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Abstract

This thesis aims to provide an introduction to the field of potential theory at
an undergraduate level, by studying an important mathematical problem in the
field, namely the Dirichlet problem. By examining the historical development of
different methods for solving the problem in increasingly general contexts, and
the mathematical concepts which were established to support these methods,
the aim is to provide an overview of various basic techniques in the field of
potential theory, as well as a summary of the fundamental results concerning
the Dirichlet problem in Euclidean space.

Keywords:
Potential Theory, Dirichlet Problem, Laplace’s Equation, Complex Analysis

URL for electronic version:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-192752

Måns Alskog, 2022. iii

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-192752




Sammanfattning

Målet med detta arbete är att vara en introduktion på kandidatnivå till ämnes-
fältet potentialteori, genom att studera ett viktigt matematiskt problem inom
potentialteori, Dirichletproblemet. Genom att undersöka den historiska utveck-
lingen av olika lösningsmetoder för problemet i mer och mer allmänna samman-
hang, i kombination med de matematiska koncepten som utvecklades för att
användas i dessa lösningsmetoder, ges en översikt av olika grundläggande tek-
niker inom potentialteori, samt en sammanfattaning av de olika matematiska
resultaten som har att göra med Dirichletproblemet i det Euklidiska rummet.
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Nomenclature

Symbols and notation
The table below gives a summary of the notation used in this text. Some of the
more complex notation and definitions are elaborated on in Chapter 2.

N The natural numbers, excluding zero.
Z The integers.
Q The rational numbers.
R The real numbers.
[−∞,∞] The extended real numbers R ∪ {−∞,∞}.
A The closure of the set A.
∂A The boundary of the set A.
Ac The complement of the set A, defined as Rn \A.
Ae The exterior of the set A, defined as A

c
.

A ⋐ E The condition that A is a compact subset of E.
B An open ball in Rn.
B(x, ρ) The open ball with center x ∈ Rn and radius ρ > 0.
σn The surface area of a sphere in n dimensions with radius 1.
νn The volume of an n-dimensional ball with radius 1.
n̂ The outer unit normal to a surface.
χA The characteristic (indicator) function for the set A.
M(u;x, ρ) The spherical mean value of u over ∂B(x, ρ).
A(u;x, ρ The ball mean value of u in B(x, ρ.
C(A) The space of continuous functions from A to R.
Ck(A) The space of k times continuously differentiable functions

from A to R.
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Chapter 1

Introduction

Two important equations in potential theory are Laplace’s equation

∆u = 0

and Poisson’s equation
∆u = f,

where the Laplacian is defined by

∆u(x) = ∇ · ∇u(x) =
n∑
j=1

∂2u

∂2xj
(x),

for a function u : Rn → R. These two differential equations, the former being a
special case of the latter, appear in many areas of physics. For example Newton’s
law of gravity can be described as the gravitational field caused by a point mass
m at the origin

g(x) = −G m

|x|2
x

|x|
.

This is the gradient g = −∇Pg of a potential Pg, which obeys Laplace’s equation

∆Pg(x) = 0,

for all x ̸= 0. For a more general mass distribution ρm, it holds that

∇ · g(x) = −4πGρm(x),

Måns Alskog, 2022. 1



2 Chapter 1. Introduction

due to Gauss’ law. Then the potential Pg obeys Poisson’s equation

∆Pg = −4πGρm.

Likewise, an electrical field E generated by a charge density ρq, has the electrical
potential PE such that E = −∇PE . Maxwell’s law for the potential of ρq can
then be expressed as

∆PE = −∇ · E = −ρq
ε0
,

where ε0 is the electric constant (permittivity of free space). As a final example
of a physical quantity fulfilling Laplace’s equation, we can examine the heat
equation,

α∆u =
∂u

∂t
,

and in particular the steady-state heat equation fulfilling ∂u
∂t = 0, so that

∆u = 0.

Having introduced these partial differential equations (PDEs), the question of,
for example, finding the electrical potential inside a given conductor, or the grav-
itational field inside a given space, simply amounts to solving the corresponding
PDE inside the conductor or space. In general this differential equation would
be Poisson’s equation, but if we assume that the conductor or space for which
we wish to solve the equation contains no charge or mass density, respectively,
the equation simplifies to Laplace’s equation.

When solving a differential equation, a boundary condition is required to obtain
unique solutions from the otherwise infinitely many possible solutions. In the
case of an electrical conductor, a natural boundary condition is to provide a
potential on the boundary of the conductor, just as a natural boundary condition
for the heat equation is the temperature on the walls of the room. We then
obtain a system of equations of the following form, letting the set of points Ω
represent the conductor or room of interest and the function f the measured
boundary values, {

u = f on ∂Ω,
∆u = 0 in Ω.

This is the Dirichlet problem. Investigation of this mathematical question be-
gan around the time when the physical laws of gravity and electromagnetics
were discovered. The Dirichlet problem was intensively investigated by math-
ematicians in the late nineteenth century and early twentieth century. During
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this period many of the mathematical foundations for solving the problem in
increasingly general settings were developed.

Apart from these physical interpretations of the problem, potential theory also
has strong connections to the study of analytic functions in complex analysis.
Some discoveries within this field could, in a sense, be seen as a generalization
of the results for complex analytic functions to functions in higher dimensions.
This is something that will be discussed in Section 3.3.





Chapter 2

Preliminaries

Many important theorems from the fields of calculus in one and several variables,
as well as measure and integration theory, will be used here without providing
a proof.

2.1 Concepts from Real Analysis
When talking about limits and continuity, Rn should be interpreted as referring
to the metric space (Rn, | · |) with Euclidean distance

|x− y| =
√∑n

k=1 |xk − yk|2

as the metric. As such, E is used to refer to the metric subspace (E, | · |) where
E ⊂ Rn. As an illustration of this, consider the definition of the statement
limy→x f(y) = A.

Definition 2.1. For a function f : Rn → R, we say that f(y) → A as y → x,
or equivalently limy→x f(y) = A, if for all ε > 0 there exists a δ > 0, so that if
y ̸= x is in the domain of f and |y − x| < δ, then |f(y)−A| < ε.

Definition 2.2. The distance between a point x and a set A is defined as

dist(x,A) = inf
y∈A

|x− y|.

Definition 2.3. The open ball B(x, ρ) in Rn is defined as the set

B(x, ρ) = {y ∈ Rn : |x− y| < ρ}.

Måns Alskog, 2022. 5



6 Chapter 2. Preliminaries

By convention, the word ball is used to refer to the open ball.

Definition 2.4. A set G is open if for each point x ∈ G there exists a neigh-
borhood B(x, ε) ⊂ G of some radius ε > 0.

A set F is closed if its complement F c is open.

Note that there exist sets E ⊂ A ⊂ X such that E is not open when considered
as a set in the metric space (X, d), but open when considered as a set in the
metric space (A, d). For example we can take E = [0, 1), A = [0, 2] and X = R.

Definition 2.5. If E ⊂ A and there exists some open G such that E = G ∩A,
we say that E is relatively open in A.

Definition 2.6. The closure A of a set A is defined as the smallest closed set
which contains A as a subset.

Definition 2.7. The boundary ∂A of a set A is defined as

∂A = A ∩Ac.

Definition 2.8. For a given set A ⊂ Rn, a collection {Cλ}λ∈Λ of sets is called
a cover of A if

A ⊂
⋃
λ∈Λ

Cλ.

The collection {Cλ}λ∈Λ may be finite or infinite. Since it may be uncountable,
we use a so-called index set Λ which may be uncountable. We say that the cover
has a finite subcover if there exists a collection {Ck}nk=1 ⊂ {Cλ}λ∈Λ such that

A ⊂
n⋃
k=1

Ck.

Theorem 2.9 (The Heine–Borel theorem). For any set A ⊂ Rn, the following
two statements are equivalent:

(a) A is closed and bounded.

(b) A is compact, meaning that every cover of A consisting of open sets, has
a finite subcover.

Definition 2.10. A set A is connected if there do not exist two non-empty sets
A1 and A2 such that: the sets are disjoint (i.e. A1 ∩ A2 = ∅), each of the sets
is relatively open in A, and A = A1 ∪A2.

A non-empty set which is open and connected is called a domain.
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Definition 2.11. A subset A1 ⊂ A is said to be a (connected) component of
A if A1 is connected and there does not exist any connected A2 ⊂ A such that
A1 ⊂ A2 and A1 ̸= A2 (that is, A1 is a maximal element with regard to the
relation (⊂)).

Definition 2.12. A function f : Ω → [−∞,∞] is said to be upper semicontin-
uous if

lim sup
y→x

f(y) ≤ f(x) for all x ∈ Ω.

A function f : Ω → [−∞,∞] is said to be lower semicontinuous if

lim inf
y→x

f(y) ≥ f(x) for all x ∈ Ω.

It is apparent that a function is continuous if and only if a function is both
upper and lower semicontinuous as well as real-valued, because

f(x) ≤ lim inf
y→x

f(y) ≤ lim sup
y→x

f(y) ≤ f(x) ⇐⇒ lim
y→x

f(y) = f(x).

Note that functions f : Ω → [−∞,∞] are not considered to be continuous if
they attain the values ±∞ at any point, even if limy→x f(y) = f(x) at these
points.

Proposition 2.13. If {fk} is a collection of continuous functions, then inf{fk}
is upper semicontinuous and sup{fk} is lower semicontinuous.

Weierstrass’ theorem, also called the extreme value theorem, says that a con-
tinuous function must attain a maximum and a minimum on any compact set.

Theorem 2.14 (Weierstrass’ theorem). Consider f : A→ [−∞,∞] where A is
a compact set. If f is upper semicontinuous, then

f(x) = sup
z∈A

f(z) for some x ∈ A. (2.1)

If f is lower semicontinuous, then

f(y) = inf
z∈A

f(z) for some y ∈ A. (2.2)

If f is continuous on A, then both (2.1) and (2.2) hold.

The following simple lemma gives a sufficient condition for when a function has
a continuous extension to the closure of its domain.
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Lemma 2.15. Let u : Ω → R be continuous in the open set Ω and assume that

f(x) = lim
Ω∋y→x

u(x) for each x ∈ ∂Ω. (2.3)

for some f : ∂Ω → R. Then the function

g(x) =

{
u(x) for x ∈ Ω,

f(x) for x ∈ ∂Ω,

is continuous on Ω and f is continuous on ∂Ω.

Proof. By hypothesis, g is continuous at any x ∈ Ω. Take any x ∈ ∂Ω, and any
ε > 0. By (2.3) there exists a δ > 0 such that

|g(y)− g(x)| = |u(y)− f(x)| < ε

2
for all y ∈ B(x, δ) ∩ Ω.

If z ∈ B(x, δ) ∩ ∂Ω, then by (2.3) again, there exists a δz > 0 such that

|g(y)− g(z)| = |u(y)− f(z)| < ε

2
for all y ∈ B(z, δz) ∩ Ω.

Thus, for any z ∈ B(x, δ) ∩ ∂Ω, there exists a y ∈ B(x, δ) ∩ B(z, δz) ∩ Ω, such
that

|g(z)− g(x)| = |g(z)− g(y) + g(y)− g(x)|
≤ |g(z)− g(y)|+ |g(x)− g(y)|

<
ε

2
+
ε

2
= ε.

Therefore, if z ∈ B(x, δ) then |f(z)− f(x)| < ε, i.e. g is continuous at x ∈ ∂Ω.
Finally, because f = g|∂Ω, it is also continuous.

Here we also define uniform continuity, which is a stronger version of continuity,
and state a sufficient condition for a function to be uniformly continuous. Note
that the difference from ordinary continuity is that δ does not depend on x or
y.

Definition 2.16. A function f : Ω → R is said to be uniformly continuous in
Ω if for any ε > 0, there exists a δ > 0 such that

|f(y)− f(x)| < ε whenever |y − x| < δ.

Theorem 2.17 (Heine-Cantor theorem). If f : E → R is continuous in the
compact set E, then f is uniformly continuous in E.
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2.2 Concepts from Multivariable Calculus
This section contains many of the results which are useful for computations
involving derivatives in more than one dimension, such as the Laplacian. These
results should be familiar from a course in multivariable calculus, and many of
the formulas can be found in reference books such as Physics Handbook [26], for
instance. For integrals, the following notations will be used.

Definition 2.18. For a surface S ⊂ R3 which can be parametrised by functions
in C1(R2), sometimes called C1-surfaces, we write

∫
S
f dσ for the surface integral

of the function f : S → R.

For a set A ⊂ R3, we write
∫
A
f dλ for the volume integral of the function

f : A→ R.

The concept of integrals will be extended to sets which cannot necessarily be
parametrised this way in Section 2.3. When working with spheres and balls in
a general number of dimensions, it is useful to have a simple representation of
their surface area and volume.

Proposition 2.19. The volume of the n-dimensional ball B(0, 1) is given by

νn =

∫
B(0,1)

1 dλ =


πn/2

(n/2)!
, n even,

2(n+1)/2π(n−1)/2

1 · 3 · · · (n− 2) · n
, n odd and n ≥ 3.

The volume of the ball B(0, ρ) is given by νnρn.

Proposition 2.20. The surface area of the (n−1)-dimensional sphere ∂B(0, 1)
in Rn is given by σn = nνn. The surface area of the sphere ∂B(0, ρ) is given by
σnρ

n−1.

Proof. Consider the ball with radius ρ as the union of all spheres with radius
0 < r ≤ ρ. The volume of the ball can then be written

νnρ
n =

∫ ρ

0

σnr
n−1 dr =

σn
n
ρn.

Differentiating this equation gives nνnρn−1 = σnρ
n−1 and thus nνn = σn.

Here we introduce the three most common notions of derivatives in a general
number of dimensions: the gradient, divergence and Laplacian.

Definition 2.21. The gradient of a function f ∈ C1(Ω) is defined as

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.
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The directional derivative of f along the unit vector w is written ∂f
∂w and defined

as ∂f
∂w = ∇f · w.

Definition 2.22. The divergence of a vector-valued function F : Ω → Rn such
that the components Fk satisfy Fk ∈ C1(Ω) for all 1 ≤ k ≤ n, is defined as

∇ · F =

n∑
k=1

∂Fk
∂xk

.

Definition 2.23. The Laplacian of a function f ∈ C2(Ω), is defined as

∆f =

n∑
k=1

∂2f

∂x2k
.

Note that ∆f = ∇ · ∇f . Therefore the Laplacian is sometimes written ∇2,
though we will always use ∆.

Proposition 2.24. The Laplacian commutes with differentiation, translation,
rotation and integration.

In particular, for any function f : Ωx × Ωy → R such that f(·, y) ∈ C2(Ωx)
and for any signed measure (see Definition 2.33) µ : B(Ωy) → R such that f is
integrable relative to µ over Ωy,

∆x

∫
Ωy

f(x, y) dµ(y) =

∫
Ω

∆xf(x, y) dµ(y).

Proof. The first two properties follow directly from the same properties for
componentwise differentiation.

The rotational invariance can be proved as follows. Let u ∈ C2(Rn) be a function
and M : Rn → Rn be an orthogonal matrix, i.e. MMT = I. Let the coordinates
{yi} be given by y =Mx, i.e.

yi =

n∑
j=1

mijxj .

Then
∂(u ◦M)

∂xi
=

n∑
j=1

mji
∂u

∂yj
,

and

∂2(u ◦M)

∂x2i
=

n∑
k=1

mki
∂

∂yk

n∑
j=1

mji
∂u

∂yj
=

n∑
k=1

n∑
j=1

mkimji
∂2u

∂yk∂yj
.
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Because
n∑
i=1

mkimji =

{
1 if k = j,

0 if k ̸= j,

we can conclude that

∆x(u ◦M)(x) =

n∑
i=1

∂2(u ◦M)

∂x2i
=

n∑
i=1

∂2u

∂y2i
= ∆yu(y).

To prove that we may exchange the order of integration and the Laplacian
operator, we can apply the linearity of the integral and exchange the order of
each partial differential operator ∂2

∂x2
k

with the integration. This is allowed by
the so-called Leibniz integral rule, which has as a consequence the fact that if
f and ∂2f

∂x2
k

are both integrable with respect to y on Ωy, then

∂2

∂x2k

∫
Ωy

f(x, y) dµ(y) =

∫
Ω

∂2f

∂x2k
(x, y) dµ(y).

See for example Corollary 5.9 in [4, p. 46].

To prove other useful identities for the Laplacian, we make use of Gauss’ diver-
gence theorem, which gives a relation between a volume integral of the diver-
gence and a surface integral of the normal derivative for a function.

Theorem 2.25 (Gauss’ divergence theorem). If the divergence for the vector-
valued function F exists on the bounded open set Ω, with a piecewise smooth
boundary, then ∫

Ω

∇ · F dλ =

∫
∂Ω

F · n̂ dσ,

where n̂ denotes the outer unit normal to the surface ∂Ω.

The following basic identities for vector derivatives are useful for computing the
Laplacian of various functions. The rules (a) and (b) can be seen as extensions
of the chain rule and product rule for the first derivative, respectively. The same
is true for (c) and (d), but in this case for the second derivative.

Proposition 2.26. Given a domain Ω ⊂ Rn and functions g ∈ C1(R), f ∈
C1(Ω) and F : Ω → Rn such that Fk ∈ C1(Ω), the following identities hold:

(a) ∇(g ◦ f) = (g′ ◦ f)∇f ,

(b) ∇ · (fF ) = (∇f) · F + f(∇ · F ).
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For any functions g ∈ C2(R), f ∈ C2(Ω) and g ∈ C2(Ω), the following identities
also hold:

(c) ∆(g ◦ f) = (g′ ◦ f)∆f + (g′′ ◦ f)|∇f |2,

(d) ∆(fg) = f∆g + g∆f + 2(∇f · ∇g).

