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Breast milk is an essential source of nutrition and hydration for the infant. In

addit ion, this highly complex biological fluid contains numerous

immunologically active factors such as microorganisms, immunoglobulins,

cytokines and microRNAs (miRNAs). Here, we set out to predict the function

of the top 10 expressed miRNAs in human breast milk, focusing on their

relevance in oral tolerance development and allergy prevention in the infant.

The top expressed miRNAs in human breast milk were identified on basis of

previous peer-reviewed studies gathered from a recent systematic review and an

updated literature search. The miRNAs with the highest expression levels in each

study were used to identify the 10 most common miRNAs or miRNA families

across studies and these were selected for subsequent target prediction. The

predictions were performed using TargetScan in combination with the Database

for Annotation, Visualization and Integrated Discovery. The ten top expressed

miRNAs were: let-7-5p family, miR-148a-3p, miR-30-5p family, miR-200a-3p +

miR-141-3p, miR-22-3p, miR-181-5p family, miR-146b-5p, miR-378a-3p, miR-

29-3p family, miR-200b/c-3p and miR-429-3p. The target prediction identified

3,588 potential target genes and 127 Kyoto Encyclopedia of Genes and Genomes

pathways; several connected to the immune system, including TGF-b and T cell

receptor signaling and T-helper cell differentiation. This review highlights the role

of breast milk miRNAs and their potential contribution to infant immune

maturation. Indeed, breast milk miRNAs seem to be involved in several

pathways that influence oral tolerance development.

KEYWORDS

micro-RNA, non-coding RNA, dendritic cells, oral tolerance, regulatory T cell, allergy,
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1 Introduction

Breast milk is an important source of nutrition and hydration

for infant mammals, including humans (1). However, this highly

complex biological fluid has functions that exceed nutrition (2, 3).

Breast milk contains a number of immunological factors such as

microorganisms, immunoglobulins and cytokines that represent the

first postnatal immunological stimuli and protection for the infant

(3, 4). The composition of breast milk changes over time to the

different needs of the infant. For example, the first milk produced,

colostrum, contains a higher concentration of immunoglobulin A

compared to mature milk (5). Not only does the milk offer

protective effects against infections in early life, but it may also

have more long-lasting immune modulatory effects (6–9).

Amongst the immune regulatory components in breast milk,

microRNA (miRNA) represents an abundant form. The miRNAs

are small, non-coding fragments of RNA, with the potential to

regulate gene expression by post-transcriptional modifications of

mRNA strands (10). During the last 15 years, miRNAs have gained

increasing interest as research has moved forward through new

technologies and discoveries; indeed, it has been suggested that

miRNAs are able to regulate up to 60% of all transcribed mRNAs

(11, 12). Although present in all biological fluids, miRNAs are most

abundant in breast milk and, interestingly, many of the milk-born

miRNAs seem to be evolutionarily conserved between different

mammal species (13–15). Although the biological relevance

remains to be clarified, this conservation of sequence suggest that

miRNAs serve fundamental functions. Like other breast milk

components, the miRNA profile seems to vary over time,

displaying daily as well as more long-term fluctuations (14, 16,

17), although empirical data is still scarce. An astonishing >1,900

different types of miRNAs have been detected in human breast milk,

with potential biological implications on cell communication, fatty

acid biosynthesis, regulation of actin skeleton and a vast number of

immunological pathways (12).

Human milk miRNAs hypothetically regulate infant gene

expression through epigenetic modifications and thereby affect

various biological processes, including immune maturation. These

epigenetic effects could potentially occur both up-stream and down-

stream of gene transcription. Down-stream of transcription, a

miRNA could target one or more mRNA and inhibit their

translation into proteins. For example, miRNA-155, expressed in

human milk (14), targets the signal transducer and activator of

transcription (STAT) 1 mRNA and thereby, via concurrent

activation of IL-2/STAT5 signaling, promote regulatory T cell

(Treg) differentiation (18, 19). Up-stream of gene transcription,

miRNAs could for example influence gene expression via DNA

methylation, interfering with the transcriptional process. For

example, DNA de/methylation regulates FOXP3 expression, a key

transcription factor in the differentiation of CD4+ T cells into Tregs

(20, 21). DNA methyltransferase (DNMT) 1 and DNMT3b seem to

be in control of this transcriptional “switch” (22). Interestingly, one

of the most highly expressed miRNAs in mammalian milk, miRNA-

148a, can downregulate the expression of DNA methyltransferase 1

in vitro (23). Also, Admyre et al. (24) observed how human milk
Frontiers in Immunology 02
EVs could dose-dependently increase the numbers of FOXP3+CD4

+CD25+ Treg cells in peripheral blood mononuclear cells.

