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Abstract

In Model Predictive Control (MPC), optimization problems are solved recurrently
to produce control actions. When MPC is used in real time to control safety-
critical systems, it is important to solve these optimization problems with guar-
antees on the worst-case execution time. In this thesis, we take aim at such worst-
case guarantees through two complementary approaches:

(i) By developing methods that determine exact worst-case bounds on the com-
putational complexity and execution time for deployed optimization solvers.

(ii) By developing efficient optimization solvers that are tailored for the given
application and hardware at hand.

We focus on linear MPC, which means that the optimization problems in ques-
tion are quadratic programs (QPs) that depend on parameters such as system
states and reference signals. For solving such QPs, we consider active-set meth-
ods: a popular class of optimization algorithms used in real-time applications.

The first part of the thesis concerns complexity certification of well-established
active-set methods. First, we propose a certification framework that determines
the sequence of subproblems that a class of active-set algorithms needs to solve,
for every possible QP instance that might arise from a given linear MPC prob-
lem (i.e., for every possible state and reference signal). By knowing these se-
quences, one can exactly bound the number of iterations and/or floating-point
operations that are required to compute a solution. In a second contribution, we
use this framework to determine the exact worst-case execution time (WCET) for
linear MPC. This requires factors such as hardware and software implementa-
tion/compilation to be accounted for in the analysis. The framework is further
extended in a third contribution by accounting for internal numerical errors in
the solver that is certified. In a similar vein, a fourth contribution extends the
framework to handle proximal-point iterations, which can be used to improve
the numerical stability of QP solvers, furthering their reliability.

The second part of the thesis concerns efficient solvers for real-time MPC. We
propose an efficient active-set solver that is contained in the above-mentioned
complexity-certification framework. In addition to being real-time certifiable, we
show that the solver is efficient, simple to implement, can easily be warm-started,
and is numerically stable, all of which are important properties for a solver that
is used in real-time MPC applications. As a final contribution, we use this solver
to exemplify how the proposed complexity-certification framework developed
in the first part can be used to tailor active-set solvers for a given linear MPC
application. Specifically, we do this by constructing and certifying parameter-
varying initializations of the solver.





Populärvetenskaplig sammanfattning

En populär reglerstrategi för att styra komplexa system är modellprediktiv regle-
ring (MPC), där styrbeslut fattas genom att lösa matematiska optimeringspro-
blem. Detta kräver att datorprogram som kan lösa sådana problem, så kallade
optimeringslösare, byggs in på systemen som ska styras. När MPC används för
att styra snabba system kan tusentals optimeringsproblem behöva lösas varje se-
kund, vilket ställer höga krav på optimeringslösarna. Ett grundläggande krav
är att optimeringsproblemen måste kunna lösas tillräckligt snabbt, annars blir
de resulterande styrbesluten oförutsägbara. Att uppfylla detta krav är dock of-
ta utmanande i praktiken eftersom beräkningsresurser på inbyggda system är
begränsade. Värstafallsgränser på tidsåtgång för optimeringslösare är således av
stor vikt, speciellt när MPC används för att styra säkerhetskritiska system i re-
altid, där oförutsägbara styrbeslut kan få förödande, till och med livshotande,
konsekvenser.

I den här avhandlingen presenteras ett ramverk som beräknar sådana värsta-
fallsgränser. Specifikt undersöks aktivmängdlösare, en klass av optimeringslösare
som ofta används för att lösa kvadratiska optimeringsproblem, vilket är problemen
som måste lösas när MPC används för att styra system som kan modelleras med
linjära modeller. Mer specifikt bestämmer ramverket vilken sekvens av delpro-
blem (linjära ekvationssystem) som populära aktivmängdlösare kommer att be-
höva lösa, för alla möjliga kvadratiska optimeringsproblem som kan uppstå i en
given MPC-applikation. Först bestäms exakta värstafallsgränser för antalet ite-
rationer och/eller flyttalsberäkningar som aktivmängdlösare kräver. Ramverket
används sedan för att ge exakta värstafallsgränser för exekveringstid. Slutligen
utökas ramverket så att värstafallsgränserna tar hänsyn till numeriska problem
som kan uppstå i aktivmängdlösare. Vi ger också exempel på hur ramverket kan
användas för att skräddarsy aktivmängdlösare för en given MPC-applikation ge-
nom att konstruera och certifiera variabla starttillstånd.

På det hela taget kan ramverket som presenteras i avhandlingen användas för
att erhålla garantier på maximal tidsåtgång för att beräkna ett styrbeslut med
MPC, vilket, exempelvis, kan användas för att försäkra att hårdvaran som MPC-
regulatorn är implementerad på inte överbelastas. Ramverket kan också använ-
das för att göra aktivmängdlösare snabbare genom att skräddarsy dem till en
specifik applikation och hårdvara, vilket möjliggör styrning av ännu snabbare
system med MPC.

I avhandlingen presenteras också en ny aktivmängdlösare som ingår i det
ovannämnda ramverket. Utöver garantier på värstafallsgränser är lösaren effek-
tiv, enkel att implementera, och robust mot numeriska fel, vilket alla är viktiga
egenskaper för en lösare som används för realtids-MPC.
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Background





1
Introduction

1.1 Background and motivation

At present, Model Predictive Control (MPC) is the go-to strategy for controlling
complex systems [1]. It is also one of the control technologies that industry be-
lieves will have the most future impact [2]. Reasons for its success are (i) its in-
terpretability; (ii) its ability to control nonlinear and multi-variable systems; (iii)
that it can directly account for constraints on control actions and system states.

As its name suggests, MPC uses a model of the controlled system to predict its
future states (given the applied control actions and the starting state). Through
this model, the control problem can be posed as an optimization problem, in
which a sequence of control actions should be selected to produce an “optimal”
sequence of future states. To counteract model errors and external disturbances
acting on the system, a new control action is recomputed every time the state of
the system changes (visualized in Figure 1.1).

Model Predictive Controller

System

System
state

Control
action

Model

Optimization

Predicted
system state

Simulated
control action

Figure 1.1: Schematic overview of Model Predictive Control.
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4 1 Introduction

Since an optimization problem has to be solved every time the system’s state
changes, MPC first saw success in the process industry [3], where the relatively
slowly changing states of the plant gave enough time to solve the optimization
problems with the software and hardware available at the time. Since then, im-
provements in software and hardware have enabled MPC to be applied to sys-
tems where the state is changing more rapidly, for example, in automotive [4; 5],
aerospace [4; 6], and power systems [7; 8] applications.

As MPC is applied to control faster systems, the optimization problems have
to be solved more frequently. At the same time, controllers are increasingly imple-
mented on simpler hardware such as microcontrollers and FPGAs [9; 10]. These
two trends taken together require the optimization problems to be solved faster
with limited computational resources. To meet these increasingly challenging re-
quirements, the solvers that are used to solve the optimization problems need to
become more efficient and computationally frugal [11].

Further adding to the challenge, the complexity of solving the optimization
problems might vary significantly between each time instance, since the opti-
mization problems to be solved are dependent on the current state of the system,
which changes over time. It is therefore nontrivial to guarantee that the computa-
tional resources at hand are sufficient to solve all possible optimization problems
fast enough; yet, such guarantees are crucial to know before the MPC controller is
deployed, especially if the controlled system is safety critical [12].

The ultimate objective with the research presented in this thesis is to provide
such a priori guarantees; that is, to provide guarantees that the employed op-
timization solver is able to solve all possible optimization problems within the
limited time frame for the application and hardware at hand. We approach this
objective from two complementary directions:

(i) By developing certification methods that provide worst-case bounds on the
computational complexity and execution time for a given solver.

(ii) By developing solvers that efficiently solve the optimization problems, al-
lowing the limited resources to be used more economically.

The main focus of this thesis is on (i), where the optimization methods con-
sidered are active-set methods for quadratic programming. However, in addition
to bounds on computational complexity, the proposed certification methods give
precise information about the behavior of the optimization algorithm. These in-
sights can therefore be used to tailor a solver for the specific set of problems at
hand, which in turn can be used as a tool in developing more efficient solvers, i.e.,
to make strides in direction (ii).

Let us call MPC controllers that are based on solvers with the above-mentioned
guarantees to be real-time certified. In short then, this thesis concerns tools that
enable real-time certified MPC.
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1.2 Thesis outline

The thesis is split into two parts: Part I gives background information about
model predictive control (Chapter 2), quadratic programming (Chapter 3), and
active-set methods (Chapter 3), and is based on the author’s licentiate thesis [13].
Part I provides context to the publications that comprise Part II of the thesis,
where the main contributions are presented. Below we summarize the publica-
tions included in Part II and the author’s contribution to each. This introductory
chapter then concludes with a literature review of related work.

Publications and the author’s contribution

Paper A: A unifying complexity certification framework for active-set methods
for convex quadratic programming

D. Arnström and D. Axehill, “A unifying complexity certification frame-
work for active-set methods for convex quadratic programming,” IEEE
Transactions on Automatic Control, vol. 67, no. 6, pp. 2758–2770,
2022.

Summary: We present a framework for determining the worst-case complex-
ity of a family of well-established active-set methods. For every parameter of
interest in a multi-parametric quadratic program, the method determines which
sequence of subproblems active-set algorithms need to solve to find a solution.
These sequences provide, in turn, worst-case bounds on the number of iterations
and/or floating-point operations that are required to find a solution. Such bounds
give worst-case complexity guarantees for linear MPC controllers, which is of im-
portance when safety-critical systems are controlled in real time. The usefulness
of the proposed method is illustrated on a set of multi-parametric quadratic pro-
grams originating from MPC problems. Specifically, we compute the exact worst-
case number of iterations that primal and dual active-set algorithms require to
compute a solution.

Background and the author’s contribution: The overarching concept of track-
ing the working-set changes for the primal active-set method in [15] was con-
ceived by DAx. The author of this thesis actualized and refined the idea consid-
erably and did the majority of the work, including writing the manuscript, theo-
retical derivations and numerical experiments, resulting in the publication [16],
which Paper A extends. The insight that the certification method developed in
[16] could be extended to unify the results therein with the certification methods
presented in [17] and [18] was conceived by the author of this thesis (inspired by
discussions with DAx), resulting in Paper A. The majority of the work, including
writing the manuscript, theoretical derivations and numerical experiments, was
carried out by the author of this thesis. DAx reviewed the manuscript and helped
refine the ideas through discussions.
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Paper B: Exact worst-case execution-time analysis for implicit model
predictive control

D. Arnström, D. Broman, and D. Axehill, “Exact worst-case execution-
time analysis for implicit model predictive control,” arXiv preprint
arXiv:2304.11576, 2023, submitted.

Summary: We propose a method that determines the exact worst-case execu-
tion time (WCET) for implicit linear MPC. The method leverages the framework
in Paper A to generate a finite set of “archetypal” optimization problems; we
prove that these archetypal problems form an execution-time equivalent cover of
all possible problems; that is, that they capture the execution time for solving
any possible optimization problem that can be encountered online. Hence, by
solving only these archetypal problems on the hardware on which the MPC is to
be deployed, and by recording the execution times, we obtain the exact WCET.
We validate the method on an MPC example where an inverted pendulum on
a cart is stabilized. The experiments highlight the following advantages com-
pared with classical WCET methods: (i) in contrast to classical static methods,
our method gives the exact WCET; (ii) in contrast to classical measurement-based
methods, our method guarantees a correct WCET estimate and requires fewer
measurements on the hardware.

Background and the author’s contribution: That the framework in Paper A
generates more detailed information than just number of iterations and/or num-
ber of floating-point operations emerged through discussions between the author
of this thesis and DAx. That it could, in fact, be used to determine the exact WCET
was conceived by the author of this thesis, who wrote the manuscript, performed
the experiments and made the theoretical derivations. DB provided expertise
from the WCET field. Both DAx and DB reviewed the manuscript and helped
refine the idea through discussions.

Paper C: Lift, partition, and project: Parametric complexity certification of
active-set QP methods in the presence of numerical errors

D. Arnström and D. Axehill, “Lift, partition, and project: Parametric
complexity certification of active-set QP methods in the presence of
numerical errors,” in IEEE 61st Conference on Decision and Control
(CDC), 2022, pp. 4381–4387.