Proof. The first identity follows from a simple calculation with the chain rule
from calculus in one dimension.

∇(g ◦ f) =
(

∂

∂x1
(g ◦ f), . . . , ∂

∂xn
(g ◦ f)

)
=

(
(g′ ◦ f) ∂f

∂x1
, . . . , (g′ ◦ f) ∂f

∂xn

)
= (g′ ◦ f)∇f.

Similarly, the second identity follows from the product rule from calculus in one
dimension.

∇ · (fF ) = ∂

∂x1
(fF1) + . . .+

∂

∂xn
(fFn)

=
∂f

∂x1
F1 + f

∂F1

∂x1
+ . . .+

∂f

∂xn
Fn + f

∂Fn
∂xn

=

(
∂f

∂x1
F1 + . . .+

∂f

∂xn
Fn

)
+

(
f
∂F1

∂x1
+ . . .+ f

∂Fn
∂xn

)
= (∇f) · F + f(∇ · F ).

The third identity can be derived from the first two by rewriting the Laplacian
as the divergence of the gradient, which gives

∆(g ◦ f) = ∇ · ∇(g ◦ f)
= ∇ · ((g′ ◦ f)∇f)
= ∇(g′ ◦ f) · ∇f + (g′ ◦ f)(∇ · ∇f)
= (g′′ ◦ f)∇f · ∇f + (g′ ◦ f)(∇ · ∇f)
= (g′ ◦ f)∆f + (g′′ ◦ f)|∇f |2,

while the fourth identity also requires the formula ∇(fg) = f∇g + g∇f , which
can be proven by a straightforward componentwise application of the product
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rule:

∆(fg) = ∇ · ∇(fg)

= ∇ · (f∇g + g∇f)
= ∇f · ∇g + f(∇ · ∇g) +∇g · ∇f + g(∇ · ∇f)
= f∆g + g∆f + 2(∇f · ∇g).

The requirements on the differentiability of the involved functions are sufficient
for all the calculations to be well defined.

Like the well-known Green’s theorem in two dimensions, there exists a similar
equality in an arbitrary dimension, called Green’s identity.

Theorem 2.27 (Green’s identity). For a bounded set Ω and functions u, v : Ω →
R, u, v ∈ C2(Ω),

(a)
∫
Ω

(∇u · ∇v + u∆v) dλ =

∫
∂Ω

u(∇v · n̂) dσ,

(b)
∫
Ω

(u∆v − v∆u) dλ =

∫
∂Ω

(u(∇v · n̂)− v(∇u · n̂)) dσ .

Proof. We begin by observing that Proposition 2.26 (b) gives

∇ · (u∇v) = ∇u · ∇v + u(∇ · ∇v) = ∇u · ∇v + u∆v.

Applying Gauss’ theorem (2.25) to the integral of this expression yields∫
Ω

(∇u ·∇v+u∆v) dλ =

∫
Ω

∇· (u∇v) dλ =

∫
∂Ω

(u∇v) · n̂ dσ =

∫
∂Ω

u(∇v · n̂) dσ,

so the proof of (a) is done. Subtracting v∆u and rearranging the terms gives∫
Ω

(u∆v− v∆u) dλ =

∫
∂Ω

(u(∇v · n̂)− v(∇u · n̂)) dσ+
∫
Ω

(∇u ·∇v−∇v ·∇u) dλ,

where the integrand of the last integral is zero, which proves (b).

Finally, we discuss some different types of mean values of a function. The
spherical mean value and ball mean value can be used to prove many properties
of functions whose Laplacian is zero, as we will see in Chapter 3.

Definition 2.28. The spherical mean value of a function f : Ω → R on the
sphere ∂B(x, ρ) is denoted

M(f ;x, ρ) =
1

σnρn−1

∫
∂B(x,ρ)

f dσ .
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If f is continuous, then M(f ;x, ρ) is continuous with respect to ρ, and we can
define the mean value for a sphere of radius zero as

M(f ;x, 0) = lim
ρ→0

M(f, x, ρ) = f(x).

Definition 2.29. The ball mean value of a function f : Ω → R in the ball
B(x, ρ) is denoted

A(f ;x, ρ) =
1

νnρn

∫
B(x,ρ)

f dλ .

If f is continuous, then A(f ;x, ρ) is continuous with respect to ρ, and we can
define the mean value for a ball of radius zero as

A(f ;x, 0) = lim
ρ→0

A(f, x, ρ) = f(x).

Note also that the mean values of continuous functions are continuous also with
respect to x. We now prove that the mean values of k times continuously
differentiable functions are k times continuously differentiable functions of the
radius ρ.

Proposition 2.30. If f ∈ Ck(Ω) and B(x, r) ⋐ Ω then the functions ρ 7→
M(f ;x, ρ) and ρ 7→ A(f ;x, ρ) are in Ck([0, r]).

Proof. If f ∈ C1(Ω) then

∂

∂ρ
M(f ;x, ρ) =

∂

∂ρ

1

σnρn−1

∫
∂B(x,ρ)

f(y) dσ(y)

=
1− n

σnρn

∫
∂B(x,ρ)

f(y) dσ(y)+
1

σnρn−1

∂

∂ρ

∫
∂B(x,ρ)

f(y) dσ(y)

=
1− n

ρ
M(f ;x, ρ) +

1

σnρn−1

∂

∂ρ

∫
∂B(0,1)

ρf(x+ ρz) dσ(z)

By differentiating under the integral sign, we get

∂

∂ρ

∫
∂B(0,1)

ρf(x+ ρz) dσ(z) =

∫
∂B(0,1)

∂

∂ρ
ρf(x+ ρz) dσ(z),

and as the integral of a continuous function is continuous, d
dρM(M ;x, ρ) is the

sum of two continuous functions, and is therefore continuous itself.
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For the ball mean we have analogously,

∂

∂ρ
A(f ;x, ρ) =

∂

∂ρ

1

νnρn

∫
B(x,ρ)

f(y) dλ(y)

=
−n

νnρn+1

∫
B(x,ρ)

f(y) dλ(y)+
1

νnρn
∂

∂ρ

∫
B(x,ρ)

f(y) dλ(y)

=
−n
ρ

A(f ;x, ρ) +
1

νnρn
∂

∂ρ

∫
B(0,1)

ρf(x+ ρz) dλ(z)

=
−n
ρ

A(f ;x, ρ) +
1

νnρn

∫
B(0,1)

∂

∂ρ
ρf(x+ ρz) dλ(z).

This argument can be iterated to prove that if the kth derivative of f exists
and is continuous (in all coordinate components x1 through xn), then the kth
derivative of the sphere mean value and the ball mean value, exists and is
continuous.

Note that if f ∈ C∞(Ω), induction may be used to prove that the functions
ρ 7→ M(f ;x, ρ) and ρ 7→ A(f ;x, ρ) are in C∞([0, r]), with a similar method as
in this proof.

The preceding two definitions are special cases of the more general mean value
which can be taken over any bounded set. This general mean value will not be
used in this text, however it is included for completeness.

Definition 2.31. The mean value of a function f : Ω → R defined in a bounded
set A ⊂ Ω with positive volume, is denoted∫

A

− f dλ =
1

λ(A)

∫
A

f dλ,

where λ(A) is the volume of the set (see Definition 2.36).

2.3 Concepts from Measure and Integration
Theory

As noted in Definition 2.18, the Riemann integral cannot be used on a set which
cannot be parametrised with C1(R) functions. To alleviate this shortcoming of
the integral, many different generalizations have been invented, such as the
Riemann–Stieltjes integral, the Daniell integral and the Lebesgue integral. The
latter two have been frequently used in potential theory in the early twentieth
century, for example in [36] and [28], respectively. For the purposes of this text,
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establishing the basic definitions of measure theory and the Lebesgue integral
is sufficient.

We begin with the definition of a measure, which is a a function that gives the
“size” of a set. In this definition we use the symbol P(A) to denote the set of
all subsets of A, called the power set.

Definition 2.32. For a set of subsets of the space, Σ ⊂ P(Rn), a measure is a
function µ : Σ → [0,∞] that is zero for the empty set, µ(∅) = 0, and additive
for countable collections of pairwise disjoint sets (Ak)

∞
k=1 in Σ,

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak) where Ak ∩Aj = ∅ for k ̸= j.

The definition of a measure can easily be extended to functions into the extended
reals, so that the measure can be both positive and negative:

Definition 2.33. If a function µ : Σ → [−∞,∞] can be expressed as µ =
µ+ −µ−, where µ+ = max{µ, 0} and µ− = max{−µ, 0} are measures, then µ is
called a signed measure. Note that at most one of µ+ and µ− may be infinite.
For signed measures we define the “absolute value” as |µ| = µ+ + µ−.

We would wish to define a measure V : P(Rn) → [0,∞] which is invariant under
rotation and translation, and corresponds to the natural notion of volume in n
dimensions. Using the Axiom of Choice, one can prove that there must exist
subsets of Rn for which this measure cannot give a meaningful value. One such
example using such non-measurable sets in three dimensions is the Banach–
Tarski paradox. For this reason the domain of a measure corresponding to
volume, can at best be a strict subset Σ of the power set P(Rn). To formalise
which sets are measurable and which are not measurable, the definition of a
σ-algebra is introduced.

Definition 2.34. A set Σ is called a σ-algebra on X if it contains X and is
closed under complementation and countable unions and intersections, i.e. it
satisfies the following:

(a) If A ∈ Σ then Ac ∈ Σ.

(b) If A1, A2, . . . ∈ Σ then
⋃∞
k=1Ak ∈ Σ.

(c) If A1, A2, . . . ∈ Σ then
⋂∞
k=1Ak ∈ Σ.

Note that
∞⋂
k=1

Ak =

( ∞⋃
k=1

Ack

)c
,
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so the third condition is redundant, as it follows from the first two.

Definition 2.35. For a given set X, the Borel σ-algebra B(X) is defined as the
intersection of all σ-algebras which contain all open subsets of X. The Borel
σ-algebra is therefore the smallest σ-algebra which contains all open subsets of
X. The Borel algebra also contains all closed subsets of X, which is easily seen
as it is closed under complementation.

As non-Borel subsets of Rn are relatively complicated to construct, the Borel
algebra can intuitively be thought of as containing all “reasonable” subsets of
Rn. In the remainder of this text, all sets which are discussed will be assumed
to be members of the Borel algebra, unless otherwise noted.

On the Borel algebra we can define the Lebesgue measure, which corresponds
to the usual notions of length in R, area in R2 or volume in R3.

Definition 2.36. The Lebesgue measure λ : B(Rn) → [0,∞) is defined as

λ(A) = inf
R

∑
E∈R

(volume of the box E),

where the infimum is taken over all countable collections R of n-dimensional
(axis-parallel) boxes

E = [α1, β1]× [α2, β2]× · · · × [αn, βn]

such that A ⊂
⋃
E∈RE.

Definition 2.37. A set A ⊂ Rn is said to be Lebesgue measurable if

λ(A) = λ(A ∩ E) + λ(A ∩ Ec) for all E ⊂ Rn.

It can be shown that all sets in the Borel algebra are Lebesgue measurable, and
even that there exist sets which are Lebesgue measurable but do not belong to
the Borel algebra, e.g. any non-Borel subset of a set with measure zero.

A tuple (X,Σ) of a set X and a σ-algebra Σ is called a measurable space. A tuple
(X,Σ, µ) of a set X, a σ-algebra Σ and a measure µ is called a measure space.
Where appropriate, Rn will refer to either the measurable space (Rn,B(Rn)) or
the measure space (Rn,B(Rn), λ).

Definition 2.38. A function f : Ω → R is said to be measurable if for all t ∈ R
the set {x : f(x) > t} is measurable.

Having obtained a mathematically consistent notion of length, area and volume
for all sets in the Borel algebra, we may now define the Lebesgue integral. The
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Lebesgue integral can be defined using Cavalieri’s principle, which is the formula
(2.4).

Definition 2.39. Given the Lebesgue measure λ and a measurable function
f : Ω → [0,∞) (on a measurable set Ω), the Lebesgue integral is given in terms
of the Riemann integral as∫

Ω

f dλ =

∫ ∞

0

λ({x : f(x) > t}) dt, (2.4)

i.e. the Riemann integral with respect to t of the measure of the preimage
f−1((t,∞)).

Informally, the Lebesgue integral corresponds to adding up the measures (multi-
plied by dt) of the sets which map to (t, t+dt), for all t where dt is an infinitesimal
step.

Definition 2.40. For a measurable function f : Ω → R, the Lebesgue integral
on a (measurable) set E ⊂ Ω is defined by∫

E

f dλ =

∫
E

f+ dλ−
∫
E

f− dλ, (2.5)

where f = f+ − f−, for the non-negative functions f+ = max{f, 0} and f− =
max{−f, 0}, whose integrals can be evaluated by (2.4). For this to be well-
defined, at most one of the two integrals in the right-hand side can be infinite,
meaning that ∫

E

f+ dλ <∞ or
∫
E

f− dλ <∞.

Definition 2.41. A function f : Ω → R is said to be Lebesgue integrable (on Ω)
if it is measurable and the integral of the function’s absolute value is finite, i.e.∫

Ω

|f | dλ <∞.

The space of functions which are Lebesgue integrable on Ω is often written
L1(Ω).

Note that if a function f is Lebesgue integrable on Ω, then∫
E

|f | dλ =

∫
E

f+ dλ+

∫
E

f− dλ <∞,

which implies ∫
E

f+ dλ <∞ and
∫
E

f− dλ <∞
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for all sets E ⊂ Ω, so the integral of f as defined by (2.5) exists.

The integral with respect to an arbitrary measure µ can be constructed in
the same way as above (Definitions 2.39–2.41), simply replacing the Lebesgue
measure λ with µ. We say that a measurable function f is integrable on Ω with
respect to µ, if

∫
|f | dµ <∞.

It is evident that the value of a function on a set of measure zero does not affect
the value of the integral of the function, meaning that if µ(E) = 0 then∫

A

f dµ =

∫
A∪E

f dµ

for all integrable functions f : A ∪ E → R.

Definition 2.42. If a property holds on a set A except on a subset E ⊂ A with
measure zero, µ(E) = 0, we say that the property holds almost everywhere on
A with respect to the measure µ, abbreviated a.e.(µ). When the set A is the
whole space, it is often omitted. Likewise, when the measure is the Lebesgue
measure λ, it is omitted.

Sets with (Lebesgue) measure zero are for example all finite sets in Rn and the
set of rationals in R. The Cantor set, constructed by iteratively removing the
middle third of each component interval in [0, 1], has measure zero. However,
the Smith–Voltera–Cantor set, is constructed by removing an interval of width
(1/4)n from each component, where n is the number of iterations, in [0, 1]. The
iterations are

I0 = [0, 1],

I1 = [0, 3/8] ∪ [5/8, 1],

I2 = [0, 5/32] ∪ [7/32, 3/8] ∪ [5/8, 25/32] ∪ [27/32, 1],

...,

and at each step 2n intervals of length (1/4)n are removed, giving the Lebesgue
measure of the limit

λ
(
lim
n→∞

In

)
= lim
n→∞

λ(In) = 1−
∞∑
n=1

2n(1/4)n = 1/2.

Taking the complement of the Smith–Voltera–Cantor set with respect to (0, 1)
gives an open set whose boundary is the Smith–Voltera–Cantor set. It is there-
fore an example of a domain whose boundary has positive Lebesgue measure,
something which one might not at first expect to exist. More “ordinary” sets
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such as finite unions of balls, cubes or similar, all have boundaries with measure
zero.

Another important measure is the Dirac measure, which only depends on if a
single point is a member of the set to be measured.

Definition 2.43. The Dirac measure δa at a point a ∈ Rn is defined as

δa(A) =

{
1, if a ∈ A,

0, if a ̸∈ A.

All sets are Dirac measurable, because they must either contain the point a or
not.

This measure is closely related to the Dirac impulse, which is used in distribution
theory. Compare the integral of a function T : R → R with respect to the Dirac
measure, ∫

R
T (x) dδa(x) = T (a),

with the usual definition of the Dirac impulse δa : C∞(R) → R,

δa(T ) = “
∫ ∞

−∞
T (x)δa(x) dx ” = T (a).

The integral within quotes above is not a well defined Riemann or Lebesgue
integral, but a common intuitive interpretation of the evaluation a distribution
for the test function T ∈ C∞(R) is as an integral of their product over the reals.
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Harmonic Functions

The name harmonic comes from the set of functions called the solid harmon-
ics (in spherical coordinates), which are a collection of solutions to Laplace’s
equation on the unit ball in three dimensions,

u : B(0, 1) → R,
∆u = 0.

This definition was first introduced by William Thomson and Peter Guthrie Tait
in their 1867 textbook Treatise on Natural Philosophy, wherein the function u
was additionally required to be homogeneous of some degree l, i.e.

u(αr, θ, φ) = αlu(r, θ, φ).

A family of solutions to this equation is given by

u(r, θ, φ) = rlPml (cos θ)eimφ,

where Pml (x) is the associated Legendre function of degree l ∈ {0, 1, . . .} and
order m ∈ {−l, . . . , l}. These functions are named after Adrien-Marie Legendre,
who together with Pierre Simon de Laplace developed solutions to the Laplace
equation in three dimensions during the 1780s [23, pp. 72–74]. See Section 4.1
for a summary of the derivation of these solutions.

The solid harmonics have the useful property that they form an orthogonal basis
for the space of functions on the sphere. This means that in a similar manner
as the Taylor series of a function gives a representation of the function as a

Måns Alskog, 2022. 21
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linear combination of the monomials xk, or the Fourier series of a function gives
a representation as a linear combination of the periodic functions ei2πωk, any
function u which is harmonic in the sphere has a (unique) representation as a
linear combination of solid harmonics, namely

u(r, θ, φ) =

∞∑
l=0

l∑
m=−l

Cl,mr
lPml (cos θ)eimφ,

where Cl,m are real constants. These functions were first studied in relation
to Newton’s gravitational potential, but the solid harmonics are also used in
modern physics. For example they appear as the solutions to the Schrödinger
equation for the hydrogen atom [26, p. 296].