However, it remains to be further explored if such effects can be

exclusively attributed to the EV born miRNAs. On this note, it

should also be pointed out that although interactions between

different bioactive components in the milk likely occurs – for

example miR-155 and miR-181 interacts with TGF-b and IL-10

(all abundantly found in breast milk) to regulate proliferation and

function of Tregs (18) - functional studies designed to uncover

details in these interplays are missing. Yet, early discoveries, as

highlighted here, prompts enthralling questions about the biological

relevance of human breast milk miRNAs and their role in infant

development and immune maturation.
1.1 Transfer of miRNAs from mother
to child

Breast milk, along with all biological fluids, contain RNase (a

catalyst for RNA degradation) suggesting that viable miRNAs are

somehow protected from RNase activity. Breast milk-derived

miRNAs are believed to primarily originate from maternal

mammary epithelial cells and immune cells but could potentially

also originate from cells in other parts of the body, reaching the

breast milk through the blood circulation (12, 25). However, it is

assumed that the majority of human breast milk miRNAs are not

found freely in breast milk but rather encapsuled in “vehicle”

structures; primarily extracellular vesicles (EVs) (26). The EVs are

bilayer membraned vesicles involved in intercellular signaling, and

transport of proteins, nucleic acids and lipids from the originating

cell to the target cell. Packing of EVs involves sorting mechanisms

that favor some cargos over others and is hence not random (27,

28); emphasizing the biological relevance of their content.

In vitro studies have shown that milk-derived EVs survive when

exposed to the harsh conditions of gastric digestion (29–31) and are

even able to subsequently enter intestinal crypt-like cells (29–31).

Furthermore, in vivo animal experiments show that exogenous

miRNAs can be absorbed through the digestive tract only to be

further distributed throughout the body of a suckling pup or piglet

(32–34), or after oral gavage in adult mice (35). Cells seem to absorb

EVs via different endocytic pathways, including clathrin-dependent

endocytosis, phagocytosis, macropinocytosis and caveolin-

mediated uptake, but the mechanisms in how the miRNA loaded

EVs are absorbed by the epithelial cells in the infants’ intestine

remain to be discovered in detail (13). Nevertheless, the fact that

milk-derived miRNAs to a large extent are evolutionary conserved

and can survive the harsh conditions of the digestive tract to be

taken up in the intestine of the offspring, points to the important

influence they may have on the epigenetic development of the child.
1.2 Immunological tolerance

One of the earliest biological challenges in life is the ability of

the infant’s immune system to distinguish between harmful and
frontiersin.org
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harmless proteins, also known as antigens. An adverse immune

response to food antigens is known as food allergy. The prevalence

of food allergy is believed to be at an all-time high, although

describing the increasing rates in exact numbers proves a

challenge (36–39). Nevertheless, allergies pose a great challenge to

the afflicted individual and their next of kin (40), and in the absence

of a cure (41, 42) further mechanistic insight is warranted.

The immune system avoids adverse reactions to foods through

the induction of oral tolerance (43); see the key factors, as described

below, depicted in Figure 1. Tolerance, i.e. systemic and mucosal

unresponsiveness, is maintained through interaction between

intestinal cells and immune cells at mucosal surfaces. In the

gastrointestinal tract (GIT), where the infant is exposed to breast

milk miRNAs, the gut-associated lymphoid tissues including the

mesenteric lymph nodes (44) (MLN), play a major role in these

interactions. The gut-associated lymphoid tissues include both innate

and adaptive immune cells and tolerance is primarily developed

through interaction between regulatory dendritic cells (CD103+ DCs)

and naïve T helper (Th) cells in the MLN, where the CD103+ DCs

promote Th cell differentiation into Tregs. The Tregs, will favor a
Frontiers in Immunology 03
tolerogenic immune response by producing the anti-inflammatory

cytokines IL-10 and TGF-b, inhibiting the proliferation of effector T

cells and thereby mitigating adverse inflammatory responses (45).