Summary: A shortcoming with the framework in Paper A is that it does not
account for numerical errors that might occur internally in the solvers that are
certified. This might ultimately lead to optimistic complexity bounds if, for ex-
ample, the solvers are implemented in single precision. In this paper we propose
a general scheme that can be incorporated in the framework in Paper A (and in
similar certification methods) to account for such numerical errors.

Background and the author’s contribution: How numerical errors could be
accounted for with the proposed lift-partition-project scheme was conceived by
the author of this thesis, who also wrote the manuscript, performed the numerical
experiments and made the theoretical derivations. DAx reviewed the manuscript.
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Paper D: Complexity certification of proximal-point methods for numerically
stable quadratic programming

D. Arnström, A. Bemporad, and D. Axehill, “Complexity certification
of proximal-point methods for numerically stable quadratic program-
ming,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1381–1386,
2021.

Summary: The numerical stability of any QP solver can be improved by per-
forming proximal-point outer iterations, resulting in solving a sequence of better
conditioned QPs. In this paper we present a method which, for a given multi-
parametric quadratic program and any polyhedral set of parameters, determines
which sequences of QPs have to be solved when using outer proximal-point it-
erations. By knowing these sequences, bounds on the worst-case complexity of
the method can be obtained, which is of importance in real-time MPC. Moreover,
we combine the proposed method with the framework in Paper A to obtain finer-
grained complexity certificates of the proximal-point method, namely, the total
number of inner iterations.

Background and the author’s contribution: Through discussions during the
collaboration on [22], AB familiarized the author of this thesis with the exten-
sions made to [23] presented in [24], in which numerical stability was improved
by performing proximal-point iterations. The idea of how the proximal-point
iterations could be tracked parametrically was conceived by the author of this
thesis, who made the majority of the work including writing the manuscript, nu-
merical experiments and theoretical derivations. AB and DAx helped refine the
idea and reviewed the manuscript.

Paper E: A dual active-set solver for embedded quadratic programming using
recursive LDLT updates

D. Arnström, A. Bemporad, and D. Axehill, “A dual active-set solver
for embedded quadratic programming using recursive LDLT updates,”
IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 4362–
4369, 2022.

Summary: We present a dual active-set solver for quadratic programming
that has properties suitable for use in embedded model predictive control appli-
cations. In particular, the solver is efficient, can easily be warm started, and is
simple to code. Moreover, by using outer proximal-point iterations, as described
in Paper D, ill-conditioned problems can be handled in a robust manner. Finally,
since the solver is covered by the framework presented in Paper A, the exact
worst-case computational complexity of the solver can be determined offline.

Background and the author’s contribution: How the recursive LDLT up-
dates in [23] could be applied to, and extended to, dual QPs (and that this yields
several favourable properties) was conceived by the author of this thesis. The au-
thor of this thesis coded the C-implementation of the solver, carried out the nu-
merical experiments, made the theoretical derivations, and wrote the manuscript.
AB and DAx reviewed the manuscript.
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Paper F: Semi-explicit linear MPC using a warm-started active-set QP
algorithm with exact complexity guarantees

D. Arnström and D. Axehill, “Semi-explicit linear MPC using a warm-
started active-set QP algorithm with exact complexity guarantees,”
in IEEE 60th Conference on Decision and Control (CDC), 2021, pp.
2557–2562.

Summary: We propose a semi-explicit approach for linear MPC in which a
dual active-set quadratic programming algorithm is initialized through a pre-
computed warm start. By using the framework from Paper A, we show how the
computational complexity of the dual active-set algorithm can be determined of-
fline for a given warm start. We also show how these complexity certificates can
be used as quality measures when constructing warm starts, enabling the online
complexity to be reduced further by iteratively refining the warm start. In addi-
tion to showing how the computational complexity of any pre-computed warm
start can be determined, we propose a novel technique for generating warm starts
with low overhead, both in terms of computations and memory.

Background and the author’s contribution: The way of constructing suitable
initializations for a given MPC problem was conceived by the author of this thesis,
who also wrote the manuscript, performed the numerical experiments and made
the theoretical derivations. DAx reviewed the manuscript.

Complete list of publications

For completeness, all publications that the author has contributed to as a PhD
student are given below in chronological order (with respect to publication date).
Publications included in Part II are marked with ⋆.

D. Arnström and D. Axehill, “Exact complexity certification of a stan-
dard primal active-set method for quadratic programming,” in IEEE
58th Conference on Decision and Control (CDC), Dec 2019, pp. 4317–
4324.

D. Arnström and D. Axehill, “Exact complexity certification of a stan-
dard early-terminating primal active-set method for quadratic pro-
gramming,” in Proceedings of the 2020 IFAC World Congress, 2020.

D. Arnström, A. Bemporad, and D. Axehill, “Exact complexity certifi-
cation of a nonnegative least-squares method for quadratic program-
ming,” IEEE Control Systems Letters, vol. 4, no. 4, pp. 1036–1041,
2020.

⋆ D. Arnström, A. Bemporad, and D. Axehill, “Complexity certifica-
tion of proximal-point methods for numerically stable quadratic pro-
gramming,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1381–
1386, 2021.
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D. Arnström, A. Bemporad, and D. Axehill, “A linear programming
method based on proximal-point iterations with applications to multi-
parametric programming,” IEEE Control Systems Letters, vol. 6, pp.
2066–2071, 2021.

⋆ D. Arnström and D. Axehill, “Semi-explicit linear MPC using a
warm-started active-set QP algorithm with exact complexity guaran-
tees,” in IEEE 60th Conference on Decision and Control (CDC), 2021,
pp. 2557–2562.

S. Shoja, D. Arnström, and D. Axehill, “Overall complexity certifi-
cation of a standard branch and bound method for mixed-integer
quadratic programming,” in 2022 American Control Conference (ACC).
IEEE, 2022, pp. 4957–4964.

⋆ D. Arnström and D. Axehill, “A unifying complexity certification
framework for active-set methods for convex quadratic programming,”
IEEE Transactions on Automatic Control, vol. 67, no. 6, pp. 2758–
2770, 2022.

⋆ D. Arnström, A. Bemporad, and D. Axehill, “A dual active-set solver
for embedded quadratic programming using recursive LDLT updates,”
IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 4362–
4369, 2022.

⋆ D. Arnström and D. Axehill, “Lift, partition, and project: Parametric
complexity certification of active-set QP methods in the presence of
numerical errors,” in IEEE 61st Conference on Decision and Control
(CDC), 2022, pp. 4381–4387.

S. Shoja, D. Arnström, and D. Axehill, “Exact complexity certification
of a standard branch and bound method for mixed-integer linear pro-
gramming,” in IEEE 61st Conference on Decision and Control (CDC).
IEEE, 2022, pp. 6298–6305.

D. Arnström and D. Axehill, “BnB-DAQP: a mixed-integer QP solver
for embedded applications,” in Proceedings of the 2023 IFAC World
Congress, 2023.

⋆ D. Arnström, D. Broman, and D. Axehill, “Exact worst-case execution-
time analysis for implicit model predictive control,” arXiv preprint
arXiv:2304.11576, 2023, submitted.
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1.3 Related work

Next, we review related work to the topics considered in this thesis. Specifically,
we review work on real-time MPC (Section 1.3.1) and on complexity certification
for optimization methods (Section 1.3.2).

1.3.1 Real-time MPC

As outlined in the introduction, MPC requires an optimization problem to be
solved at each time step to produce a control action. There are several ways
of solving such optimization problems; here we give a brief overview of some
approaches. For textbooks on the topic, see [15; 32; 33]. Some additional tools
for real-time MPC that are solver agnostic are to tailor (i) linear algebra routines
[34]; (ii) the solver code [35; 36]; (iii) the degree of sparsity [37].

Linear MPC When the dynamics of the system to be controlled is linear (and
time-invariant), the optimization problems that need to be solved in MPC can be
cast as instances of a multi-parametric quadratic program of the form

minimize
x

1
2
xTHx + f (θ)T x

subject to Ax ≤ b(θ),
(1.1)

where the decision variable x ∈ Rn is related to the control actions, and the param-
eter θ ∈ R

p is related to setpoints and the system state. How to go from a linear
MPC problem to a problem of the form (1.1) is described in detail in Chapter 2.
For a given linear MPC application, the positive semidefinite matrix H ∈ Sn

+ and
the constraint matrix A ∈ Rm×n are fixed. Moreover, both the linear cost f and the
constraint offset b are affine functions of θ. This enables a closed-form solution
of (1.1), which is piecewise affine in θ over polyhedral regions [38]. Methods for
computing the closed-form solution generally fall into two categories: geometri-
cal [38–41] and combinatorial [42–45]; software packages that implement such
methods include MPT [46], POP [47], and the Hybrid Toolbox [48].

The closed-form solution mentioned above is used in explicit MPC [49] by stor-
ing it as a lookup table and searching through this table online. A well-known
drawback with explicit MPC is that the lookup table quickly becomes intractably
large, restricting its use to small-scale problems. Techniques to reduce the com-
plexity of the lookup table include clipping [50], polytopic approximation [51],
and convex lifting [52].

An alternative approach to explicit MPC, sometimes called implicit MPC, is
to solve the optimization problems from (1.1) online with embedded solvers. In
particular, the value of θ is determined at each time step (by estimating the sys-
tem state), which reduces (1.1) to a quadratic program (QP). By solving this QP,
an optimal control action given the current state is achieved.

Implicit MPC has spawned great interest in the control community to develop
high-performing QP solvers that can run on embedded hardware. Some of these
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Table 1.1: Quadratic programming solvers for embedded optimization.

Solver Reference Optimization method
OOQP [71] Interior point
qpOASES [72] Active set
FiOrdOS [73] Gradient projection
FORCES [55] Interior point
ECOS [74] Interior point
PQP [75] Projection-free gradient
GPAD [62] Gradient projection
QPNNLS [23] Active set
qpDUNES [76] Dual Newton
QRQP [77] Active set
BVLS [78] Active set
QPDAS [79] Active set
qpSWIFT [80] Interior point
OSQP [63] Operator splitting
HPIPM [81] Interior point
PRESAS [82] Active set
NASOQ [83] Active set
ASIPM [84] Active set + Interior point
FBstab [85] Proximal Fischer-Burmeister
DAQP Paper E Active set
QPALM [65] Augmented Lagrangian
ProxQP [66] Augmented Lagrangian
PIQP [86] Proximal interior point

solvers are listed in Table 1.1, ordered according to the publication date of its cor-
responding reference. The optimization methods that the QP solvers in Table 1.1
are based on include interior-point methods [53–55], active-set methods [56–58],
gradient-projection methods [59–62], operator-splitting methods [63; 64], and
augmented Lagrangian methods [65; 66]. Active-set methods are the main fo-
cus of this thesis and are therefore introduced more in-depth in Chapter 3. Two
excellent introductions to interior-point methods are given in [67; 68]; a classical
introduction to gradient methods is given in [69]. Introductions to both splitting
and augmented Lagrangian methods are given in [70].

Nonlinear MPC When the dynamics of the controlled system is nonlinear, MPC
requires a general nonlinear program (NLP) to be solved. While generic solvers
such as IPOPT [87] can be used to solve these NLPs, methods that exploit the
inherent structure of NLPs from MPC problems can significantly reduce the com-
putation time. A popular approach is to linearize the dynamics at each iteration
and then, as for the linear case described above, solve a quadratic program. This
corresponds to the standard sequential quadratic programming (SQP) paradigm
in nonlinear optimization [88]. An SQP-method that is adapted for real-time
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MPC is that of real-time iterations (RTI) [89], where the linearization is made be-
fore a state is measured and where the resulting QPs are not solved completely to
optimality [90]. Related to RTI, control policies from optimization solvers that do
not run completely to optimality are analyzed in [91]. High-performant SQP and
RTI routines are implemented in acados [92], which is a modular framework
for fast embedded optimal control. In addition, acados provides specialized
routines for the linearization of the dynamics. Other software for nonlinear MPC
include PolyMPC [93], GRAMMPC [94], and PANOC [95].

1.3.2 Complexity certification

Generic complexity analysis Traditionally, the field of computational complexity
deals with the tractability of problems [96]. As such, in contrast to the objective
of this thesis, the exact number of computations a particular algorithm requires
is not the primary focus; rather, the focus is on how the number of computations
scales with the size of the problem, for example, if the number of computations
scales polynomially or exponentially with the dimension of the problem.

