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A B S T R A C T   

In emergency response volunteer programs, volunteers in the vicinity of an emergency are alerted via their 
mobile phones to the scene of the event to perform a specific task. Tasks are usually assigned based on pre-
determined rules disregarding real-world uncertainties. In this paper, we consider some of these uncertainties 
and propose an optimization model for the dispatch of volunteers to emergencies, where all task assignments 
must be done before dispatch. This means that each volunteer must be given a task before knowing whether (s)he 
is available. The model becomes computationally demanding for large problem instances; therefore, we develop 
a simple greedy heuristic for the problem and ensure that it can produce high quality solutions by comparing it to 
the exact model. While the model is for a general emergency, we test it for the case of volunteers responding to 
out-of-hospital cardiac arrest (OHCA) incidents. We compare the results of the model to the dispatch strategies 
used in two ongoing volunteer programs in Sweden and in the Netherlands and use simulation to validate the 
results. The results show that the model most often outperforms the currently used strategies; however, the 
computational run times, even for the heuristic, are too high to be operationally useful for large problem in-
stances. Thus, it should be possible to improve the outcome using optimization-based task assignments strategies, 
but a fast solution method is needed for such strategies to be practically useable.   

1. Introduction 

In the case of daily emergencies (i.e., emergencies with high fre-
quency of occurrence but low level of consequence [1]), especially those 
life-threatening, fast and timely response is needed to decrease mortal-
ity, and loss of property and environmental value. Emergency services 
are actors responsible for responding to and managing emergencies, and 
the later they arrive to the scene of an incident, the more serious the 
consequences of the incident can become. However, different issues, 
such as long travel times for reaching sparsely populated areas and 
limited available resources combined with enforced budget cutbacks, 
make it difficult for the emergency services to provide adequate and 
timely services to everyone across their service regions [2]. As one so-
lution to tackle these issues, several countries have started projects and 
programs in which other types of resources, such as volunteers, are 
utilized. In emergency response, volunteers are people willing to pro-
vide help in case of an emergency. The level of their experience, 
training, and equipment differs, and usually they have no formal re-
sponsibilities [3]. Volunteers are deployed to different emergencies such 

as out-of-hospital cardiac arrest (OHCA), trauma, traffic accidents, and 
building fires. The major aim is to reduce the time to first response, 
which can lead to a reduction of the negative consequences. 

Examples of programs employing volunteers are Missing People 
Sweden [4]; civilians in rural areas and villages, where the coverage of 
emergency services is poor [5]; civilians trained in performing cardio-
pulmonary resuscitation (CPR) and the use of automated external de-
fibrillators (AED) in cases of OHCA such as HartslagNu [6] in the 
Netherlands, SMS lifesavers [7] in Sweden, and several other initiatives 
in different countries around the world [8,9]. For instance, Missing 
People Sweden is a national organization dedicated to help finding 
persons that have disappeared. Volunteers sign up online and in case of a 
missing person in their vicinity, they receive a notification through short 
message service (SMS). Then, they will meet up at a specified gathering 
place and get all the information they need. The task is usually to search 
a specified area and look for the missing person. In all these programs, 
the locations of registered volunteers are determined using Global 
Positioning System (GPS) or based on a set of pre-registered addresses 
[10]. Depending on the type of the emergency, a number of tasks can be 
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assigned to the volunteers. For instance, in the OHCA programs, vol-
unteers are either assigned to go directly to the patient, or to pick up an 
AED on their way to the patient. Volunteers who are in the vicinity of the 
emergency are alerted using a mobile phone application (app) or SMS. 

In systems like SMS lifesavers, volunteers can accept or reject a 
mission using the app (two-way communication), but in other systems 
such as Enhanced Neighbors (also called Civilian Response Persons) [5] 
in Sweden, in which volunteers are notified through an SMS, they usu-
ally do not indicate their availability by replying (one-way communi-
cation). In the systems with two-way communication, volunteers may 
receive a notification to indicate their availability, and after their posi-
tive response, a task will be assigned to them by sending a second 
message. However, in the systems with one-way communication, a 
single notification containing the task assignment as well as the location 
of the emergency is sent to the volunteers. Therefore, an uncertainty 
related to the acceptance of the notification by volunteers in these sys-
tems exists. Moreover, in both types of systems, uncertainties associated 
with task compliance exist as well: volunteers might do as they are 
instructed (compliance), or they might do a task other than the 
instructed one (noncompliance), or they might abort the mission. Such 
uncertainties make it difficult to assess the expected effect of the task 
assignment. 

In this work, we focus on volunteer initiatives with one-way 
communication, trying to find a good allocation of tasks to all volun-
teers in the vicinity of the incident, before sending out any notification. 
We develop an optimization model for task assignment to volunteers in 
emergencies, before sending the initial notification, to shorten the ex-
pected travel times of the first response, and thereby, to improve the 
outcome. We explicitly include uncertainties related to the acceptance of 
the notification by the volunteers, as well as their compliance with their 
assigned tasks. We use an OHCA volunteer program in Sweden (SMS 
lifesavers) as a case study to test the model, minimizing expected start 
times of first CPR and first defibrillation using an AED that lead to better 
survival probability of patients. We construct a heuristic to solve larger 
instances as it becomes computationally demanding to solve these to 
optimality. We compare the performance of our model, using the heu-
ristic, with related task assignment strategies described in the literature; 
the one used in the SMS lifesavers system and the one used in the 
HartslagNu system. To evaluate the feasibility of the obtained results for 
all the methods, we also implement a simulation model, in which more 
uncertain parameters that are difficult to incorporate in the optimization 
model are included. Finally, we perform sensitivity analyses to investi-
gate how changes on some parameters could affect the results. 

The remainder of the paper is organized as follows. In Section 2, we 
present a summary of related literature. In Section 3, we detail the 
problem description, and we dedicate Section 4 to presenting the 
developed optimal task assignment model and the implemented simu-
lation model. We provide the description of the solution methods 
including the linearization of the presented model as well as the pro-
posed heuristic in Section 5. We present the case study in Section 6, 
including a description of input data as well as the existing task 
assignment strategies in Sections 6.1 and 6.2, respectively, followed by a 
description of another type of volunteer program and how the model can 
be used to support it in Section 6.3. In Section 7, we present computa-
tional results including the sensitivity analysis in Section 7.3. We pro-
vide discussions in Section 8, and finally, with Section 9 we close the 
paper with conclusions and future research directions. 

2. Related work 

The literature on volunteer management is quite broad; researchers 
have studied different aspects such as attraction and motivation of 
volunteers, evaluation of volunteers and the effect of bystanders and 
volunteers on the outcome of emergencies, the use of IT-based tools for 
communication with volunteers, and the assignment of tasks to volun-
teers. In this section, we present a few studies that are relevant to our 

work. 
Two important aspects of any emergency response volunteer project 

and program are to attract and motivate and to evaluate volunteers. As 
volunteer programs depend on dedicated citizens, it is essential to 
attract them to take part in these programs, which needs to be a 
continuous process, and keep them motivated to ensure that they stay 
with the program. Thus, Sampson [11] investigated the differences be-
tween volunteer labor and traditional labor, highlighting factors 
affecting the future invlovement of volunteers. Sampson [11] showed 
that an increase in the current use of volunteers beyond their preferred 
level of involvment, as well as lower percieved quality of current task 
assignments (e.g., requiring less responsibility than expected or imag-
ined), lead to a decrease in their future responses and involvment. 
Manshadi and Rodilitz [12] showed that overutilization of volunteers as 
well as giving them tasks that they do not prefer, have a negative effect 
on the retention within a volunteer program. They focused on online 
volunteer crowdsourcing platforms with the aim of improving the 
retention of volunteers by avoiding excessive notification, proposing 
two online randomized notification policies. Timmons and 
Vernon-Evans [13] studied personal reasons that people might have for 
taking part in emergency response as volunteers. They showed that 
“ideas of altruism and a sense of community” were the main motivators 
for people to volunteer. Barry et al. [14] investigated motivators for 
volunteering in OHCA cases, and found that “altruistic, social and 
pre-existing emergency care interest” and personal experience of cardiac 
arrest or illness in a relative are among motivating factors. After people 
have registered in volunteer programs, it is important to know which 
capabilities and skills they have in order to utilize them in the best 
possible way. Researchers such as Earl et al. [15,16] and Groh et al. [17] 
have studied these issues. Earl et al. [15,16] investigated the knowledge 
and skills of emergency management volunteers, while Groh et al. [17] 
evaluated characteristics of volunteers who have responded to emer-
gencies showing that the existence of previous emergency training re-
sults in a higher probability of willingness to participate in medical 
emergency response. 

Volunteers who take part in emergency response, should receive 
training to acquire or maintain skills needed for the specific emergencies 
that they would respond to [18]. In addition, as pointed out by 
Schönböck et al. [19], modern and up-to-date technologies are needed 
to support emergency managers to efficiently utilize volunteers. The 
usage of internet, mobile communication devices, and position tracking 
systems has become common means of communication and manage-
ment in volunteer programs. For instance, Jaeger et al. [20] considered 
information sharing and volunteer coordination in disaster response. 
Romano et al. [21] specifically focused on volunteer capabilities and 
skills and introduced a mobile phone application in which volunteers 
can register their skills, and the emergency management operation 
center can retrieve the relevant skills of each volunteer. According to 
Hanssen [22], in Norway, a position tracking system is being used by 
volunteer organizations in rescue and response operations. 