Tregs are hence at the hub of oral tolerance development. The TGF-b
produced by Tregs also promotes B cell antibody class switching

towards immunoglobulin (Ig) A, facilitating IgA-mediated antigen

exclusion in the intestinal lumen (46). Moreover, the CD103+DCs of

the MLN also imprint GIT homing, so the Tregs may leave the lymph

node and migrate back to the lamina propria. In fact, induction of

Treg homing back to the gut has been suggested as a vital step to

install oral tolerance (46, 47). In the gut, Tregs are exposed to IL-10

producing macrophages that cause their clonal expansion and

thereby facilitate their suppressive function (43, 47). As pointed out

above, more than one breast milk miRNA has been previously

implicated in these interactions, hence, we hypothesize that breast

milk miRNAs are important for installing immunological tolerance

in the infant.
1.3 Aim

In this review we set out to predict the mRNA targets of the top 10

expressed miRNAs in human breast milk, focusing on their relevance

in oral tolerance development and allergy prevention in the infant.
2 Methods

For a visual overview of the methods, please refer to Figure 2.
2.1 Literature search

The top 10 expressed miRNAs in human breast milk were

identified based on a previous systematic review produced by us in

2021 (14) (PROSPERO Identifier: CRD42020138989), where we

summarized the scientific studies on non-coding RNAs (ncRNA) in

breast milk up until September 2020. To also capture relevant

literature published after this date, a new structured search was

conducted in the bibliographic databases MEDLINE, Cochrane

Library, Embase and Web of Science. The search strategy

included thesaurus- and free-text terms for the two main

concepts miRNA and mothers’ milk (see Supplementary A for

complete details). The searches were last updated on the 9th of

August 2022. The identified records were collected in EndNote and

screened for duplicates (by author S.A.P). Records previously

screened in the systematic review (14) were also removed.

Following duplicate removal, the new records were screened for

inclusion based on titles and abstract by author E.A. and

subsequently cross-checked by author M.R.S.

Please observe that in updating our previous search, we included

new papers within the area of miRNA andmothers’milk research, as

opposed to the previous systematic search where we considered all

ncRNAs. Hence, although this paper in some respects draws from

our previous systematic review, it should be considered as a stand-

alone paper built on a separate rational and aim.
FIGURE 1

Key players in oral tolerance. Oral tolerance is an active suppression
of cellular and humoral responses to antigens. The mesenteric
lymph node is the major site for Treg cell differentiation, as
mediated by CD103+ DCs. Production of the anti-inflammatory
cytokines IL-10 and TGF-b supports the positive feedback loop of
stimulating CD103+ DCs, Tregs and tolerogenic macrophages. The
TGF-b also promotes B cell antibody class switching towards IgA,
thus facilitating antigen exclusion in the intestinal lumen.
Interestingly, there seems to exist several breastmilk miRNAs with
potential involvement in these interactions.
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2.2 Ranking of the miRNAs, target
prediction and pathway analysis

Functional analysis was performed on the top 10 expressed

miRNAs in breast milk based on the previous summary in Tingö

et al. (14), including 16 papers (15, 23, 25, 29–31, 48–57) and adding

information from 3 additional papers found in the updated

literature search described above (17, 58, 59). The most

frequently expressed miRNAs, as described either by the authors

or calculated based on the data from their corresponding

supplementary information, were based on RNA sequencing or

open Array qPCR analysis and isolated from all fractions, i.e. whole,

cell, skim milk, lipid or EVs (refer to Supplementary B, Table 1).

From each included study, the top 10 expressed miRNAs were
Frontiers in Immunology 04
assigned a score between 1 and 10 that corresponded to their

expression ranking (i.e., the highest expressed miRNA was

assigned a score of 10; see complete scoring in Supplementary B,

Table S1), to get an average of the top 10 most abundant miRNAs

from the 19 included papers. The miRNAs belonging to the same

family were scored together (Supplementary B, Table S2) due to

their shared seed region and thus common mRNA targets. The

assigned scores for each miRNA were then summarized across

studies, producing a total score for each miRNA on basis of their

ranking (Supplementary B, Table S3); miR-6073 was removed due

to the likelihood that the high relative abundance of this miRNA in

two studies may be an artifact of the adopted sequencing protocol as

discussed in our previous review (14). Furthermore, the miRNA-

200 family consists of miR-200a/b/c, miR-141 and miR-429,

however, they are divided into two groups based on their seed

region similarities; miR-200a and miR-141-3p in one group, and

miR-200b/c and miR-429 in the other (60). The groups were scored

separately, and subsequently included among the top 10 expressed

(Supplementary B, Table S3).