A notorious result on the topic of tractability was given in [97] for the simplex
method [98]. Therein, Klee and Minty proved that the worst-case number of
iterations required by the simplex method to find a solution is exponential in
the number of decision variables. This shows more broadly the intractability
of active-set methods, since the simplex method can be interpreted as an active-
set method [99]. Despite its dismal theoretical worst-case bounds, the simplex
method has shown great practical performance ever since its emergence. This
theory/practice-gap was partly explained through a “smoothed analysis” in [100],
where it is shown that a small perturbation from the pathological Klee-Minty
problems constructed in [97] results in polynomial complexity.

The exponential complexity of the simplex method, and more broadly that
of active-set methods, spawned interest in alternative methods with polynomial
worst-case complexity. A first breakthrough was made with the ellipsoid method
[101]; unfortunately, it was not competitive with the simplex method in practice.
Not long after, Karmakar famously proposed an interior-point method [102] with
polynomial worst-case complexity and practical performance that was competi-
tive with the simplex method. Still, albeit polynomial, the theoretical iteration
bounds of interior-point methods are often several orders of magnitude away
from the actual number of iterations performed in practice [103]. Informally, as
mentioned in [67; 68], there often seems to be an inverse relationship between
the tightness of complexity bounds of an interior point method, and how well
the method performs in practice; for example, the popular predictor-corrector
method by Mehrotra [104] has worse theoretical bounds than short-step interior-
point methods, but the predictor-corrector method is faster in practice for most
problems [67].

Classical iteration bounds for gradient methods, under different assumption
on the objective function (e.g., smoothness, convexity and strong convexity), are
given in [69]. The focus of such bounds is, again, on the rate of convergence,
rather than the exact number of iterations or floating-point operations. More re-
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cently, direct computational methods for first-order methods have been proposed.
In [105], the integral quadratic constraint (IQC) framework [106], well-known in
the robust control community, is used to bound the number of iterations. A more
general approach is proposed in [107; 108], where a semi-definite program (SDP)
is solved to analyze the iteration complexity. This SDP framework is extended in
[109] to allow for varying inner products, which is a step towards being able to
apply it to interior-point methods.

MPC-specific complexity analysis The traditional computational complexity
bounds cited above are often far from the complexity observed in practice. A
reason for this is that the set of possible problems that need to be considered
in a general setting is large. Hence, as is exemplified in [97], there often exist
pathological problems that drive the upper complexity bound; however, these
problems are seldom, as is exemplified in [100], encountered in practice.

A cornerstone of this thesis, and in the cited works below, is that the set of
possible optimization problems for a given linear MPC application is more re-
strictive; specifically, they are of the form (1.1), which is a family of quadratic
programs parameterized by θ. As is visualized in Figure 1.2, most traditional
complexity analyses consider all Hessians H ∈ S

+
n and all constraint matrices

A ∈ Rm×n, while both H and A are fixed for a given linear MPC application; that
is, all variation in (1.1) comes from evaluating the affine functions f (θ) and b(θ)
for different parameters θ ∈ Rp.

H ∈ Sn
+, A ∈ Rm×n

f ∈ Rn, b ∈ Rm

Considered QPs in
traditional complexity analyses

H, A given

f (θ), b(θ) given affine functions

θ ∈ Rp

Possible QPs for a given
linear MPC application

Figure 1.2: QPs of the form minimize 1
2x

THx+ f T x with respect to x, subject
to Ax ≤ b, that are: (i) often considered in traditional complexity analyses;
(ii) possible for a given linear MPC application.

In practice, a common way of exploiting the parametric structure described
above is to sample the set of possible parameters θ. Given a set of samples, the
corresponding QPs are solved with the algorithm to be certified and the number
of required computations is recorded. A major drawback with such simulation-
based approaches is that the worst-case performance can never be guaranteed,
since the set of possible problems is continuous and that there, hence, always
exist problems that have not been sampled.

More systematic approaches for exploiting the parametric structure have been
considered for first-order methods. Two important terms in traditional iteration
bounds for first-order methods (see e.g., [69]) are a Lipschitz constant and the
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norm of the difference of the starting iterate and the final iterate. In [62; 110–
112], the particular structure of QPs in linear MPC is used to bound these two
terms, which yields improved iteration bounds for accelerated gradient methods.
For example, the iteration bounds reported in [110] is only about two to five
times more conservative than the number of iterations observed in numerical ex-
periments. This is far better than similar work on interior-point methods, where,
for example, the bounds obtained in [103] are several order of magnitudes off
from the actual number of iterations. Additional work on the complexity certifi-
cation of first-order methods in the context of linear MPC is reported in [113] for
an operator splitting method.

Several certification methods that use the parametric structure have also been
proposed for active-set methods in the context of linear MPC. A large part of the
contributions of this thesis are within this area. In [18], a method that determines
the computational complexity of active-set methods for linear programming is
proposed. The work in [17] proposes a certification method for the dual active-set
method in [57]; this certification method has been applied in [114] to certify the
computational complexity for linear MPC of synchronous motors. A complexity
certification method for a standard primal active-set QP method (see, e.g., [15])
is proposed in [16]. The work in [115] certifies the computational complexity of
the block-pivot active-set method proposed in [116]. In Paper A, we unify all the
certification methods in [16–18] in a common framework. This framework also
enables complexity certification of active-set methods that have not previously
been certified.



2
Model Predictive Control

At the core of automatic control is the problem of selecting a control action,
u ∈ Rnu , that makes some system state, z ∈ R

nz , take “desirable” values. An
illustrative example is cruise control of a car, where the state z is the speed of the
car, the control u is the throttle, and the “desirable” value of the state is the speed
in which the driver wants to travel.

Often, the selection of the control action u is made by a state-feedback law,
which generates a control action u given the current system state z. Formally, a
state-feedback law is a mapping g : Rnz → R

nu that generates control actions as
u = g(z). An example of a simple, yet effective, feedback law is linear state feed-
back, where g is a linear mapping, i.e., u = Lz for some gain matrix L ∈ Rnu×nz .
Challenging control problems do, however, require more sophisticated feedback
laws for sufficient performance.

In Model Predictive Control (MPC) [32], the mapping g(z) is evaluated im-
plicitly by solving an optimization problem, where this optimization problem
depends on the current state z. More specifically, the optimization problem is
formulated through a predictive model of the system; this model is then used to
create a forecast of how z will change over time, and control actions that optimize
this forecast are selected. An overview of MPC is given in Algorithm 1, where N
denotes the length of the forecast, z0 denotes the starting point of the forecast,
and {u∗k}

N−1
k=0 denotes the sequence of control actions that produce an “optimal”

forecast. What Step 3 in Algorithm 1 entails is the main subject of this chapter.

Algorithm 1 Model predictive control

1: repeat
2: Measure (or estimate) the current state z
3: {u∗k}

N−1
k=0 ← Formulate and solve (2.3) with z0 set to z

4: Apply the first control action u∗0 to the system

15
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In Section 2.2, we give a general formulation of the optimal control problems
that are solved in Algorithm 1; these problems are then endowed with additional
structure in Section 2.3, which leads to linear MPC: the main focus of this thesis.
We then show that the optimal control problems solved in linear MPC can be seen
as instances of a multi-parametric quadratic program (mpQP), which means that
the optimization problems to be solved online are quadratic programs (QPs).

Before describing the optimal control problems, we give some introductory
remarks on prediction models and state estimation; both are essential for MPC to
work in practice, but are not considered in detail in this thesis.

2.1 Preliminaries

Prediction model As its name suggests, MPC is a control strategy that uses a pre-
diction model. In the usual setting, this prediction model is a differential equation
of the form

ż = fc(z, u), (2.1)

where z ∈ R
nz is called the state of the system, u ∈ R

nu is called the control, and
the mapping fc : Rnz × Rnu → R

nz is called the dynamics of the system.
However, to be able to use the prediction model in practice, a discrete-time

model is required, since controllers are almost always1 implemented on digital
computers. Hence, we instead consider discrete-time dynamics of the system
given in terms of a difference equation of the form

zk+1 = fd(zk , uk), (2.2)

where uk and zk denotes the control and state at time step k, respectively. Two
common ways of deriving a discrete-time model fd given a continuous-time model
fc, is through zero-order or first-order hold.

Approaches for determining a model of the form (2.2) include using physical
laws, black-box models and everything in between (gray-box models); all of these,
and more, are considered in the research field of system identification [118].

Even though determining a model that sufficiently captures the system’s be-
havior is essential for MPC to be practical, we will in this thesis assume that such
a model has already been determined, summarized in the following assumption.
Assumption A1 (Existence of prediction model). A discrete-time prediction
model zk+1 = fd(zk , uk) of the system’s dynamics is available.

State estimation State-feedback laws, and hence MPC, require information about
the entire state z at the current time step (evident from Step 2 in Algorithm 1). In
practice, however, the entire state is often not measured directly; instead, only
parts of the state and/or quantities that are indirectly related to it are measured.
Formally put, we measure a quantity y which is related to z by some mapping
y = h(z, u, w), where w is measurement noise that distorts the measurements. In

1See [117] for work on MPC with analog computers.
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this situation, an estimate of z, denoted ẑ, is formed based on y and u. Math-
ematically, one forms a mapping (y, u) 7→ ẑ such that ẑ ≈ z. The problem of
constructing such a mapping is known as state estimation [119] and is, similar to
system identification, an entire research field on its own. In this thesis we do not
consider the state estimation problem; in other words, we assume that measure-
ments of z, or at least an estimate of z, are available, summarized in the following
assumption.

Assumption A2 (Availability of state). At each time step, either the state z is
measured or an estimate of the state is available.

Remark 2.1. For convenience, we will only refer to the state z in the rest of the thesis,
even though we might, practically speaking, mean the estimated state ẑ.

2.2 Optimal control

Assuming that Assumption A1 and A2 hold, i.e., that a prediction model fd and
the current state z are available, we turn our attention to the control problem
considered in MPC:

Given the state z, select an inexpensive and admissible sequence of con-
trol actions {uk}N−1

k=0 that generates a desirable sequence of states {zk}Nk=0,
with z0 = z.

(⋆)

The integer N in (⋆) is called the prediction horizon and determines how many
time steps into the future we predict when selecting control actions. For conve-
nience we will use the notation u ≜ {uk}N−1

k=0 and, similarly, z ≜ {zk}Nk=0 for the
control and state sequences, respectively.

The fuzzy terms “inexpensive” and “desirable” used in (⋆) can be formalized
through a so-called cost function V (z,u), which assigns a real value to a control
sequence and its corresponding state sequence. A small value of V means that
the sequence of control actions is “inexpensive” and that the generated states take
“desirable” values. It is therefore up to the user to encode their notion of “inex-
pensive” and “desirable”, as well as the trade-off between them, in V . The control
problem can, hence, be stated as the optimal control problem of finding a state se-
quence z and control actions u which minimize V . We will in this thesis, as is
often done in practice, consider V of the form V (z,u) = Vf (zN ) +

∑N−1
k=0 ℓ(zk , uk),

where Vf : Rnz → R is called the terminal cost and ℓ : Rnz × Rnu → R is called
the stage cost.

Importantly when minimizing V , the state sequence cannot be selected freely,
since the state zk+1 is constrained by the dynamics zk+1 = fd(zk , uk). Often in prac-
tice, we cannot select u freely either, since the control actions are constrained to
a set u ∈ U , and since the states are constrained to a set z ∈ Z. Such constraints
arise from, e.g., actuator limits and speed limits, respectively. An additional con-
straint that the final predicted state zN should reside in a set Zf , rather than Z,
is often used to guarantee that the resulting feedback law is stable [120].
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In conclusion, the control problem in (⋆) can be formalized as the following
discrete-time optimal control problem:

minimize
u,z

Vf (zN ) +
N−1∑
k=0

ℓ(zk , uk)

subject to zk+1 = fd(zk , uk), ∀k = 0, . . . , N − 1

(uk , zk) ∈ U × Z, ∀k = 0, . . . , N − 1

zN ∈ Zf

z0 = z,

(2.3)

where the minimizing u and z are denoted u∗ and z∗, respectively. Since the opti-
mal control problem depends on the current state z through the initial constraint
z0 = z, both u∗ and z∗ are functions of z, i.e., u∗ : Rnz → R

nu and z∗ : Rnz → R
nz .