In a majority of the emergencies that volunteers respond to, more 
than one task exists; therefore, it is necessary to determine which task 
should be done by which volunteer to obtain the best possible outcome. 
Several researchers have focused on task assignment to volunteers. 
Falasca and Zobel [23], Lassiter et al. [24], Khalemsky and Schwartz 
[25], Matinrad et al. [26], Matinrad et al. [3] and Henderson et al. [27] 
have used quantitative methods for assignment of tasks to volunteers, 
with the first two works focusing on (post) disasters and the last four on 
daily emergencies. Falasca and Zobel [23] proposed a bi-objective 
optimization model that aims to minimize (1) the total cost of task 
shortages, and (2) the total number of undesired tasks and time block 
assignments for both individual volunteers and groups of volunteers. 
Lassiter et al. [24] developed a robust bi-objective optimization model 
that (1) minimizes total unmet demand, and (2) maximizes the prefer-
ence of volunteers, which aims to find the best tasks matched with skills 
of volunteers. Using simulation, Khalemsky and Schwartz [25] provided 
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a model to evaluate benefits and potential performance of first re-
sponders, such as volunteers, and compare them to professional emer-
gency medical services. Matinrad et al. [26] developed a deterministic 
multi-objective optimization model for task assignment and dispatch of 
volunteers for OHCA cases, which aims to (1) maximize survival prob-
ability of patients by shortening the time to basic CPR and early defi-
brillation using an AED before EMS arrival, (2) minimize the total 
number of dispatched volunteers, and (3) minimize the time from when 
a volunteer becomes exhausted from doing CPR until another volunteer 
can take over. Matinrad et al. [3] also focused on task assignment and 
dispatch of volunteers to OHCA patients and developed a probabilistic 
method that aims to maximize the survival probability of patients taking 
into account the probabilities that volunteers comply with their assigned 
tasks, do the alternative task, or abort their missions. Matinrad et al. 
[27] used queueing theory to determine the sequence and dispatch/alert 
time of volunteers to an OHCA case. The number of studies focused on 
task assignment and dispatch of volunteers using quantitative methods, 
especially in daily emergencies, is relatively low. However, several re-
searchers have studied the optimal deployment or placement of AEDs 
(for example see Tsai et al. [28], Bonnet et al. [29], Chan et al. [30], 
Chan et al. [31], Lee et al. [32] and Chu et al. [33]) and the optimal 
dispatch of ambulances (some works are Andersson and Värbrand [34], 
McLay and Mayorga [35], Jagtenberg et al. [36] and Enayati et al. [37]), 
some of which have also considered the presence of bystanders in their 
modeling. Van Den Berg et al. [38] presented another relevant study in 
which they determined the optimal distribution of volunteers across a 
geographical area for the best possible emergency outcome, such as 
better survival chance of OHCA patients. 

A related strand of research concerns spatial crowdsourcing, which 
has been applied to, for example, task assignment to spontaneous vol-
unteers. Spontaneous volunteers (see e.g. Paret et al. [39] and Schmidt 
and Albert [40]), are people unaffiliated with an emergency response 
organization, or traditional volunteer organizations like the Red Cross or 
the Red Crescent. They might go to an incident site and try to help, 
which creates a need for management of these resources. Different 
crowdsourcing systems have been developed to facilitate this need. 
Spatial crowdsourcing is when the tasks to be performed have a spatial 
location that the human worker (e.g., volunteer) needs to visit [41]. In 
spatial crowdsourcing, sometimes the reliability that a worker will 
complete a task is modeled. This is quite similar to how we in this work 
use the probabilities that a volunteer will start a task. In fact, Hassan and 
Curry [42] defined worker reliability as the probability that a worker 
completes a task, which is almost equivalent. In the same paper, the 
authors raise a very relevant point regarding spontaneous volunteers, 
that the reliabilities (or probabilities) cannot be assumed to be known. 
This is a major difference to programs with registered volunteers, where 
it is possible to keep track of each volunteer and their performance over 
extended periods of time, and use this data to estimate task acceptance, 
compliance, and performance (although performance is often difficult to 
quantify). To overcome this obstacle, Hassan and Curry [42] suggested 
an online learning approach to estimate the workers reliabilities based 
on the outcomes of the task assignments. While many of the spatial 
crowdsourcing studies maximize the number of tasks that can be 
completed, or the maximum reliability, Hassan and Curry [42] also 
included travel cost minimization. This makes their approach quite 
similar to our setting. One difference is that we allow multiple volun-
teers to be assigned to the same task: this way we implicitly maximize 
the probability of task completion. Hassan and Curry [42] divided the 
problem into multiple periods and assigned only one worker to each task 
in each period. After the period has passed, they required information on 
the outcome, in order to issue new assignments. Since in our work, we 
have a single period problem, and assume no communication back from 
volunteers (workers), this information is not available. 

Volunteers can participate in different emergency types, such as fires 
and OHCA, in which different tasks exist. While we develop our model to 
assign tasks to volunteers for any emergency type, we use OHCA as a 

special use-case to test the model. There exist several OHCA programs 
around the world in which volunteers are utilized, and descriptions of 
these projects can be found in Oving et al. [9], Scquizzato et al. [10], 
Andelius et al. [8], Matinrad and Reuter-Oppermann [43] and Valeriano 
et al. [44], for example. In a majority of the current OHCA volunteer 
programs, volunteers are dispatched to patients using mobile phones. 
Several researchers such as Cummins et al. [45], Herlitz et al. [46], 
Valenzuela et al. [47] and Waalewijn et al. [48] have indicated the 
importance of early basic CPR as a factor that contributes to the increase 
of the survival chance for an OHCA patient. While it is reasonable to 
include survival functions (e.g., Larsen et al. [49], Valenzuela et al. [50], 
Waalewijn et al. [48] and Matinrad et al. [26]) in the models related to 
medical emergencies to evaluate survival chances of patients, only a few 
quantitative studies, such as Erkut et al. [51], Matinrad et al. [26], Slaa 
[52] and Matinrad et al. [3], have included a survival function in their 
proposed models and methods. 

Currently there is a lack of general models or methods for dispatch 
and task assignment of volunteers to different types of daily emergen-
cies, especially for one-way systems, in which volunteers are registered 
in the system of the program (i.e., semi-organized volunteers). Matinrad 
et al. [3] presented a dispatch and task assignment method, which 
considers the uncertainty of task compliance by volunteers. However, 
this method is based on a program with two-way communication, and 
thus, determines task assignments after each volunteer indicates their 
availability, taking into account previous task assignments. Their pro-
posed method is focused on OHCA cases and based on the Swedish SMS 
lifesavers initiative. In many other volunteer projects, it is not possible 
for volunteers to indicate their availability, and therefore, task assign-
ment of volunteers should be done prior to the broadcast of the notifi-
cation. Inspired by practical volunteer projects and programs such as 
Enhanced Neighbors, SMS lifesavers, and HartslagNu, as well as the 
work of researchers such as Scholten et al. [53], Ringh et al. [54,55] and 
Auricchio et al. [56], we develop an optimization model for task 
assignment and dispatch of volunteers in daily emergencies. Our 
developed optimization model determines the task assignment for vol-
unteers, before dispatch, while taking into account uncertainties of 
mission acceptance (after receipt of a notification) and task compliance. 
To the best of our knowledge, this is the first general model for task 
assignment to volunteers, before dispatch, that has been presented in the 
literature. 

In summary, the main contributions of this paper include:  

• A general optimization model for task assignment to volunteers 
under uncertainties of mission acceptance and task compliance in 
one-way systems 

• Implementation of a simulation model for evaluating the perfor-
mance of a number of task assignment strategies  

• Presentation of a numerical study on the response of volunteers to 
OHCA cases based on real data from the SMS lifesavers program, 
showing the possibility of improving the survival probabilities of 
OHCA patients using an optimization model compared to the 
currently used strategies. 

3. Problem description and preliminaries 

In case of an emergency, a set of volunteers exists who can be sent to 
the incident site. The emergency has a set of tasks that the volunteers can 
do (allocatable tasks)–some tasks can only be handled by emergency 
professional responders (e.g., firefighters). The volunteers have different 
capabilities (e.g., knowledge and training, experience) enabling them to 
perform a subset of the tasks, which means that some volunteers can do 
all tasks while some can do only a subset of allocatable tasks. As an 
example, a set of allocatable tasks for a fire incident can be {Bring a fire 
extinguisher to the emergency site, Go directly to the site and warn 
people in the area, Bring a truck}, among which all volunteers can bring 
a fire extinguisher for instance, but only a few have a truck, and thus, 
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can receive such tasks assignment. In this example, other tasks such as 
smoke diving to take out people from a burning place can exist that 
volunteers do not have relevant capabilities and such tasks can only be 
handled by professional firefighters who have sufficient training, expe-
rience, and equipment. Therefore, these tasks are not allocatable to 
volunteers. 

The problem is to assign a maximum of one task to each volunteer in 
order to minimize the weighted task start times, where important, time 
critical tasks may have higher weights than those less important. We 
consider two types of uncertainties that affect the outcome of the task 
assignments: (1) acceptance of the mission, and (2) compliance/ 
noncompliance and mission abortion. Other aspects, such as travel times 
of volunteers and professional emergency services, and availability and 
functionality of equipment (e.g., AEDs, fire extinguishers, etc.), which 
are also prone to uncertainties, are included as deterministic parame-
ters. Task assignment is done for all volunteers at once, before dispatch, 
and will not be changed at a later stage. 

In summary, we define the problem as: 
The problem is to allocate tasks to volunteers (before dispatching) to 

minimize the weighted task start times, considering uncertainties associated 
with the notification (mission) acceptance by volunteers as well as their 
compliance with the task assignment. 