3.1 The Definition of Harmonicity
The requirement for a function to be harmonic was at first said to be that the
function has zero Laplacian for a given set of points. In modern potential theory
however, the property of harmonicity is sometimes, e.g. by Brelot in 1965 [7],
defined using the mean value over a sphere or ball, instead of the Laplacian of
the function. That is, a function is harmonic if at each point, the value of the
function is equal to the mean value over each sphere surrounding the point. The
two definitions result in exactly the same family of functions being regarded as
harmonic in Euclidean space, as we will see in Theorem 3.4.

Definition 3.1. A twice continuously differentiable function u : Ω → R, u ∈
C2(Ω), is said to be harmonic in Ω if it has the spherical mean-value property :

u(x) = M(u;x, ρ) for all x ∈ Ω, ρ > 0 such that B(x, ρ) ⋐ Ω.

Definition 3.2. The space of functions that are harmonic in Ω is denoted H(Ω).

The property of harmonicity can, as mentioned above, also be defined by using
the ball mean value, and these two definitions are completely equivalent.

Proposition 3.3. A function u ∈ C2(Ω) is harmonic if and only if it has the
ball mean-value property:

u(x) = A(u;x, ρ) for all x ∈ Ω, ρ > 0 such that B(x, ρ) ⋐ Ω.

Proof. Assume that u is harmonic. Then, using spherical coordinates,

A(u;x, ρ) =
n

ρn

∫ ρ

0

rn−1M(u;x, r) dr . (3.1)
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Substituting M(u;x, r) = u(x) for all 0 ≤ r ≤ ρ gives

A(u;x, ρ) =
n

ρn

∫ ρ

0

rn−1u(x) dr = u(x)
n

ρn

∫ ρ

0

rn−1 dr = u(x).

Conversely, we have seen in Proposition 2.30 that the ball mean and sphere mean
of u are twice continuously differentiable with respect to the radius ρ because
u ∈ C2(Ω). Thus, differentiating (3.1) and substituting A(u;x, ρ) = u(x) gives

M(u, x, ρ) =
1

ρn−1

∂

∂ρ

ρn

n
A(u;x, ρ) =

1

ρn−1
ρn−1u(x) = u(x).

As mentioned, in Euclidean space the characterization of harmonic functions as
solutions to the Laplace equation and as functions with the mean-value property
are equivalent.

Theorem 3.4. A function u ∈ C2(Ω) is harmonic if and only if its Laplacian
is identically zero in Ω.

This proof is given by Armitage and Gardiner [2, pp. 3–4].

Proof. First we note that for each ball B(x, ρ) ⋐ Ω, Theorem 2.27 (a) gives∫
B(x,ρ)

(∇v · ∇u+ v∆u) dλ =

∫
∂B(x,ρ)

v(∇u · n̂) dσ

for any v ∈ C2(Ω), in particular v ≡ 1, which simplifies the expression to∫
B(x,ρ)

∆u dλ =

∫
∂B(x,ρ)

∂u

∂n̂
dσ .

Differentiating under the integral sign gives∫
B(x,ρ)

∆u dλ = ρn−1

∫
∂B(x,1)

∂

∂ρ
u(x+ ρy) dσ(y)

= ρn−1 d

dρ

∫
∂B(x,1)

u(x+ ρy) dσ(y).

Rewriting this using Definitions 2.28 and 2.29 gives

νnρ
nA(∆u;x, ρ) = σnρ

n−1 d

dρ
M(u;x, ρ), (3.2)

and substituting ∆u = 0 gives

0 =
d

dρ
M(u;x, ρ),
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so M(u;x, ρ) is constant with respect to ρ. The constant value is obtained by
M(u;x, 0) = u(x).

We now prove the implication

∆u ≡ 0 in Ω =⇒ u ∈ H(Ω).

To prove the converse,

u ∈ H(Ω) =⇒ ∆u ≡ 0 in Ω,

assume that u(x) = M(u;x, r) whenever B(x, r) ⋐ Ω. If ρ < r then (3.2) holds.
Dividing by νnρn and substituting u(x) for M(u;x, ρ) gives

A(∆u;x, ρ) =
n

ρ

d

dρ
M(u;x, ρ) =

n

ρ

d

dρ
u(x) = 0.

Because u ∈ C2(Ω), both sides of the equality are continuous (see Definition 2.29)
and we may take the limit as ρ→ 0, giving

∆u(x) = A(∆u;x, 0) = 0.

As Ω is open, there exists for any point x ∈ Ω a ball B(x, r) ⋐ Ω, and therefore
we can conclude that ∆u ≡ 0 in Ω.

A basic property of the space of harmonic functions is that it is closed under
linear combinations and limits.

Proposition 3.5. The space H(Ω) is a (linear) vector space, meaning that if
u, v are harmonic in Ω and c ∈ R then the functions cu and u+ v are harmonic
in Ω.

Proof. Because the Laplacian is linear the theorem is proved by computing the
Laplacian for each of the functions.

∆(cu) = c∆u = 0,

∆(u+ v) = ∆u+∆v = 0.

It can also be proved by using the mean value property:

cu(x) = cM(u;x, ρ) = M(cu;x, ρ),

u(x) + v(x) = M(u;x, ρ) +M(v;x, ρ) = M(u+ v;x, ρ).

The following result about the convergence of sequences of harmonic functions
can be compared to uniform convergence for integrable functions.
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Proposition 3.6. If u1, u2, . . . is a sequence of functions which are harmonic
in Ω, that converges uniformly in Ω to a function u, then the function u is
harmonic. Further, for any differential operator ∂

∂xj
the sequence ( ∂

∂xj
uk)

∞
k=1

converges to ∂
∂xj

u.

Proof. Because the terms are harmonic and therefore in C2(Ω), uniform con-
vergence gives that u ∈ C2(Ω). Uniform convergence also gives that u(x) =
M(u;x, ρ) whenever B(x, ρ) ⋐ Ω. This is because uniform convergence of a
sequence of integrable functions is sufficient for the convergence of the sequence
of integrals

M(uk;x, ρ) =
1

σnρn−1

∫
∂B

uk dσ → 1

σnρn−1

∫
∂B

u dσ = M(u;x, ρ).

So u satisfies the mean-value property and therefore u ∈ H(Ω).

The second part of the theorem follows from a similar argument, but relies on
the fact that harmonic functions are infinitely differentiable, a fact which will
be established in Theorem 3.18.

3.2 The Fundamental Solution for Laplace’s
Equation

Recalling Maxwell’s equations from electrostatics, we see that u is harmonic if it
is the potential of an electric field E = ∇u which fulfills Gauss’ law in vacuum:
∇ ·E = ∆u = 0. Therefore, the potential for the point charge q ∈ R at y ∈ R3,
given by Coulomb’s law

q

4πε0|x− y|

is a harmonic function on its domain, R3 \ {y}. For simplicity we will discard
the constant 4πε0, where ε0 is the electric constant.

This can be generalized to y ∈ Rn, n ≥ 3, by the Newtonian potential

Γy(x) = |x− y|2−n,

for the moment disregarding the constant q. To compute the Laplacian of Γy,
we first define the function

r : Rn → R,
r(x) = |x− y|.
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Observing that for all k ∈ R,

∇rk = krk−2(x− y) and ∆rk = k(k + (n− 2))rk−2 (3.3)

we get
∆Γy = ∆r2−n = (2− n)((2− n) + (n− 2))r−n

= 0 when r ̸= 0, i.e. x ̸= y.
(3.4)

In general, any function u : Rn → R, which depends only on |x − y| can be
written as u = g ◦ r, for some function g : R → R. The function u is harmonic
if and only if

∆u = ∆(g ◦ r) = (g′′ ◦ r)|∇r|2 + (g′ ◦ r)∆r
= (g′′ ◦ r) + (g′ ◦ r)(n− 1)r−1 = 0,

or stated as an ordinary differential equation in the real variable r,

g′′(r) +
(n− 1)

r
g′(r) = 0.

The solutions to this equation are obtained by transforming the expression to

d ln g′(r)

dr
=
g′′(r)

g′(r)
=

1− n

r
,

integrating to obtain
ln g′(r) = (1− n) ln r + C

and exponentiating both sides to get

g′(r) = eCr1−n,

for some constant C ∈ R. Ultimately, the solutions are given by

g(r) =

{
ar2−n + b, if n ≥ 3,

a ln r + b, if n = 2,

for some real constants a and b, which implies that

u(x) =

{
ar(x)2−n + b, if n ≥ 3,

a ln r(x) + b, if n = 2.

Note that these solutions approach infinity as x→ 0.
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Definition 3.7. The function

Γy(x) =

{
|x− y|2−n, for n ≥ 3,

ln |x− y|, for n = 2,

is known as the fundamental solution to Laplace’s equation on Rn \ {y}.

Proposition 3.8. For either Ω = Rn \ {y} or Ω = B(y, ρ) \ {y}, any function
u : Ω → R which is harmonic and depends only on |x− y| can be expressed as

u(x) = aΓy(x) + b for x ∈ Ω \ {y}

for some real constants a and b.

Proof. For the case Ω = Rn \ {y}, see the discussion above. For the case
Ω = B(y, ρ) \ {y}, the function u : B(y, ρ) \ {y} → R can be written as u = g ◦ r
where g : R → R and r : B(y, ρ) → R. The same methods as in the discussion
above can then be applied, with the additional requirement that r < ρ.

As the Laplacian is linear, we can observe that for any finite sequence of points
(yi)

m
i=1 and “point charges”, i.e. real coefficients (qi)

m
i=1, the sum

u(x) =

m∑
i=1

Γyi(x)qi

is a harmonic function in R \ {yi}mi=1. If we replace the finite set of points with
an infinite closed set of points E, and replace the point charges with a signed
measure of charge, µ : B(E) → R, we get the integral

u(x) =

∫
E

Γy(x) dµ(y).

This suggests that the function given by the above formula should be harmonic
in Rn \ E, a fact which will be proven in Proposition 3.10.

Definition 3.9. Let µ : B(E) → R be an signed measure on the closed set
E ⊂ Rn. When n ≥ 3, the Newtonian potential of µ is defined in Rn \ E as

u(x) =

∫
E

Γy(x) dµ(y).

When n = 2, the function given above is called the logarithmic potential.

The part of Γy that is used when n ≥ 3 is sometimes called the Newton kernel,
likewise the part that is used when n = 2 is called the logarithmic kernel.
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Proposition 3.10. The Newtonian potential (or logarithmic potential if n = 2)
of µ in E ⊂ Rn is harmonic in Rn \ E.

Proof. Let u be the Newtonian potential of µ in A. Assume that x ∈ Rn \ E.
According to Proposition 2.24 we can write

∆u(x) = ∆

∫
E

Γy(x) dµ(y) =

∫
E

∆Γy(x) dµ(y).

From (3.4) we get the fact that ∆Γy(x) = 0 when x ̸= y, so the integrand is
identically zero.

3.3 Connections to Complex Analysis
The space of harmonic functions in two dimensions is closely related to the space
of analytic functions in the complex plane.

Definition 3.11. A function f : ΩC → C, where ΩC ⊂ C, is said to be complex
analytic or simply analytic if for every y ∈ ΩC, the function can be written as a
convergent power series of the form

f(x) =

∞∑
k=0

ck(x− y)k, (3.5)

for some sequence of coefficients (ck)
∞
k=0 in C.

A function f : Ω → R is said to be real analytic if for every y ∈ Ω, it can
be written as a convergent power series of the form (3.5) for some sequence of
coefficients (ck)

∞
k=0 in R.

Any function which is real or complex analytic is infinitely differentiable, which
can be shown by termwise differentiation of the power series. For complex
functions the converse is also true, i.e. the space of complex analytic functions
is identical to C∞(C) [1, p. 48], but for real analytic functions this is not the
case. For example, the function (3.8), which we show is infinitely differentiable
in Lemma 3.19, is not analytic at the origin.

Recalling the Cauchy–Riemann equations from complex analysis, it can be
shown that the real and imaginary components of every analytic function in
the complex plane, belong to H(R2). In the following theorem and the remain-
der of this chapter, we will use the notation ΩC for the subset of C given by

ΩC = {x+ iy : (x, y) ∈ Ω}

for some Ω ⊂ R2.
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Theorem 3.12 (The Cauchy–Riemann equations). A complex function of one
variable f(x + iy) = u(x, y) + iv(x, y) is analytic in ΩC ⊂ C if and only if its
components are differentiable, and both equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

are satisfied in Ω ⊂ R2.

Proposition 3.13. If a complex function f = u+ iv is analytic in ΩC, then its
components u and v are harmonic in Ω ⊂ R2.

Proof. Employing the Cauchy–Riemann equations as well as the mixed partial
derivative property from multivariable calculus, we get

∆u =
∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

∂v

∂y
+

∂

∂y

(
−∂v
∂x

)
=

∂2v

∂x∂y
− ∂2v

∂x∂y
= 0

and

∆v =
∂2v

∂x2
+
∂2v

∂y2
=

∂

∂x

(
−∂u
∂y

)
+

∂

∂y

∂u

∂x
= − ∂2u

∂x∂y
+

∂2u

∂x∂y
= 0.

Note that the second derivatives of u and v are well defined because an ana-
lytic function f is in C∞(C), and therefore its components are also infinitely
differentiable.

The converse of the theorem is not true in general, i.e. for two harmonic functions
u, v ∈ H(Ω) the function f = u+iv need not be analytic in ΩC. For example, for
the harmonic functions u(x, y) = v(x, y) = ln

√
x2 + y2 ∈ H(R2), the Cauchy–

Riemann equations are not satisfied when (x, y) ̸= (0, 0), since then at least one
of the following inequalities hold:

∂u

∂x
=

x

x2 + y2
̸= y

x2 + y2
=
∂v

∂y
,

∂u

∂y
=

y

x2 + y2
̸= −x
x2 + y2

= −∂v
∂x
.

The following theorems for harmonic functions, the Maximum principle and
Liouville’s theorem, have direct analogues for analytic functions in complex
analysis. Firstly, a harmonic or analytic function cannot attain an extremum in
an open connected set without being constant.

Theorem 3.14 (The maximum principle). Let u : Ω → R be a harmonic func-
tion.
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(a) If u attains a local extremum at x, then u is constant in some neighbour-
hood of x.

(b) If u attains a global extremum in Ω, and Ω is connected, then u is constant
in Ω.

This proof is given by Armitage and Gardiner [2, p. 5].

Proof. The proof is identical in structure regardless of whether the extremum
is a minimum or maximum. Assume that u attains a local maximum at x.
Choose ρ so that B(x, ρ) ⊂ Ω and u(y) ≤ u(x) for all y ∈ B(x, ρ). Because
u(x) = A(u;x, ρ), u must be identically u(x) in B(x, ρ), so (a) is satisfied.

To prove (b), let M = {z : u(z) = supy∈Ω u(y)}, which is non-empty by the
assumption that there is a global maximum in Ω. Since u is continuous, M
is relatively closed in Ω, but (a) implies that for each y ∈ M , there exists a
B(y, ρy) ⊂ M so M is open. Connectedness of Ω gives M = Ω, so (b) is
satisfied.

A proof of the same property for analytic functions can be made with a similar
structure as the proof given for harmonic functions above. Here only a proof
that the absolute value of the function is constant is provided, but this implies
that the function itself is constant, see for example [1, p. 13]. To prove this we
first need the sub-mean-value property of analytic functions.

Lemma 3.15 (Mean-value and sub-mean-value property of analytic functions).
If f : ΩC → C is an analytic function, then

f(z) =
1

2π

∫ 2π

0

f(z + ρeiθ) dθ, (3.6)

and

|f(z)| ≤ 1

2π

∫ 2π

0

|f(z + ρeiθ)| dθ, (3.7)

for all z and ρ > 0 such that B(z, ρ) ⊂ ΩC.

Proof. Let f(x + iy) = u(x, y) + iv(x, y) where u, v : Ω → R are harmonic
according to Proposition 3.13. The mean-value property for harmonic functions
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together with the linearity of integration gives

f(x+ iy) = u(x, y) + iv(x, y)

= M(u; (x, y), ρ) + iM(v; (x, y), ρ)

= M(u+ iv; (x, y), ρ)

=
1

2π

∫ 2π

0

f(x+ iy + ρeiθ) dθ .

We have thus shown (3.6). Then the triangle inequality for integrals immediately
gives (3.7).

See also [1, p. 56] for a proof using only concepts from complex analysis.

Theorem 3.16. Let f : ΩC → C be an analytic function.

(a) If |f | attains a local extremum at z, then |f | is constant in some neigh-
bourhood of z.

(b) If |f | attains a global extremum in ΩC, and ΩC is connected, then |f | is
constant in ΩC.

Proof. Assume that |f | attains a local maximum at z ∈ ΩC. Take ρ so that the
circle Cρ = {z + ρeiθ : 0 ≤ θ < 2π} is in ΩC, and

|f(z + ρeiθ)| ≤ |f(z)| for all 0 ≤ θ < 2π.

Combining this with the sub-mean-value property (3.7), gives that |f | is constant
in the circle Cρ. Repeating this argument for all circles of radius r ∈ (0, ρ) shows
that |f | is constant in the neighbourhood {reiθ : 0 ≤ r < ρ, 0 ≤ θ < 2π}.

Secondly, harmonic or analytic functions cannot be bounded on the entire space
without being constant. This property is called Liouville’s theorem, after Joseph
Liouville, who stated it for analytic functions. Note that if a complex analytic
function is bounded, then its real and imaginary parts are bounded harmonic
functions, so Liouville’s theorem for harmonic functions implies Liouville’s the-
orem for analytic functions. The proof which is used here was given by Edward
Nelson in 1961 [25].