Remark 2.2. The simulation in (2.3) is always done from time index 0 to N since we have
considered time-invariant dynamics, stage cost, and constraint sets. Hence, only relative,
rather than absolute, time is of importance. The problem formulation can easily be ex-
tended to also handle the time-varying case (see, e.g., [32]), but this is not considered in
this thesis.

Receding horizon

As mentioned in the introduction of this chapter and summarized by Algorithm 1,
discrete optimal control problems of the form (2.3) are solved recurrently in MPC,
with the initial state z0 constrained to be the current state z. After solving such
a problem, resulting in the optimal control sequence u∗(z) = {u∗i (z)}N−1

i=0 , only the
first control action u∗0(z) is applied to the system. In other words, MPC implicitly
defines the feedback law u = u∗0(z), and all u∗i (z) i = 1, . . . , N − 1 are discarded.
Discarding all control actions except u∗0(z) might at first seem drastic; there are,
however, two main reasons for re-solving the optimal control problems in each
time step:

The first reason is due to the finite horizon N . Since states beyond N time
steps into the future are not accounted for in (2.3), consequences beyond the
horizon are not directly taken into account. By re-solving the optimal control
problems recurrently, we can take into account consequences beyond the nominal
horizon. This is known as receding the horizon and because of this MPC is also
known as a receding horizon control (RHC) strategy.
Remark 2.3. States beyond the horizon N can, however, be indirectly accounted for by
selecting the terminal cost Vf and set Zf with care; see, e.g., [120].

The second advantage of re-solving the optimal control problems in each time
step is that the predicted states are just that: predictions. Even if we could let
the horizon N tend to infinity, the optimized sequence of control actions cease
to be optimal as soon as the predicted state trajectory deviates from the actual
state trajectory; this always occurs in practice due to model errors and external
disturbances. By re-solving the optimal control problem for the current state we
can reassess our control actions, which robustifies the resulting control policy.
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2.3 Linear MPC

The difficulty in solving (2.3) depends on the specific structure of the cost func-
tion, dynamics and constraints. A well-established structure that is commonly
used in practice, [33], is based on the following assumptions:

Assumption A3 (Quadratic cost). The terminal and stage cost are quadratic.
That is, Vf (z) = 1

2 z
TQf z and ℓ(z, u) = 1

2

(
zTQz + uT Ru

)
for some Qf , Q ∈ S

nz
+

and R ∈ Snu
++.

Assumption A4 (Linear dynamics). The system dynamics is linear. That is,
fd(z, u) = Fz + Gu for F ∈ Rnz×nz and G ∈ Rnz×nu .

Assumption A5 (Polyhedral constraints). The sets Z ×U and Zf are polyhedral.
That is, Z ×U = {(z, u) : Azz +Auu ≤ b} for Az ∈ Rnc×nz ., Au ∈ Rnc×nu and b ∈ Rnc ,
and Zf = {x : Af z ≤ bf }.

Problem (2.3) with Assumptions A3-A5 leads to the optimal control problem

minimize
u,z

1
2
zTNQf zN +

1
2

N−1∑
k=0

(
zTk Qzk + uT

k Ruk
)

subject to zk+1 = Fzk + Guk , k = 0, . . . , N − 1

Azzk + Auuk ≤ b, k = 0, . . . , N − 1

Af zN ≤ bf

z0 = z.

(2.4)

Remark 2.4. The control objective in (2.4) is to steer some or all states to the origin since
1
2 z

T
NQf zN + 1

2
∑N−1

k=0

(
zTk Qzk + uTk Ruk

)
≥ 0, with equality for zi = 0 and ui = 0, ∀i (fol-

lowing from Qf , Q ⪰ 0 and R ≻ 0). The problem can, however, be modified to also be able
to steer to another reference point than the origin, which is described in Section 2.3.2.

Algorithm 1 with optimization problems of the form (2.4) being solved in
Step 3 is called linear MPC. To concretize the above-mentioned concepts, the fol-
lowing example illustrates how linear MPC can be used to stabilize an inverted
pendulum on a cart.

Example 2.1: Linear MPC of an inverted pendulum
Consider the system illustrated in Figure 2.1 of an inverted pendulum on a cart.
The control objective is to stabilize the system standing straight up (φ = 0) with
no displacement (x = 0). To do this, the cart’s acceleration can be changed by
applying a horizontal force F, which can maximally have a magnitude of 100
Newton. For this system we consider the state z = (x, v, φ, ω)T , where v and ω
are the velocity of the cart and the angular velocity of the pendulum, respectively,
and the control u = F/100 (where the scaling is done for numerical reasons).
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F

x, v

φ, ω

Figure 2.1: Inverted pendulum

A discrete-time model zk+1 = Fzk + Guk , with sampling time Ts = 0.02 s, of
the system dynamics is given by

F =


1 0.0181 0.0018 0.0000
0 0.8185 0.1783 0.0018
0 −0.0038 1.0076 0.0201
0 −0.3635 0.7500 1.0067

 , G =


0.02
1.82
0.04
3.64

 . (2.5)

This model is based on a nonlinear continuous-time model (derived through New-
ton’s laws) that has been linearized around the origin and discretized using zero-
order hold. Since the dynamics is linearized around the origin, we impose con-
straints on the angle φ to keep the states close to this linearization point, leading
to the artificial constraint of |φ| ≤ 0.5 .

The constraints |F| ≤ 100 and |φ| ≤ 0.5 can be cast in the form Azz + Auu ≤ b
with

Az =


0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 0

 , Au =


0
0
1
−1

 , b =


0.5
0.5
1
−1

 . (2.6)

No specific terminal set is used: only |φN | ≤ 0.5 is imposed.

The horizon N = 10 is used and, since the objective is to drive x and φ (the
first and third state) to zero, the weights in the stage cost is selected as Q =
diag(10, 0, 1, 0) and R = 1. The final cost Qf is set to the solution to the discrete-
time algebraic Riccati equation that is solved to obtain the linear quadratic regu-
lator (LQR) for an infinite horizon (see, e.g., [120] for details).

Figure 2.2 shows the resulting control actions and state trajectories when the
system’s starting state is z0 = (1, 0, 0, 0)T (a displacement of 1 meter with the
pendulum standing straight up at rest). The control law defined by Algorithm 1
is used, where the subproblems are of the form (2.4) with the above-mentioned
data. The MPC controller generates control actions that steer both x and φ to zero,
which was the goal, while satisfying the constraints imposed on u and φ. (Note
that the linearized model also has, for simplicity, been used for the experiments).
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Figure 2.2: Resulting control signal and state trajectory using MPC to stabi-
lize the inverted pendulum. Control/state constraints are shown as dashed
lines.

2.3.1 Multi-parametric Quadratic Programming

A major advantage with endowing the optimal control problem (2.3) with the
structure from Assumptions A3-A5 is that the resulting optimal control problem
in (2.4) can be expressed as a multi-parametric quadratic program (mpQP), re-
sulting in quadratic programs (QPs) being the optimization problems to solve.
Solving problems on the classical problem formulation of a QP enables the use of
the myriad of efficient quadratic programming methods and software available,
as highlighted by Table 1.1 in Section 1.3.

Multi-parametric quadratic programs are of the form

minimize
x

1
2
xTHx + (f + fθθ)T x

subject to Ax ≤ b + Wθ

Ex = d + Dθ,

(2.7)

with the decision variable x ∈ R
n and the parameter θ ∈ Θ0 ⊆ R

p. The objec-
tive function is characterized by H ∈ S

n
+, f ∈ R

n, and fθ ∈ R
n×p. The inequality

constraints are given by A ∈ R
m×n, b ∈ R

m and W ∈ R
m×p, and the equality con-

straints are given by E ∈ R
e×n, d ∈ R

e and D ∈ R
e×n. By changing the parameter

θ, the linear term in the objective function and the right-hand-sides of the in-
equality and equality constraints are perturbed, resulting in different quadratic
programs.

The main idea for putting the optimal control problem in (2.4) into the form
of an mpQP in (2.7) is to view the initial state z0 as the parameter (θ = z0) and to
stack the control and states into vectors as

z =


z0
...
zN

 , u =


u0
...

uN−1.

 . (2.8)



22 2 Model Predictive Control

This results in z ∈ R
nz (N+1) and u ∈ R

nuN . There are two common ways of ex-
pressing (2.4) as an mpQP: A sparse formulation and a condensed formulation.
Remark 2.5. (2.8) overloads the notation of u and z introduced in Section 2.2, but the
intrinsic entities are the same: previously the entities were represented as sequences and,
in this section, we represent the entities by stacking the elements of these sequences into
vectors.

Sparse formulation

The most straightforward way of formulating the discrete optimal control prob-
lem in (2.4) as an mpQP is to view both z and u as optimization variables, leading
to a sparse mpQP. First, the equality constraints in (2.4) for each time step k can,
together with the initial constraint z0 = z = θ, be expressed as the following
block-structured linear system of equations

I 0 0 · · · 0
−F I 0 · · · 0
0 −F I · · · 0
...

. . .
. . .

0 · · · 0 −F I

︸                         ︷︷                         ︸
≜Ez


z0
z1
z2
...
zN


+



0 0 · · · 0
−G 0 · · · 0

0 −G
. . . 0

...
. . .

. . .
0 0 −G

︸                     ︷︷                     ︸
≜Eu


u0
u1
u2
...

uN−1


=


I
0
0
...
0

︸︷︷︸
≜D

θ. (2.9)

Next, the stage costs zTk Qzk + uT
k Ruk and terminal cost zTNQf zN can be combined,

by introducing Q ≜ diag
(
Q, . . . , Q, Qf

)
and R ≜ diag (R, . . . , R), into

V (z,u) =
1
2

(
uT Ru + zT Qz

)
. (2.10)

Finally, the inequality constraints Azzk + Auuk ≤ b for k = 0, . . . , N − 1 and the
terminal constraint Af zN ≤ bf can be combined, by introducing block diagonal

matrices Au ≜

(
diag (Au , . . . , Au)

0

)
and Az ≜ diag

(
Az , . . . , Az , Af

)
and the vector

b ≜ vec
(
b, . . . , b, bf

)
, into

Auu + Azz ≤ b. (2.11)

Combining (2.9), (2.10) and (2.11) gives the multi-parametric quadratic program

minimize
u,z

1
2

(
u
z

)T (
R 0
0 Q

) (
u
z

)
subject to

(
Eu Ez

) (u
z

)
= Dθ

(
Au Az

) (u
z

)
≤ b,

(2.12)

which, with optimization variable x =
(
u
z

)
, is of the form (2.7).
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Condensed formulation

Considering z as an optimization variable, as is done in (2.12), is somewhat su-
perfluous, since z is completely determined by the starting state z, the dynamics
fd , and the control actions u. Hence, the problem can be condensed by using the
equality constraints in (2.9) to eliminate z, resulting in optimization over only u.
The most direct way of doing this is by inverting Ez in (2.9) to express z in terms
of u and θ as

z = E−1
z Dθ − E−1

z Euu, (2.13)

where E−1
z is guaranteed to exist since Ez is lower unit triangular. An alternative

interpretation to the purely mathematical one of inverting Ez is to use the linear
dynamics for forward simulation; this enables future states to be expressed in
terms of only the control actions u and the starting state z0 = θ. That is, by using
the dynamics zk+1 = Fzk +Guk iteratively the state at time step k can be expressed
as

zk = Fkz0 +
k∑

i=1

Fk−iGui . (2.14)

Stacking these equations for k = 0, . . . , N , and using z0 = z = θ, leads to the linear
system of equations

z0
z1
z2
...
zN


=



I
F
F2

...
FN

︸︷︷︸
≜F

θ +



0 0 · · · 0
G 0 · · · 0
FG G · · · 0
...

. . .
FN−1G FN−2G · · · G

︸                              ︷︷                              ︸
≜G


u0
u1
u2
...

uN−1


, (2.15)

more compactly written as
z = Fθ + Gu. (2.16)

Eliminating z in (2.12) using (2.16), and removing terms in the objective function
that do not contain u, gives the mpQP

minimize
u

1
2

uT
(
GT QG + R

)
u + θT FT QGu

subject to (AzG + Au) u ≤ b −AzFθ,
(2.17)

which is of the form (2.7) with x ≜ u.
The condensed formulation does not contain any equality constraints and will

for convenience be considered in the rest of the thesis. In other words, we con-
sider mpQPs of the form

minimize
x

1
2
xTHx + (f + fθθ)T x

subject to Ax ≤ b + Wθ

.