Let W be the set of volunteers and let J be the set of tasks. Assume 
that a volunteer w (w∈ W) is assigned to a task k (k∈ J), and assume that 
the volunteer notices and accepts the mission, (s)he can then make one 
out of three possible decisions (i.e., outcomes):  

• Compliance: volunteer w performs assigned task k (o = k)  
• Noncompliance: volunteer w performs a task (k′ ) other than the 

assigned task k (o = k′

∕= k)
• Abort: volunteer w aborts the task assignment k (o = R) 

We assume that we know a probability for each of the above de-
cisions. They can be interpreted as conditional probabilities p(o|k), 
indicating the probability of outcome o given the assignment k. For 
example, they indicate the probability that volunteer w will do task 1 
(o = 1) when assigned to do task 2 (k = 2) (noncompliance). Thus, we 
have p(o = k|k)+

∑

k′ ∈J:k′ ∕=k
p(o = k′

|k)+ p(o = R|k) = 1, where k,k′

∈ J,o ∈

J ∪ {R}. 
We assume that the probability of a specific outcome as well as the 

probability of mission acceptance (α) are the same for all volunteers. For 
evaluation purposes, these probabilities can be calculated using histor-
ical data. If sufficient data exists, it is also easy to consider individual (or 
group) probabilities, simply by adding an additional index on these 
parameters. 

In the considered system, a volunteer will be first notified of an event 
in their vicinity and asked whether they can provide help or not (while 
they also receive a pre-determined task assignment); they will accept the 
mission with a probability of α. After accepting the mission, they will 
start their assigned task. However, when they have started their trip to 
the event, they can drop the mission without completing the task; they 
will abort the task with a probability of p(o = R|k). That is why the two 
probabilities are considered and included in the model separately in this 
work; however, it is possible to combine them and include them as one 
single “no action” probability. 

Every volunteer has a given deterministic travel time to the emer-
gency site, which may differ depending on which task they do. For each 
task j, we define a priority set Ij consisting of all volunteers who can 
contribute to this task. As described in the example for the fire incident, 
some tasks can be performed by all volunteers, while some others can be 
performed only by a number of volunteers. The elements in the set are 
available number of ranks for task j, based on the ascendingly ordered 
travel times of the volunteers (who can perform task j) to reach the 
incident site and start task j. Therefore, each of these ranks is linked to a 
particular volunteer (w). While it is possible to define priority sets as 

multicriteria, in this paper, we use travel time of volunteers as the only 
criterion for prioritizing them in the set Ij. Let dwj denote the position 
(rank) of volunteer w in the priority set for task j, and let i be the cor-
responding rank in priority set Ij (dwj = i). The travel time for the 
volunteer in rank i ∈ Ij to perform task j is denoted by tij. 

In the example in Fig. 1, there are three volunteers, W = {1,2, 3}, 
and three tasks, J = {1,2, 3}. The travel times for each volunteer to each 
task is given on each of the arcs between a volunteer and a task. These 
travel times give rise to the priority sets Ij, where, in this example they 
are all the same since all three volunteers can be assigned to all tasks. 
The travel times are defined on the rank level, that is, the travel time t23 
for the volunteer in rank 2 to perform task 3 is 15 (which is volunteer 1). 
For each volunteer and task, the parameter dwj is also defined, stating 
which index the volunteer has in the associated priority set; for instance, 
volunteer 2 is ranked first for task 3, and thus, getting d23 = 1. 

4. Modeling pre-dispatch task assignment of volunteers 

In this section, we present the model developed for Optimal Pre- 
dispatch Task Assignment of Volunteers (OPTAV) (i.e., determining 
task assignments prior to the broadcast of the notification message), as 
well as a simulation model for evaluating the results. 

4.1. Notations 

The following notations are used in the formulation of the problem as 
a mixed-integer nonlinear programming model (MINLP).  

Sets/indices 

W Set of volunteers, indexed by w ∈ W 
J Set of tasks, indexed by j,k ∈ J 
Ij Set of ranks for volunteers, who can perform task j, sorted based on the travel 

times (priority set of task j), indexed by i ∈ Ij, j ∈ J 

Parameters 

p(j|k) Probability of a volunteer doing task j when assigned to do task k; j,k ∈ J 
α Probability of mission acceptance 
T Time horizon (can for example be set to the arrival time of professional 

emergency services) 
tij Travel time of volunteer in rank i to perform task j; i ∈ Ij, j ∈ J 
cj Weight for task j; j ∈ J 
dwj Rank of volunteer w in the priority set of task j (dwj = i; i: the rank); w ∈ W,

j ∈ J (i∈ Ij)
N Maximum number of volunteers who can be assigned to a task for an 

emergency 

Variables 

xwj Equal to 1 if volunteer w is assigned to do task j; equal to 0 otherwise; w ∈ W,

j ∈ J 
pij Probability of a volunteer in rank i arriving to the incident site to perform 

task j; i ∈ Ij, j ∈ J 
τj Expected time until first arrival (i.e., arrival of the first volunteer or 

professional emergency services) to task j; j ∈ J  

As described in Section 3, we use the priority sets to link a volunteer 
to their rank for a task (closeness to the incident site to perform a task) 
showing which order the volunteers have (dwj = i, w ∈ W, i ∈ Ij, j ∈ J), 
which will be subsequently used to determine the start time of task j. 

4.2. Model formulation 

The following is the mathematical formulation of the OPTAV model: 

min f (Θ)=
∑

j∈J
cjτj (1)  

∑

j∈J
xwj ≤ 1,w ∈ W (2)  
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∑

w∈W

∑

j∈J
xwj ≤ N (3)  

pij = α
(
∑

k∈J
p(j|k)xwk

)

, i= dwj, i∈ Ij, j∈ J,w ∈ W (4)  

τj = p1jt1j +
∑|Ij|

m=2
pmjtmj

∏m− 1

n=1

(
1 − pnj

)
+
∏|Ij|

v=1

(
1 − pvj

)
T, j ∈ J (5)  

xwj ∈{0, 1}, j ∈ J,w ∈ W (6)  

τj, pij ≥ 0, i ∈ Ij, j ∈ J (7) 

In the objective function (1), Θ = (τ1, τ2,…, τ|J|), where τj is the ex-
pected time until start of task j. The task weights (cj) correspond to the 
importance or time criticality of the task, that is, the model will prior-
itize minimizing the start time of a task with a high weight. Constraints 
(2) ensure that each volunteer can be assigned to at most one task while 
Constraint ((3) ensures that the total number of selected volunteers does 
not exceed a pre-determined upper limit (N). Some reasons for this are to 
limit the number of volunteers on the scene to avoid congestion, to 
prevent volunteers arriving and having nothing to do, which might give 
them less incentive to respond next time, and to make sure that there 
exist volunteers who have not been recently dispatched, if there is a new 
incident. 

Constraints (4) calculate the probability of arrival of volunteer with 
rank i (in the priority set of task j) to the incident site to perform task j. 
Since there is a risk that a volunteer may perform another task than the 
one (s)he was allocated, in the calculation of pij in Constraints (4), we 
consider that a volunteer might be arriving to do task j, when actually 
dispatched to perform task k. For instance, in Fig. 1, calculating the 
probability that the volunteer ranked 2 for task 3 (which is volunteer 1, 
giving d13 = 2) will arrive to task 3 is p23 = α(p(3|1)x11 + p(3|2)x12 +

p(3|3)x13). Because of Constraints (2), only one of the terms will be 
active, for example if volunteer 1 is assigned to task 1, p23 = α(p(3|1)). 

We define Constraints (5) to calculate the expected start time of task 
j, τj, indicating that the closest volunteer (ranked 1) will start task j with 
the probability p1j. If the rank 1 volunteer does not arrive (happens with 
probability (1 − p1j)), then the rank 2 volunteer will start task j (with 
probability (1 − p1j)p2j), and so on until reaching the volunteer in the 
last rank; and finally, if no volunteer arrives, the task will start at time T. 
In Fig. 1, for the starting time of task 1, it will be: τ1 = p11t11 + (1 −

p11)p21t21 + (1 − p11)(1 − p21)p31t31 + (1 − p11)(1 − p21)(1 − p31)T. By 
this constraint we ensure that all tasks are performed either by a 
volunteer or the professional emergency services. Consequently, no 
constraint needs to be included to ensure that each task is assigned to at 
least one volunteer. Constraints (6) and (7) are binary and nonnegativity 

constraints, respectively. 
If multiple volunteers are needed to contribute to a single task (e.g., 

at least three volunteers should be assigned to a task), this task can just 
be repeated in the set of tasks for the required number of times. For 
example, if it would be beneficial to have three volunteers working on 
task 2, we could just define the tasks 2a, 2b and 2c, and include them in 
the set J. By including multiples of the same task, we ensure that the 
contribution of each of the assigned volunteers is explicitly considered in 
the objective function. 

In the model, pij only depends on the task assignment (an effect of 
p(j|k)), and not on other factors such as distance to the task, which most 
likely affects p(j|k). The reason for this is data availability. On the other 
hand, as noted in Section 3, we used travel times (which is directly based 
on travel distances) as the criterion for constructing priority sets, but 
these sets can be multicriteria, if required data exists. In our model, the 
effects of pij variables come into play in the expected time until first 
arrival (τj) where they are combined with travel times of volunteers. 
Therefore, if we assume for example that in a case, the volunteer in rank 
1 for task 1 will arrive in 1 min and volunteer in rank 1 for task 2 will 
arrive in 15 min, even though the two volunteers can have the same pij 

values, they will not have similar τj values. In this example, τ1 and τ2 will 
be different since τ1 = p11 ∗ 1 and τ2 = p12 ∗ 15, where p11 = p12, 
resulting in τ1 < τ2. Thus, two volunteers ranking first for two different 
tasks and with similar pij values will not have similar expected arrival 
times for the tasks, which the model is eventually interested in 
minimizing. 