Theorem 3.17 (Liouville’s theorem). If a function is harmonic and bounded
on Rn, then the function is constant.

Proof. Assume that u ∈ H(Rn) and |u| ≤ M for some constant M ∈ R. Then
u(x) = A(u;x, ρ) according to Proposition 3.3. For any two points x and y, the
balls B(x, ρ) and B(y, ρ) can be made to differ by an arbitrarily small proportion
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of their volume, i.e. for any ε > 0 there exists a ρ > 0 such that λ(K)/νnρ
n < ε

where K is the symmetric difference of the balls,

K = (B(x, ρ) \B(y, ρ)) ∪ (B(y, ρ) \B(x, ρ)).

Therefore

|u(x)− u(y)| = |A(u;x, ρ)−A(u; y, ρ)|

=

∣∣∣∣ 1

νnρn

∫
K

u dλ

∣∣∣∣ ≤ 1

νnρn

∫
K

|u| dλ

≤ 1

νnρn

∫
K

M dλ =
1

νnρn
λ(K)M < εM,

and since ε can be made arbitrarily small, u(x) = u(y), so u is constant.

Finally, harmonic functions are guaranteed to be infinitely differentiable, and
therefore real analytic. For this result we use a more general theorem which
states that all continuous and mean-valued functions are infinitely differentiable
(note that H(Ω) ⊂ C2(Ω)).

If a function f : ΩC → C is twice differentiable and fulfils the Cauchy–Riemann
equations, then by Proposition 3.13 its components are harmonic and thus in-
finitely differentiable, so the function itself is infinitely differentiable. The fol-
lowing theorem can therefore be used to establish Theorem 3.12, under the
additional requirement that f be twice differentiable instead of once differen-
tiable.

Theorem 3.18. If u ∈ C(Ω) and u(x) = M(u;x, ρ) for all B(x, ρ) ⋐ Ω, then
u ∈ C∞(Ω).

To prove this, we first investigate the regularity of an auxiliary function η.

Lemma 3.19. The function η : R → R, given by

η(t) =

{
Ce−1/t, for t > 0,

0, for t ≤ 0,
(3.8)

for some constant C ∈ R, is infinitely differentiable.

Proof. Let g1(t) = 1/t2. We see that, for t > 0,

d

dt
Ce−1/t =

1

t2
Ce−1/t = g1(t)Ce

−1/t
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and

d2

dt2
Ce−1/t =

(
d

dt
g1(t)

)
Ce−1/t + g1(t)

(
d

dt
Ce−1/t

)
= g2(t)Ce

−1/t

where g2(t) = d
dtg1(t) + g1(t)g1(t). Iterating this application of the chain rule,

we get
dk

dtk
Ce−1/t = gk(t)Ce

−1/t,

where the function gk is given by the recursive formula

gk(t) =
d

dt
gk−1(t) + gk−1(t)g1(t).

We see that the right derivative of η at zero is given by

lim
t→0+

η(t)− η(0)

t
= lim
s→∞

s(Ce−s − 0) = 0,

and therefore equals the left derivative at zero. If we assume that η(k)(0) = 0,
then the right (k + 1)-derivative at zero is given by

lim
t→0+

η(k)(t)− η(k)(0)

t
= lim
s→∞

Csgk(1/s)

es
= 0,

because sgk(1/s) is smaller than some polynomial for large s. Therefore we can
conclude by induction that η ∈ C∞(R).

Having established the regularity of η, the following proof is given by Armitage
and Gardiner [2, pp. 3–5].

Proof of Theorem 3.18. Assume that u ∈ H(Ω). Let η ∈ C∞(R) be the function
given by (3.8) where C ∈ R is chosen so that

σn

∫ 1

0

tn−1η(1− t2) dt = 1.

For each k ∈ N, define ηk : Rn → R by

ηk(x) = knη(1− k2|x|2).

Then ηk ∈ C∞(Rn) because it is the composition of functions in C∞. If Ω ̸= Rn,
let Ωk = {x ∈ Ω : dist(x, ∂Ω) > 1/k}. Otherwise, let Ωk = Rn. Define
Uk : Ωk → R by

Uk(x) =

∫
Ω

ηk(x− y)u(y) dλ(y)
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for x ∈ Ωk. Then Uk ∈ C∞(Ωk), because ηk and all its derivatives are bounded
on Rn and vanish outside B(0, 1/k). Further, because u(x) = M(u;x, t),

Uk(x) =

∫ 1/k

0

knη(1− k2t2)

∫
∂B(x,t)

u dσ dt

= u(x)σn

∫ 1/k

0

kntn−1η(1− k2t2) dt

= u(x)σn

∫ 1

0

sn−1η(1− s2) ds

= u(x)

in Ωk. Therefore

u ∈ C∞

( ∞⋃
k=1

Ωk

)
= C∞(Ω).

3.4 Super- and Subharmonic Functions
The concepts of super- and subharmonic functions have been in use in potential
theory since the beginning of the study of the Dirichlet problem. In 1890, Henri
Poincaré made use of something similar to these in his method of sweeping out
[29]. This method will be discussed in-depth in Section 4.3.

To justify the definitions of super- and subharmonic functions, we first study the
one-dimensional case. Harmonic functions in one dimension are simply linear
functions f(x) = ax+ b for some constants a and b, as can be easily verified by
integrating

∆f =
∂2f

∂x2
= 0

twice. Superharmonic functions in one dimension are simply the concave func-
tions, and subharmonic functions in one dimension are the convex functions. An
equation like (3.4) for the super- and subharmonic functions does exist, however
due to the fact that super- and subharmonic functions are not necessarily twice
differentiable, or even continuous, we must make use of the weak Laplacian for
this. See Definition 3.25 and the subsequent discussion.

If a function is both concave and convex, it is a linear function. Likewise, if a
function is both super- and subharmonic, it is harmonic.

Definition 3.20. A function ψ : Ω → (−∞,∞] is said to be superharmonic if:

(a) ψ is super-mean-valued, i.e. ψ(x) ≥ M(ψ;x, ρ) whenever B(x, ρ) ⋐ Ω,
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(b) ψ ̸≡ ∞ in any component of Ω,

(c) ψ is lower semicontinuous (Definition 2.12) in Ω.

Definition 3.21. A function φ : Ω → [−∞,∞) is said to be subharmonic if:

(a) φ is sub-mean-valued, i.e. φ(x) ≤ M(φ;x, ρ) whenever B(x, ρ) ⋐ Ω,

(b) φ ̸≡ −∞ in any component of Ω,

(c) φ is upper semicontinuous in Ω.

Note that φ is subharmonic if and only if −φ is superharmonic. Thus, all of
the following results about superharmonic functions have direct analogues for
subharmonic functions.

The definition of subharmonicity using the sub-mean-value property was first
given by Frigyes (sometimes spelled Frédéric) Riesz in 1926 [31, p. 331] as: A
function u : Ω → R, where Ω ⊂ R2, is subharmonic if for every point (x0, y0) ∈ Ω,
there exists some r > 0 such that

u(x0, y0) ≤
1

2π

∫ 2π

0

u(x0 + r cosφ, y0 + r sinφ) dφ = M(u; (x0, y0), r).

Earlier definitions of subharmonicity, such as in [28, p. 43], relied on the function
u being less than or equal to its Poisson modification, MBf , (see Definition 4.12
and cf. (4.7)) for each disc B ⊂ R2. This however results in the same set
of functions being considered subharmonic (to see this, consider Theorem 3.31
together with Proposition 4.9).

As stated above, one of the reasons super- and subharmonic functions are useful
is that they can be used as a characterization for harmonicity.

Proposition 3.22. A function is harmonic in Ω if and only if it is both super-
and subharmonic in Ω.

Proof. Proving that harmonic functions are super- and subharmonic is simply
a matter of noticing that all the conditions in the definition are satisfied.

Conversely, assume that u is super- and subharmonic in Ω. Then, u is upper
semicontinuous and lower semicontinuous, so it is continuous in Ω (as it is never
allowed to attain the values ±∞ by the definition of super- and subharmonicity).
Likewise, u has the spherical mean-value property in Ω because it is both super-
mean-valued and sub-mean-valued. By Theorem 3.18, u ∈ C2(Ω) ⊂ C∞(Ω), so
all conditions in Definition 3.1 are fulfilled.

As one would hope, the definition of superharmonicity can be straightforwardly
related to the Laplacian.
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Proposition 3.23. If ψ ∈ C2(Ω) and ∆ψ ≤ 0 in Ω, then

ψ(x) ≥ M(u;x, ρ)

whenever B(x, ρ) ⋐ Ω, which implies that ψ is superharmonic.

Proof. We require that the function u is twice continuously differentiable for
the Laplacian to be well defined. This immediately gives (b) and (c) in Defini-
tion 3.20.

Following the same steps as in the proof of Theorem 3.4, we apply Green’s
identity and differentiate under the integral sign to get (3.2),∫

B(x,ρ)

∆ψ dλ = σnρ
n−1 d

dρ
M(ψ;x, ρ),

for all balls B(x, ρ) ⋐ Ω. Substituting ∆ψ ≤ 0 gives

0 ≥ d

dρ
M(ψ;x, ρ),

so M(ψ;x, ρ) is a non-increasing function, and as M(ψ;x, 0) = ψ(x) we get

ψ(x) ≥ M(ψ;x, ρ).

Note that unlike harmonic functions, there exist superharmonic functions which
are not C2(Rn), or even C(R), so the Laplacian cannot be used to prove prop-
erties of superharmonic functions in the same extent as for harmonic functions,
without using the weak formulation of the Laplacian, which we introduce briefly
below.

Definition 3.24. For a function f : Rn → R, its support is the set

supp f = {x ∈ Rn : f(x) ̸= 0}.

For the set of smooth functions with compact support, we use the symbol

C∞
c (Rn) = {φ ∈ C∞(Rn) : suppφ is compact}.

We use the notation
⟨u, φ⟩ =

∫
Rn

uφdλ,

where u : Rn → R is locally integrable and φ ∈ C∞
c (Rn). The function φ (which

should not be confused with a subharmonic function, for which we also use the
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Greek letter phi) is called a test function. Let A ⊂ Rn be an open set which
contains the support of φ. Then by use of Theorem 2.27 (b), we get for each
u ∈ C2(R), that

⟨∆u, φ⟩ =
∫
Rn

φ∆u dλ =

∫
A

φ∆u dλ

=

∫
A

u∆φdλ+

∫
∂A

u(∇φ · n̂)− φ(∇u · n̂) dσ

=

∫
A

u∆φdλ = ⟨u,∆φ⟩,

as ∇φ and φ both vanish on ∂A. This justifies defining the Laplacian of a
distribution u ∈ (C∞

c (Rn))′ as follows:

Definition 3.25. For any distribution u ∈ (C∞
c (Rn))′, its Laplacian ∆u is given

by the formula
⟨∆u, φ⟩ = ⟨u,∆φ⟩ for all φ ∈ C∞

c (Rn).

We can now note that each superharmonic function ψ : R → (−∞,∞] has non-
positive Laplacian in a weak sense, i.e. ∆ψD ≤ 0, where ψD ∈ (C∞

c )′ is the
distribution corresponding to the function ψ. Likewise, each subharmonic func-
tion φ : R → [−∞,∞) has non-negative Laplacian in a weak sense, i.e. ∆φD ≥ 0.
However this, along with the weak solutions to the Dirichlet problem, will not
be discussed further in this text.

Superharmonic functions obey the minimum principle, while subharmonic func-
tions obey the maximum principle. This can be compared with with the maxi-
mum principle for harmonic functions, Theorem 3.14.

Theorem 3.26 (The minimum principle). Let ψ : Ω → R be a superharmonic
function.

(a) If ψ attains a local minimum at x, then ψ is constant in some neighbour-
hood of x.

(b) If ψ attains a global minimum in Ω, and Ω is connected, then ψ is constant
in Ω.

Proof. Assume that ψ attains a local minimum at x. Choose ρ so that B(x, ρ) ⋐
Ω and ψ ≥ ψ(x) in B(x, ρ). Because ψ(x) ≤ M(u;x, ρ), the function ψ must
be identically ψ(x) on B(x, ρ), so (a) is satisfied.

Moving on to the second part, we note that since ψ is lower semicontinuous, the
setM = {y : ψ(y) = ψ(x)} is closed, but from (a), M is open. By connectedness,
M = Ω, so (b) is satisfied.
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Proposition 3.27. The space of superharmonic functions is a so-called convex
cone, meaning that if ψ1 and ψ2 are superharmonic functions and c ∈ R, c ≥ 0,
is a non-negative constant, then cψ1 and ψ1 + ψ2 are superharmonic functions.

Note that the use of the term convex in the theorem above has no relation
to the appearance of the functions themselves, as it simply states that the
space is closed under convex combinations, i.e. linear combinations of the form
tψ1 + (1− t)ψ2 for 0 ≤ t ≤ 1. The term cone is used to mean that the space is
closed under scalings of the form tψ for t ≥ 0. Note that e.g. ψ1 − ψ2 need not
be superharmonic.

Proof. The functions cψ1 and ψ1 + ψ2 are clearly lower semicontinuous and
greater than −∞ in Ω, given that ψ1 and ψ2 are. Multiplying the inequality in
Definition 3.20 (a) with c, we get

cψ1(x) ≥ cM(ψ1;x, ρ) = M(cψ1;x, ρ)

whenever B(x, ρ) ⋐ Ω. Likewise,

ψ1(x) + ψ2(x) ≥ M(ψ1;x, ρ) +M(ψ2;x, ρ) = M(ψ1 + ψ2;x, ρ)

whenever B(x, ρ) ⋐ Ω.

The relation between superharmonic functions and concave functions which was
discussed earlier partially holds in higher dimensions, as concave functions are
always superharmonic. However, the converse does not necessarily hold. To
prove this, we first define the notion of convex and concave functions in higher
dimensions.

Definition 3.28. A function f : Ω → R defined in a convex set Ω, is said to be
convex if for any x, y ∈ Ω and t ∈ [0, 1],

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

A function f is said to be concave if −f is convex. This is equivalent to the
condition that

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

for any x, y ∈ Ω and t ∈ [0, 1].

Proposition 3.29. If a function f ∈ C2(Ω) is concave, then it is superhar-
monic.
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Proof. This follows from the fact that a twice differentiable function is concave
if and only if the Hessian matrix,

Hf =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2

...
...

. . .
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n

 ,

is negative definite or negative semidefinite, i.e. all of its eigenvalues are non-
positive [14, Section 7.0]. The Laplacian is equal to the trace of the Hessian,

∆f = tr(Hf) =
∂2f

∂x21
+ · · ·+ ∂2f

∂x2n
,

and since the trace of a matrix is equal to the sum of the eigenvalues of the
matrix, the Laplacian is non-positive. Applying Proposition 3.23 then gives the
desired result.

The following function is an example of a function which is harmonic, and
therefore both super- and subharmonic, but neither concave nor convex.

u : R2 → R,
u(x1, x2) = x21 − x22.

(3.9)

The function is harmonic, as ∆u = 0, but as seen in Figure 3.1 we can easily find
chords which lie both below and above the plot of the function. It is therefore
neither convex nor concave.
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x1

x2

u

Figure 3.1: The function given in (3.9).

We also note the somewhat obvious property that a function which is harmonic
on a set Ω, is also harmonic on all open subsets E of Ω. This property also
holds for super- and subharmonic functions, with a slight caveat to avoid the
case of functions which are identically ∞.

Proposition 3.30. If ψ is superharmonic in Ω and E ⊂ Ω is a domain, then
ψ is either superharmonic or identically ∞ in E.

Proof. If B ⋐ E then B ⋐ Ω, so ψ is super-mean-valued in E. The function
is also trivially lower semicontinuous in E. Therefore, if the function is not
identically ∞ in E, all conditions in Definition 3.20 are fulfilled, so the function
is superharmonic.

The case ψ ≡ ∞ is not actually necessary, because (as we shall see) a super-
harmonic function can only have the value ∞ on a so-called polar set, which
always has measure zero, and thus cannot be a domain. This will be discussed
at the end of Section 5.5, in particular in Proposition 5.19.

There is an alternative definition of superharmonicity: a function is superhar-
monic if it lies above any harmonic function with equal or lower boundary values.
Here we state it as a theorem. Likewise, a function is subharmonic if and only
if it lies below any harmonic function with equal or greater boundary values.
See e.g., [13, p. 62–63] for a proof.

Theorem 3.31. A function ψ : Ω → (−∞,∞] is superharmonic if and only if
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it holds that
ψ ≥ u on ∂K implies ψ ≥ u in K,

for any harmonic u ∈ C(K) where K ⋐ Ω.

Finally, if a function is locally super-mean-valued, then it satisfies the minimum
principle and in fact it is superharmonic.

Definition 3.32. We say that a function u : Ω → [−∞,∞] is locally super-
mean-valued in Ω if u is not identically ∞ in any component of Ω and for any
x ∈ Ω, there exists a ρ > 0 such that B(x, ρ) ⋐ Ω and

u(x) ≥ M(u;x, r) for all 0 < r < ρ.

Theorem 3.33. If u is locally super-mean-valued in Ω, then u satisfies the
minimum principle in Ω.

The above is shown in e.g., [13, pp. 61–62]. Now we can prove the following
theorem, which is essentially the converse of Proposition 3.30.

Theorem 3.34. If u is locally super-mean-valued in Ω, then u is superharmonic
in Ω.

Proof. If suffices to show that u is superharmonic in each open and connected
K ⋐ Ω. Let v be a continuous function inK, harmonic inK and such that u ≥ h
on ∂K. The function u − h is locally super-mean-valued, so by Theorem 3.33,
satisfies the minimum principle in K. Because u−h ≥ 0 on ∂K, u−h ≥ 0 in K
by the minimum principle. Thus u is greater than any harmonic function with
the same boundary values, so by Theorem 3.31, is superharmonic in K.