(2.18)
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The subsequent ideas can, however, easily be extended to the case when equal-
ity constraints are used, but this requires some additional, obfuscating, notation.
Some details on how equality constraints are handled in active-set methods are
given in Paper E.

Remark 2.6. There is also a third approach, to which the sparse and condensed formula-
tion are mere special cases. This approach is known as partial condensing [37], and only
eliminates a subset of the elements of the stacked state vector z (in contrast to eliminating
none or all elements of z which is done in the sparse and condensed formulation, respec-
tively). The important point for this thesis is that the resulting optimization problems
after partial condensing also can be represented as an mpQP of the form (2.7), i.e., all the
subsequent ideas derived for mpQPs also apply to when partial condensing is used.

Remark 2.7. By picking another running cost than in Assumption A3, namely the 1- or∞-
norm, we can reformulate the MPC problem as a multi-parametric linear program (mpLP)
rather than an mpQP (for details see, e.g., Chapter 9 in [33]). An mpLP can, however, be
seen as a special case of an mpQP with H = 0.

2.3.2 Extending the linear MPC formulation

For practical purposes, the optimal control problems in (2.4) might need to be
modified for certain applications. Here we describe how (2.4) can be extended to
handle reference tracking and how the state constraints can be softened to ensure
that a solution to the problem always exists. Importantly, both of these extensions
still allow the resulting optimal control problem to be cast as an mpQP of the
form (2.18), which is the basic starting point in the contributions described in
Part II. Simply put, the exact origins of the mpQP is not important in Part II since
all the results are derived for general mpQPs of the form (2.18).

Reference tracking

In the optimal control problem in (2.4), the objective is to steer all or some of the
states to the origin (see Remark 2.4). In a more general setting, we might instead
want to steer a linear combination of the states to a given value; that is, we want
Cz = r to hold, where r ∈ R

nr is the desired reference value and C ∈ R
nr×nz

characterize the quantities to be controlled. In particular, the regulation problem
considered in (2.4) is a special case with r = 0 and C = I .

When the reference value r , 0, a non-zero control action might be required to
maintain the states at the desired reference. Hence, it becomes more reasonable
to incur a cost on the change of u rather than its magnitude. In other words, we
would like to incur a cost on ∆uk ≜ uk − uk−1 rather than on uk .

These extensions result in the modified objective function

V (z,u, r, u−1) =
N−1∑
k=0

(Czk − r)T Q (Czk − r) + ∆uT
k R∆uk , (2.19)

where now Q ∈ Snr
+ , in contrast to Q ∈ Snz

+ from before. The optimal control prob-
lem (2.4) with the new objective function (2.19) can, using the ideas described in
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Section 2.3.1, be cast as an mpQP. Consequently, the parameter θ contains, in
addition to the state z, the reference value r and the previous control actions u−1,
i.e., θ = vec(z, r, u−1). For additional details, see, e.g., Section 6.1 in [38].

Softening constraints

Since the constraints in (2.18) might be parameter dependent, some parameter
values can lead to a QP that does not have a solution; that is, some parameters
θ ∈ Rp might result in {x : Ax ≤ b + Wθ} = ∅. This occurs, for example, if the
current state z violates state constraints that are imposed in (2.4). An approach to
always ensure that the resulting QP has a solution, for any value of θ ∈ Rp, is to al-
low constraints to be violated, but to incur a cost for such violations. Constraints
that are allowed to be violated are called soft constraints, while constraints that
are always enforced are called hard constraints.

Usually in MPC, constraints on the control u are considered hard and con-
straints on the state z are considered soft. The reason for this is twofold: partly
technical and partly pragmatic. The technical reason is that constraints on z are
typically what cause the QPs to be infeasible. Softening these state constraints,
hence, ensures that a solution exists. As for the pragmatic reason, constraints on
u are often based on physical limitations of actuators, which are impossible to
violate in practice, making them inherently hard. In contrast, state constraints
often arise from desired system specifications that can be violated temporarily if
needed; for example, cars are often capable of traveling significantly faster than
enforced speed limits, but doing so would jeopardise safety.

There are several ways of softening constraints. A common approach, [121],
is to add an optimization variable ϵs ∈ R and to modify the constraints as

Ax ≤ b + Wθ → Ax ≤ b + Wθ + Sϵs, (2.20)

where S ∈ R
m is a selection matrix with [S]i = 0 if the ith constraints is a hard

constraint and [S]i = 1 if the ith constraint is a soft constraint. A large value on ϵs
will relax the soft constraints, and by making it large enough, a feasible point will
always be available for any value θ ∈ R

p. To incur a cost when soft constraints
are violated, a term ρϵ2

s is added to the objective function, where typically ρ ≫ 0
to make sure that ϵ∗s = 0 if the unsoftened problem is feasible. In summary, the
softened problem is given by

minimize
x,ϵs

1
2

(
x
ϵs

)T (
H 0
0 ρ

) (
x
ϵs

)
+

(
(f + fθθ)

0

)T (
x
ϵs

)
subject to

(
A −S

) ( x
ϵs

)
≤ b + Wθ,

(2.21)

which, importantly, is of the form (2.18).





3
Active-set methods for convex

Quadratic Programming

In the previous chapter we derived how the optimization problems encountered
in linear MPC can be cast as instances of a multi-parametric quadratic program
(mpQP). Consequently, the optimization problems that need to be solved at each
time step are quadratic programs (QPs). In this chapter we present in detail a
popular class of algorithms for solving such QPs: active-set methods.

In Section 3.1 we give a brief overview of quadratic programming and in Sec-
tion 3.2 we introduce active-set methods. A detailed description of a primal
active-set algorithm is given Section 3.3, which is used to formulate a dual active-
set algorithm in Section 3.4. Finally, Section 3.5 introduces practical aspects to
consider when implementing active-set algorithms.

3.1 Quadratic Programming

If the parameter θ is fixed in the mpQP in (2.18), which in the context of linear
MPC corresponds to measuring the state, the optimization problem becomes a
quadratic program of the form

minimize
x

J(x) ≜
1
2
xTHx + f T x

subject to [A]ix ≤ [b]i , ∀i ∈ Nm

(3.1)

where [ · ]i denotes the ith row of a matrix. The objective function J : Rn → R

consists of a quadratic term, defined by H ∈ S
n
+, and a linear term, defined by

f ∈ Rn. The feasible set is a polyhedron, defined by A ∈ Rm×n and b ∈ Rm.
The following example visualizes a two-dimensional QP to provide some geo-

metrical intuition for (3.1) in the case when H ≻ 0.

27
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Example 3.1: Visualization of QP
Consider the quadratic program

minimize
x,y

0.5x2 + 2y2 + xy + x − 14y

subject to − 2x + y ≤ 7,

− x + 3y ≤ 11,

(3.2)

which is of the form (3.1) with H =
(
1 1
1 4

)
, f =

(
1
−14

)
, A =

(
−2 1
−1 3

)
and b =

(
7

11

)
.

Figure 3.1 illustrates the level sets of the objective function J , which are ellipses,
together with the feasible set Ax ≤ b. The minimum to (3.2) is obtained for
x∗ =

(
−2, 3

)
, which is the point where a level curve “just touches” the feasible set.

−H−1f

x∗

Ax ≤ b

−6 −4 −2 0 2

−2

0

2

4

6

Figure 3.1: Example quadratic program. Warmer colors correspond to
higher objective function values. The gray ellipses correspond to some level
curves of the objective function (which increase outward from x = −H−1f ).
The white opaque area corresponds to the feasible set.

Remark 3.1. The shape of the level curves of (3.1), which are ellipses when H � 0, only
depends on H and not f ; changing f only translates the unconstrained minimum −H−1f ,
which is the center of these ellipses. Similarly, the normals of the constraining half-planes
only depend on A and not b; changing b only offsets these half-planes. Hence, since the
parameter θ in (2.18) neither affects H nor A, different values of θ only translate the
unconstrained optimum and offset the half-planes: the shape of the level curves and the
normal of the half-planes remain the same. This structure is exploited in explicit MPC
[49] and in the framework presented in Paper A.
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3.1.1 Feasibility

When the QP in (3.1) does not have a solution it is said to be infeasible. Infea-
sibility can arise in two different cases. The first case occurs when there does
not exist any point that satisfies the constraint Ax ≤ b, i.e., if the feasible set is
empty: {x ∈ Rn : Ax ≤ b} = ∅. In this case the problem is said to be primal infeasi-
ble or sometimes (carelessly) just infeasible. The processes of finding a point that
satisfies Ax ≤ b is often called phase-1.

The second case of infeasibility can only occur if H is singular. Then there
might exist primal feasible points that make the objective function arbitrarily
small (J → −∞). Hence, a minimum does not exist. In this case the QP is said
to be dual infeasible or unbounded. A simple example of an unbounded QP is the
problem of minimizing x2 + y subject to x ≤ 0 and y ≤ 0, which can be made
arbitrarily small by keeping x fix and decreasing y. (Note that if the constraint
would be y ≥ 0 instead of y ≤ 0 the resulting QP would be bounded, highlighting
that unboundedness is dependent on both the objective function and the feasible
set).

3.1.2 Optimality

A solution to (3.1), denoted x∗, satisfies the following optimality conditions, known
as the KKT conditions [122]:

Hx∗ + AT λ = −f (3.3a)

Ax∗ ≤ b (3.3b)

λ ≥ 0 (3.3c)

([b]i − [A]ix
∗)[λ]i = 0, ∀i ∈ Nm, (3.3d)

for some dual variable λ ∈ R
m. Condition (3.3a) is called the stationarity condi-

tion, (3.3b) is called the primal feasibility condition, (3.3c) is called the dual feasi-
bility condition, and (3.3d) is called the complementary slackness condition. These
conditions encode the following necessary properties for an optimal point x∗:

• x∗ satisfies the constraints in (3.1); ensured by (3.3b).

• The gradient at x∗ is perpendicular to the feasible set; ensured by (3.3a),
(3.3c) and (3.3d).

For a more detailed description of these conditions, see, e.g., Chapter 12 in [15].
In general the KKT conditions are only necessary conditions for optimality,

but for convex problems, which for QPs is equivalent to H ⪰ 0, the conditions
are also sufficient [123]. Furthermore, (3.3a) has a unique solution x∗ if H ≻ 0,
while there might be multiple solutions if H ⪰ 0.

Finally, note that the conditions (3.3a), (3.3b), and (3.3c) are all linear while
(3.3d) is nonlinear. The complementary slackness condition (3.3d) is, hence, what
makes quadratic programming nontrivial. In active-set methods, soon to be in-
troduced, the complementary slackness condition is enforced to hold throughout
all iterations, while the rest of the conditions are gradually ensured to hold.
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3.2 Active-set methods

Most of the difficulty in solving the QP in (3.1) stems from the inequality con-
straints Ax ≤ b. If, instead, the QP only contained equality constraints, the prob-
lem could be solved by solving one set of linear equations. Concretely, the mini-
mizer x∗ of the equality constrained QP (EQP)

minimize
x

1
2
xTHx + f T x

subject to Ex = d,
(3.4)

is a solution to the linear equation system(
H ET

E 0

) (
x∗

λ

)
=

(
−f
d

)
, (3.5)

often called a KKT system. In other words, stationarity (3.3a) and primal feasi-
bility (3.3b) are the only necessary conditions for optimality when only equality
constraints are present, whereas dual feasibility (3.3c) and complementary slack-
ness (3.3d) also become necessary for optimality once inequality constraints are
present.

The straightforwardness of solving EQPs is what is exploited in active-set
methods. An important insight, that forms the foundation for active-set methods,
is that only the constraints that hold with equality at x∗ are relevant for finding an
optimizer, motivating the following definitions.
Definition 3.1 (Active constraint). An inequality constraint aT x ≤ c is active at
a point x̃ ∈ Rn if it holds with equality at x̃, i.e., if aT x̃ = c.