Target prediction was run using TargetScan version 8.0 (61, 62),

with the default settings, and an upper threshold for the cumulative

weighted context++ score was set at -0.2 (62). The prediction of

targets are primarily based on the mRNAmatching at the “canonical”

site, i.e. a base sequence matching perfectly to the miRNA seed region

(62, 63), and a set of additional variables (e.g., sequence conservation,

target site accessibility, flanking sequence determinants and

compensatory paring outside the seed region) that contribute to

reducing the number of false positive predictions (61, 64), refer to

Figure 3 for visual illustration. However, contrary to many other

prediction algorithms, TargetScan also base the predictions on an

additional set of variables, such as sequence conservation, target site

accessibility, flanking sequence determinants, and compensatory

pairing outside the seed region, which reduce the number of false

positive predictions (61, 64).

The lists of predicted target genes were subsequently uploaded to

the Database for Annotation, Visualization and Integrated Discovery

(DAVID) 2021 (65, 66), and potential biological functions of the top

10miRNAs were analyzed using the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis. An FDR corrected p-

value < 0.05 was considered of interest.
3 Results

3.1 Literature search

A total of 1671 records were identified by the updated

literature search. After removal of duplicates, and records

previously screened in our systematic review on ncRNAs in

human breast milk (14), 418 unique and new records were

identified and subjected to further screening. Out of these 418

records, 5 studies were read in full text and 3 were subsequently

judged as relevant for this review. The results of these 3 studies

were subsequently combined with the results of the other 16

studies originating from the systematic review, producing a
FIGURE 2

Methodological overview. Overview of the methodological process.
The topmost light grey, unfilled text boxes depict the paper selection
following the updated literature search. Below, depicted by the grey
text boxes, follows the steps taken for the result generation: 1) and
2) illustrates how the three papers included after the new search was
combined with the 16 papers analyzing miRNA in breast milk from
our previous ncRNA review (14), 3) on basis of these 19 papers we
identified the highest expressed breast milk miRNAs in each study
(Supplementary B, Table S1), 4) thereafter the miRNAs were scored
according to paragraph 2.2 (also refer to Supplementary B, Tables
S2-S5) and for the last two steps denoted 5) please refer to method
paragraph 2.2 and Supplementary B, Tables S6-S8.
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grand total of 19 scientific studies (based on 25 unique data sets)

serving as the basis of this review.
3.2 Top 10 expressed miRNAs in
human milk

The top expressed miRNAs, from the 19 included studies, were

scored and ranked; for ranking see Table 1, and for further details in

the scoring system refer to the method section and Supplementary

B, Tables S1-S5). Accordingly, the list of the most highly expressed

breastmilk miRNAs in falling order is as follows: let-7-5p family,

miR-30-5p family, miR-148a-3p, miR-200a-3p + miR-141-3p, miR-

22-3p, miR-181-5p family, miR-146b-5p, miR-378a-3p, miR-29-3p

family and lastly miR-200b/c-3p.

Note that we consider the familywise ranking of the miRNAs to

be our main result (see Table 1, left column). The rationale behind

this is that miRNAs sharing seed region will interact with the same

mRNA targets and are thus likely to produce a more pronounced

physiological effect collectively, as compared to a single miRNA.

Table 1, however, also shows the top expressed miRNAs ranked

individually as this may be interesting complementary information.
3.3 Target prediction and pathway analysis

In the target prediction search we identified 3,588 potential

target genes using TargetScan 8 (see complete list in Supplementary

B, Table S6). The predicted genes resulted in 127 KEGG pathways

of interest based on FDR corrected p-values < 0.05. Several of the

pathways were directly connected to the immune system, including

TGF-beta signaling, T cell receptor signaling, Toll-like receptor
Frontiers in Immunology 05
signaling, Jak-STAT signaling, and Th1 and Th2 cell differentiation