The above proof is based on [13, p. 65].

By using Theorem 3.34 and its corresponding result for locally sub-mean-valued
functions, we can show the following.

Corollary 3.35. If u is harmonic in every ball B ⋐ Ω, then u is harmonic in
Ω.

Proof. As u is harmonic and therefore mean-valued in each B ⋐ Ω, clearly it
is both locally super-mean-valued and locally sub-mean-valued. Thus u is both
superharmonic and subharmonic, and by Proposition 3.22, harmonic in Ω.

3.5 The Dirichlet Problem
The Dirichlet problem asks the question of whether, given a measurement of the
electrical potential on the surface of an electrical conductor, or mathematically
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speaking, the boundary of a domain, we are able to reconstruct the potential in
the interior or exterior of this conductor.

The Dirichlet problem in its original form was first studied in the early nine-
teenth century by Peter Gustav Lejeune Dirichlet, after whom it is named, as
well by as William Thomson (also known as Lord Kelvin) and Carl Friedrich
Gauss.

Definition 3.36. Given a bounded open set Ω ⊂ Rn, and a continuous func-
tion f : ∂Ω → R on the boundary ∂Ω, solving the (interior) Dirichlet problem
consists of finding a function u : Ω → R which is harmonic in Ω and agrees with
f on the boundary, i.e. limy→x u(y) = f(x) for each x ∈ ∂Ω.

A variant of the problem is called the exterior Dirichlet problem, which is solved
by essentially the same theory.

Definition 3.37. Given a bounded open set Ω ⊂ Rn, a continuous function
f : ∂Ω → R, solving the exterior Dirichlet problem consists of finding a function
u : Ωe → R which is harmonic in the exterior of Ω, agrees with f on the boundary
of Ωe, and vanishes at infinity, i.e. lim|y|→∞ u(y) = 0.

For the question to make sense as stated, we must require that the so-called
boundary condition f is continuous (if it is real-valued).

Theorem 3.38. If u : Ω → R is harmonic, f is real-valued, and

lim
Ω∋y→x

u(y) = f(x) for all x ∈ ∂Ω (3.10)

then f must be continuous.

Proof. If u is harmonic and therefore continuous in Ω, and equation (3.10) holds,
the function given by

g(x) =

{
u(x), for x ∈ Ω,

f(x), for x ∈ ∂Ω,

is continuous on Ω by Lemma 2.15. As f = g|∂Ω is the restriction of a continuous
function, f must be continuous.

It is relatively straightforward to prove the uniqueness of solutions to the Dirich-
let problem using the maximum principle. The following approach is taken from
Helms [13, p. 24].

Theorem 3.39. If both u and v are solutions to the Dirichlet problem for the
continuous boundary condition f and the bounded open set Ω, then u = v.
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Proof. If Ω is not connected, then the following argument can be made for each
connected component of Ω separately. Therefore we assume without loss of
generality that Ω is connected. Let u and v be two solutions and let

w(x) =

{
u(x)− v(x) for x ∈ Ω,

0 for x ∈ ∂Ω.

Then w is harmonic according to Proposition 3.5 and continuous on the closure
Ω since u and v are continuous in Ω and for any x ∈ ∂Ω, we have

lim
Ω∋y→x

w(y) = lim
Ω∋y→x

(u(y)− v(y)) = f(x)− f(x) = 0 = w(x).

Assume without loss of generality that the solutions differ at z ∈ Ω so that
u(z) > v(z). Since w is continuous on the compact set Ω it must attain a
maximum on the set, by Theorem 2.14. By definition, w is zero on the boundary.
Because the maximum must be at least as large as w(z) = u(z) − v(z) > 0, it
is attained in the interior Ω. However, the maximum principle (Theorem 3.14)
leads to a contradiction since w is not constant, and so u and v cannot differ at
any point.

Theorem 3.40. If both u and v are solutions to the exterior Dirichlet problem
for the continuous boundary condition f and the open set Ω, then u = v.

Proof. Assume without loss of generality that Ωe is connected. Take two solu-
tions u, v and define

w(x) =

{
u(x)− v(x) for x ∈ Ωe,

0 for x ∈ ∂Ωe.

As in the previous proof, w ∈ H(Ωe) and w ∈ C(Ωe). Assume that the solutions
differ at z ∈ Ωe so that u(z) > v(z). This gives

sup
x∈Ωe

w(x) ≥ u(z)− v(z) > 0.

Because w(x) → 0 as |x| → ∞, there is some R > 0 such that

w(x) < u(z)− v(z) for all |x| > R.

This implies that the supremum of w over Ωe is equal to the supremum of w
over Ωe ∩ B(0, R). Because the latter set is compact, this supremum must be
attained at some point in the set, and because w ≡ 0 on δΩe∩B(0, R), this point
must lie in the interior Ωe ∩ B(0, R). However, this contradicts the maximum
principle as w is not constant. Thus the assumption that u and v differ at z
must be false and therefore u ≡ v in Ωe.
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A partial counterexample to the above theorem is obtained by taking Ω =
B(0, 1) ⊂ R2 and f = 0. Then both u(x) = 0 and v(x) = ln |x| are harmonic
in Ωe and have f as the limit on the boundary. However, lim|x|→∞ v(x) =
∞, so v is not a solution to the exterior Dirichlet problem in the sense of
Definition 3.37. This example justifies the requirement of a certain limit at
infinity. Note further that it is not enough to require that the limit be finite, as
for example the functions u(x) = |x|−1 and v(x) = 1 are both harmonic outside
Ω = B(0, 1) ⊂ R3 and have boundary values f = 1. Here v fails to be a solution
as in Definition 3.37 because lim|x|→∞ v(x) = 1 ̸= 0.



Chapter 4

Solving the Dirichlet Problem

In this chapter, we will see that several methods exist which are able to assign
a harmonic function to any continuous boundary condition on any set fulfilling
certain conditions.

4.1 Solid Harmonics
Here we consider the Dirichlet problem in two and three dimensions, in order
to provide some concrete justification for the Poisson integration formula which
will be investigated in higher dimensions in the following section. A set of
solutions that fulfil

∆u = 0 in Ω, (4.1)

for the three-dimensional unit ball Ω = B(0, 1) ⊂ R3, can be computed using
separation of variables in a spherical coordinate system. We write the function
as a product of a radial part and an angular part,

u(r, θ, φ) = R(r)Y (θ, φ),

for r ∈ [0, 1), θ ∈ [0, 2π), φ ∈ [0, π). Not all solutions to (4.1) can be written
this way, but as noted in the beginning of Chapter 3, the subset of solutions
which can, form an orthogonal basis for the set of solutions. Computing the
Laplacian in spherical coordinates by the formula [26, p. 425]

∆u =
1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin2 φ

∂2u

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
Måns Alskog, 2022. 45
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gives the equation

0 = ∆u =
1

r2
∂

∂r

(
r2
∂

∂r
R(r)Y (θ, φ)

)
+

1

r2 sin2 φ

∂2

∂2θ
R(r)Y (θ, φ)

+
1

r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ
R(r)Y (θ, φ)

)
.

(4.2)

Dividing by R(r)Y (θ, φ), multiplying by r2 and using the fact that Y (θ, φ) is
constant with respect to r, while R(r) is constant with respect to θ and φ, we
get

0 =
1

R(r)

∂

∂r

(
r2
∂

∂r
R(r)

)
+

1

Y (θ, φ)

(
1

sin2 φ

∂2

∂2θ
Y (θ, φ) +

1

sinφ

∂

∂φ

(
sinφ

∂

∂φ
Y (θ, φ)

))
.

By assuming that the above equation holds for some point, ∆u(r1, θ, φ) = 0 and
another point, ∆u(r2, θ, φ) = 0, we can reason that since the part depending
only on θ and φ has not changed, the part depending on r cannot have changed
either, when r1 is replaced by r2. Because the equation should hold for all r,
we conclude that

1

R(r)

∂

∂r

(
r2
∂

∂r
R(r)

)
= K, (4.3)

or after multiplying by R(r),

∂

∂r

(
r2
∂

∂r
R(r)

)
= KR(r), (4.4)

for some constant K, which also gives

1

sin2 φ

∂2

∂2θ
Y (θ, φ) +

1

sinφ

∂

∂φ

(
sinφ

∂

∂φ
Y (θ, φ)

)
= −KY (θ, φ) (4.5)

for the same K.

The there is no problem with a potential division by zero, because if R(r) = 0
for some r, then (4.2) is equivalent to

0 =
1

r2
∂

∂r

(
r2
∂

∂r
R(r)

)
Y (θ, φ)
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which is true if either Y (θ, φ) = 0, which implies (4.2), or

1

r2
∂

∂r

(
r2
∂

∂r
R(r)

)
= 0,

which is equivalent to (4.4), when R(r) = 0.

How exactly these two resulting equations are solved is out of scope for this text,
but briefly, (4.4) can be written as the second-order Cauchy–Euler equation (a
special type of ordinary differential equation),

r2
∂2

∂r2
R(r) + 2r

∂

∂r
R(r)−KR(r) = 0,

resulting in
R(r) = Crl,

while (4.5) can be solved by applying separation of variables again,

Y (θ, φ) = Θ(θ)Φ(φ),

and making use of the constraint that it be continuous over the sphere. From
this a family of solutions is obtained,

ul,m(r, θ, φ) = CrleimθPl,|m|(cosφ)

where l ∈ N∪{0} and m ∈ Z, |m| ≤ l, are indices which give a convenient name
to each spherical harmonic. These are called the degree and order, respectively.
C ∈ R is an arbitrary constant. The functions Pl,k are called the associated
Legendre polynomials. A table of the first few associated Legendre polynomials
can be found in e.g. [26, p. 297].

In the two-dimensional unit disc Ω = B(0, 1) ⊂ R2, the situation further sim-
plifies. Inserting φ = π/2, the angular part (4.5) simply becomes

∂2

∂θ2
Θ(θ) +KΘ(θ) = 0

and we obtain the family of solutions [32, pp. 165–168]

um = Crme±imθ (4.6)

for m = 0, 1, 2, . . ., where C is an arbitrary constant.

When solving the Dirichlet problem, we are interested in the solutions that
satisfy

u = f on ∂Ω,
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for some given f : ∂Ω → R, which can be written in polar coordinates as

u(1, θ) = f(θ) for θ ∈ [0, 2π).

Assuming for the moment that the boundary condition f has an absolutely
convergent Fourier series expansion (which, by elementary Fourier analysis, is
true almost everywhere for any continuous f),

f(θ) =
∑
m∈Z

Cme
imθ,

where the coefficients are given by

Cm =
1

2π

∫ 2π

0

f(ξ)e−imξ dξ,

we can let
u(r, θ) =

∑
m∈Z

Cmr
|m|eimθ,

so that terms of the above sum are of the form (4.6). We interchange the order
of integration and summation (which can be justified because the series in the
resulting expression is absolutely convergent), to get

u(r, θ) =
∑
m∈Z

1

2π

∫ 2π

0

f(ξ)e−imξ dξ r|m|eimθ

=
1

2π

∫ 2π

0

f(ξ)

(∑
m∈Z

r|m|eim(θ−ξ)

)
dξ .

The value of the series can be found as a pair of simple geometric series,

K(r, θ, ξ) :=
∑
m∈Z

r|m|eim(θ−ξ)

= 1 +

∞∑
m=1

rmeim(θ−ξ) +

∞∑
m=1

rmeim(ξ−θ)

= 1 +
rei(θ−ξ)

1− rei(θ−ξ)
+

rei(ξ−θ)

1− rei(ξ−θ)

=
1− r2

1− 2r cos(θ − ξ) + r2
.
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This function is called the Poisson kernel for the unit disc. In conclusion, given
that f has a convergent Fourier series, the solution to the Dirichlet problem for
the unit disc with boundary condition f is given by the Poisson integral,

u(r, θ) =
1

2π

∫ 2π

0

f(ξ)K(r, θ, ξ) dξ .

As we shall see in the following section, it turns out that this gives a solution
for any continuous boundary condition, and that this can be proved directly,
without the use of Fourier analysis.

4.2 Poisson Integration on a Sphere
If the set Ω in which we wish to solve the Dirichlet problem is simply a ball,
the solution can be found by the so-called Poisson integral, named after Siméon
Denis Poisson. This method was known to Dirichlet as early as 1850 [10]. The
use of Poisson integration to obtain solutions is the basis for two of the more
general methods which we will examine: Poincaré’s method of sweeping out and
Perron’s method of super- and subharmonic functions.

Definition 4.1. The Poisson kernel in B(y, ρ) is defined as

KB(y,ρ)(x, z) =
1

σnρ

ρ2 − |y − x|2

|z − x|n
,

where x ∈ B(y, ρ) and z ∈ ∂B(y, ρ).

Theorem 4.2. For any ball B and continuous boundary condition f : ∂B → R,
the function given by the Poisson integral of f ,

u(x) =

∫
∂B

KB(x, z)f(z) dσ(z)

is the solution to the Dirichlet problem for B and f .

To prove this theorem we first introduce and prove a number of lemmas relating
to the Poisson integral.

Lemma 4.3. If µ is a signed measure for sets in B(∂B(y, ρ)) such that
|µ|(∂B(y, ρ)) <∞, then

u(x) =

∫
∂B(y,ρ)

KB(y,ρ)(x, z) dµ(z) for x ∈ B(y, ρ)

is harmonic in B(y, ρ).
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Proof. By Proposition 2.24, we can write

∆u(x) = ∆x

∫
∂B(y,ρ)

KB(y,ρ)(x, z) dµ(z)

=

∫
∂B(y,ρ)

∆xKB(y,ρ)(x, z) dµ(z) .

For convenience, let the functions v and w be defined as

v(x) = |z − x|−n,
w(x) = ρ2 − |y − x|2.

Then from Proposition 2.26 (d), we have

∆xKB(y,ρ)(x, z) =
1

σnρ
∆(vu) =

1

σnρ

(
v∆w + w∆v + 2∇v∇w

)
,

where computations similar to those in Section 3.2 and in particular the identity
(3.3) give

∇v = n|z − x|−n−2(z − x),

∆v = 2n|z − x|−n−2,

∇w = 2(y − x),

∆w = −2n,

which in turn gives

∆xKB(y,ρ)(x, z) =
1

σnρ

2n

|z − x|n+2

(
ρ2 − |z − x|2 − |y − x|2 + 2(y − x) · (z − x)

)
=

1

σnρ

2n

|z − x|n+2

(
ρ2 − |z − y|2

)
,

and since z ∈ ∂B(y, ρ) the distance is simply |z − y|2 = ρ2, and z ̸= x as
x ∈ B(y, ρ) which does not contain its boundary, so we get

∆xKB(y,ρ)(x, z) = 0.

Corollary 4.4. If f : Ω → [−∞,∞] is integrable on the surface ∂B(y, ρ) ⋐ Ω
then

u(x) =

∫
∂B(y,ρ)

KB(y,ρ)(x, z)f(z) dσ(z)

is harmonic in B(y, ρ).
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Proof. Define the signed measure

µ(S) : B(∂B(y, ρ)) → R

µ(S) =

∫
S

f dσ

and use Lemma 4.3.

Because continuous functions are integrable on any compact set, we can now
introduce an operator PB : C(∂B) → H(B) which produces a harmonic function
in the ball B from a continuous boundary condition on the sphere ∂B.

Definition 4.5. If f is a continuous function on the sphere ∂B, then PBf is
the harmonic function defined in B by

PBf(x) =

∫
∂B

KB(x, z)f(z) dσ(z) .

Lemma 4.6. If c ∈ R is a constant, then PBc = c.

Proof. Let for the ball B = B(y, ρ),

u = PBc =

∫
∂B

1

σnρ

ρ2 − |y − x|2

|z − x|n
dσ(z),

which is harmonic in B ⊃ B \ {y}. By Proposition 3.8, we know that since u
only depends on |y − x|, there exist constants a, b ∈ R so that

u = aΓy + b,

but because u is finite in the whole of B, and Γy(x) → ∞ as x→ y, it must be
the case that a = 0 and b = c.

Lemma 4.7. If f ∈ C(∂B) is integrable relative to surface area and u = PBf ,
then for all points x0 ∈ ∂B,

lim
B∋x→x0

u(x) = f(x0).

The proof below is similar to the one given in [13, pp. 25–26].

Proof. Let B = B(y, ρ). Take some m > f(x0), and choose δ > 0 such that

f(z) ≤ m for all z ∈ B(x0, δ) ∩ ∂B.
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Because of the linearity of integration, we may split the Poisson integral, using
the characteristic function χB(x0,δ), in the following manner:

u = PBf = PB(χB(x0,δ)f) + PB((1− χB(x0,δ))f).

Since f(z) ≤ m for z ∈ B(y, δ) ∩ ∂B,

PB(χB(y,δ)f) ≤ PBm = m,

by Lemma 4.6.

If x ∈ B(x0, δ/2), z ∈ ∂B, and |z − x0| > δ, then |z − x| > δ/2, because

δ < |z − x0| ≤ |z − x|+ |x− x0| < |z − x|+ δ/2.

Therefore

|PB((1− χB(x0,δ))f)(x)| ≤
∫
∂B\B(x0,δ)

1

σnρ

ρ2 − |y − x|2

(δ/2)n
|f(z)| dσ(z)

≤ 1

σnρ

ρ2 − |y − x|2

(δ/2)n

∫
∂B

|f(z)| dσ(z),

and since the numerator ρ2 − |y−x|2 goes to zero as x→ x0 ∈ ∂B(y, ρ), we get

PB((1− χB(x0,δ))f)(x) → 0 as x→ x0 ∈ ∂B(y, ρ).