4.3. Simulation model 

The dispatch model considers uncertainties associated with the 
mission acceptance and the task compliance, but it disregards other 
uncertain elements such as travel times. Therefore, we develop a 
simulation model to facilitate a more realistic comparison between the 
performance of the heuristic and the dispatch strategies used in two 
currently ongoing volunteer programs. 

In each simulation replication for one case, we first use conditional 
probabilities to randomly draw a possible decision for each volunteer 
regarding their assigned task, giving a distance to the task. Then, 
depending on the drawn decision, we randomly draw a travel speed, 
which together with the distance is used to calculate the travel time. 
When aborting the mission (R), the travel time of the volunteer is set to a 
high value. We add the acceptance time (i.e., time from notification until 
acceptance) to the travel time to get the response time of the volunteer. 
We calculate τj as the minimum of response times of all volunteers or 
professional emergency services arriving to do task j. Finally, we 
calculate the objective function. 

Fig. 1. Example of the task allocation with three volunteers and three tasks.  
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5. Solution methods 

To solve the proposed model, we have used two approaches: a 
linearization of the OPTAV model and solving it using CPLEX 12, and a 
greedy heuristic. 

5.1. Linearization 

The proposed model in Section 4.2 is nonlinear and non-convex. 
Existing nonlinear solvers such as MINLP cannot guarantee a global 
optimal solution for non-convex models [57]. An alternative for solving 
the model is to linearize Constraints (5) and use existing commercial 
solvers, such as CPLEX. This is done using a complete enumeration of 
possible outcomes for different values on the decision variables, xwj. For 
each possible decision for each volunteer, a set of constraints are added, 
ensuring that the probability that a volunteer will contribute to a spe-
cific task is correctly set. We present the complete description of the 
process to linearize Constraints (5) with some relevant examples in 
Appendix A. 

If solved to optimality, the linearized model will give exact, optimal 
solutions to the problem. However, for problems with many volunteers 
(in our use-case, more than eight volunteers) the linear model becomes 
computationally demanding due to the large number of constraints. 
Therefore, we develop a greedy heuristic that can solve larger size 
problems as well. It should be noted that the developed greedy heuristic 
is one simple, example heuristic for solving the OPTAV model, and thus, 
it is possible to develop other types of heuristics to solve the model, 
especially in terms of better computational performance. 

5.2. Heuristic 

The pseudocode for the greedy heuristic can be found in Algorithm 1. 
In the first step, we introduce three parameters (xw, xe, and Wn) that are 
used to keep track of updates within iterations of the algorithm. The first 
parameter, xw, is used to store the assigned task to volunteer w when 
they are eligible to receive a task assignment (steps 13–15). Parameter xe 
is used to store the volunteer who has the best objective function value 
among all volunteers eligible for a task assignment, and thus, will be 
fixed for the next iterations. The last parameter, Wn, is used to keep track 
of remaining volunteers who have not yet received a task assignment 
(and thus have not been fixed within the algorithm with their task 
assignment). The rest of the notations are as described in Section 4. 

Algorithm 1. Greedy heuristic  

We first calculate the objective function (1) considering the case if no 
volunteer exists in the system, z∗0 = f(τj = T) (i.e., the initial best overall 
objective function value). Then, at each iteration (e = {1,…, |W|}), we 
assume that each volunteer will be the only one responding to the 
notification (e.g., in the first iteration, only one volunteer and the pro-
fessional emergency services exist in the system). Consequently, for each 
volunteer, individually, we consider all possible task assignment de-
cisions (k ∈ J) and calculate the objective function for each of the tasks 
and each volunteer using objective function (1), and Constraints (4) and 
(5). We use fk

w (k∈ J,w∈ Wn) to denote the objective function value. 
Thus, for each volunteer, who has not yet received a task assignment 
(w ∈ Wn), one value for each task assignment is calculated, fk

w(τj
⃒
⃒xk

w = 1,
xl∕=k

w = 0,l∈ J : l∕= k), where “xk
w = 1,xl∕=k

w = 0,l ∈ J : l ∕= k” indicates that 
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task k is assigned to the volunteer while all other tasks (l ∈ J : l ∕= k) are 
not assigned to him/her. Consequently, |J| objective function values are 
calculated for each volunteer. These values are then compared with each 
other, resulting in one best objective function value for each volunteer 

(f∗w): f∗w = min(fk
w

⃒
⃒
⃒k∈ J). At each iteration, the best f∗w value among all 

volunteers is used to update the best overall evaluation function value in 
that iteration (z∗e), where z∗e = min (f∗w < z∗e− 1

⃒
⃒w∈ Wn), and the associ-

ated task for volunteer w is fixed (i.e., it will remain unchanged in the 
following iterations). In Algorithm 1, it is done so by removing volunteer 
w from the set Wn, which includes the volunteers who have not yet 
received any task (step 20). The term “f∗w < z∗e− 1” in z∗e means that only 
the volunteers whose objective function values are better than the cur-
rent overall objective function value (z∗e− 1) are candidates for task 
assignment in iteration e, from who only the best one will be assigned a 
task. These steps repeat until N volunteers receive a task assignment or 
until the overall objective function stops improving. If the objective 
function stops improving, there exists no volunteer who can be dis-
patched, that will give a positive contribution (if it did, (s)he would have 
been identified during the current iteration). Therefore, additional it-
erations will not result in any further improvements, and thus, the al-
gorithm stops (step 22). It is worth noting that except in the first 
iteration (e = 1), where no volunteer has yet received a task assignment, 
previous task assignment decisions (which are fixed) are included in the 
calculations using Constraints (4) and (5). 

6. Case study 

We use volunteer response to OHCA as a case to test and evaluate the 
OPTAV model as we have access to relevant data for this case. In such 
volunteer programs, a set of volunteers have registered to be dispatched 
when an OHCA occurs in their vicinity. Two different tasks can be 
assigned to volunteers: (1) to go directly to the patient (D), and (2) to 
pick up an AED on the way to the patient (A), that is J = {A,D}, where 
we assume that all volunteers can perform both tasks. We consider two 
priority sets for all volunteers, one for traveling times to the patient 
contributing to the start of CPR and another one for traveling times via 
an AED. However, as a volunteer arriving with an AED can also start 
CPR, in the CPR priority set, we include travel times of volunteers both 
directly to the patient and via an AED. In the AED priority set, however, 
we include only the travel times for picking up an AED. 

We set τj as τD and τA for tasks D (CPR) and A (AED), respectively, 
and use a linearized version of the survival function from Matinrad et al. 
[26] where the objective function aims to maximize the survival prob-
ability of the OHCA patient: 

min( − 1.3614+ 0.3429τD + 0.1863τA) (8) 

As discussed in several previous studies, shorter times to basic CPR 
and early AED defibrillation, prior to the arrival of EMS, are factors 
associated with an improved survival chance for OHCA patients 
[58–61]. This has led to the European Resuscitation Council Guidelines 
2021 [62] strongly encouraging European countries to implement mo-
bile phone dispatched volunteer programs which can help reduce the 
time to the start of CPR and AED defibrillation. With these in mind, our 
focus is thus on the reduction of the expected times until the start of CPR 
and defibrillation, which lead to a higher survival chance. Therefore, we 
use the objective function (8) to minimize these expected times, which 
gives an approximation for the survival of OHCA patients following the 
replacement of the obtained values from function (8) in the (nonlinear, 
logistic regression based) survival function. 

It should be noted that if the aim instead is to directly maximize 
expected value of survival chances, the objective function should be 
formulated such that the expectation is calculated outside the nonlinear 
survival function (E[f(Θ) ]) in which the times are random values until 
the start of CPR and defibrillation. The reason for this is the fact that in 

most cases, the expected value of a function and the function of expected 
values differ. 

6.1. Input data 

We received anonymized historical data from the research group in 
charge of the SMS lifesavers project in Sweden [55,63], including 
volunteer dispatches from May to September 2018, to evaluate the 
model for the OHCA case. The dataset contained positions of patients, 
volunteers, and AEDs; time that the call center was notified; notification 
times of volunteers; acceptance times and/or rejection times; and posi-
tion tracking of the volunteers after dispatch. This data was com-
plemented by information from an after-mission survey, with questions 
about how the volunteers handled the response. 

We use the geographical location of patients, volunteers, and AEDs to 
determine estimated travel times of each volunteer. For each volunteer 
we calculate two distances: (1) the Euclidean distance between the 
volunteer and the patient (direct travel distance), and (2) the Euclidean 
distance between the volunteer and an AED and the Euclidean distance 
between the AED and the patient (the AED that gives shortest possible 
total path to the patient). We use a travel speed of 2 m/s, because it is the 
value that is used in the dispatch systems of the SMS lifesavers project 
and because Jonsson et al. [64] show that median travel speed of vol-
unteers in OHCA responses is 2.3 m/s in overall, and 1.8 m/s in popu-
lated areas. 