(see complete list in Supplementary B, Table S7). In addition, some

major signaling pathways also connected to immune regulation,

such as the PI3K-Akt signaling pathway, MAPK signaling pathway

and, FoxO signaling pathway were also indicated.
4 Discussion

This review set out to predict the mRNA targets of the top 10

expressedmiRNAs in human breast milk, focusing on their possible role

in infant immunological maturation and more specifically on oral

tolerance development and allergy prevention. In combining the

findings from a previous systematic review from our research group

(14) with an updated database search, we found the following miRNAs

to be the most highly expressed in human milk: let-7-5p family, miR-

148a-3p, miR-30-5p family, miR-200a-3p+ miR-141-3p, miR-22-3p,

miR-181-5p family, miR-146b-5p, miR-378a-3p, miR-29-3p family,

miR-200b/c-3p and miR-429-3p. Together these miRNAs were

predicated to interfere with 3,588 gene products and when weighed

together for pathway prediction these targets were implicated in 127

KEGG pathway. Several of these pathways were directly connected to

the immune system, including TGF-beta signaling, T cell receptor

signaling, Toll-like receptor signaling, Jak-STAT signaling, and Th1

and Th2 cell differentiation. In addition, somemajor signaling pathways

frequently indicated in normal physiology, but also highly relevant for

immune regulation, such as the PI3K-Akt signaling, MAPK signaling,

TNF signaling and FoxO signaling, were also indicated.

Here, we have used a systematic strategy to find original studies

analyzing breast milk miRNA and subsequently developed a system to

identify out the most commonly expressed ones. To narrow down the

number of miRNAs to be addressed in this review, we chose to focus on

the top 10 miRNAs from the included studies. Of course, this

potentially means disregarding miRNAs that have important

immunological effects albeit expressed in low amounts. For example,

miR-155 did not make it onto our list. This miRNA has received rather

much attention due to its presumed involvement in Treg

differentiation; it has been previously demonstrated that miR‐155

promotes the differentiation of Treg in allergic rhinitis (18). Similarly,

Hicks et al. (16) recently showed that breast milk miR-375 seem to

decrease the risk of atopy in breastfed infants; a miRNA that did not

make it on to our top 10 list. Nevertheless, while acknowledging this as

a potential shortcoming, we believe that adhering to a systematic

approach in selecting which miRNAs to focus on adds rigor to this

review. Furthermore, for additional information on methodological

differences between the studies, such as sample source, milk fraction

and maternal characteristics, please refer to our previous review (14),

where we systematically deal with these topics. Moreover, we choose to

focus on the pathways and corresponding targets of the top 10

expressed miRNAs from an oral tolerance perspective, as we

hypothesize that breast milk miRNAs are important in

immunological maturation and childhood allergy prevention. In this

context, it is important to note that this review, albeit based on a

systematic approach, is speculative in nature. It is also important to

note that we do not attempt to predict the direction of action, i.e.

suppressive or stimulatory effects. In general, miRNA act inhibitory as
TABLE 1 The top 10 highest ranked human breast milk miRNAs.

Top 10 miRNA families Top 10 individual miRNAs

let-7-5p family miR-148a-3p

miR-30-5p family miR-22-3p

miR-148a-3p miR-30d-5p

miR-200a-3p + miR-141-3pa miR-30a-5p

miR-22-3p miR-146b-5p

miR-181-5p family miR-141-3p

miR-146b-5p let-7a-5p

miR-378a-3p miR-181a-5p

miR-29-3p family let-7f-5p

miR-200b/c-3pa let-7b-5p
The miRNAs are presented in falling order, i.e. the miRNAs at the top of the lists were found
to be the most highly expressed after taking into account the results from all 19 studies
included in the review. The miRNA presented as families in the left column were scored
together as they share the same seed region. In the right column we list the individually top
expressed miRNAs, i.e. the ranking after all miRNAs were scored as singlets. a) The miRNA-
200 family consists of miR-200a/b/c, miR-141 and miR-429, however, they are divided into
two groups based on their seed region similarities; miR-200a and miR-141-3p in one group,
and miR-200b/c and miR-429 in the other. Hence, the two groups were scored separately. The
individual miRs shared by both lists are bolded.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1154211
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ahlberg et al. 10.3389/fimmu.2023.1154211
their primary function, but in instances where a miRNA ends up

suppressing a suppressor the effect will turn out stimulatory. As the

databases utilized here predict direct seed matching and enrichment of

targets in the indicated pathways, making predictions about such

indirect suppressive actions are difficult. The inhibitory action of a

miRNA is likely also a delicate balance between the potency of the

miRNA and the expression of the target mRNA at different levels.

Additionally, each miRNA has several targets that are also shared with

other miRNAs. Due to the level of complexity of these interactions, we

deemed direction of action to be outside the scope of the current

review; settling on the mere fact that human milk is enriched with

miRNAs of significance to these pathways/interactions gives reason to

speculate about their importance in oral tolerance development.