We have thus established that

lim sup
x→x0

u(x) ≤ lim sup
x→x0

PB(χB(y,δ)f) + lim sup
x→x0

PB((1− χB(x0,δ))f) ≤ m,

and letting m→ f(x0), we get

lim sup
x→x0

u(x) ≤ f(x0).

Applying this to −u we get

lim sup
x→x0

(−u(x)) = lim sup
x→x0

PB(−f) ≤ −f(x0),

so
lim inf
x→x0

u(x) ≥ f(x0),

and thus
f(x0) ≤ lim inf

x→x0

u(x) ≤ lim sup
x→x0

u(x) ≤ f(x0),

so limx→x0
u(x) = f(x0).
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We thus see that the Dirichlet problem on a ball is solved by Poisson integration.

Proof of Theorem 4.2. This now follows directly from Lemma 4.7.

Proposition 4.8. PB is a linear operator from C(∂B) to H(B), meaning that
if f and g are continuous functions on ∂B and c ∈ R is a constant, then
PB(f + g) = PBf + PBg and PB(cf) = cPBf .

Proof. By the linearity of integration we get

PB(f + g) =

∫
∂B

KB(x, z)(f(z) + g(z)) dσ(z)

=

∫
∂B

KB(x, z)f(z) dσ(z)+

∫
∂B

KB(x, z)g(z) dσ(z)

= PBf + PBg

and

PB(cf) =

∫
∂B

KB(x, z)(cf(z)) dσ(z)

= c

∫
∂B

KB(x, z)f(z) dσ(z) = cPBf.

Proposition 4.9. If u ∈ H(Ω), then for each ball B ⋐ Ω

u = PBu in B.

Proof. This follows from the uniqueness of solutions to the Dirichlet problem,
Theorem 3.39, as the functions u|B and PBu are both harmonic in B, and
approach the same boundary values, namely u|∂B .

This gives us an alternative justification for the equivalence of Definition 3.1
and Theorem 3.4: We see that if ∆u = 0 in Ω then

u(x) = PBu(x) =

∫
∂B

KB(x, z)f(z) dσ(z),

for any B ⋐ Ω, and in particular if B = B(0, ρ),

u(0) = PBu(0) =

∫
∂B

1

σnρ

ρ2

|z|n
f(z) dσ(z),

=
1

σρn−1

∫
∂B

f dσ = M(f ; 0, ρ).

(4.7)
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We can get the spherical mean-value property for points x ̸= 0 by translating
the above equations.

Having established a “canonical” representation of any harmonic function in a
fixed ball B(y, ρ), we can prove Harnack’s inequality, which is a statement about
how much a harmonic function can maximally vary from the value of u(y) in
the ball B(y, ρ).

Theorem 4.10 (Harnack’s inequality). For any non-negative harmonic func-
tion u : B(y, ρ) → [0,∞), the following inequalities hold for all x ∈ B(y, ρ),

(ρ− |y − x|)ρn−2

(ρ+ |y − x|)n−1
u(y) ≤ u(x) ≤ (ρ+ |y − x|)ρn−2

(ρ− |y − x|)n−1
u(y)

Proof. We verify by calculation that the Poisson kernel satisfies the inequality

ρ− |y − x|
σnρ(ρ+ |y − x|)n−1

≤ KB(y,ρ)(x, z) =
ρ2 − |y − x|2

σnρ|z − x|n
≤ ρ+ |y − x|
σnρ(ρ− |y − x|)n−1

,

(4.8)
when x ∈ B(y, ρ) and z ∈ ∂B(y, ρ). Because ρ+ |y − x| ≥ |z − x| ≥ ρ− |y − x|
we get

ρ− |y − x|
(ρ+ |y − x|)n−1

≤ (ρ− |y − x|)(ρ+ |y − x|)
|z − x|n

≤ ρ+ |y − x|
(ρ− |y − x|)n−1

,

which is precisely (4.8) after multiplying by σnρ. So, writing

u(x) =

∫
∂B(y,ρ)

KB(y,ρ)(x, z)u(z) dσ(z)

and integrating gives the desired inequality.

An application of this, called Harnack’s principle, states that a sequence of
harmonic functions converges to a harmonic function under certain conditions
[27, p. 615].

Theorem 4.11 (Harnack’s principle). Consider a monotone non-decreasing
sequence u1 ≤ u2 ≤ . . . of functions which are harmonic in the domain Ω. If
there exists a point x ∈ Ω at which the sequence is bounded above,

uk(x) ≤M for all k ∈ N,

for some constant M ∈ R, then the sequence (uk) converges locally uniformly to
a function u, which is harmonic in Ω.

The same holds for a monotone non-increasing sequence u1 ≥ u2 ≥ . . . of
harmonic functions, which is bounded below.

For a proof of this theorem, see for example [2, p. 15] or [13, p. 56].
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4.3 Sweeping Out Method

The sweeping out method, also called the balayage method from the French
word for sweeping, was introduced in 1890 by the French mathematician and
physicist Henri Poincaré (1854–1912) [29, pp. 211–227]. The method involves
approximating the domain Ω, for which the problem is to be solved, by a col-
lection of balls. By iterating a transformation of the function, which is called
sweeping the function, a function which is harmonic on the domain may be
obtained by starting with a non-harmonic function which fulfils the boundary
condition.

The sweeping of a function is given by an operator MB : C(Ω) → C(Ω), which is
defined by use of the Poisson integral in the following fashion:

Definition 4.12. If f ∈ C(Ω), let for any ball B ⋐ Ω the function MBf ∈ C(Ω)
be defined by

MBf(x) =

{
f(x), if x ∈ Ω \B,
PBf(x), if x ∈ B.

The function MBf is called the Poisson modification of f .

The continuity of MBf in Ω \B is obvious, and because harmonic functions are
continuous, we have continuity in B. By Lemma 4.7 we have continuity on the
boundary of B, so MBf is indeed continuous in Ω. By Proposition 4.8 we know
that MB is a linear operator from C(Ω) to C(Ω). In a sense, this operator makes
a function “more harmonic”, because the resulting function is guaranteed to be
harmonic in the ball B.

If we can iterate this process over a set of balls whose union covers the entirety
of Ω, the function resulting from this iteration can reasonably be expected to
be harmonic. Aiming to prove this, we start by considering the effect of MB

on superharmonic functions. The proof of the following lemma is adapted from
the proof of [3, Theorem 11.5].

Lemma 4.13. If ψ is a superharmonic continuous function in Ω, then for any
ball B ⋐ Ω, the function MBψ is superharmonic, continuous, and MBψ ≤ ψ in
Ω.

Proof. We first prove that MBψ ≤ ψ in Ω. Because the functions ψ and MBψ
are identical in Ω \ B, we only need to consider B. The function −MBψ is
harmonic in B, so it is also necessarily superharmonic in B. Therefore the sum
ψ + (−MBψ) is superharmonic, by Proposition 3.27. It is also continuous, as
it is the sum of two continuous functions. Because ψ −MBψ = 0 on ∂B, the
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minimum principle (Theorem 3.26) implies that 0 ≤ ψ −MBψ, or equivalently

MBψ(x) ≤ ψ(x) for all x ∈ Ω. (4.9)

We proceed by proving that MBψ is superharmonic in Ω. It is clear that MBψ
is lower semicontinuous and MBψ ̸≡ ∞ in (all components of) Ω, i.e. the latter
two conditions of Definition 3.20 are fulfilled. Therefore we only need to show
that

MBψ(x) ≥ M(MBψ;x, ρ) (4.10)

whenever x ∈ Ω and ρ is such that B(x, ρ) ⋐ Ω. See Figure 4.1 for a sketch of
this, where D = B(x, ρ).

We start by examining the case x ∈ Ω \ B. By the inequality (4.9), together
with the fact that ψ is superharmonic, we have

MBψ(x) = ψ(x) ≥ M(ψ;x, ρ) ≥ M(MBψ;x, ρ).

For the case x ∈ B, MB is harmonic in B, so

MBψ(x) = M(MBψ;x, r) for all r such that B(x, r) ⋐ B.

Thus, u is locally super-mean-valued in the entire set Ω, and by Theorem 3.34,
is superharmonic in Ω.

D

B

Ω

Figure 4.1: Sketch of the sets Ω, D = B(x, ρ) and B which are used in the proof
of Lemma 4.13.

The effect on subharmonic functions is that MBφ continues to be subharmonic
and becomes greater than φ. This is proved in an analogous manner. Using an
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infinite sequence of such sweepings, a solution to the Dirichlet problem can be
obtained, as seen in the following theorem.

Poincaré assumes that Ω ⊂ R3 and that
∫
∂Ω
f = 1, and lets the initial function

u0 be the potential caused by a distribution of charge of 1/(4πR) over the surface
of a large sphere ∂B(0, R) such that Ω ⋐ B(0, R). This function will be given
by

u0(x) =

{
1, for x ∈ B(0, R),
R

|x−y| , for x ∈ Rn \B(0, R).

In particular we have 0 < u0 ≤ 1, and u0(x) → 0 as |x| → ∞.

Theorem 4.14. Let Ω be a domain for which there exists a sequence of balls
(Bk)

∞
k=1 such that each ball is contained in the set, Bk ⊂ Ω, the balls cover the

interior of the set,
⋃∞
k=1Bk = Ω, and each ball Bk occurs infinitely many times

in the sequence, e.g.

(Bk)
∞
k=1 = (D1, D2, D1, D2, D3, D1, D2, D3, D4, D1, . . . ),

where all of Dk are balls.

Let u0 : Ω → R, u0 ∈ C2(Ω), be a bounded function which fulfils the following:

(a) limΩ∋y→x u0(y) = f(x) for all x ∈ ∂Ω,

(b) ∆u0 < 0 in Ω.

Then the limit of the sequence of functions given by the recursive formula

uk =MBk
uk−1 (4.11)

is harmonic on each component of Ω, and solves the interior Dirichlet problem
for the set Ω and f .

Proof (sketch). By Lemma 4.13, we know that if uk−1 is superharmonic, then
uk is superharmonic and uk ≤ uk−1. Because the function u0 is superharmonic,
we can use induction to show that (uk)

∞
k=0 is a decreasing sequence of super-

harmonic functions.

Consider for some fixed k0 ∈ N the subsequence (Bkj )
∞
j=1 which is such that

Bk0 = Bkj for all j ∈ N. Because each ukj is harmonic in Bk0 , Harnack’s
principle (Theorem 4.11) implies that the sequence (ukj )∞j=1 converges uniformly
to the harmonic function u, if it is bounded below at any point x ∈ Bk0 . Hence
the limit must either be u ≡ −∞ or harmonic on Bk0 , and this argument can
be repeated for each k0 ∈ N.
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Given that u0 is bounded, i.e. that there exists an M such that |u0| ≤ M , we
can show that |uk| ≤ M for all k. This can be done by induction on the facts
that in Ω \ Bk, uk = uk−1 implies |uk| = |uk−1|, and in Bk, uk−1 is harmonic,
which implies |uk| ≤ supΩ |uk−1| ≤ M by the maximum principle. Thus the
limit u is harmonic on each component of Ω.

One can show that the boundary values are unchanged by this process, that is

lim
Ω∋y→x

u(y) = lim
Ω∋y→x

u0(y) = f(x) for all x ∈ ∂Ω

meaning that u = limk→∞ uk is the solution to the Dirichlet problem for the set
Ω and boundary condition f .

4.4 Perron’s Method
The Perron method, also called the Perron–Wiener–Brelot method, was in-
dependently developed in 1923 by the German mathematicians Oskar Perron
(1880–1975) and Robert Remak (1888–1942), see [30, footnote 1, on p. 126].
The method involves over- and underestimating the solution using the so-called
upper and lower classes, consisting of super- and subharmonic functions, respec-
tively [28]. Perron and Remak provided proofs in R2, while Wiener worked in
R3 [39, p. 22] and Brelot in Rn, n ≥ 2 [6, p. 134]

In the definition of upper and lower functions Perron makes use of the sweeping
operator, MB as defined in Definition 4.12.

Definition 4.15. For a given domain Ω and a bounded function f : ∂Ω → R
an upper function ψ : Ω → R is a continuous function such that

(a) lim infy→x ψ(y) ≥ f(x) for every x ∈ ∂Ω,

(b) ψ ≥MBψ in Ω, for each ball B ⋐ Ω.

The set of such functions is called the upper class and is written ΨfΩ.

Definition 4.16. A lower function is a continuous function φ : Ω → R such
that

(a) lim supy→x φ(y) ≤ f(x) for every x ∈ ∂Ω,

(b) φ ≤MBφ in Ω, for each ball B ⋐ Ω.

The set of such functions is called the lower class and is written ΦfΩ.

Note that all constant functions g ≡ c where c ≥ sup∂Ω f are members of the
upper class ΨfΩ. Likewise, g ∈ ΦfΩ for all g ≡ c such that c ≤ inf∂Ω f .
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To justify the usefulness of these definitions, we can note that if u is harmonic
in Ω and takes the boundary values given by f , i.e. limΩ∋y→x u(y) = f(x) for
all x ∈ ∂Ω, then

φ ≤ u ≤ ψ in Ω,

for all φ ∈ ΦfΩ and all ψ ∈ ΨfΩ. In this case, we also have u ∈ ΦfΩ ∩ΨfΩ.

We also see that the upper class consists of superharmonic functions, and that
the lower class consists of subharmonic functions.

Proposition 4.17. All upper functions ψ ∈ ΨfΩ are superharmonic.

Proof. It is clear that the function ψ is upper semicontinuous and not identically
∞. To prove that ψ is super-mean-valued, take any ball B = B(x, ρ) ⋐ Ω. For
the centre of the ball we have

ψ(y) ≥MBψ(y) = PBψ(y) =

∫
B

1

σnρ

ρ2

|z − y|n
ψ(z) dσ(z) = M(ψ; y, ρ).

Definition 4.18. The upper Perron solution and the lower Perron solution are
defined as HΩf = inf ΨfΩ and HΩf = supΦfΩ, respectively.

Theorem 4.19. For any bounded Ω and continuous boundary values f : ∂Ω →
R, the lower Perron solution is smaller than the upper Perron solution,

HΩf ≤ HΩf.

Proof. Suppose that ψ ∈ ΨfΩ and φ ∈ ΦfΩ. Then for any x ∈ ∂Ω, we have

lim sup
y→x

(φ(y)− ψ(y)) ≤ lim sup
y→x

φ(y)− lim sup
y→x

ψ(y) ≤ f(x)− f(x) = 0,

where we require that y ∈ Ω in each limit. So φ− ψ is a subharmonic function
which is less than or equal to zero near the boundary, and the maximum principle
then gives

φ ≤ ψ in Ω.

The definitions of the upper and lower classes have changed a number of times.
For example, Perron and Remak originally only considered continuous, and
hence bounded, boundary functions. Wiener explored discontinuous boundary
functions; for example, in 1923 he proposed a method of solution for these [36].
Later Marcel Brelot examined the case of unbounded boundary functions. In his
1939 paper Brelot gave a new definition of upper functions (and a corresponding
definition of lower functions), adding the condition that the functions in the
upper class be bounded from below [6, p. 146], while relaxing the condition that
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f be bounded. The latter condition implies the former: if f is bounded, then
there exists an M > 0 such that |f | ≤ M on ∂Ω, and then by Definition 4.15
(a), we know that

lim inf
y→x

ψ(y) ≥ f(x) ≥ −M for x ∈ ∂Ω,

that is, any upper function ψ is bounded from below, by the minimum princi-
ple for superharmonic functions. This property of upper functions is desirable
because it is required for Theorem 4.19 to hold, that is, HΩf ≤ HΩf .

We could for example consider Ω = B(0, 1) \ 0 and

f(x) =

{
∞, x = 0,

0, x ∈ ∂B(0, 1).

For this boundary condition, ua = −a ln |x| is a member of both the lower and
upper class for any a > 0, as it is a harmonic function such that

lim
Ω∋y→x

ua(x) = f(x) for x ∈ ∂Ω.

This gives the lower Perron solution

HΩf = supΦfΩ ≥ sup
a>0

ua ≡ ∞,

and upper Perron solution

HΩf = inf ΨfΩ ≤ inf
a>0

ua ≡ 0,

so for this example it would not hold that the upper solution is greater than or
equal to the lower solution, without Brelot’s condition.

Another example is that Perron [28, p. 43] and Wiener [39, p. 23] required that
the upper and lower functions be continuous, while Brelot [6, p. 145] consid-
ered ΦfΩ to consist of all “general subharmonic” functions φ on Ω such that
lim supΩ∋y→x φ(y) ≤ f(x), hence including also discontinuous superharmonic
functions in the lower functions.

We will however restrict ourselves to bounded boundary conditions f and can
therefore use Definitions 4.15 and 4.16.

We now wish to prove that the upper and lower Perron solutions are harmonic.
To do this we first note that the upper class ΨfΩ is closed under taking the
pointwise minimum, and closed under the Poisson modification operator MB for
balls B ⋐ Ω. The lower class ΦfΩ is likewise closed under taking the pointwise
maximum, and the operator MB .
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Lemma 4.20. If ψ1, . . . , ψm are upper functions for Ω and f , then
ψ = min{ψ1, . . . , ψm} is an upper function for Ω and f .

Proof. The pointwise minimum of a finite number of continuous functions is con-
tinuous. Since for any x, there is a k such that ψ(x) = ψk(x) ≥ lim supy→x f(y),
we know that ψ(x) ≥ lim supy→x f(y).

For any k = 1, . . . ,m we have ψ ≤ ψk, so

MBψ ≤MBψk ≤ ψk for any ball B ⋐ Ω.

Thus ψ is an upper function.

Theorem 4.21. For any bounded set Ω and continuous bounded boundary con-
dition f : ∂Ω → R, Hf and Hf are harmonic in Ω.