We calculate the probability of mission/notification acceptance, as 
well as probabilities of volunteer decisions (e.g., task noncompliance), 
using the historical data. The probability of mission/notification 
acceptance is set as equal to the total number of volunteers who have 
accepted a mission divided by the number of volunteers who have been 
notified, which is 0.58 (95 percent confidence interval: [0.57, 0.60]). 
The probabilities of compliance and noncompliance of volunteers are 
conditioned on the assigned task; these probabilities are calculated using 
Equation (9): 

P(j|k) = count(j|k)
/

∑

o∈J∪{R}

count(o|k), j, k ∈ J (9)  

where count(j|k) is the number of volunteers doing task j while they were 
assigned to do task k. In the OHCA case, the set J consists of two tasks, A 
and D, and the probabilities of compliance and noncompliance for these 
tasks as well as their 95 percent confidence intervals (CIs), based on the 
historical data are: 

P(D|D) = 0.659 (95 percent CI : [0.63, 0.69] ),
P(A|D) = 0.048 (95 percent CI : [0.0002, 0.097] ),

P(D|A) = 0.348 (95 percent CI : [0.32, 0.38] ),
P(A|A) = 0.352 (95 percent CI : [0.32, 0.38] ).

These probabilities were determined based on both the mission in-
formation and the surveys. We have used the same procedure for 
calculating these probabilities as detailed in Matinrad et al. [3]. As can 
be seen above, the 95 percent CI for P(A|D) is quite wide in relation to 
the probability itself. This wide range of CI for this probability is due to 
the small number of its population, indicating that the margin of error 
for this estimated probability is large, resulting in an imprecise esti-
mated value for the entire population. This is unlike the other proba-
bilities that have tighter CIs, and consequently, better estimated values. 
It should be pointed out that as mentioned in Matinrad et al. [3], not all 
volunteers have answered the after-mission survey completely. It can be 
assumed that the volunteers who have filled out the survey completely 
are those that are more engaged, and thus, they constitute a biased 
representation of the volunteer population. Consequently, any results 
drawn from such a sample might lead to biased values (e.g., conditional 
probabilities). However, these conditional probabilities, as presented 
both here and in Matinrad et al. [3], are the best that can be considered 
for the experiments given the currently available data. 
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In the simulation evaluation, we use stochastic travel times. Based on 
the tracked position data from the historical dataset, we simulate 
varying travel speeds, which can represent different modes of transport 
(i.e., car, bike, or on-foot). We calculate the Euclidean distance for each 
volunteer using the location of the volunteer and the patient, and based 
on the tracked positions, we calculate an estimate of their historical 
travel times, from the initial location until the location of the patient. 
Subsequently, we calculate estimated Euclidean travel speeds, and 
sample from these to simulate the varying travel speeds. A detailed 
description can be found in Matinrad et al. [3]. 

We use the algorithm by Hoad et al. [65] to determine the number of 
required replications per case. This algorithm ensures that the simula-
tion (per case) is repeated as many times as needed to avoid premature 
convergence of the simulation results, by running checks against pre-
cision criteria. Thus, a stable convergence is obtained. In our simulation, 
we considered a 99 percent confidence interval (α = 0.01) and allowed 
deviation from the mean by 10 percent as the precision criteria. 

6.2. Existing task assignment strategies 

We compare our model with two other task assignment and dispatch 
strategies based on existing OHCA volunteer programs in Sweden (SMS 
lifesavers) and the Netherlands (HartslagNu). 

6.2.1. SMS lifesavers 
In the SMS lifesavers project, a static and predefined rule block is 

used to assign tasks to volunteers. However, the SMS lifesavers strategy 
is an online strategy in the sense that volunteers are assigned a task once 
they have accepted the notification and indicated their availability [3]. 
This strategy uses a rule block “A-A-D-A-A”, where A represents to pick 
up an AED and D is to go directly to the patient, which repeats until all 
volunteers who accept the notification are assigned a task. A distance 
threshold is used for selecting volunteers that the primary notification is 
sent to. Considering that this strategy only assigns tasks to volunteers 
who have accepted, while our method assigns tasks to all electable 
volunteers, we analyze the differences between our method and this 
strategy only within the simulation evaluation process. 

6.2.2. HartslagNu 
In HartslagNu, the Dutch OHCA volunteer program, tasks are 

assigned before dispatch. Three distance thresholds are considered [52]:  

1. Alerting radius; all volunteers within this radius from the patient will 
be alerted.  

2. AED radius; AEDs within this radius from the patient can be used.  
3. Volunteer-AED radius; a volunteer will pick up an AED if one is 

within this range. 

These radii are set to 750 m, 500 m, and 250 m, respectively. Vol-
unteers who are within 750 m of the patient are considered eligible for 
task assignment. Only those AEDs that are within 500 m of the patient 
can be picked up by a volunteer (elected AEDs). From the eligible vol-
unteers, those who are within 250 m of an elected AED are assigned to 
pick up the closest one; otherwise, they are assigned to go directly to the 
patient. 

The HartslagNu strategy with these values could be directly used for 
our comparison purposes. However, the Netherlands and Sweden differ 
in their demographics, for example Sweden has a population of 10.3 
million inhabitants [66] with a population density of about 23 in-
habitants per square kilometer whereas the Netherlands has a popula-
tion of 17.5 million inhabitants [67], which results in a much higher 
population density of about 522 inhabitants per square kilometer. 
Consequently, the thresholds for distances used in the HartslagNu 
strategy need to be adjusted to reflect the circumstances in Sweden and 
provide a reasonable base for comparison. This means that to have a 
reasonable number of volunteers and AEDs for a case in Sweden, higher 

radii than those used in the Netherlands are needed, since these radii are 
too tight considering population characteristics of Sweden. If the orig-
inal radii are used for Sweden, there might be a lack of available vol-
unteers or AEDs to be used for an OHCA case. Also, given the national 
difference in density between the two countries, we suspected that using 
the original radii for the Netherlands in the HartslagNu strategy, might 
give an unfair advantage to the other strategies when used with our data. 
Thus, we wanted to see whether adjusting the radii would improve the 
results for the HartslagNu strategy, ensuring a fair comparison. By 
testing different values, we found the ones where the HartslagNu 
strategy performed best for our data. In the process of selecting radii 
values, we tested 10 different combination values for these radii: alert-
ing radius ∈ [600,1800], AED radius ∈ [400,1200], and volunteer-AED 
radius ∈ [150,750]. Then, we selected the combination resulting in the 
lowest survival difference (i.e., the highest survival chances for the 
HartslagNu strategy out of the tested combinations): 1800 m (alerting 
radius), 1200 m (AED radius), and 600 m (Volunteer-AED radius), 
where for example 1800 m corresponds to travel time of 15 min with 
speed of 2 m/s. This also corresponds to the travel time threshold (15 
min) and speed (2 m/s) considered in the SMS lifesavers project. We also 
present the results with the original values of the HartslagNu. 

6.3. Enhanced Neighbor case 

So far, we have presented related descriptions for one particular use- 
case, OHCA. However, the model should be directly applicable also for 
other use-cases, such as Enhanced Neighbors in which volunteers can get 
dispatched to a variety of daily emergencies, where each emergency 
contains different numbers of tasks. Still, the main objective function is 
the same, to start all task as soon as possible. While we do not provide 
numerical results for this case, as relevant data is unavailable, in this 
section we describe the initiative and how the model can be applied. 

Enhanced Neighbors is a type of volunteer initiative that has started 
to become popular in Sweden the last few years [5,68]. Usually, it is 
initiated by the municipal fire and rescue services (FRS), who offer the 
possibility to alert volunteers when an incident occurs in the vicinity of 
volunteers. Most often, alerts are within the rural village where they 
live, as the main idea is to enhance the preparedness, and shorten first 
response times, in areas that the FRS cannot reach in a reasonable time 
(e.g., within 25 min). The FRS provide some training and education, and 
sometimes also basic equipment and insurances. Various ways for 
altering the volunteers are used, including SMS and app, and volunteers 
are usually dispatched to a limited set of incidents, including residence 
fires, traffic accidents, drownings, and some medical alerts. 

A possible alert in this initiative could therefore be to send volunteers 
to a residential fire, where the set of tasks, J, could be: {(1) First aid, (2) 
Small fire suppression, (3) Large fire suppression, and (4) Wayshowing}. 

Task 2 (small fire suppression) is done with handheld fire extin-
guishers, while for Task 3, a mobile pump unit is used, which has to be 
transported by a car. The last task (wayshowing) is to physically show 
the FRS which way to go to find the fire, if there is a risk that they might 
have difficulty finding the way (this is usually not necessary but may be 
beneficial in some cases). For each task, a call-out time (the time from 
receiving the alert until start of travel towards the incident) will be 
added to the estimated travel time for each volunteer. The call-out time 
will be longer for Task 3 than for the other tasks since it will take time to 
connect the pump unit to the car. 

As an example, we can assume that there exists a set of four volun-
teers with varying capabilities and response times, giving rise to 
different priority sets, one for each task. I1 and I4 include all four vol-
unteers, I2 includes three volunteers, and I3 includes only one volunteer 
who has the capability to transport and handle the pump unit. The 
parameter dwj is set in accordance with the ascendingly sorted estimated 
response times, which includes call-out times and estimated travel times 
for each volunteer. 

Finding good input data for call-out times and acceptance and 
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compliance probabilities for these initiatives is difficult, since in a sys-
tem with one-way communication, limited information about what 
happens after the alert has been sent, becomes available. To set these 
values, it is possible to base them on other similar initiatives where data 
exists, like SMS lifesavers. It is also possible to use interviews or surveys 
to get information from the volunteers and the FRS what they believe 
might be reasonable. Having this information, it is possible to set up the 
remainder of the model parameters, and thus, run the model to deter-
mine the decision variables and the objective function value. 