Definition 3.2 (Active set). The active set at a point x ∈ R
n, denoted A(x), to

(3.1) is the set of all inequality constraints that are active at x; that is, the set
A(x) ≜ {i ∈ Nm : [A]ix = [b]i}.

The following lemma formalizes the importance of the active set at x∗; intu-
itively, it states that removing constraints that are inactive at x∗ from the problem
formulation does not change the solution x∗.

Lemma 3.1 (Sufficiency of active set). Let x∗ be a solution to (3.1) and let A∗ ≜
A(x∗). Then x∗ is also the solution to the EQP

minimize
x

1
2
xTHx + f T x

subject to [A]ix = [b]i , ∀i ∈ A∗
(3.6)

Proof: From the complementary slackness condition (3.3d) we have that [λ]i =
0, ∀i ∈ Nm \ A∗. This inserted into the stationarity condition gives

Hx∗ + [A]TA∗ [λ]A∗ = −f . (3.7)

Furthermore, the definition of A∗ imposes the equality constraint

[A]A∗x
∗ = [b]A∗ . (3.8)
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Taken together, (3.7) and (3.8) form the KKT system(
H [A]TA∗

[A]A∗ 0

) (
x∗

[λ]A∗

)
=

(
−f

[b]A∗

)
,

which coincides with the KKT system for (3.6).

The key takeaway from Lemma 3.1 is that if A∗ would be known, solving
(3.1) simplifies to solving a single system of linear equations. This motivates the
main objective of active-set methods: identifying A∗. This identification is done
iteratively by updating a so-called working set, denoted W , which can be seen
as an estimate of A∗. Updates to W are done by adding/removing constraints
to/from it. Such additions/removals are determined by solving an EQP, defined
by the current working set W . In other words, the task of solving the QP is
split into solving a sequence of EQPs (system of linear equations), where each
EQP is defined by the current working set. A prototypical active-set algorithm
for quadratic programming, which summarizes the discussion above, is given in
Algorithm 2.

Algorithm 2 (Prototypical active-set method for solving QP (3.1))

1: repeat
2: (x, λ)← Solve KKT system defined byW
3: if (x, λ) is primal and dual feasible then
4: return (x∗, λ∗,A∗)← (x, λ,W ) ▷ Optimal solution found
5: else
6: ModifyW based on primal and/or dual violation of x and λ.

Different approaches for modifying the working setW at Step 6 lead to differ-
ent types of active-set methods:

• Primal methods work with a primal iterate x and ensure that the iterate
is primal feasible throughout all iterations. Primal feasibility is ensured and
dual feasibility is sought after [15; 56; 98].

• Dual methods work with a dual iterate λ and ensure that the iterate is dual
feasible throughout all iterations. Dual feasibility is ensured and primal feasi-
bility is sought after [57; 124; 125].

• Primal-dual methods work with a primal-dual pair (x, λ). Neither primal
nor dual feasibility of the iterates are ensured before termination [116; 126].

• Parametric methods are specialized for mpQPs and start with the optimal
solution given a nominal parameter θ0. The working set is then updated by
using a homotopy [127] for the mpQP to obtain a solution for the current
parameter θ [72; 128].

Commonly, primal and dual methods change W one element at a time, by
either removing or adding an index to it. These are the methods considered in
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this thesis. For a comprehensive survey of the theoretical details underlying these
types of active-set methods see, e.g., [129]. We will now introduce such a primal
active-set algorithm.

3.3 A primal active-set algorithm

Before getting into the details of the steps performed in a primal active-set algo-
rithm, we relate its workings in terms of the KKT conditions (3.3). In a primal
active-set algorithm, primal feasibility (3.3b) of an iterate x ∈ R

n is maintained
throughout all iterations. Simultaneously, the complementary slackness condi-
tion (3.3d) is enforced through a working set W ⊆ Nm. In particular, this is
done by imposing that all equality constraints contained in W should hold with
equality, i.e., [A]ix = [b]i , ∀i ∈ W ; implicitly, W also forces the dual variables
of the constraints in its complement, denoted W̄ ≜ Nm \ W , to be fixed at zero,
i.e., [λ]i = 0, ∀i ∈ W̄ . To summarize, both primal feasibility (3.3b) and comple-
mentary slackness (3.3d) are enforced throughout all iterations, which leave dual
feasibility (3.3c) and stationarity (3.3a) to be sought after in each iteration.

The primal active-set algorithm that we consider here is given in Algorithm 3,
and is described in detail below. In the algorithm, a subscript k denotes a vari-
able’s value at iteration k (e.g., xk andWk denote x andW at iteration k).
Remark 3.2. As is shown in [130], many active-set methods in the literature are mathe-
matically equivalent, in the sense that they produce the same sequence of iterates before
reaching the solution; Algorithm 3 belongs to this family. As such, Algorithm 3 is math-
ematically equivalent to the active-set algorithms presented in, for example, [15; 56; 98].
The differences between these active-set algorithms are numerical, for example, how sys-
tems of linear equations are solved. This equivalency makes the certification framework
presented in Paper A in Part II particularly powerful.

Algorithm 3 (A primal active-set algorithm for solving (3.1) when H ≻ 0)

Input: x0,W0, k = 0
Output: x∗, λ∗

1: repeat
2: Compute x∗k by solving (3.9)
3: if Ax∗k ≤ b then ▷ x∗k is primal feasible
4: Compute λk by solving (3.10)
5: if λk ≥ 0 then return x∗ ← x∗k , λ∗ ← λk ▷ Optimal solution found
6: else l ← argmin

i∈Wk

[λk]i

7: Wk+1 ← Wk \ {l}; xk+1 ← x∗k
8: else l ← argmin

i∈W̄k :[A]ix∗k>[b]i

[b]i−[A]ixk
[A]i (x∗k−xk ) ▷ x∗k is not primal feasible

9: Wk+1 ← Wk ∪ {l}; xk+1 ← xk + αl
k(x∗k − xk)

10: k ← k + 1
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Since primal feasibility should be maintained throughout all iterations, Algo-
rithm 3 starts with an iterate x0 that is primal feasible, i.e., Ax0 ≤ b, and a work-
ing set W0 that contains a subset of the active constraints at x0, i.e, W0 ⊆ A(x0).
In each iteration of the algorithm, a constraint will either be added to or removed
from the working set Wk , unless the current iterate xk is equal to the optimal so-
lution x∗, in which case the algorithm terminates. We will now explain/motivate
each step in the algorithm in detail.

(Step 2): An iteration always starts by computing the solution x∗k to an EQP
defined by the current working-setWk of the form

x∗k ≜ argmin
x

1
2
xTHx + f T x

subject to [A]ix = [b]i , ∀i ∈ Wk .
(3.9)

The solution x∗k to (3.9) is called a constrained stationary point (CSP), since it sat-
isfies the stationarity condition (3.3a) and is “constrained” to be on the mani-
fold defined by Wk . We will for the time being consider the strictly convex case
(H ≻ 0), which ensures that x∗k exists and is unique. In Section 3.3.1 we extend
the algorithm to also handle the case when H is positive semidefinite.

(Step 3): The aim in an iteration is, while maintaining primal feasibility, to
decrease the objective function value by moving from the current iterate xk to x∗k
along the line segment Lk ≜ {x ∈ R

n : x = xk + α(x∗k − xk), α ∈ [0, 1]}. The largest
possible decrease would be achieved by setting xk+1 = x∗k , which is only possible
if x∗k is primal feasible, i.e., if Ax∗k ≤ b.

(Step 4): If x∗k is primal feasible we, hence, set xk+1 = x∗k , which means that
the stationarity condition (3.3a) is satisfied. Since primal feasibility (3.3b) and
complementary slackness (3.3d) are ensured to hold throughout all iterations,
the only KKT condition remaining to be satisfied is dual feasibility (3.3c). To
check dual feasibility, the dual variables are computed by solving

[A]TWk
[λk]Wk

= −Hx∗k − f . (3.10)

(Step 5): If λk ≥ 0, dual feasibility is satisfied, i.e., all KKT-conditions are
satisfied. Hence, the algorithm terminates with the global optimizer x∗k .

(Step 6 & 7): Otherwise, if λk ≱ 0, a constraint corresponding to a negative
component of λk is removed from W . There are different policies for selecting
which negative component to remove, known as selection rules. The most com-
mon selection rule, which is used in Algorithm 3, is Dantzig’s selection rule that
selects the most negative component of λk , i.e.,

l = min
i∈Wk

[λk]i . (3.11)

Selecting any negative component does, however, ensure the convergence of the
algorithm and some alternative rules are surveyed in [131]. To summarize, when
x∗k is primal feasible but not dual feasible, the working set and the iterate is up-
dated as

Wk+1 = Wk \ {l}, xk+1 = x∗k . (3.12)
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(Step 8 & 9): If x∗k is not primal feasible (Ax∗k ≰ b), it follows from the convex-
ity of Ax ≤ b that at least one constraint in W̄k becomes violated while moving
from xk to x∗k along the line segment Lk . To retain primal feasibility, a violated
constraint will be added to the working set. This constraint is determined by
moving from xk to x∗k along Lk until primal feasibility is lost, i.e., until the first
constraint in W̄k becomes active. Let αi

k be the step length taken along Lk which
activates constraint i, explicitly given by

[A]i(xk + αi
k(x∗k − xk)) = [b]i ⇔ αi

k =
[b]i − [A]ixk
[A]i(x∗k − xk)

. (3.13)

Hence, the index of the first violated constraint that becomes active, denoted l,
can be determined by

l = argmin
i∈W̄k :[A]ix∗k>[b]i

αi
k , (3.14)

and the working set and iterate are updated as

Wk+1 = Wk ∪ {l}, xk+1 = xk + αl
k(x∗k − xk). (3.15)

(Step 10) AfterW has been updated, the above-mentioned steps are repeated
until a dual feasible iterate (i.e., the global solution) has been found.

An example of Algorithm 3 applied to a strictly convex QP is given below.

Example 3.2: Primal active-set algorithm in action
Let us use Algorithm 3 to solve the QP in Example 3.1. We select the starting
iterate x0 = (0, 0) (which is primal feasible) and the starting working setW0 = ∅.
Iteration 0: Solving (3.9) with W = ∅ results in x∗0 = −H−1f = (−6, 5), i.e., the
unconstrained minimum. Since Ax∗0 ≰ b, x∗0 is not primal feasible (also evident
from Figure 3.2) a constraint will be added to W . By computing the step length
until activation for each constraint in W̄0 (constraint 1 and 2) we get α1

0 = 0.41
and α2

0 = 0.52. Since α1
0 < α2

0 , constraint 1 is added to the working set and
the iterate is updated as x1 = x0 + 0.41(x∗0 − x0). The initial iteration ends with
x1 = (−2.47, 2.06) andW1 = {1}.
Iteration 1: Solving (3.9) withW1 = {1} results in x∗1 = (−1.71, 3.57), which is pri-
mal infeasible since it violates the remaining constraint not in W1 (constraint
2). The second constraint is, hence, added to the working set and, since the
step length to activation of constraint 2 is α2

1 = 0.62, the iterate is updated as
x2 = x1 + 0.62(x∗1 − x1). The iteration ends with x2 = (−2, 3) andW2 = {1, 2}.
Iteration 2: Solving (3.9) with W2 = 1, 2 trivially gives x∗2 = x2 since the con-
strained set is a single point, which also means that Ax∗2 = b ≤ b, i.e., x∗2 is primal
feasible. Hence, either a constraint will be removed from W or the global opti-
mum has been reached. Computing λ by (3.10) gives λ2 = (0.4, 1.2) ≥ 0, which is
dual feasible, resulting in the algorithm terminating with the global optimum.
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Figure 3.2: Active-set iterations

The path taken before reaching optimality is illustrated in Figure 3.2. In con-
clusion we get x∗ = x∗2 = (−2, 3) and A∗ = W2 = {1, 2}. The working-set sequence
to reach optimality was ∅ → {1} → {1, 2}.

3.3.1 Extensions to semidefinite Hessians

Two problems that might arise when H is allowed to be singular is that the sub-
problems in (3.9) do: (i) not have a unique solution, (ii) are unbounded. Both
uniqueness and unboundedness can be determined by properties of the so-called
reduced Hessian.
Definition 3.3 (Reduced Hessian). The reduced Hessian given Wk is defined as
ZT
k HZk , where the matrix Zk ∈ Rn×|Wk | is a full-rank matrix with columns span-

ning the null space of [A]Wk
.

