more important properties of SαS [62]:

• Stability property: Let a1, a2, . . . , an be any arbitrary constants. If
X1, X2, . . . , XN are independent and identically distributed (i.i.d.) SαS
random variables, then all linear combinations of the form

∑N
n=1 anXn

are SαS with the same characteristic exponent of any Xn where n is
from 1 to N .

• Generalized central limit theorem: This theorem states that the SαS
distributions contain all limiting distributions of sum of i.i.d. random
variables which may have infinite variances. A special case of generalized
central limit theorem is the central limit theorem which states that if
i.i.d. random variables have finite variances, then that limit converges
to a Gaussian random variable [64, Chapter 1].

4.1.1 An Empirical Calculation of a Real SαS Distribution’s
Dispersion

In this section, we explain how to calculate the dispersion of any SαS, γ,
empirically. We focus on the characteristic function in (41):

E {exp(jtX)} = exp (−γ|t|α) . (48)

Without loss of generality and for simplicity, we choose t as 1 so that we
obtain the following:

|E {exp(jX)} | = exp (−γ) . (49)

From (49), we can find the dispersion, empirically as:

γ̂ = − log
(∣∣∣∣∣
∑N

n=1 exp(jxn)
N

∣∣∣∣∣
)

, (50)

where xn is the nth realization and N is the number of realizations.
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4.2 Complex Isotropic SαS Random Variables
In communication problems, we deal with complex random variables, in
general. Therefore, we explain complex isotropic SαS distributions in this
section. The complex isotropic SαS distributions are characterized by their
characteristic function:

ϕ(ω) = exp(−γ|ω|α), (51)

where ω ∈ C. When α is 1, the distribution becomes a complex isotropic
Cauchy distribution whose pdf is:

cX(x) = γ

2π(γ2 + |x|2)3/2 . (52)

When α is 2, the distribution becomes a complex isotropic Gaussian distribu-
tion which is known as circularly symmetric complex Gaussian whose pdf
is:

1
4πγ

exp
(

−|x|2

4γ

)
. (53)

As the name isotropic suggests, the complex isotropic SαS distributions are
invariant to rotation of the complex angle and the statistics depend on the
magnitude of the realization, which can be seen from (52) and (53). There
are important differences between complex isotropic Cauchy and Gaussian
distributions. For example, the real and imaginary parts of complex isotropic
Cauchy distribution are statistically dependent, which is not the case for a
complex isotropic Gaussian distribution.

When we scale the realizations of complex isotropic SαS distributions
with any constant, c, the dispersion is scaled by |c|α. This property can be
easily shown by using the characteristic function in (51) and it can be useful
when we want to change the dispersion of SαS distributions.

4.2.1 Generation of Complex Isotropic SαS Realizations

In this section, we explain how to generate complex isotropic SαS realizations
whose characteristic exponent is less than 2.

A complex isotropic SαS (α < 2) random variable, X, can be expressed
as [65]:

X = A1/2G, (54)

where G is circularly symmetric complex Gaussian, A is a real stable random
variable with characteristic exponent α/2, dispersion γ = cos2(πα/4) and
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skewness β = 1. To generate a stable random variable with characteristic
exponent α, skewness β and unit dispersion γ = 1, denoted as S(α, β, 1), we
can use the following [63, Chapter 3]:

S(α, β, 1) =

Dα,β
sin(α(U−Uα,β))

cos(U)1/α

( cos(U−α(U−Uα,β))
W

)(1−α)/α
if α ̸= 1

2
π

((
π
2 + βU

)
tan(U) − β log

( π
2 W cos(U)

π
2 +βU

))
if α = 1,

where Dα,β =
(
cos

(
arctan

(
β tan

(
πα
2
))))−1/α, Uα,β = −πβ(1−|1−α|)

2α , W is the
standard exponential random variable, and U is a uniform random variable
on
[
−π

2 , π
2
]
. To obtain the desired dispersion, we can scale A with any real

number.
By using (54), we can write the pdf of X as:

fX(x) =
∫ ∞

−∞
fX|A1/2(x|a)fA1/2(a)da, (55)

where fA1/2(a) is the marginal distribution of A1/2, fX|A1/2(x|a) is conditional
pdf of X given A1/2 = a, that is circularly symmetric complex Gaussian
distribution. If we sample the equation in (55), then we obtain [66]:

fX(x) ≈
N∑

i=1

1
πσ2

ai

exp
(

−|x|2

σ2
ai

)(
fA1/2(ai)∑N

k=1 fA1/2(ak)

)
, (56)

where N is the number of samples, ai is the ith sample and σ2
ai

is the variance
of the ith Gaussian distribution, that is a function of ai. From (56), the
pdf of SαS can be approximated by the finite sum of Gaussian distributions.
This approximation is used in Paper D.
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4.2.2 Discussion

In this section, we will discuss whether the SαS processes physically exist or
not.