7. Computational results 

In this section, we present the analytical results for the OPTAV 
model, the greedy heuristic, and the HartslagNu strategy, and the 
simulation results for these strategies as well as the SMS lifesavers 
strategy. We ran the linearized OPTAV model using AMPL with the 
solver CPLEX 12. The greedy heuristic, the HartslagNu strategy, and the 
simulation were implemented in R/RStudio. The experiments were 
conducted on a dual core laptop (i7-6500U CPU, 2.50 GHz) with 8 GB 
RAM. 

It should be noted that the results obtained using function (8) is used 
to calculate the survival chances of OHCA patients using equation (10) 
(based on [3,26]): 

f (τD, τA) =
1

1 + e(− 1.3614+0.3429τD+0.1863τA)
(10) 

Thus, in the results, large values are preferable. 

7.1. Comparing exact and heuristic results 

The dataset from the SMS lifesavers project consists of 712 cases. Out 
of these, we used 482 when solving the model exactly, where between 
one and seven volunteers accepted the notification, since more than 
seven volunteers becomes too taxing for the linearized OPTAV model 
(referred to as the OPTAV model for simplicity hereafter). It should be 
noted that this limitation on the useable cases when solving the model 
exactly can result in a systematic bias since cases with larger number of 
volunteers are intentionally excluded from the calculations and the 
comparisons with the greedy heuristic. We set the time horizon, which 
in the OHCA case can be regarded as the EMS arrival time, T, to 15 min, 
since we lack historical data on EMS arrival times. Otherwise, an 
alternative would have been to set T to the historical (or expected) EMS 
arrival time. In Section 7.3.2, we perform a sensitivity analysis on this 
parameter, investigating its effect on the results. We present the 
comparative results in Table 1 and Fig. 2. 

In Table 1, we present statistics for the OPTAV model and the greedy 
heuristic, as well as their absolute and relative differences. It should be 
noted that to obtain the statistical measures in this table for the absolute 
and relative differences (the third and fourth rows of the table), we first 
calculated the difference between each pair of results (for the two 

methods) per each case, and then computed these measures across all 
the differences. As can be seen in Table 1, the greedy heuristic performs 
very well. The only statistical measure where a noticeable difference to 
the exact model exists, is the mean, where it shows that the heuristic not 
always finds the optimal solution. In only seven percent of the cases, the 
relative difference of the achieved survival chances for the two methods 
is above 0.001 and the absolute difference is above 0.0001. 

In Fig. 2, we illustrate the survival probabilities for both the OPTAV 
model and the greedy heuristic, showing that the greedy heuristic is 
performing similar to the OPTAV model except for a few instances where 
minor differences exist. 

The results indicate that the greedy heuristic in the majority of cases 
manages to produce optimal solutions, and otherwise near-optimal 
solutions. 

In Table 2, we present statistics of the computational run times for 
the OPTAV model and the greedy heuristic. As can be seen in this table, 
while the median of run times for both methods differ in favor of the 
OPTAV model, the values for the average, third quartile, and maximum 
of run times for two methods are noticeably shorter for the greedy 
heuristic. In addition, a noticeable difference between the average value 
and median for the OPTAV model exists. This is due to the cases with 
long run times resulting in a large average value while the majority of 
cases have very short run times (observe the values for Q1, median, and 
Q3). In 15 percent of the cases (i.e., 73 out of 482 cases), the OPTAV 
model takes longer than 100 s, and in another 15 percent of the cases (72 
cases), it takes between 10 and 100 s to produce an optimal solution. In 
153 cases (32 percent), the greedy heuristic produces a solution within 
1 s. 

7.2. Comparing the heuristic to the existing task assignment strategies 

First, without using simulation, we compare the greedy heuristic 
with the HartslagNu strategy on the full dataset (i.e., 712 cases) and 
present the comparative results in Table 3. As we can see in this table, 
the greedy heuristic performs better in terms of all statistic measures 
compared to the HartslagNu strategy (both the original radii and 
adjusted ones, presented in the table in rows HartslagNu strategy orig. 
and HartslagNu strategy adj., respectively). As can be seen, the adjusted 
HartslagNu strategy performs better than the HartslagNu strategy with 
original radii. In the last two rows of Table 3 (i.e., Diff1 and Diff2), we 
show the differences between the greedy heuristic and the HartslagNu 
strategy. The greedy heuristic performs better than the adjusted Hart-
slagNu strategy in 84 percent of the cases, resulting in at most a 0.11 
higher survival chance. The adjusted HartslagNu strategy is better than 
the greedy heuristic in one percent of the cases, resulting in at most a 
0.005 higher survival chance; in the remaining 15 percent of the cases, 
the greedy heuristic performs the same as the adjusted HartslagNu 
strategy. 

We can see that the statistic measures for the run times for the greedy 
heuristic and the adjusted HartslagNu strategy in Table 4. Comparing 
the results between the two methods with respect to Tables 3 and 4, we 
can see that although the greedy heuristic results in higher (theoretical) 
survival chances, it requires longer run times, where in the longest case 
it takes up to about 1 min. As can be seen from Tables 2 and 4, a 
noticeable difference between run times of the greedy heuristic in these 
tables exists. The difference is because values in Table 2 are limited to 
cases where a maximum of seven volunteers were notified while in 
Table 4 all cases in which a maximum of 30 volunteers were notified are 
included, and thus, the latter has a larger value. 

In Fig. 3, we show the trend of the computational run times (median) 
for the greedy heuristic versus the adjusted HartslagNu strategy for in-
tervals of five volunteers ({1 − 5,6 − 10,11 − 15,16 − 20,21 − 25,26 −

30}. As can be seen from this figure, while the median run times for the 
adjusted HartslagNu strategy is quite stable at around 0.08 s, the median 
run times for the greedy heuristic ranges from 2 to 46 s. It should be 
noted that the run times for the greedy heuristic would not be acceptable 

Table 1 
Analytical results (survival probabilities) for the OPTAV model and the greedy 
heuristic.   

Min Q1 Median Mean Q3 Max 

OPTAV 
model 

0.0015 0.0095 0.0312 0.0759 0.1082 0.4824 

Greedy 
heuristic 

0.0015 0.0095 0.0312 0.0757 0.1082 0.4824 

Diffa − 5.24E- 
06 

− 5.47E- 
08 

1.45E- 
08 

0.0002 1.03E- 
07 

0.0107 

Relative 
Diffb 

− 0.0004 − 1.65E- 
06 

3.05E- 
07 

0.0014 5.32E- 
06 

0.0634  

a SurvivalOPTAV − SurvivalGreedy. 
b
(SurvivalOPTAV − SurvivalGreedy)/SurvivalOPTAV .  
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in a real implementation. We discuss this further in Section 8. 
We used simulation to get a more realistic evaluation of how the 

dispatch methods perform, including additional stochastic aspects. From 
the entire dataset with 712 cases, we included only cases where at least 
one volunteer accepted, resulting in 685 cases. This gave us the possi-
bility to add the historical time interval from notification to acceptance 
to the travel times for each volunteer to get proper response times for the 
volunteers. We present the results of the simulation in Table 5. 

We can see from Table 5 that the greedy heuristic has higher survival 
probabilities compared to both the SMS lifesavers and the adjusted 
HartslagNu strategies and performs better than these two strategies in 
71 percent and 69 percent of the simulated cases resulting in at most 
0.0826 and 0.0887 higher survival chances, respectively. In 28 percent 
and 29 percent of the cases that the SMS lifesavers and the adjusted 
HartslagNu strategies performs better than the greedy heuristic, their 
best achieved survival chances are, respectively, at most 0.0473 and 

0.0550 higher. 
When comparing Tables 3 and 5, we see that for both the greedy 

heuristic and the adjusted HartslagNu strategy, the achieved survival 
probabilities drop significantly. One reason for this is because in the 
analytical results all electable volunteers (up to 30 volunteers) are 
included in the calculations of the survival probability, while in the 
simulation, only volunteers who have accepted the notification are 
included. This means that in some cases, where historically very few 
volunteers accepted, the survival probabilities decrease. In addition, in 
the analytical results, the response times of the volunteers include only 
their travel times, but in the simulation, the response times consist of 
travel times and times to acceptance, which also lowers the survival 
probabilities. In Fig. 4, we show the results of the simulation for the 
greedy heuristic and the SMS lifesavers strategy as well as the adjusted 
HartslagNu strategy, sorted increasingly based on survival probability 
values of the SMS lifesavers strategy and the adjusted HartslagNu 
strategy, respectively. The upper plot shows that in most cases, the 
greedy heuristic will give better outcome than the SMS lifesavers 
strategy, even though all assignments are done before dispatch. The 
lower plot shows that in overall, the greedy heuristic will result in better 
outcome than the adjusted HartslagNu strategy. 

7.3. Sensitivity analysis 

Previously, we used one single value for the acceptance probability 
and a fixed value for the time horizon (EMS arrival time) of 15 min. In 
this section, we perform sensitivity analyses to investigate the effect of 
these assumptions on the results. 

7.3.1. Acceptance probability 
We test different values for the acceptance probability to investigate 

how the results are affected, considering the values {0.08, 0.18, 0.28, 

Fig. 2. Analytical patient survival probabilities for the OPTAV model and the greedy heuristic.  

Table 2 
Computational run times for the OPTAV model and the greedy heuristic (in 
seconds).   

Min Q1 Median Mean Q3 Max 

OPTAV model 0.015 0.05 0.17 28.38 13.03 323.95 
Greedy heuristic 0.21 0.75 1.65 1.95 3.01 9.09  

Table 3 
The comparative analytical results, showing the survival chance, for the greedy 
heuristic and the HartslagNu strategy (with original and adjusted radii).   