Furthermore, we make the underlying assumption that breast milk

miRNAs are protected from degradation, most likely by EV

encapsulation, and taken up in sufficient amounts to exert biological

effects in the infant recipient cells. As outlined in the introduction, this

notion has some previous support in the scientific literature as milk

miRNAs are taken up by suckling animals. However, the route of

uptake is not yet completely clarified. Endocytosis is most likely one

prominent way of recipient cells to incorporate exosomal miRNAs (67,

68), or less supervised uptake may potentially occur in immune cells

such as macrophages (69, 70). In infants, the immature state of the

intestine may further facilitate uptake of EV and their miRNA cargo, as

the neonatal GIT show increased permeability (as reviewed in (71)).
Frontiers in Immunology 06
As further laid out in the introduction of this paper, the primary

site for oral tolerance induction is the GIT, where the infant is also

exposed to breast milk. In theMLN, CD103+ DCs interacts with naïve

Th cells to induce Treg differentiation; this process is highly TGF-b
dependent. Among the top expressed breast milk miRNAs, we find

direct mRNA targets upstream of TGF-b (miR-148a-3p) and the

TGF-b receptors 1/2/3 (miR-181-5p and let-7-5p). In addition, miR-

148a-3p have targets within the SMAD-family; activation of TGF-b
receptor leads to the activation of the Smad downstream signaling

cascade, promoting FoxP3 expression (72). The chemokine receptor

CCR7 is involved in the egress of Tregs from tissues to lymph nodes

(73–76) and seem to be crucial for Treg induction by antigen

presenting cells primed by commensal microbes (77); CCR7 is a

direct target of the breast milk expressed let-7-5p. The clonal

expansion of the Tregs is further promoted by IL-10 producing

macrophages; the IL-10 mRNA is a direct target of let-7-5p, while

miR-29-3p targets the IL-10 receptor beta. A recent study, conducted

in humans and mice, demonstrated that miR‐181a regulates the

expression of IL‐10 and TGF‐b in allergic rhinitis (18). In addition,

IL-10 and TGF-b are also important factors in facilitating Treg

inhibition of effector T cell proliferation. Importantly, previous

research has shown that deficiency in TGF-b or its receptors is

proven to be fatal in the first few weeks of life, due to fulminant

inflammation (78). Interestingly, TGF-b deficient mouse pups

remains healthy as long as they are fed milk from dams that are not
FIGURE 3

Seed region matching. The figure illustrates the different types of canonical site paring between the miRNA and its mRNA target, i.e. 8mer, 7mer-1A,
7mer-m8 and 6mer paring. The 8mer paring has a complete matched seed region of 7 bases, including an additional match at the 8th position, and
an adenine opposite of the first position; the 7mer-1A has a match between position 2-7 and an adenine opposite of the first position; the 7mer-m8
has a match between position 2-8, and the 6mer has a match only in position 2-7. Notably, most miRNAs also have additional pairing beyond the
seed region, called 3’-supplementary site.
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TGF-b deficient, but develop severe inflammation when weaned (79).

As such TGF-b is crucial for stimulation of naïve CD4+ T cells to

differentiate into Foxp3+ Treg and their subsequent suppression of

effector T cell activation and proliferation, as this will halt the life-

threatening inflammatory response. It is noteworthy that DICER (an

enzyme crucial for miRNA biogenesis) knock out mice have low

number of Tregs and develops fatal autoimmune conditions (80–82).

The combination of TGF-b with other cytokines could push naïve
T cells to differentiate into non-regulatory T cell subtypes, for example

Th17 differentiation is promoted in the presence of IL-6 (72, 83). Th17

cells are pro-inflammatory in their action and in many instances are

regarded as problematic due to their involvement in autoimmunity

and related tissue damage (84, 85). Failure of oral immune therapy,

aimed to treat peanut allergy, was associated with the expression of

inflammatory gene signatures present in Th17 cell populations (86),

also indicating a role for Th17 cells in oral immunotherapy efficacy.

The mRNA of the Th17 key transcription factor RORC is a let-7-5p

target, as is the IL17 receptor IL17RD. The RORC transcription factor

(known as RORgt in mice), however, also seems important for a

suppressive subset of Foxp3 expressing RORgt+ T cells with regulatory

function against exacerbated Th2 responses and linked to oral

tolerance development in mice (87). These RORgt+ Tregs can be

generated under the influence of IL-2 and TGF-b, and despite their

Th-17 shared characteristics they seem to have suppressive activity

against antigen-specific effector T cells in vitro (88). In addition to let-7

targeting RORC and IL-17, miR-30-5p have a target in the IL-2-

receptor a mRNA. The IL-17 signaling pathway was also indicated in

the KEGG pathways analysis. Interestingly, these double positive

Foxp3+RORgt+ T cells have been found in the small intestinal and

colonic lamina propria of mice, linked to a specific, but diverse set of

bacterial species (89–91). In addition, colonization of germ-free mice

with Clostridia species upregulates IL-22 production by RORgt+
innate lymphoid cells and T cells in the lamina propria of the