From first principles, we can write the lowpass equivalent of a bandpass
received signal as:

y(t) = x(t) + n(t), (57)

where x(t) is the transmitted signal and n(t) is additive noise. In general,
n(t) is modeled as white noise with the following properties [56, Chapter 2]:

• n(t) is a stationary process.

• n(t) is a zero-mean process.

• n(t) is a Gaussian process.

• n(t) is a white process whose power spectral density is given by:

Sn(t)(f) = N0
2 .

This white noise model may not be physically realistic because n(t) has
infinite power. However, the white noise assumption is generally useful to
model communication systems.

For SαS (α < 2) realizations, on the other hand, we cannot define the
auto-correlation function because the variance is infinite. Moreover, for α ≤ 1,
the mean of SαS realizations is undefined. Therefore, it is hard to say that
the SαS processes exist physically. However, for impulsive noises, the model
of SαS distributions can be used.
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Chapter 5

Conclusions and Research
Directions

In this chapter, we briefly go through what we conclude from this thesis and
give some research directions. The detailed results and conclusions can be
found in the included papers. The contributions are mainly classified into
three parts:

• GNSS and Spoofing: In Paper A, we propose an algorithm for a
mobile GNSS receiver that can detect multiple spoofers in the environ-
ment. The GNSS receiver does not know how many spoofers exist in
the environment and which spoofers attack which legitimate signals,
i.e., it does not know the attack strategy. By using the algorithm, the
GNSS detector can cluster the attack signals and identify the spoofing
attack. A limitation of the algorithm is that at least one spoofer should
attack more than one legitimate signal. If each spoofer attacks only
one legitimate signal, then the algorithm fails.
Research direction: Although the validity of proposed algorithm is
presented in Paper A, it can be implemented in a real GNSS environ-
ment. The development of improved algorithms is an open problem.
Since the proposed algorithm is based on clustering of the spoofed
data, the algorithm can be compared with other clustering or deep
learning methods. Another research direction is low-earth-orbit (LEO)
GNSS rather than traditional GNSS. Nowadays LEO systems such as
STARLINK are trendy technologies.

• Massive MIMO and Jamming: From the results presented in
Paper B, although massive MIMO is more robust than the previous
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generation cellular networks to distributed jammers, it is clear that
massive MIMO technology is vulnerable to distributed jamming attacks.
Research direction: It may be an interesting research direction to
propose some beamforming techniques as countermeasures for the dis-
tributed jammers. However, the challenging task is to estimate the
direction-of-arrival of the jamming signals. Especially, when the jam-
ming power is distributed more, this task becomes more challenging.
Another research direction is to investigate different types of jamming
signals. Generally, as in Paper B, the jamming signals are designed
based on with a Gaussian distribution. Jamming attacks having differ-
ent distribution than the Gaussian one to massive MIMO may be an
interesting research direction.

• Massive MIMO and Impulsive Noises: The standard receiver is
designed by assuming that the additive noise has a Gaussian distribution.
However, if there exist some spikes or outliers in noise realizations, does
the standard Gaussian receiver work well? How robust is the Gaussian
receiver against these outliers? In Paper C where a massive MIMO
system is deployed, we answer these questions by assuming that the
noise is Cauchy. The main conclusion is that the Gaussian receiver
is not robust against outliers. However, a receiver that models noise
as Cauchy noise has good performance in the presence of Cauchy and
Gaussian noises. Next, in Paper D, we compare two receivers, that are
the Gaussian-mixture and the Cauchy-based receivers, when the noise
has SαS distributions with different α. Based on the numerical results,
the Gaussian-mixture receiver outperforms the Cauchy-based receiver.
Research direction: We learn from Paper C and Paper D, that we should
not apply linear decoders at the receiver side when the noise is modeled
with the SαS distributions. Therefore, as a future direction, MIMO-
orthogonal frequency division multiplexing (OFDM) systems can be
investigated when the noise is impulsive because the decoding of OFDM
symbols is based on linear decoders. Another research direction can
be joint channel estimation-data decoding in the presence of impulsive
noises.
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Appendix A