An interpretation of the reduced Hessian is as the Hessian for the resulting
quadratic form if x is restricted to the subspace {x ∈ Rn : [A]i x = [b]i ,∀i ∈ Wk}.

Now, the uniqueness/existence of a solution to the EQP subproblem (3.9) can
be determined by checking whether the reduced Hessian is nonsingular, formal-
ized by the following lemma (for more details, see, e.g., Section 16.1 in [15]).

Lemma 3.2 (Existence of unique solution). If the reduced Hessian ZT
k HZk � 0

(i.e., is nonsingular) there exists a unique solution to the EQP subproblem (3.9).
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Proof: The main idea behind the proof is to transform the EQP in (3.9) to an
unconstrained quadratic program. Let ξ ∈ Rn be any point that satisfies [A]Wk

ξ =
[b]Wk

(i.e., is a particular solution). Then any point in x ∈ R
n that satisfies the

equality constraints [A]Wk
x = [b]Wk

can be decomposed into x = ξ + Zk x̃, where
x̃ ∈ R

|Wk | (recall that Zk is a full rank matrix with column vectors that span the
null space of [A]Wk

). Therefore, the objective function of subproblem (3.9) can be
written as

1
2
xTHx + f T x =

1
2

(ξ + Zk x̃)TH(ξ + Zk x̃) + f T (ξ + Zk x̃)

=
1
2
x̃T ZT

k HZk x̃ + (f T + ξTH)Zk x̃ + c

with c ≜ 1
2ξ

THξ + f T ξ. Solving the EQP in (3.9) is, hence, equivalent to solving
the unconstrained problem

minimize
x̃

1
2
x̃T ZT

k HZk x̃ + (f T + ξTH)ZT
k x̃ + c (3.16)

which has a unique solution iff ZT
k HZk is nonsingular, i.e., if ZT

k HZk ≻ 0 (since
Zk has full rank and H ⪰ 0).

A consequence of Lemma 3.2 is that if the reduced Hessian remains nonsin-
gular, the same type of iterations considered in Algorithm 3 can be performed
without any modification. Problems only arise when the reduced Hessian be-
comes singular. Next we show that singularity cannot occur after a constraint is
added toW .

Lemma 3.3 (Reduced Hessian after an addition toW). If ZkHZk ≻ 0 and con-
straint l is added in iteration k of Algorithm 3, then Zk+1HZk+1 ≻ 0.

Proof: If constraint l is added in iteration k, the submatrix [A]Wk+1
will have

one additional row compared with [A]Wk
. Since the added row will be linearly

independent to the rows in [A]Wk
(see, e.g., Section 16.5 in [15]), there exist null

space bases that are related as Zk =
(
Zk+1 z̃

)
for some z̃ ∈ R

n (and both Zk and
Zk+1 have full rank). Hence, the reduced Hessians are related as

ZT
k HZk =

(
Zk+1 z̃

)T
H

(
Zk+1 z̃

)
=

(
ZT
k+1HZk+1 Zk+1Hz̃
z̃THZk+1 z̃THz̃

)
≻ 0, (3.17)

which implies, from Sylvester’s criterion, that ZT
k+1HZk+1 ≻ 0.

Lemma 3.3 implies that the reduced Hessian only becomes singular after a
constraint is removed from W . In that case, the EQP in (3.9) does not have a
unique solution and the iterate in the active-set algorithm has to be updated by
other means. The following lemma gives guidance in how the iterate should be
updated when the reduced Hessian becomes singular.
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Lemma 3.4 (Unbounded search direction ). Let xk satisfy [A]Wk
xk = [b]Wk

and
p̃ ∈ Rn be a solution to

Hp̃ = 0, [A]Wk
p̃ = 0, f T p̃ < 0. (3.18)

Then

(i) [A]Wk
(xk + αp̃) = [b]Wk

, ∀α ∈ R
(ii) J(xk + αp̃)→ −∞ as α →∞.

Proof: (i) Directly follows from [A]Wk
p̃ = 0 and [A]Wk

xk = [b]Wk
. (ii) Evaluating

the objective function J for any point xk + αp̃ gives

J(xk + αp̃) =
1
2

(xk + αp̃)H(x + αp̃) + f T (xk + αp̃)

=
1
2
xTk Hxk + αxTk Hp̃ +

α2

2
p̃THp̃ + f T xk + αf T p̃

= J(xk) + αxTk Hp̃ +
α2

2
p̃THp̃ + αf T p̃

= J(xk) + αf T p̃,

(3.19)

where Hp̃ = 0 has been used in the last equality. Now, since f T p̃ < 0 it follows
that αf T p̃→ −∞ when α →∞ and, hence, J(xk + αp̃)→ −∞ when α →∞.

Lemma 3.4 implies that if there exists a p̃ that satisfies (3.18), moving along
the ray xk + αp̃, α > 0 can decrease the objective function by an arbitrary amount
while staying on the manifold defined by the working set Wk . The following
lemma ensures that there always exists a solution to (3.18) when the removal of
a constraint in Algorithm 3 result in a singular reduced Hessian.

Lemma 3.5 (Existence of singular descent direction ). If the reduced Hessian
becomes singular after the removal of a constraint l in iteration k − 1 of Algo-
rithm 3, there exists p̃ ∈ Rn that solves (3.18).

Proof: Let Zk , again, be a matrix with columns that are a basis to the null space
of [A]Wk

. Then, since the reduced Hessian is singular, there exists p such that
ZT
k HZkp = 0. Because Zk has full rank, it follows that HZkp = 0. Now let

p̃ ≜ Zkp. It then directly follows that Hp̃ = 0 and [A]Wk
p̃ = 0. What remains is

to prove that p̃ also satisfies f T p̃ < 0. Since a constraint was removed in iteration
k − 1 the stationarity condition (3.3a) held for x∗k−1 and λk−1, i.e.,

Hx∗k−1 + [A]TWk
[λk−1]Wk

+ [A]Tl [λk−1]l = −f , (3.20)

where we have used that [A]TWk−1
[λk−1]Wk−1

= [A]TWk
[λk−1]Wk

+ [A]Tl [λk−1]l since
Wk−1 = Wk ∪ {l}. Transposing (3.20) and multiplying with p̃ from the right then
gives

f T p̃ = −(Hx∗k−1 + [A]TWk
[λk−1]Wk

+ [A]Tl [λk−1]l)
T p̃

= −
(
(x∗k−1)THp̃ + [λk−1]TWk

[A]Wk
p̃ + [λk−1]l[A]l p̃

)
= −[λk−1]l[A]l p̃,

(3.21)
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where Hp̃ = 0 and [A]Wk
p̃ = 0 have been used in the last equality. Now, since

constraint l was removed in iteration k − 1 we have that [λk−1]l < 0. Moreover,
[A]l p̃ , 0 since otherwise the reduced Hessian at iteration k−1 would be singular.
Taken together, −[λk−1]l[A]l p̃ , 0. Now all of the above arguments also hold for
−p̃ which means that f T p̃ < 0 or f T (−p̃) < 0. In conclusion, we can assume w.l.o.g.
that p̃ was selected such that f T p̃ < 0 (otherwise we could just flip its sign).

To summarize the implications of Lemma 3.4 and 3.5: If, in Algorithm 3, the
reduced Hessian becomes singular after the removal of a constraint, there always
exists a direction p̃ ∈ R

n that can decrease the objective function by an arbitrary
amount, while staying primal feasible.

When deciding the step length α to move in the direction p̃, two different
scenarios can occur. If there exists a constraint in W̄k that becomes active while
moving along the ray xk +αp̃, α > 0, the first constraint in W̄k that becomes active
is added toWk (similar to Steps 8 & 9 in Algorithm 3). Otherwise, if no constraint
in W̄k becomes active while moving along the ray, it follows from Lemma 3.4 that
the objective function can be made arbitrarily small while maintaining primal
feasibility, resulting in an unbounded problem. Concretely, no inactive constraint
will become activated if [A]W̄k

p̃ ≥ 0.
The above-mentioned amendments to Algorithm 3 result in Algorithm 4.

Algorithm 4 (A primal active-set algorithm for solving (3.1) when H ⪰ 0)

Input: x0,W0 (such that ZT
0 HZ0 ≻ 0), k = 0

Output: x∗, λ∗

1: repeat
2: Compute x∗k by solving (3.9)
3: if (3.9) is unbounded then SingularIteration
4: else
5: if Ax∗k ≤ b then ▷ x∗k is primal feasible
6: Compute λk by solving (3.10)
7: if λk ≥ 0 then return x∗ ← x∗k , λ∗ ← λk ▷ Optimal solution found
8: else l ← argmin

i∈Wk

[λk]i

9: Wk+1 ← Wk \ {l}; xk+1 ← x∗k
10: else l ← argmin

i∈W̄k :[A]ix∗k>[b]i

[b]i−[A]ixk
[A]i (x∗k−xk ) ▷ x∗k is not primal feasible

11: Wk+1 ← Wk ∪ {l}; xk+1 ← xk + αl
k(x∗k − xk)

12: k ← k + 1
13: procedure SingularIteration
14: Compute p̃ from (3.18)
15: if [A]W̄k

p̃ ≥ 0 then break unbounded

16: else l ← argmin
i∈W̄k :[A]i p̃<0

[b]i−[A]ixk
[A]i p̃

17: Wk+1 ← Wk ∪ {l}; xk+1 ← xk + [b]l−[A]lxk
[A]l p̃

p̃
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3.4 From primal to dual active-set algorithms

When H ≻ 0, one can instead of solving the QP in (3.1) solve its so-called dual

minimize
λ

1
2
λTATH−1Aλ + (b − AH−1f )T λ

subject to λ ≥ 0,
(3.22)

which is also a QP. It can be shown, see [132], that the solution λ∗ to (3.22) satisfies
the same KKT conditions as (3.1). After solving (3.22), the primal solution x∗ to
(3.1) can hence be retrieved from λ∗ through the stationarity condition (3.3a) as

x∗ = −H−1(AT λ∗ + f ). (3.23)

The main idea behind dual active-set QP methods is to work with the dual
QP in (3.22) instead of the primal QP in (3.1). Generally, the Hessian of the dual,
ATH−1A, is positive semidefinite, making the extensions presented in Section
3.3.1 necessary. Hence, applying Algorithm 4 to the QP in (3.22) directly defines
a dual active-set algorithm. This is concretized in Paper E.

One major advantage of working with the dual QP is that the constraints
are simple nonnegativity constraints λ ≥ 0, which, for example, makes it triv-
ial to find a feasible starting iterate. Moreover, the computation of step lengths
to constraints in W̄k , performed in Step 10, simplifies to αi

k = [λk ]i
[λ∗k−λk ]i

since

λ ≥ 0⇔ Aλ ≤ b with A = −I and b = 0.
In dual active-set algorithms, similar to primal active-set algorithms, a work-

ing setW ensures that the complementary slackness condition (3.3d) is satisfied
throughout all iterations. Moreover, a point in which the stationarity condition
(3.3a) is satisfied (a solution to a KKT system) is pursued in each iteration. The
main difference between primal and dual active-set algorithms, in the context of
the KKT conditions (3.3), is that dual feasibility is maintained throughout all it-
erations while primal feasibility is sought after. Hence, all iterates except the last
one violate some constraint in (3.1).

3.5 Practical concerns

This chapter concludes with some important practical concerns for the active-set
algorithms introduced in this chapter.

Warm starts

The QPs that are solved in two adjacent time steps in linear MPC are often very
similar, since changing the parameter in (2.18) only perturbs f and b, while H
and A remain constant. Moreover, a small perturbation of θ leads to small pertur-
bations to f and b. Hence, if θ (i.e., the state) only changes slightly between two
time steps, the solutions to the corresponding QPs are close. In such situations,
the solution from the previously solved QP can be used to initialize the active-set
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algorithm when solving the next QP. This is known as warm-starting the solver
and often reduces the computational effort. Conversely, initializing the solver
without any prior knowledge is known as cold-starting the solver. Even though
warm starts usually improve the average computational complexity for active-set
algorithms, some care has to be taken since the worst-case computational com-
plexity can be exacerbated [133].