Perron [28] made use of the Lebesgue integral to prove Theorem 4.21, while
Remak [30] provided a proof using only the Riemann integral.

Proof. If ΨfΩ = ∅ then Hf = ∞, so we assume that ΨfΩ ̸= ∅. Take a ball B
such that B ⋐ Ω. As f is bounded, there exists an M > 0 such that |f | ≤ M

on ∂Ω. Let ψ ∈ ΨfΩ be arbitrary and note that

v = min{ψ,M}

is a minimum of two functions in ΨfΩ and therefore a member of ΨfΩ.

Let ψ′ = MBv, so that ψ′ = PBv in B and ψ′ ≤ v ≤ ψ in Ω, by Lemma 4.13.
The function ψ′ is also a member of ΨfΩ as it is superharmonic and has the same
boundary values as v. Thus

Hf = inf
ψ∈Ψf

Ω

ψ = inf
ψ∈Ψf

Ω

ψ′,

and because all ψ′ are harmonic and therefore continuous in B, Hf is upper
semicontinuous, by Proposition 2.13.

Now choose some dense countable subset E = {xj}∞j=1 of Ω, for example E =

Ω ∩ Qn. Because Hf is the pointwise infimum of (ψ′)ψ∈Ψf
Ω
, we can find a

sequence (ψj,k)
∞
k=1 ⊂ ΨfΩ of the type of functions of the form ψ′ above, such

that ψj,k(xj) decreases to Hf(xj) as k → ∞. Consider the sequence

ψi = min
j≤i,k≤i

ψj,k.

for which it holds that ψi ∈ ΨfΩ and

ψi(xj) ≤ ψj,i(xj) → Hf(xj) as i→ ∞ for each j.
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Thus ψi(xk) decreases to Hf(xk) as i→ ∞, for each k.

Let u(x) = limi→∞ ψi(x) for x ∈ Ω, where the limit exists as the sequence is
pointwise decreasing. As |f | ≤ M on ∂Ω, each ψ ∈ ΨfΩ satisfies ψ ≥ −M in Ω.
In B, u is the pointwise limit of a decreasing sequence of harmonic functions,
all of which are greater than −M , so by Theorem 4.11, u is harmonic in B.

Clearly, u = Hf on E. As each ψi is an upper function for f in Ω, we also see
that Hf ≤ u in Ω. As u is continuous in B and Hf is upper semicontinuous in
B, they are equal in B. This can be seen by taking some x ∈ B \ E, for which
there exists a sequence (xi)

∞
i=1 which converges to x. Then

Hf(x) ≥ lim
i→∞

Hf(xi) = lim
i→∞

u(xi) = u(x) ≥ Hf(x)

by upper semicontinuity and continuity.

Therefore Hf is harmonic in any arbitrary ball B ⋐ Ω, and as harmonicity is
a local property (see Corollary 3.35), Hf is harmonic in Ω. Likewise, we can
show that Hf is harmonic in Ω.

Definition 4.22. If for some function f and bounded open set Ω, the upper
Perron solution is equal to the lower Perron solution, and real everywhere, we
say that f is a resolutive boundary function. In this case the Dirichlet solution
is defined as

HΩf = HΩf = HΩf.

Note that one of the properties of the Perron solutions is that if they are not
identically ±∞ in a connected component of Ω, then they are real in that
component. Thus the requirement that HΩf is real everywhere can be relaxed
to the requirement that it is not identically +∞ in any component of Ω, and
likewise for HΩf .

The operator HΩ defined above is a linear operator from the vector space of
resolutive boundary functions in Ω to H(Ω). This makes the Perron method
very useful because solutions to complicated boundary functions can be obtained
by decomposing the problem into smaller problems and using the linearity to
combine the partial solutions. Linear operators also have other useful properties
in functional analysis, which are not discussed here.

Theorem 4.23. If f and g are resolutive boundary functions on ∂Ω and c ∈ R
is a constant, then:

(a) cf is resolutive, with HΩ(cf) = cHΩf .

(b) f + g is resolutive, with HΩ(f + g) = HΩf +HΩg.
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The preceding theorem follows from a stronger variant given below.

Theorem 4.24. If f and g are any real-valued boundary functions on ∂Ω, then:

(a) If c ≥ 0 then HΩ(cf) = cHΩf and HΩ(cf) = cHΩf .

(b) HΩ(−f) = −HΩf .

(c) HΩ(f + g) ≤ HΩf +HΩg and HΩ(f + g) ≥ HΩf +HΩg

For a proof of this, see [13, p. 79].

4.5 Perron Solutions for the Exterior Dirichlet
Problem

Like the interior Dirichlet problem, the exterior Dirichlet problem is not always
solvable for a given continuous boundary function. For example, with Ω =
B(0, 1) and

f(x) = 1 for x ∈ ∂B(0, 1),

the Perron method can be used to obtain a solution. This is because the Perron
method works in the unbounded set Ωe as well as in the bounded Ω, which is
proved in e.g. [2, Section 6.2]. However this Perron solution, which is HΩf ≡ 1,
does not vanish at infinity. The point at infinity is thus an irregular point for
this Ωe, see Definition 5.2. Zaremba’s example of an irregular point for the
interior Dirichlet problem, Example 5.1, has some similarity to this example.

To see that HΩf ≡ 1, we can note that 1 ∈ ΨfΩ, as 1 is a superharmonic
function with boundary values greater than or equal to f on ∂Ω, and with a
limit at infinity which is greater than zero. The requirement that upper and
lower functions lie above or below (respectively) the boundary value at infinity
is important to guarantee that Hf ≤ Hf (cf. Theorem 4.19). Further, ΦfΩ
contains all functions ua given by

ua(x) = 1− aΓ0(x) = 1− a ln |x| for any a > 0,

because each of these functions is harmonic, equal to f on ∂Ω, and lim|x|→∞ ua(x) =
−∞ ≤ 0. Thus, for all x ∈ Ωe,

1 = sup
a>0

ua(x) = Hf(x) ≤ Hf(x) ≤ 1.

One may show that ∞ is an irregular point for Ωe given any domain Ω in two
dimensional space, but there exist unbounded sets in R2 which have ∞ as a
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regular point on the boundary, e.g. the half-plane {(x, y) ∈ R2 : x > 0} [2, p.
189, Example 6.7.4(ii)]. In Rn for n ≥ 3, it can be shown that the point at
infinity is a regular point when considered as a point on the boundary of any
unbounded open set [2, p. 188, Theorem 6.7.1]. In particular it is a regular
point on the boundary of the exterior Ωe of any bounded open Ω ⊂ Rn.

4.6 Harmonic Functions as Energy Minimizers
Harmonic functions can be seen as minimizers of the Dirichlet energy, a repre-
sentation of the total variation of a function. This can be compared with the
electrostatic energy of a field E with potential v,

1

2

∫
ε0E · E dλ =

ε0
2

∫
∇v · ∇v dλ .

For simplicity we discard the constant ε0
2 , where ε0 is the electric constant.

Definition 4.25. For a function v ∈ C2(Ω) the Dirichlet energy is defined as

E(v) =

∫
Ω

|∇v|2 dλ .

Note that because |∇v|2 ≥ 0 the energy is always non-negative.

Theorem 4.26. If u is the solution to the Dirichlet problem with boundary
condition f in Ω, then

E(u) = inf
v
E(v), (4.12)

where the infimum is taken over all functions v ∈ C2(Ω) that have boundary
values v|∂Ω = f .

This can be used to find solutions in certain cases, by use of the following
converse, which was named Dirichlet’s principle by Bernhard Riemann in 1857
[24, p. 33]. In 1856 and 1857 Dirichlet gave lectures where he showed the result
[24, p. 30]. William Thomson and Carl Friedrich Gauss also investigated the
problem around the same time.

Theorem 4.27 (Dirichlet’s principle). Assume that u is an energy minimizer
for a given boundary condition f and domain Ω, i.e., u|∂Ω = f and (4.12) holds.
Then u is harmonic, so it is the solution to the Dirichlet problem for f and Ω.

Because the energy E(v) is bounded from below (by 0), the greatest lower bound
infv E(v) is guaranteed to exist. Riemann assumed that there always exists a
v such that the infimum is attained, but Karl Weierstrass showed in 1870 [24,
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p. 36] that there exists a functional which does not attain its minimum, casting
doubt on the validity of this assumption, but not disproving Dirichlet’s principle
directly, as the functional being minimized was different, denoted J below.

The example is as follows: Let Ω = (−1, 1), f(−1) = a and f(1) = b for some
real constants such that a < b. Define the functional

J(v) =

∫ 1

−1

(
t
dv

dt

)2

dt,

for any v ∈ C(Ω) ∩ C1(Ω \ A) where A has measure zero (and may depend on
v). Consider for example the function

v(t) =


a, when − 1 < t < −c,
a+b
2 + t b−a2c , when − c ≤ t ≤ c,

b, when c < t < 1,

for some c ∈ (0, 1), which has derivative

v′(t) =


0, when − 1 < t < −c,
b−a
2c , when − c < t < c,

0, when c < t < 1.

Note that the derivative is undefined at the points t = ±c, however this is a set
of measure zero, so it does not affect the value of the integral. Applying the
functional J we obtain the value

J(v) =

∫ c

−c

(
t
b− a

2c

)2

dt = c
(b− a)2

6
,

i.e. infv J(v) = 0 by letting c→ 0. However, one can also show that there is no
v ∈ C1(Ω) such that J(v) = 0, as this would imply that dv

dt ≡ 0 on Ω.

As we will see in the following chapter, there exist sets for which the Dirichlet
problem has no solution, e.g. Zaremba’s example. Therefore it is not possible
for the Dirichlet principle to hold in these cases. However, in 1901 it was
shown by Hilbert [15], that in some cases the Dirichlet principle remains valid,
using a property which is in modern functional analysis known as the sequential
compactness of the class of allowed functions, which is also expanded to include
functions other than only C2(Ω). This will not be discussed in greater detail
here, but can be found in e.g. [24, pp. 55–60].





Chapter 5

Characterizations of Regular
Points

Since the methods discussed in the previous chapter are guaranteed to give
harmonic functions on the set in question, the remaining difficulty in solving the
Dirichlet problem lies mainly in finding out whether a candidate for a solution
agrees with the boundary condition, or can possibly be made to agree with the
boundary function.

Here we shall only examine the question when the boundary condition is contin-
uous, however a number of characterizations for the solvability of the Dirichlet
problem with discontinuous boundary conditions have been formulated, see e.g.
[36].

A simple example of a situation in which it is impossible to obtain a solution
which agrees with the boundary condition was given in 1911 by the Polish
mathematician and engineer Stanisław Zaremba (1863–1942) [40, pp. 308–310].

Example 5.1. Consider the domain

Ω = B(0, 1) \ {0} ⊂ R2 (5.1)

and the boundary function

f(x) =

{
0, if x ∈ ∂B(0, 1),

1, if x = 0.
(5.2)
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68 Chapter 5. Characterizations of Regular Points

We examine the family of functions ua = min{−a ln |x|, 1} for a > 0. The
functions −a ln |x| = −aΓ0(x) and 1 are clearly harmonic, and because the
minimum of two superharmonic functions is superharmonic ([13, p. 68, Theorem
2.4.5], cf. Lemma 4.20), the functions ua are superharmonic functions with the
correct boundary values, i.e. they lie in the set ΨfΩ. Thus the upper Perron
solution must be

HΩf ≤ inf
a>0

ua ≡ 0

on Ω, but then as f must be continuous, it cannot “reach” the boundary value
f(0) = 1, so the Dirichlet problem for Ω and f cannot have a solution.

We can also note that the lower Perron solution is

HΩf ≥ 0,

as the zero function is a member of ΦfΩ, so therefore by Theorem 4.19,

HΩf = HΩf = HΩf ≡ 0.

In Zaremba’s original example, the boundary function is given as an arbitrary
nonzero constant on the circle, and zero at the origin, but the principle holds
for any constants. The proof of the nonexistence of a solution is also different
to that presented here, as Perron’s method had not been discovered at the time.
See also [38, pp. 24–45] for a concise proof similar to Zaremba’s.

Points such as x = 0 in this example are called irregular points.

Definition 5.2. For a given bounded set Ω, a regular point is a point x ∈ ∂Ω
such that for every continuous boundary condition f : ∂Ω → R, the Perron
solution HΩf of the Dirichlet problem attains its boundary value at x, i.e.

lim
Ω∋y→x

HΩf(y) = f(x).

An irregular point is a point x ∈ ∂Ω which is not regular.

5.1 The Lebesgue Spine
In 1912, Henri Lebesgue gave another example of a domain for which the Dirich-
let problem is not solvable for continuous boundary conditions [20]. This differs
from Zaremba’s example in that the boundary of Lebesgue’s domain contains
no isolated points. Lebesgue’s example can in fact be modified slightly to give
a domain which is 2-connected, a concept which will be discussed later.

The domain was described by Lebesgue as follows:
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Example 5.3. First consider a line segment

L = {(x1, 0, 0) ∈ R3 : 0 ≤ x1 ≤ 1}

with electrical density of charge q(x1, 0, 0) = x1 at each point of the segment.
Let v(x) denote the potential at x which is generated by the conductor L.
The potential can be computed by considering the formula for the electrostatic
potential around a point charge at (l, 0, 0),

vl(x1, x2, x3) =
q(l, 0, 0)

|(x1, x2, x3)− (l, 0, 0)|
=

l√
(l − x1)2 + x22 + x23

and applying the superposition principle to get the total potential from the
integral

v(x1, x2, x3) =

∫ 1

0

vl(x1, x2, x3) dl

=

∫ 1−x1

−x1

t+ x1√
t2 + x22 + x23

dt

= ln r1 − ln r0 + x1 ln(r1 + 1− x1)− x1 ln(r0 − x1),

where r1 =
√
(1− x1)2 + x22 + x23 and r0 =

√
x21 + x22 + x23 = |x|, for (x1, x2, x3) ∈

R3 \ L.

The equipotential surfaces v = α are then surfaces of revolution around the
segment L, and for α ≥ 1 these surfaces come arbitrarily close to the origin,
i.e., dist(0, {x ∈ R3 : v(x) = α}) = 0. The potential at the origin, v(0), is not
defined and the limit of v(x) as x → 0 only exists if the origin is approached
through certain paths (namely paths contained in one of these equipotential
surfaces).

Let the domain Ω be the set delimited by the two equipotential surfaces v = 2
and v = 1/2. We try to solve the Dirichlet problem in Ω with the boundary
condition

f(x) =

{
v(x), x ∈ ∂Ω \ {0},
2, x = 0,

which is continuous on ∂Ω because we take f(0) = 2. Because v is the Newtonian
potential, see Section 3.2, it is harmonic in Ω, so the solution to the Dirichlet
problem would be given by v.

Figure 5.1 shows the cross-sections of the equipotential surfaces v = 1/2, v = 2
and v = 3. Surfaces with higher potential are closer to L, as expected. In
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the figure we can graphically see that the irregularity arises due to the narrow
thorn-like shape with its endpoint at 0. If we approach the endpoint by a curve
Cα in the surface v = α we get the limit

lim
y→0
y∈Cα

v(y) = α.

Because the limit depends on which curve is taken, limΩ∋y→0 v(y) does not exist.
Thus the Dirichlet problem is not solvable for these Ω and f .

The set which Lebesgue defined is simply connected, meaning that every closed
curve can be shrunk to a point by a continuous mapping, without leaving the
set. This forbids the set from having any holes, in the topological sense of the
word. This concept can be generalized to n-connectedness. Informally, a set is
n-connected if every surface of dimension 1 ≤ k ≤ n in the set can be shrunk to
a point by a continuous mapping, without leaving the set. This is equivalent to
the condition that every surface of dimension k can be continuously transformed
to any other surface of dimension k in the set. Note that 1-connectedness is
the same as simple connectedness and 0-connectedness is the same as path-
connectedness, as the existence of a path between two points is equivalent to
the existence of a continuous transformation between the points. Lebesgue notes
that the example which he gave can be modified slightly to obtain at set which
is 2-connected, although he uses the term simply connected for this property.
This can be done by removing points around the positive x1 axis, so that the
inner and outer boundary join up to form a single boundary, as in (5.3).

The family of shapes with this behaviour are called Lebesgue spines. In modern
usage, a domain in Rn, n ≥ 3 which contains a Lebesgue spine is often given as

R3 \
{
(x1, x2, x3) ∈ R3 : x3 > 0, x21 + x22 ≤ e−1/x3

}
. (5.3)

For example, by Armitage and Gardiner [2, p. 187]. A plot of the cross-section
of this curve in R3 can be found in Figure 5.2. For a proof of the irregularity of
the point 0 for this set, see [2, p. 186, Theorem 6.6.16].
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Figure 5.1: Lebesgue’s original example. On red curve v = 1/2, on the green
v = 2, and on the blue v = 3.

Figure 5.2: A modern example of a Lebesgue spine.
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5.2 Poincaré’s Criterion
Many different criteria for the regularity of boundary points have been developed
during the research of the Dirichlet problem.

One of the oldest criteria for the regularity of a point was given by Henri Poincaré
in 1890 [29, pp. 226–227]. Poincaré showed that a harmonic function with the
correct boundary value at a point x ∈ ∂Ω could be produced by his sweeping-
out method, as long as the point x could be “touched” by a sphere lying outside
of Ω. This was shown in R3.

Theorem 5.4 (Poincaré’s criterion). If for a point x on the boundary of Ω there
exists a ball B(y, ρ) ⊂ Ωc such that x ∈ ∂B(y, ρ), then the point x is regular.

We will not prove this theorem here.

5.3 Zaremba’s Criterion
In 1909 Stanisław Zaremba gave a slightly improved version of Poincaré’s con-
dition by observing that the ball could be replaced with a cone [40, p. 311].
Zaremba proved this in R2.