Mathematical Background

A.1 Detection Theory
Consider a simple binary hypothesis testing problem which means we know
that either hypothesis H0 or hypothesis H1 is true. There are four possible
combinations of events that can occur:

• H0 true; choose H0

• H0 true; choose H1

• H1 true; choose H1

• H1 true; choose H0

The important question is how do we establish a decision rule? One
decision criterion is the Bayes criterion that minimizes the following risk
function [67]:

R =C00P0Pr(decide H0|H0 is true)+ (58)
C10P0Pr(decide H1|H0 is true)+
C11P1Pr(decide H1|H1 is true)+
C01P1Pr(decide H0|H1 is true),

where C00, C10, C11 and C01 are positive-valued cost functions corresponding
to four different observations, P0 and P1 are prior probabilities for H0 and
H1, respectively, and Pr(·|·) denotes the conditional probability.

Now we have an N−dimensional observation vector, r, with the following
conditional probability density functions: p(r|H0) and p(r|H1). The decision
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rule that minimizes the risk function in (58) can be expressed as [67]:

p(r|H1)
p(r|H0)

H0

<
>
H1

η, (59)

where η is defined as:

η = P0(C10 − C00)
P1(C01 − C11) . (60)

Based on (59), it is clear that the Bayes decision criterion leads to a likelihood
ratio test.

In the literature, the likelihood ratio test is commonly implemented by
taking the natural logarithm:

log
(

p(r|H1)
p(r|H0)

)
H0

<
>
H1

log(η). (61)

Since the natural logarithm is a monotonic function and both sides of (59)
are positive, the decision criteria in (59) and (61) are equivalent to each
other.

In order to obtain η in (60), we need to know prior probabilities which
refers to Bayesian category. However, in many cases the prior probabilities are
not available which refers to Orthodox category. Let us assume that a target
exists in H1 and the target is not present in H0. In such a case, one approach is
to maximize the probability of detection, Pr(decide H1|H1 is true) = PD,
or minimize the probability of miss, Pr(decide H0|H1 is true) = PM , with
a constant false alarm rate, PF = α where PF is Pr(decide H1|H0 is true).
By using Lagrange multipliers, we can maximize the following function [68]:

F = PD − λ(PF − α). (62)

PD and PF can be explicitly written:

PD =
∫

Z1
p(r|H1)dr, (63)

PF =
∫

Z1
p(r|H0)dr, (64)
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where Z1 is the decision region for H1. Equation (62) can be rewritten as:

F =
∫

Z1
(p(r|H1) − λp(r|H0)) dr + λα. (65)

In order to maximize F , if the integrand is positive, p(r|H1) − λp(r|H0) > 0,
we need to assign the result to the region Z1. This leads to the following test:

p(r|H1)
p(r|H0)

H0

<
>
H1

λ. (66)

The test in (66) is called the Neyman-Pearson test and λ should satisfy
PF = α [69]. It is important to note that the threshold, λ, is a function of
PF .

A.2 Estimation Theory

In this section, we briefly introduce the estimation approaches used in the
thesis. Depending on whether the prior information for an unknown parameter
(the parameter that is desired to be estimated) is obtained or not, we can
classify the estimator types into two main categories as we did for likelihood
ratio test: Bayesian and Orthodox. MMSE, LMMSE and maximum a
posterior estimators are in the Bayesian as they have some prior knowledge
about the unknown parameters. On the other hand, best-linear unbiased,
minimum variance and maximum likelihood (ML) estimators are in the
Orthodox category as they do not require any prior knowledge about the
unknown parameters. In this section, we mainly focus on the ML estimator.

Suppose we have an L × 1 unknown parameter vector, θ and our aim
is to estimate θ from the observation vector, r ∈ CN×1. The ML estimator
maximizes the likelihood function such that:

θ̂ = argmax
θ

p(r|θ). (67)

The ML estimator has useful properties. For example, the ML estimator
is consistent and asymptotically efficient if some regularity conditions are
satisfied [67].

The ML estimates may be used for a detection problem. Let us consider
again the binary hypothesis testing problem. In both hypotheses, we have
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a set of unknown parameters. Let θ0 and θ1 be the unknown parameter
vectors under H0 and H1, respectively. A detector can be expressed as:

max
θ1

p(r|H1, θ1)

max
θ0

p(r|H0, θ0) = p(r|H1, θ̂1)
p(r|H0, θ̂0)

H0

<
>
H1

η. (68)

The detector in (68) is called the generalized likelihood ratio test (GLRT) [70].
Although the GLRT is not optimal, in general it gives good results.