intestine, contributing to a reduced permeability to oral antigens

(92). This is interesting as tight junctions between enterocytes in the

GIT prevent the paracellular passing of antigens. An increased

transport of intact antigens through the epithelial cells has been

related to allergenic activity (93, 94). On this note, we also found

several targets involved in tight junction regulation, e.g. miR-200b-c-

3p targets the occludin mRNA.

Inoculation of the infant gut with the maternal microbiota

during and after birth is thought to promote an accelerated

transition from Th2 to a Th1/Th17-dominant immunity, as well

as facilitating Treg induction in the gut and lungs (95). A Th2

skewed immune system is the prevailing antenatal programming,

meant to accommodate fetal development and promoting maternal

tolerance towards the fetus (96). Th2-mediated immune responses

are, however, also associated with allergic reactions mediated by B-

cell produced IgE antibodies. A Th1-mediated response on the

other hand antagonizes IgE responses and hence, hypothetically,

prevents the development of allergic disease. Therefore, a lingering

post-natal Th2 programming may increase the risk of allergy

development in the infant. Indeed, previous research from our

group has shown that placental gene expression, including cells of

fetal origin, is dominated by a Th2- and anti-inflammatory

transcription profile and that enhanced Th2 deviation at birth is
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related to increased risk of allergy development in the child (97, 98).

Tregs are key players in the calibration of Th2 as well as Th1/Th17

driven inflammatory responses and are thus crucial to avoid adverse

immune reactions (99–101). The gut microbiota also seems to play

a key role in oral tolerance induction, for example by regulating the

phenotype of GIT DCs (mediated by macrophages and innate

lymphoid cells) (102) and Tregs (103, 104). Babies delivered by

Cesarean section have a different microbiota composition early in

life as compared to vaginally delivered infants (105–107) and the

former are also at greater risk of developing allergies later in life

(106, 108). Interestingly, the disturbance of gut microbiota in

cesarean delivered infants may to some extent be restored by

breastfeeding (109, 110).

The toll-like receptor (TLR) signaling pathway was indicated

among the KEGG pathways. The TLRs are pattern recognition

receptors that respond to microbial signals, and in particular TLR2

has been implicated in oral tolerance by promoting Treg induction as

mediated by DCs (111). Soluble TLR2, capable of modulating TLR2

signaling, has also been found in humanmilk (112). A previous study

by our group suggests that probiotic supplementation in children

may decrease responses to TLR2, potentially dependent on factors

downstream of TLR mRNA expression (113); which hence

hypothetically could be miRNA mediated. The probiotic

intervention in our study also reduced allergen responsiveness

(114), and IgE-associated eczema at two years of age (115). As

such, TLRs may be regarded as an important “bridge” between gut

microbiota and tolerance development. In addition, the C-type lectin

receptor signaling pathway was also indicated among the breast milk

miRNA predicted KEGG pathways; the C-type lectin domain family

2 is a target of breast milk miRNA miR-29-3p. As the TLRs, the C-

type lectin receptors (CLRs) represent a family of PPRs, recognizing

both pathogens associated molecular patterns and damage-

associated molecular patterns. Upon activation, CLR signaling

leads to cytokine secretion and immune cell recruitment, which

portraits their role in inducing innate and adaptive immune

responses (116). The dendritic cell-associated C-type lectin-1

(Dectin-1) is one of the most well studied CRLs, which has been

implicated in bridging the innate and adaptive immune responses.

For example, dectin-1 activates the transcription factor NF-kB,
through both canonical and noncanonical pathways, initiating its

signaling pathway to induce Th1 and Th17 cytokine production

(117), and dectin-1-Syk-CARD9 signaling seems to promote DC

maturation and Th17 differentiation, both in vitro and in vivo (117).