Definition 5.5. A cone with vertex 0 is a set

C = {(x1, . . . , xn) : |(x1, . . . , xn−1)| ≤ xn},

or some linear transformation of this set. A cone with vertex y is a set

D = C + y = {(x1 + y1, . . . , x1 + yn) : x ∈ C},

where C is a cone with vertex 0.

The condition, which is called the cone condition, is stated as follows:

Theorem 5.6 (Zaremba’s cone condition). If for a given point x ∈ ∂Ω, where
Ω is open and bounded, there exists a closed conical surface C ⊂ Ωc, such that
the vertex of C is x, then the point x is regular.

As regularity is a local property (see Proposition 5.10), the theorem may be
stated in a slightly more general way. In essence, the cone can be cut off at an
arbitrary radius ρ to prevent it from intersecting other parts of the set Ω. See
Figure 5.3 for an illustration of this.

Theorem 5.7. If for a given point x there exists a closed conical surface C
with vertex in x, and a radius ρ > 0, such that C ∩B(x, ρ) ⊂ Ωc, then the point
x is regular.
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Ω

ρ

C

x

Figure 5.3: A simple sketch of Zaremba’s cone condition, Theorem 5.7

5.4 Barrier Condition
A regular point can be characterized by the existence of a special function, called
a barrier. Barriers, in the form of barrier sets were studied by Lebesgue [19, p.
335] and Kellogg [16, pp. 528–529], among others. The following definition of a
barrier function was first given by Bouligand [8, p. 88–90].

Definition 5.8. Consider a point x ∈ ∂Ω. A superharmonic function

v : B(x, ρ) ∩ Ω → R,

defined in some neighbourhood B(x, ρ), such that

v(y) > 0 for all y ∈ B(x, ρ) ∩ Ω

and
v(y) → 0 as y → x, y ∈ B(x, ρ) ∩ Ω,

is called a barrier for x.

Theorem 5.9. A point y ∈ ∂Ω is regular if and only if there exists a barrier
for y.

A characterization of regular points similar to this, was also given by Lebesgue
in [21, p. 353]. Because the barrier function is defined only on a neighbourhood
of the point in question, we see directly that regularity is a local property. This
is mentioned in e.g. [8, p. 90]
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Proposition 5.10. A point x ∈ ∂Ω is regular with respect to Ω if and only it
is regular with respect to Ω ∩B(x, ρ) for some ρ > 0.

Proof. Assume x is regular with respect to Ω, so there exists a barrier

v : B(x, ρ0) ∩ Ω → R.

Then, given any ρ > 0,

v : B(x,min{ρ0, ρ}) ∩ Ω → R,

is a barrier, so x is regular with respect to Ω∩B(x, ρ). A similar argument gives
the converse implication.

5.5 Capacity
The capacity of a set is a concept which is based on the physical property of
capacitance. Just as the capacitance of a conductor can be used to predict how
charges and voltages interact with the conductor, the capacity of a set can be
used to predict how harmonic functions interact with the set.

The mathematical definition of capacity was first given by Wiener in [37, p. 26],
stated as follows. Let E ⊂ R3 be a bounded set and u be the solution to the
exterior Dirichlet problem in Ee, with boundary value f = 1 on ∂E. Then the
capacity of the set is given by

C(E) = − 1

4π

∫
∂Ω

∂u

∂n̂
dσ,

for any Ω with smooth boundary such that E ⊂ Ω.

To explain this definition and extend it to higher dimensions, we introduce the
concept of charge. We saw how to find the potential of a certain charge in Section
3.2. To find the charge of a certain potential, we can use Gauss’ flux theorem
from electromagnetics, stated in [9, p. 110] as: The total outward electric flux
over any surface is equal to the total free charge enclosed in the surface. As
capacity in R2 is slightly different from higher dimensions, we leave this case for
later.

Definition 5.11. Given a function u which is harmonic in Ω\E, where Ω ⊂ Rn,
for n ≥ 3, is a bounded domain containing E, the value

− 1

(n− 2)σn

∫
∂Ω

∂u

∂n̂
dσ,
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is called the charge of u on E. The charge is independent of Ω and depends
only on u and E [37, p. 40]

For example, let u : Rn → R, n ≥ 3, be a linear combination of two fundamental
solutions,

u = q1Γy1 + q2Γy2

which is harmonic on Rn \ {y1, y2}. Take Ω = B(y1, ρ) with radius ρ such that
y2 ̸∈ Ω. Then the charge of u on E = {y1} is, by the linearity of divergence and
integration, as well as Gauss’ divergence theorem

− 1

(n− 2)σn

∫
∂Ω

∂u

∂n̂
dσ

= − 1

(n− 2)σn

∫
∂Ω

(∇(q1Γy1) · n̂+∇(q2Γy2) · n̂) dσ

= − 1

(n− 2)σn

(∫
∂Ω

∇(q1Γy1) · n̂ dσ+
∫
Ω

∇ · ∇(q2Γy2) dλ

)
,

and as Γy2 is harmonic in Rn \ {y2},

∇ · ∇(q2Γy2) = ∆q2Γy2 = 0

in Ω, so the charge of u in E is

− 1

(n− 2)σn

∫
∂Ω

∇(q1Γy1) · n̂ dσ

= − 1

(n− 2)σn

∫
∂B(y1,ρ)

∇(q1|x− y1|2−n) · n̂ dσ

= − 1

(n− 2)σn

∫
∂B(y1,ρ)

q1(2− n)|x− y1|−n(x− y1) ·
(x− y1)

|x− y1|
dσ

=
q

σnρn−1

∫
∂B(y1,ρ)

dσ

= q1,

as one would expect of a sensible definition of charge.

Definition 5.12 (Newtonian capacity). If K ⊂ Rn, for n ≥ 3, is a compact set
such that the exterior Dirichlet problem is solvable in Rn \K for the boundary
condition f = 1 on ∂K, the capacity C(K) of the set is given by the charge,
i.e., the uniquely determined bounded harmonic function u : Ke → R such that

lim
y→x

u(y) = 1 for all regular x ∈ ∂K
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and
lim

|x|→∞
u(x) = 0,

i.e. the solution to the exterior Dirichlet problem for K and f .

The capacity can be computed by

C(K) = − 1

(n− 2)σn

∫
S

∂u

∂n̂
dσ,

where S is a smooth surface enclosing K. The function u is called the capacity
potential for K.

This definition can be compared to a capacitor from electrostatics, whose ca-
pacitance is computed by q

v where q is the charge on the surface of the capacitor
that is required to obtain the potential v around the capacitor. If we set the
potential to v = 1 on the capacitor, relative to 0 at infinity, the capacitance is
simply q, which is essentially what is done in the definition of capacity.

We now examine the case of R2. We begin by noting that we cannot use Defini-
tion 5.12. Consider for example the case K = B(0, 1) ⊂ R2. Since the exterior
Dirichlet problem for this set and boundary conditions as above is rotationally
invariant, we see (as in Section 3.2) that any solution must be of the form

u(x) = a ln |x|+ b,

for some constants a and b. However, there are no constants such that u(x) → 0
as |x| → ∞, and therefore the problem lacks solution, meaning that we cannot
define the capacity of K.

However, the definition of capacity can be extended by the use of Green functions
(see e.g. Helms [13, pp. 107–111] or Armitage and Gardiner [2, p. 89]). We will
not explain the theory necessary for this definition of capacity in greater detail,
as it additionally requires introducing the concept of a regularized reduction (see
e.g. [13, p. 159] or [2, p. 129]). We simply state it here to give an idea of how
the notion of capacity can be extended.

Definition 5.13 (Green capacity). If K ⊂ Ω where Ω ⊂ Rn, let µK be the
measure (cf. Theorem 6.3) such that

R̂K1 (x) =

∫
Ω

GΩ(x, y) dµ(y),

where R̂K1 is the regularized reduction of the constant function 1 relative to K
in Ω, and GΩ(·, ·) is the Green function for the set Ω. The capacity of K is then
given by

CG(K) = CG(K,Ω) = µK(Ω).
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It can be shown that the Green capacity for n ≥ 3 agrees with the Newtonian
capacity, for all sets for which they are both defined [13, pp. 164–165], in the
sense that

C(K) = lim
r→∞

CG(K,B(0, r)).

Note that CG(K,B(0, r)) is only defined when K ⊂ B(0, r), however this holds
for all sufficiently large r, as K is compact. We note also that, for compact K,
it holds that C(K) = 0 if C(K,B) = 0 for any ball B ⋑ K.

For the case of R2, we can give the following expression for the Green function
[13, pp. 14–16].

Definition 5.14 (Green function for a disc in R2). If B = B(0, ρ) then the
Green function GB : B ×B → (0,∞] for B is given by

GB(x, z) =

{
ln |x|

ρ
|z−x∗|
|z−x| , z ∈ B, z ̸= x

∞, z = x,

where

x∗ =
ρ2

|x|2
x

i.e., the inverse of x with respect to ∂B. The case of B = B(y, ρ) follows by
translation.

Just as the value of f on a set of measure zero does not affect the value of
the integral

∫
f dµ, we will see in Theorem 6.2 that the value of f on a set of

capacity zero does not affect the solution to the Dirichlet problem with boundary
condition f . Such sets are called polar sets. See e.g. [13, pp. 149 ff.]

Definition 5.15. A set K ⊂ Ω is polar if there exists a non-constant superhar-
monic function u : Ω → [−∞,∞] such that

K ⊂ {x : u(x) = ∞}.

Example 5.16. For example, all countable sets {y1, . . . } ⊂ Rn are polar. To
see this, let

µ =

∞∑
k=1

2−kδyk ,

where δy is the Dirac measure at y (see Definition 2.43) and note that µ(Rn) =∑∞
k=1 2

−k <∞. Then
∞∑
k=1

2−kΓyk =

∫
Rn

Γy(x) dµ(y),
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is a non-constant harmonic function that has value ∞ at each yk, where Γy(x) is
the fundamental solution to Laplace’s equation (see Definition 3.7), so {y1, . . . }
is a polar set.

It can be proved that all polar sets have Lebesgue measure 0. It can also
be proved that polar sets in R2 are totally disconnected, meaning that every
connected component of a polar set consists of a single point [2, p. 155, Corollary
5.8.9].

Definition 5.17. If a property holds on a set A except on a subset E ⊂ A
of capacity zero, C(E) = 0, we say that the property holds quasi-everywhere,
abbreviated q.e.

Proposition 5.18. For any superharmonic function ψ : Ω → [−∞,∞], it holds
that ψ ̸= ∞ q.e., and in particular, ψ ̸≡ ∞ on any domain E ⊂ Ω.

As a corollary of this, we get an improved version of Proposition 3.30, namely:

Proposition 5.19. If φ is superharmonic in Ω and E ⊂ Ω is a domain, then
φ is superharmonic in E.

Proof. We know from Proposition 3.30 that either φ is superharmonic in E, or
φ ≡ ∞ in E, but by Proposition 5.18, the former must be the case, as E is a
domain.

5.6 Wiener’s Criterion
In his 1924 paper [38, p. 130], Wiener gave a criterion which is both necessary
and sufficient for the regularity of a point, called the Wiener criterion.

Theorem 5.20 (Wiener’s criterion). Let x be a point on the boundary of Ω.
Take any 0 < λ < 1. Let γk be the capacity of the set {y ∈ Ωc : λk ≤ |y − x| ≤
λk−1}. Then x is a regular point if the series

∞∑
k=1

γk
λk

=
γ1
λ

+
γ2
λ2

+ . . .

diverges. If the series converges, then x is an irregular point of ∂Ω.

5.7 Kellogg Property
In a 1929 paper [18] by the American mathematician Oliver Dimon Kellogg
(1878–1932) in collaboration with the Romanian mathematician Florin Vasilescu
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(1897–1958), the following result, called the Kellogg property, was conjectured
to hold in any number of dimensions.

Theorem 5.21 (The Kellogg property). If A ⊂ ∂Ω is a closed and bounded set
with positive capacity, then A contains at least one regular point. Equivalently,
any set consisting of only irregular points has capacity zero.

The theorem was proven in any number of dimensions in 1933 by the American
mathematician Griffith Conrad Evans (1887–1973) [12]. Using the Kellogg prop-
erty, Kellogg and Vasilescu proved that the solutions to the Dirichlet problem
are unique even in the presence of irregular points, see Theorem 6.2. Kellogg
had proved that the theorem holds in two dimensions the preceding year [17].

Definition 5.22. A set Ω is reduced if it contains no points x, such that

C(∂Ω ∩B(x, ρ)) = 0 for some ρ > 0.

Since the set of such points for any given Ω is a set of capacity zero, we may in
many cases assume without loss of generality that a set Ω is reduced. Since any
isolated point is such a point, a reduced set has no isolated points.





Chapter 6

The Extended Dirichlet
Problem

As we have seen, even when the Dirichlet problem is not solvable in the sense
of the original formulation, a harmonic function may be found which fulfils the
boundary condition at every regular point. This extended formulation of the
Dirichlet problem makes sense even for discontinuous boundary functions, as we
will shortly see.

Definition 6.1. Given a bounded domain Ω and a bounded function f : ∂Ω →
R, solving the extended Dirichlet problem consists of finding a bounded function
u : Ω → R, which is harmonic in Ω and agrees with the boundary condition
quasi-everywhere,

lim
y→x

u(y) = f(x) for q.e. x ∈ ∂Ω.

The generalized solution to the Dirichlet problem can in many cases be found
with the Perron method. Consider for instance Zaremba’s counterexample,
given in (5.1) and (5.2). We may find an upper function ψ arbitrarily close
to 0, in the sense that there exists a sequence (ψk)

∞
k=1 in the upper class ΨfΩ

such that limn→∞ ψn = 0. One such sequence is

φ(x1, x2) =

{
1− nx21 − nx22, if nx21 + nx22 < 1,

0, otherwise.

Because the Laplacian is less than zero almost everywhere for every function in
this sequence, and lim supy→x ψ(y) ≥ f(x) for all points x ∈ ∂Ω, each element
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of the sequence is in ΨfΩ. It is also easy to see that the function φ ≡ 0 is a lower
function. Therefore, the function 0 = HΩf = HΩf = HΩf is a solution to the
extended Dirichlet problem for Zaremba’s counterexample.

A theorem stating that the solution to the Dirichlet problem is uniquely deter-
mined even in the presence of irregular points, was first introduced by Kellogg
in 1929 [18, p. 516]. We present it here without proof.

Theorem 6.2. Given a domain Ω and a boundary condition f : ∂Ω → R, the
function which is bounded and harmonic in Ω and agrees with f at every regular
point is unique, if it exists.

6.1 Brelot’s Resolutivity Theorem

In his 1925 paper [39, p. 29], Wiener gives an apparent example of an instance
of the generalized Dirichlet problem where the Perron method cannot give a
generalized solution. The example is as follows: let Ω = B(0, 1) ⊂ R2 and let f
be 1 at the points which have a rational angle component and 0 otherwise, i.e.

f(x1, x2) =

1, if arctan
x2
x1

∈ Q,

0, otherwise.

Wiener states that any upper function must be at least 1 and any lower function
must be at most 0, and therefore that the Perron method cannot yield a unique
generalized solution to the generalized Dirichlet problem. This was commonly
accepted among the mathematicians of the time, as Wiener was regarded as
an authority in the mathematical world. However, in 1937 when Brelot was
preparing a lecture which included this example, he realized that the upper
solution is in fact 0, meaning that the example has a unique generalized Perron
solution [22, pp. 558–559].

Brelot also provided a characterization of resolutive functions in terms of the
harmonic measure. As we have seen in Section 4.3, for each continuous function
f : ∂Ω → R on the boundary of a given open bounded set Ω, there exists a
generalized solution to the Dirichlet problem, given by HΩf . For a fixed x ∈ ∂Ω,
we may consider HΩf(x) : C(∂Ω) → R as a linear functional from the space of
continuous functions on the boundary. Using this functional, we can define a
measure as follows.

Theorem 6.3. For a given point x in the bounded open set Ω, there exists a
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measure µx, called the harmonic measure, for which

HΩf(x) =

∫
∂Ω

f dµx

for each continuous boundary condition f ∈ C(∂Ω).

This result will not be discussed in detail. For a full proof, see for example [13,
pp. 216–217] or [2, pp. 172–177].

Theorem 6.4 (Brelot’s theorem). Assume that the function f : ∂Ω → R is
integrable with respect to µx for some x ∈ Ω, where µx is the harmonic measure
for the connected set Ω at x. Then f is resolutive and the solution to the
Dirichlet problem for f and Ω is given by

HΩf =

∫
∂Ω

f dµx,

Conversely, if f is resolutive then f is integrable with respect to µx for all x ∈ Ω.

We can note that if Ω is a connected set, then f is integrable with respect to µx
for some x ∈ Ω if and only if f is integrable with respect to µy for some y ∈ Ω.
In other words if f is integrable with respect to the harmonic measure at one
point it is integrable with respect to the harmonic measure at any other point
[2, p. 175, Corollary 6.4.7].





Chapter 7

Conclusions and Discussion

We have considered the history of the Dirichlet problem for the Laplacian, from
the beginnings of its formulation to its solution by various methods, including
the Dirichlet principle, Poisson integration and most generally by the method
of Perron solutions. We have also investigated some early examples of irregular
points, those being Zaremba’s example and the Lebesgue spine, as well as some
criteria and characterizations of regular points, including Poincaré’s criterion,
Zaremba’s criterion, barrier characterizations and the Wiener criterion. We
have striven to present these ideas and developments in a consistent notation
and as part of a coherent historical narrative.

7.1 Further Developments
There are many directions in which this work can be expanded. For instance,
it would be interesting to investigate the theory deeper and provide full proofs
of more of the stated theorems. Another interesting angle is to move forward
to more modern potential theory, perhaps using the historical framework to
explain some of the results regarding generalizations of the Dirichlet problem
which have been made more recently.
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