Now, we analyze the ML estimator for the parameter vector θ, but when
the dimension of the parameter vector, L, is unknown. Let us assume that
1 ≤ L ≤ K. The ML expression can be written:

θ̂(L̂), L̂ = argmax
θ(L),L

p(r|θ(L), L). (69)

Based on (69), the solution of L̂ is K because:

max
θ(K)

p(r|θ(K), K) ≥ max
θ(K−1)

p(r|θ(K − 1), (K − 1)) ≥ . . . ≥ max
θ(1)

p(r|θ(1), 1).

(70)
Therefore, the ML estimator always chooses the most flexible model. In order
to prevent this, there exist model order selection rules in the literature.

The first rule that we introduce is the Akaike information criterion. In
this rule, the following objective function should be minimized with respect
to L [71]:

−2 log p(r|θ(L)) + 2L. (71)
Another rule is the generalized information criterion which minimizes the
following [72]:

−2 log p(r|θ(L)) + (1 + ρ)L, (72)
where ρ is a parameter which is greater than 1. If ρ equals to 1, the generalized
information criterion is identical to the Akaike information criterion. The
final rule is the Bayesian information criterion (BIC) in which the objective
function that should be minimized is [73]:

−2 log p(r|θ(L)) + log(N)L. (73)

An observation of three information criteria rules is that the first terms in
(71), (72) and (73) are the log-likelihood functions and the second terms are
penalty functions. Depending on the estimation problem, the performances
of these information criteria may be different but in general, the BIC rule
gives satisfactory results [72].
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A.3 Basic Optimization Theory and Power Control
Schemes

In this section, we briefly introduce some power control schemes. Before this,
we explain a general optimization problem.

A.3.1 A General Optimization Problem

A general optimization problem is:

minimize
x∈RN

f(x)

subject to gi(x) ≤ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , p.

(74)

where f(x) is an objective function, {gi(x)}m
i=1 are inequality constraints

and {hj(x)}p
j=1 are equality constraints. Depending on the convexity or

non-convexity of the problem, the solution may be either globally or locally
optimum.

The problem in (74) can be rewritten as:

minimize
x,t

t

subject to f(x) ≤ t

gi(x) ≤ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , p.

(75)

The form in (75) is called the epigraph form and the solutions of (74) and
(75) are identical [74].

In Paper B, we encounter geometric programming that is a class of convex
optimization problems. If the objective function and the inequality constraints
in (74) are posynomials and the equality constraints in (74) are monomials,
then the optimization problem in (74) is called geometric programming [74].
The global optimum solution can be found by using numerical techniques.

A.3.2 Power Control Schemes

In this section, we explain two power control schemes that are used in Paper B:
Max-min fairness and proportional fairness.
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Let us consider the uplink scenario. The max-min fairness power control
problem can be expressed as:

maximize
ηk ∀k

min
k

SINRUL
k

subject to 0 ≤ ηk ≤ 1 ∀k.
(76)

The aim of max-min fairness is to serve all users equally.
The proportional fairness problem can be expressed as:

maximize
ηk ∀k

K∏
k=1

SINRUL
k

subject to 0 ≤ ηk ≤ 1 ∀k.

(77)

If we consider the high-SNR regime, the proportional fairness approach
maximizes the sum SE because:

log
(

K∏
k=1

SINRUL
k

)
=

K∑
k=1

log
(
SINRUL

k

)
≈

K∑
k=1

log
(
1 + SINRUL

k

)
. (78)

A.3.3 Coordinate Descent Algorithm

Let us consider the general optimization in (74) without any constraint,
i.e., an unconstrained optimization problem. This problem can be solved as
follows: First, fix all components of x except x1. We solve the optimization
problem with respect to x1 and denote the minimizer by x̃1. Then we repeat
the process for the second component x2 by using x̃1 and fixing the other
components and so on. After N iterations, we return to x1 and repeat the
cycle. This algorithm called coordinate descent algorithm [68, Chapter 9]. At
first glance, this heuristic algorithm may seem to converge to a stationary
point of the original objective function. However, it can be trapped in
a non-stationary point. Moreover, this cycle may repeat infinitely many
times and it may not converge to a stationary point [75]. One sufficient
condition to guarantee the stationary point convergence of this algorithm
is [76, Chapter 2]:

Proposition 1. Suppose the objective function is continuously differentiable.
If the objective function has a unique minimizer in every coordinate direction,
then the coordinate descent algorithm converges to a stationary point.

A coordinate descent algorithm can be useful if N is very large or if the
sub-problems become separable when the coordinate direction is fixed.
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