Min Q1 Median Mean Q3 Max 

Greedy heuristic 0.0014 0.0679 0.2175 0.2705 0.4440 0.7411 
HartslagNu 

strategy, orig. 
0.0014 0.0291 0.0918 0.2074 0.3598 0.7377 

HartslagNu 
strategy, adj. 

0.0014 0.0625 0.1878 0.2548 0.4233 0.7378 

Diff1a − 0.0127 0.0095 0.0486 0.0631 0.1052 0.3332 
Diff2b − 0.0051 0.0021 0.0103 0.0158 0.0246 0.1091  

a SurvivalGreedy − SurvivalHartslagNu orig.. 
b SurvivalGreedy − SurvivalHartslagNu adj..  

Table 4 
Computational run time for the greedy heuristic and the adjusted HartslagNu 
strategy (in seconds).   

Min Q1 Median Mean Q3 Max 

Greedy heuristic 0.19 6.82 21.56 22.93 44.17 62.66 
HartslagNu strategy, adj. 0.01 0.05 0.07 0.074 0.09 0.22  
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0.38, 0.48, 0.58, 0.68, 0.78, 0.88, 1}. 
In Fig. 5, we show mean and median values for the greedy heuristic 

and the adjusted HartslagNu strategy across the set of tested acceptance 
probabilities. As we can see from Fig. 5, with the increase of acceptance 
probability, the mean and median survival probabilities for the two 
methods increase, more for the greedy heuristic than for the adjusted 
HartslagNu strategy. 

7.3.2. EMS arrival time 
We investigate the effect of the EMS arrival time by testing different 

values for this parameter: {3, 5, 8, 10, 12, 15, 18, 21, 24, 27, 30, 40, 50}. 
In Table 6, we present descriptive statistics for the difference between 
the greedy heuristic and the adjusted HartslagNu strategy (Diff) for each 
of the tested EMS arrival times. While we can see that the average dif-
ference between the strategies indicates that the greedy heuristic per-
forms better, there seems to be no obvious trend on how this difference 
depends on the EMS arrival time. 

Fig. 3. Comparison of the computational run times for the greedy heuristic and the adjusted HartslagNu strategy.  

Table 5 
The comparative simulated results between the greedy heuristic, the SMS life-
savers strategy, and the adjusted HartslagNu strategy.   

Min Q1 Median Mean Q3 Max 

Greedy 
heuristic 

0.0014 0.0421 0.1156 0.1381 0.1966 0.5913 

SMS lifesavers 
strategy 

0.0014 0.0433 0.1081 0.1305 0.1829 0.5772 

HartslagNu 
strategy, 
adj. 

0.0014 0.0392 0.1072 0.1316 0.1893 0.5736 

Diff1a − 0.0473 − 0.0006 0.0046 0.0077 0.0133 0.0826 
Diff2b − 0.0550 − 0.0003 0.0028 0.0065 0.0114 0.0887  

a SurvivalGreedy − SurvivalSMS lifesavers. 
b SurvivalGreedy − SurvivalHartslagNu adj..  

Fig. 4. Simulated patient survival probabilities for the greedy heuristic vs. the SMS lifesavers strategy (top) and the greedy heuristic vs. the adjusted HartslagNu 
strategy (bottom). 
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8. Discussion 

Looking at the results, we can see that the greedy heuristic in com-
parison with the OPTAV model obtains optimal or near-optimal solu-
tions. Thus, the greedy heuristic can be considered a reliable 
replacement for the model. It also indicates that the problem, at least for 
the specific OHCA case study, is not overly complex, and that it is 
possible to find good solutions with simpler methods. This is good, since 
implementing and solving complex optimization models is usually not 
an option in this kind of setting, where it is difficult to find funding for 
expensive decision support systems. 

The assignments suggested by the greedy heuristic also give a higher 
survival probability on average, compared to the currently used strate-
gies in the SMS lifesavers and HartslagNu initiatives. This is noteworthy, 
especially in the SMS lifesavers case, where the assignments are done in 
an online manner, after information about availability has been 
received. While it is possible to utilize this information to make better 
decisions (like in Matinrad et al. [3]), this is not done in the current SMS 

lifesavers strategy (at the time of the study). Thus, the results indicate 
that developing and using smarter dispatch strategies might help save 
more lives, even when limited information is available. 

However, the computational run times for the greedy heuristic is 
much too long to be operationally useful. This is partly due to the 
continuous increase of calculations that must be made when the number 
of volunteers increase. It is also due to the selection of implementation 
platform, computer hardware, and coding that did not focus on run 
speed. Improving these will definitely reduce the run times of the heu-
ristic, possibly to operationally useful numbers. 

Thus, in practice, it would not be advisable to implement the greedy 
heuristic as is, without ensuring that the computational run times are 
sufficiently short. For the HartslagNu initiative, the recommendation 
would thus be to code and implement the greedy heuristic, optimized for 
run speed. For the SMS lifesavers initiative, it would be better to go with 
a dynamic dispatch strategy, such as the one suggested in Matinrad et al. 
[3]. In general, the results illustrate the potential of using mathematical 
modeling for decision support, and the trade-off against potential cost, 
here in the form of waiting time (i.e., time until decisions are suggested 
by the system). 

Regarding tasks that require equipment to be picked up by volun-
teers (e.g., AEDs in case of OHCA), it may be noted that several volun-
teers can be assigned to pick up the same equipment. Such a setting is 
included to increase the probability that the required equipment will 
arrive to the site of the emergency, since if only one volunteer is assigned 
to each piece of equipment, some required equipment might remain 
undelivered. However, in practice it also means that a volunteer may 
reach the equipment location only to find that it is no longer there, 
which may have a demoralizing effect. The same is true if volunteers 
consistently find themselves arriving after the professional emergency 
services, or when enough volunteers have already arrived. As indicated 
by Sampson [11]; the amount of future “committed labor” that any 
volunteer would agree to, that is, the amount of time and effort spent to 
help out voluntarily, is directly affected by “the perceived quality” of the 
task assignments. This means that scenarios as described above can lead 
to a decrease in the number of available volunteers or the mission 
acceptance probabilities. Thus, it may be wise to carefully study data for 
historical cases, to investigate how often tasks are “overallocated”, and 
possibly adapt the dispatch strategies. 

Fig. 5. Average (top) and median (bottom) survival probability for the greedy heuristic and the adjusted HartslagNu strategy for different acceptance probabilities.  

Table 6 
Descriptive statistics for survival probabilities of the greedy heuristic and the 
adjusted HartslagNu strategy for different EMS arrival times.  

EMS 
arrival 
time 

Median Mean 

Greedy HartslagNu, 
adj. 

Diffa Greedy HartslagNu, 
adj. 

Diffa 

3 0.5064 0.4897 0.006 0.5239 0.5112 0.013 
5 0.3790 0.3578 0.014 0.4057 0.3867 0.020 
8 0.2726 0.2537 0.014 0.3217 0.3044 0.019 
10 0.2376 0.2175 0.012 0.2962 0.2807 0.017 
12 0.2292 0.1991 0.010 0.2821 0.2676 0.016 
15 0.2175 0.1878 0.010 0.2705 0.2548 0.016 
18 0.2102 0.1858 0.011 0.2637 0.2488 0.016 
21 0.2061 0.1807 0.011 0.2586 0.2433 0.017 
24 0.2029 0.1716 0.010 0.2552 0.2389 0.018 
27 0.1998 0.1685 0.010 0.2523 0.2353 0.018 
30 0.1943 0.1634 0.010 0.2500 0.2322 0.019 
40 0.1834 0.1518 0.010 0.2447 0.2239 0.022 
50 0.1790 0.1421 0.011 0.2413 0.2175 0.025  

a SurvivalGreedy − SurvivalHartslagNu adj..  
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Task compliance, acceptance of mission, and travel times of volun-
teers are important factors, highly affecting the performance of the task 
assignment models and strategies. It is therefore vital to educate people 
who volunteer to understand the value of their participation (i.e., 
acceptance) as well as the positive effects of performing the assigned 
task (compliance). In addition, an improved travel time modeling, as 
opposed to Euclidean-based travel times that is currently used in prac-
tice, considering more realistic aspects such road networks and obsta-
cles, can help improve the estimated outcome. 

In the OHCA case, only two tasks exist, and thus, the usefulness of the 
model and the heuristic has only been proved for this specific problem. 
While it is reasonable to assume that the greedy heuristic would not be 
able to find optimal solutions as often if the number of tasks increase, 
this is also true for the rule-of-thumb type of decision rules that are used 
in practice today. However, the generalized form of the heuristic makes 
it easy to use it, even if more tasks are added, which may not be true for 
other, more specialized strategies. 

Regarding the total number of dispatched volunteers, it might be 
argued that the higher number of volunteers, the better. While it can be 
correct theoretically since it increases the chances of some (at least one) 
volunteers arriving at the scene of the emergency to perform the given 
tasks. However, such a strategy entails two disadvantages; (1) in case of 
overlapping emergencies, enough number of volunteers might not be 
available for the emergency following the first one. (2) Since it is 
possible that in some cases, the number of volunteers arriving to the 
scene exceeds the expected average, the scene of the emergency can 
become too crowded, which might hinder the help by volunteers or 
professionals. For these two main reasons, managers or owners of the 
volunteer programs usually limit the number of volunteers who are 
notified and dispatched to an emergency (denoted by N in our model). 
For example, in the SMS lifesaver system, this number is set to a 
maximum of 30 dispatched volunteers. 