IgE-mediated allergy reactions are caused by B-cell produced IgE

antibodies triggering mast cell activation through cross-linking with

the high affinity Fc epsilon Receptor I (FcϵRI) on the mast-cell surface

(118, 119). Notably, miR-22 together with miRNAs from the let-7-5p

family have direct targets in the IL-13 mRNA and its alpha 1 receptor;

IL-13 is a central regulator in IgE synthesis and has been described as

an important mediator of allergic inflammation (120). In addition, we

found predicted targets in FcϵRI signaling and the B-cell receptor

signaling pathway. The FcϵRI exists on mast cells and basophils. Upon

cross-linking with IgE, the FcϵRI induces the release of pre-made

histamines through mast cell degranulation and triggers the synthesis

of a wide range of pro-inflammatory cytokines and chemokines,

alongside leukotrienes and prostaglandins (118, 119, 121). Similarly,
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IgE-mediated activation of basophils will lead to the release of various

proinflammatory mediators, but especially IL-4 and IL-6 (122).

Cytokine signaling is mediated through the Janus kinase-signal

transducer and activator of transcription (JAK-STAT) pathway,

which was also indicated among our predicted KEGG pathways.

The JAK-STAT signaling cascade is responsible for transferring

signals from cytokine receptors to the nucleus, making the JAK-

STAT pathway heavily involved in regulation of the immune system

(123). Other than the cytokines, receptors and chemokines already

mentioned in this review we found that both IL-1A and IL-31, as well

as IL-1RAP, IL-1RAPL2, IL-2RA, and CCL3/7/8 are targets among the

top expressed miRNAs found in breastmilk.

Furthermore, concerning the connection between allergy

development and balance in Th1 versus Th2 responses, miR-29

directly targets the TBX21 mRNA (also known as T-bet), the key

transcription factor of Th1 cells (124), and miR-181-5p targets CD4, a

co-receptor of the T cell receptor expressed on Th cells. Indeed,

previous research from our group have shown that enhanced Th2

deviation at birth is related to allergy development in the child (97, 98).

Furthermore, we have also shown that breast milk has anti-

inflammatory effects on peripheral blood mononuclear cells from

cord blood (125); the high levels of TGF-b in breast milk and

inhibitory effect of colostrum on IL-4 production, suggests a

possible mechanism whereby breast milk of certain composition

may protect against the development of allergy. We emphasize here

that “certain compositions” may be of particular interest since

previous studies on the preventative effects of breast milk on allergy

are inconclusive (126–130). However, there remains a possibility that

varying levels of breast milk mediators may partially explain the

previous conflicting findings (131). We have for example shown that

the concentrations of the Th2 associated cytokines IL-4, IL-5 and IL-

13 seem to be higher in breast milk from allergic compared to non-

allergic mothers (132) and that breast milk cytokine levels may have

geographical variations, perhaps depending on differences in

microbial load (133). Indeed, members from our group recently

showed that allergy development is associated with consumption of

breastmilk with a reduced microbial richness in the first month of life

(134). There are also indications that levels of certain breast milk

miRNA differ between allergic and non-allergic women, for example,

downregulation of let-7f-5p in mature milk tends to be associated with

development of atopic dermatitis in breastfed infants (50). Hence, the

composition likely matters; not all breastmilk is created equal. Whilst

composition likely matters, the scientific literature investigating these

relations is still fairly scarce, especially in terms of mechanisms and

causality, and future research will have to bring further clarity to

these interactions.
4.1 Future directions

In this review we make a case for breastmilk miRNAs as

important regulators of infant immune maturation, focusing on

their potential role in oral tolerance development and allergy

prevention. This review is speculative in nature and future studies

are needed to confirm the ideas put forward here, and particularly

to bring further clarity to the direction of action in the interactions
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suggested. This will require well-designed trials in an in vivo setting,

but also functional experiments uncovering the underlying

mechanisms of action in vitro. We would also like to point out

that the 19 scientific studies serving as the basis of this review were

all performed in women from high-income countries; no studies

have yet been performed outside of this population segment.
4.2 Conclusion

Infant immune regulation is a complex process impacted by

multiple factors and relies on the finetuning of multiple factors

related to Th differentiation. For example, DCs and Th interactions

in the MLN, and Treg GIT homing play a central role in tolerance

development as the primary site of interactions between food

antigens, immune cells, gut microbiota, and the immunologically

active components in breast milk. Here, we highlight the role of

breast milk miRNAs and their potential contribution to infant

immune maturation. Indeed, breast milk miRNAs seem to be

involved in several pathways that may have implications for oral

tolerance development. However, clarification of the direction of

action in these complex interactions will require knowledge

production from cleverly designed functional experimental and

further studies of the co-variation of these factors in in vivo systems.
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