9. Conclusion and future research 

In this work, we developed an optimization model for emergency 
response volunteer programs in which task assignments are determined 
before the dispatch of volunteers. The model also takes into account the 
uncertainties related to mission acceptance and task compliance by 
volunteers and aims to minimize the expected task start times. We 
developed a simple greedy heuristic that can produce good solutions. We 
used volunteer dispatch to OHCA as a use-case for the developed model 
and compared it to the dispatch strategies used in the HartslagNu project 
in the Netherlands and the SMS lifesavers initiative in Sweden. The re-
sults show that the proposed heuristic performs better than the existing 
strategies in most cases. 

In the proposed model, we consider that all volunteers have the same 
level and set of skills and capabilities. One possible extension is to 
consider the performance of volunteers in previous missions (or their 
documented experience or training) by carefully adjusting the proba-
bilities that (s)he will arrive to start the task. It may be possible to make 
the ranking in the priority set Ij to be multicriteria, and capable of 
prioritizing volunteers for each task j based on several criteria, such as 
distance of volunteers to the task, their skill levels, and their prior per-
formances in response to previous assignments (i.e., complying/ 
noncomplying with their task assignments). Creating such comprehen-
sive priority sets require sufficient data on all considered criteria. In-
clusion of these priority sets also results in a need for modifications of 
the current model so that the calculations can accommodate how ranks 
are defined in these sets. This can be modeled by including multiple 
objectives, each responsible for one such aspect. For instance, one 
objective minimizes the task start times (similar to this work), another 
one maximizes match between task assignments and task preference of 
volunteers, and another one maximizes the match of required skills and 
registered skills of volunteers. 

In the developed model, two types of uncertainties are directly 

included. However, other elements, which we considered deterministic, 
such as travel times of volunteers, response times of professional 
emergency services, pickup time and setup time of equipment, can be 
incorporated as uncertain as other extensions of the model. Moreover, in 
this model, we assumed that equipment items (e.g., AEDs) are stationary 
located. In recent studies, the delivery of AEDs with drones has been 
investigated (e.g., Derkenne et al. [69] and Schierbeck et al. [70]). Such 
a setting would mean that fewer people will be needed to pick up 
equipment, and that the risk that the equipment will not be delivered is 
reduced. However, there still exists an uncertainty in the delivery due to, 
for example, the malfunctioning of drones or bad weather. 

It is reasonable to consider that (1) the probability of mission 
acceptance (α) in one-way systems is dependent on the task assignment, 
since volunteers receive their task assignment with the notification/ 
alert; (2) the probability of what volunteers decide to do once they 
accept a task (e.g., noncompliance) is dependent on individual volun-
teers; and (3) the probability of decisions of volunteers once they accept 
a task (e.g., abort) is dependent on the distance and time it takes for the 
volunteer to arrive at the scene to do that task. Making such detailed 
modeling of the probabilities require adequately large enough datasets 
in which necessary information on relevant aspects are included. 
Therefore, this is an interesting avenue for future research. 

The current model assigns tasks to volunteers for a single emergency; 
one other potential extension of the model is to consider the possibility 
of simultaneous emergencies. This should be easy to handle with the 
existing model, by adding multiple task sets; however, such an extension 
may require a careful weighting of the objective function(s), especially if 
the incidents are of different types and urgency. 

The current greedy heuristic produces better results compared to the 
HartslagNu strategy; however, it takes too long to run to be useful in 
practice. Another potential extension to this work is to design a faster 
heuristic so that high quality survival outcomes can be achieved in an 
operationally useful timeframe. 
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Appendix A. Linearization of the model 

To linearize Constraints (5), we replace pmj
∏m− 1

n=1
(1 − pnj) and 

∏|Ij|

v=1
(1 − pvj) with the new variables p̂mj and q̂j, respectively, and rewrite these con-

straints: 

p̂mj = pmj

∏m− 1

n=1

(
1 − pnj

)
, m = 2,…,

⃒
⃒Ij
⃒
⃒, j ∈ J (A.1)  

q̂j =
∏|Ij|

v=1

(
1 − pvj

)
, j ∈ J (A.2)  

τj = p̂1jt1j +
∑|Ij|

m=2
p̂mjtmj + q̂jT, j ∈ J (A.3) 

Note that p̂1j = p1j. 
We define a new variable yijk = 1 if volunteer in rank i for task j is assigned to task k, and include the new Constraints (A.4): 

∑

k∈J
yijk ≤ 1, i ∈ Ij, j ∈ J (A.4) 

Constraints (A.1) and (A.2) cannot be directly included since they are nonlinear, but they can be linearized based on the complete enumeration of 
possible outcomes, as given by yijk, and the fact that the model will always maximize the variable probabilities of using volunteers with short travel 
times (task start times). We can restrict the p̂mj variables so that they match the corresponding probability given by the previous arriving volunteers. 

For example, in Fig. 1, for task 1, we have: 

τ1 = p11t11 +(1 − p11)p21t21 +(1 − p11)(1 − p21)p31t31 + (1 − p11)(1 − p21)(1 − p31)T  

which can be written as 

τ1 = p̂11t11 + p̂21t21 + p̂31t31 + q̂1T 

For all volunteers, p̂ij ≤ pij. The accumulation variable p̂ij should never exceed the individual probabilities pij, since pij is multiplied by something 
less than or equal to one (A.1). However, there is never any reason for the model to set p̂ij lower than pij as this would lower the probability that the 
closest volunteer would start task j, which would increase the response time τj, making the objective function value worse (the objective function 
minimizes the expected time until first arrival, which corresponds to maximizing the probability of arrival of the closest volunteers). 

For volunteer rank 1 to task 1 (which is volunteer w = 2), we already have p̂1j = p1j. For volunteer rank 2 to task 1 (which is volunteer w = 1), we 
have to consider the dispatch of volunteer rank 1, which for the example in Fig. 1 may be y111 = 1 or y112 = 1 or y113 = 1 or y111 = y112 = y113 = 0, 
that is four possible states, giving rise to four upper bounds for p̂21: 

y111 = 1 p̂21 ≤ (1 − αp(1|1) )p21 + (1 − y111)

y112 = 1 p̂21 ≤ (1 − αp(1|2) )p21 + (1 − y112)

y113 = 1 p̂21 ≤ (1 − αp(1|3) )p21 + (1 − y113)

All y11k = 0 p̂21 ≤ p21 + (y111 + y112 + y113)

Out of these, only one constraint will be active, as a volunteer can only be dispatched to a maximum of one task. And since the model will set ̂p21 as 
large as possible, it will give p̂21 = (1 − p11)p21. For all y11k = 0, we can remove the y’s from the constraint, since it should always be true. For 
volunteer rank 3 to task 1, the task assignments of both volunteers rank 1 and 2 have to be considered, giving sixteen new constraints, for example: 

y111 = 1, y213 = 1 p̂31 ≤ (1 − αp(1|1))(1 − αp(1|3) )p31 + (1 − y111) + (1 − y213)

y11k = 0, y213 = 1 p̂31 ≤ (1 − αp(1|3) )p31 + (1 − y213)

To generalize the constraints, for each volunteer rank m in the set Ij, a set Mm is defined, containing all volunteers that are closer to task j than 
volunteer rank m, that is Mm = {1,…,m − 1}. Furthermore, different subsets of set Mm (i.e., S) are constructed to get the possibility of examining all 
combinations of task allocations for the volunteers in each rank. For the example in Fig. 1, for task 2, I2 = {1,2,3}. Then, m = 3 gives the set M3 =

{1,2}, with the subsets, {{1},{2}, {1,2}}. We define S ⊆ Mm to iterate over these subsets (i.e., S = {1}, S = {2}, S = {1,2}), and Js as the corre-
sponding set of possible task assignments associated with the set S, consisting of several sets B. For instance, if S = {1,2}, there are three possible tasks, 
and both volunteers can do any of these tasks, Js = {{1,1}, {1,2}, {1,3}, {2,1}, {2,2}, {2,3}, {3,1}, {3,2}, {3,3}}, where B = {2,3} means that 
volunteer rank 1 is assigned to task 2, and volunteer rank 2 is assigned to task 3. 

So, in general form we get: 
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τj = p̂1jt1j +
∑|Ij|

m=2
p̂mjtmj + q̂jT, j ∈ J (A.3)  

∑

k∈J
yijk ≤ 1, i ∈ Ij, j ∈ J (A.4)  

p̂mj ≤ pmj,m ∈ Ij, j ∈ J (A.5)  

p̂mj ≤ pmj

∏

k∈B
(1 − αp(j|k) ) +

∑

s∈S

∑

k∈B

(
1 − ysjk

)
, m ∈ Ij : m ≥ 2, S ⊆ Mm,B ∈ Js, j ∈ J (A.6)  

q̂j ≤
∏

k∈B
(1 − αp(j|k) ) +

∑

s∈S

∑

k∈B

(
1 − ysjk

)
, S =

{
1,…,

⃒
⃒Ij
⃒
⃒
}
,B ∈ Js, j ∈ J (A.7)  

∑

m∈Ij

p̂mj + q̂j = 1, j ∈ J (A.8)  

yijk = xwk, i = dwj,w ∈ W, j ∈ J, k ∈ J (A.9)  

yijk ∈{0, 1}, i ∈ Ij, j ∈ J, k ∈ J (A.10)  

p̂mj, q̂j ≥ 0,m ∈ Ij, j ∈ J (A.11) 

Constraints (A.6) are defined for all tasks and all volunteers in the priority set for task j (starting with volunteer rank 2) and states the upper bound 
for the probabilities ̂pmj. Constraint set (A.7) gives the upper bound for the probability that no volunteer will do task j. Constraints (A.8) ensure that the 
sum of the new probability variables is equal to one. We include Constraints (A.9) to ensure that the volunteer in rank i is linked to the volunteer w. 
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