An important advantage of active-set methods compared with, for example,
interior-point methods are that they can easily be warm started; the optimal iter-
ate and working set from a previously solved QP can be used directly in selecting
the starting iterate and working set for another, similar, QP. In the context of
general mpQPs, warm-starting primal active-set algorithms can be challenging
since the perturbation of b (caused by the change in θ) might yield a solution
to the previous problem infeasible for the new QP. In the context of linear MPC,
however, it is often possible to obtain a primal feasible iterate even if b is per-
turbed. This follows from the constraints usually consisting of box constraints of
the form l ≤ x ≤ u (where l and u do not depend on θ) and more general con-
straints of the form Ax ≤ b (where b depends on θ) that are softened (see Section
2.3.2). Therefore, selecting any starting point x0 between l and u (which is triv-
ial) and initializing the slack ϵs for the soft constraints to a sufficiently high value
to counteract the parametric perturbation of b leads to a primal feasible starting
iterate.

In contrast to a primal active-set algorithm, warm-starting the dual active-set
algorithm described in Section 3.4 after b and f have been perturbed is always
trivial, since any nonnegative λ ≥ 0 suffices (i.e., the constraints to the dual prob-
lem are not perturbed by a change in θ).

Early termination

An advantage of primal over dual active-set algorithms is that they retain primal
feasibility throughout all iterations. Hence, a primal active-set algorithm can be
terminated early and still provide an iterate that satisfies the constraints. The so-
lutions after such early terminations will be suboptimal but can be “good enough”
for the application at hand. This is often the case in MPC where a suboptimal
solution that is close enough to the optimum might yield sufficient control per-
formance and the resulting feedback law might still be stable [134]. Hence, using
a primal active-set algorithm that is terminated early for linear MPC can reduce
the computational complexity significantly, while still producing an acceptable
control law.

In contrast, a dual active-set algorithm produces primal infeasible iterates all
the way up until an optimum is found. Some constraints will, therefore, always
be violated if the dual active-set algorithm is terminated early. Primal feasibil-
ity of the solution is crucial in the context of MPC since the constraints (espe-
cially the hard constraints) often encode physical limitations, such as actuator
limits, which are impossible, or discouraged, to be exceeded in practice. Early-
terminating dual active-set algorithms are therefore not viable in linear MPC.

There are, however, MPC applications where early-terminating dual active-
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set algorithms are very useful, namely, in MPC of hybrid systems [135], where
some states take discrete values. In these applications, the optimization problems
that are solved in each time step are mixed-integer quadratic programs (MIQPs),
which are usually solved through branch-and-bound, where a sequence of QPs
are solved. In branch-and-bound, lower bounds on optimal objective function
values can be used to reduce the number of QPs that need to be solved, which
greatly decreases the computational complexity [136]. Such lower bounds are
readily available in dual active-set algorithms since they monotonically increase
the objective function value. Hence, if the objective function value exceeds a cer-
tain limit (which corresponds to the objective function value of a known feasible
solution) the branch-and-bound method can immediately abort the solution pro-
cess of this QP and prune the corresponding branch.

Numerical stability

Round-off errors can often lead to cycling of active-set algorithms [137], espe-
cially if round-off errors affect the checks for primal feasibility and dual feasi-
bility which are done in Steps 5 and 7 in Algorithm 4, respectively. One way of
ensuring that the algorithm terminates in finite time, despite round-off errors,
is to modify the algorithm by incorporating anti-cycling schemes, e.g., the ones
presented in [137; 138].

Another approach to reduce the likelihood of cycling, which does not re-
quire any modification to the optimization algorithm, is to regularize the prob-
lem which is solved (since ill-conditioned problems exacerbate round-off errors).
In practice, ill-conditioned Hessians are often regularized by adding a positive
diagonal matrix, i.e., H → H + ϵI for some ϵ > 0. A drawback of such regular-
izations is, however, that the solution also is perturbed. An alternative way of
regularizing the QP, which does not perturb the solution, is to perform so called
proximal-point iterations, by iteratively solving QPs of the form

xk+1 = argmin
x

1
2
xT (H + ϵI) x + (f − ϵxk)T x

subj. to Ax ≤ b.
(3.24)

It can then be shown (see, e.g., Theorem 10.28 in [139]) that xk → x∗ as k →∞ if
such iterations are performed. Moreover, a larger ϵ leads to a better conditioned
Hessian, but also to more iterations before convergence (again, see, e.g., Theorem
10.28 in [139] for the convergence rate).
Remark 3.3. Outer proximal-point iterations can be used to improve the numerical sta-
bility of any QP method. However, active-set methods are especially suited to be used in
conjunction with proximal-point iterations because of their warm-starting capabilities.

Solving KKT systems

Most of the computational load in Algorithm 4 is in solving the KKT systems in
Step 2. Efficiently solving these KKT systems is, hence, essential for the active-
set algorithm to be practically viable. Solving them from scratch in each iteration
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would lead to a large computational cost. Fortunately, the systems can be solved
very efficiently by leveraging that only a single element is added/removed from
W at a time, which makes the KKT system between two iterations similar. For
example, the KKT system to be solved in iteration k is(

H [A]TWk

[A]Wk
0

) (
x
λ

)
=

(
−f

[b]Wk

)
. (3.25)

If we assume that constraint m is added, the next KKT system to solve is
H [A]TWk

[A]Tm
[A]Wk

0 0
[A]m 0 0


 x
λ
λ+

 =

 −f[b]Wk

[b]m

 . (3.26)

That is, only one extra equation and one extra optimization variable λ+ ∈ R have
been added. Hence, instead of solving the KKT system from scratch, a factoriza-
tion of the matrix in the left-hand side (the KKT matrix) can be computed and
updated through low-rank updates. Some standard ways of factorizing the ma-
trix are through LDLT or QR factorizations (see, e.g., [140]). Moreover, in the
context of linear MPC with a sparse formulation, the KKT matrix can be factor-
ized using the Riccati factorization [53]. For efficient low-rank updates of the
LDLT and QR factorization see, e.g., [141]; for low-rank updates of the Riccati
factorization see [142].

In the complexity certification framework in Paper A, we abstract away the
numerical method that is used for solving the KKT systems. If the working set
sequence is known, which is what is determined in Paper A, we know exactly
which sequences of KKT systems need to be solved. Hence, given any particular
way of factorizing the KKT matrix we can determine how many floating-point
operations are needed to solve the sequences of KKT systems.

In the dual solver proposed in Paper E, we solve KKT systems by first eliminat-
ing the equality constraints imposed by the working set, and then we factorize the
reduced system with an LDLT factorization. This factorization is then updated
with rank-1 updates.
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Contributions and outlook

We conclude Part I by summarizing the main contributions presented in Part II,
both broadly and in detail; furthermore, we give some future research directions
to extend/improve the results therein.

4.1 Summary of contributions

Broadly, the contributions in Part II improve the reliability and applicability of
active-set methods in real-time MPC applications. This is done through:

(i) A certification framework for active-set methods that determines their
worst-case number of iterations, floating-point operations, and execution
time (Paper A & B); this framework is further extended in Paper C & D to
account for numerical aspects.

(ii) An efficient active-set solver (Paper E) that is covered by the certification
framework. In Paper F, we exemplify how the solver can be tailored for the
specific application at hand by using the certification framework.

The certification framework improves the reliability of active-set methods in
MPC applications, since it enables a priori guarantees that the available hardware
is sufficient for the application at hand. This is particularly important for MPC
of hard real-time systems, where hard deadlines need to be met.

The proposed solver improves the applicability of active-set methods in real-
time MPC applications, since it efficiently solves the type of problems that com-
monly arise in such applications. Moreover, the solver is easy to implement, is
numerically stable, and can easily be warm started, all of which are favourable
properties for real-time MPC solvers. On top of this, it is covered by the proposed
certification framework, which enables hard real-time guarantees.

43
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Concretely, the main contributions of each paper in Part II are listed below.

Paper A

(A1) For a given multi-parametric (positive semi-definite) quadratic program, we
propose a method that determines exactly which sequence of linear system
of equations a primal active-set method needs to solve before termination,
for any parameter of interest. This, in turn, enables exact bounds on the
required number of iterations and/or floating-point operations.

(A2) We unify the complexity certification methods for active-set methods pro-
posed in [16–18] in a single framework.

(A3) By considering several mpQPs originating from MPC problems, we show
how the proposed framework can be used to, for example, compare the
problem-specific performance of primal and dual active-set methods.

Paper B

(B1) We introduce the concept of execution-time equivalent covers for programs
with parametrized inputs.

(B2) We show how the framework in Paper A can be used to generate execution-
time equivalent covers; specifically, this applies to programs that realize
active-set methods covered by the framework in Paper A (e.g., the ones in
[15; 56; 57] and Paper E).

(B3) We propose a method that determines the exact worst-case execution time
(WCET) of programs that realize any active-set method covered by the frame-
work in Paper A.

Paper C

(C1) We extend the framework in Paper A to be able to account for numerical
errors. The extension builds on a three-step approach consisting of: (i)
lifting the parameter space to include numerical errors; (ii) partitioning the
parameter space based on the solver’s behavior; (iii) projecting down the
new regions onto the nominal parameter space.

(C2) We give an abstract representation of the certification methods covered by
the framework in Paper A (e.g. [16–18]) and similar methods (e.g., [115]),
in terms of parameter-dependent finite automatons.

Paper D

(D1) We propose a method that, for a given multi-parametric quadratic program,
determines which sequence of regularized QPs needs to be solved when
proximal-point iterations are performed, for any parameter of interest.
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(D2) We combine the proposed certification method with the framework in Pa-
per A to be able to give bounds on the total number of inner iterations or
the total number of floating-point operations when proximal-point itera-
tions are used.

Paper E

(E1) We show how favourable properties of the QP solver in [23] can be retained
without transforming QPs into nonnegative least-squares problems. This
leads to several improvements: (i) direct resusability of matrix factors for
warm starts; (ii) improved numerical stability; (iii) improved efficiency by
reducing intermediate computations stemming from the nonnegative least-
square reformulation.

(E2) Based on (E1), we propose an efficient and simple dual active-set QP solver
that is based on recursive low-rank updates to an LDLT factorization. The
solver is covered by the framework proposed in Paper A, which is important
from a real-time perspective.

(E3) We provide an open-source, library-free, and high-performing C implemen-
tation (available at https://github.com/darnstrom/daqp) of the pro-
posed solver. This implementation is shown to be capable of outperform-
ing state-of-the-art solvers on small/medium-sized QPs arising in real-time
MPC applications.

Paper F

(F1) We show how the framework in Paper A can be used to certify the com-
plexity of parametric warm starts for active-set methods. This can be seen
as extending the ideas presented in [18] from multi-parametric linear pro-
grams to multi-parametric quadratic programs.

(F2) We propose a method for generating parametric warm starts that does not
require any regions to be explicitly stored. Instead, the regions are implic-
itly stored in the problem data of the multi-parametric quadratic program.
As a result, the overhead of the proposed semi-explicit scheme is minor,
both in terms of computations and memory.

4.2 Future work

In addition to the future research directions suggested in the publications in
Part II, we give three general research directions to extend/improve the work
presented in this thesis.
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Linear parameter-varying systems The complexity certification framework in
Paper A, along with its subsequent extensions, operates on given multi-parametric
quadratic programs. In particular, it requires the Hessian and constraint matrix
to be parameter independent. An interesting future research direction is to try to
extend the framework to allow for the Hessian and constraint matrix to be pa-
rameter dependent. Specifically, this would allow the complexity certification of
MPC of linear parameter-varying (LPV) systems, and more broadly to nonlinear
MPC. To expect that the exact analysis from Paper A directly carries over is naive,
but fairly tight complexity bounds might still be possible. One way forward is
to apply the lift-partition-project scheme proposed in Paper C, with the perturba-
tion originating from parameter-independent approximations of the Hessian and
constraint matrix instead of numerical errors.

Optimizing the optimizer To “feedback” the certificates produced by the com-
plexity certification methods proposed in this thesis to tailor solvers is another
interesting research direction. Although this was partly done in Paper F, it only
scratched the surface of possible optimizations. For example, custom selection
rules for adding/removing constraints that are optimal for a particular applica-
tion could be developed with the aid of the certification framework. Moreover,
the solver can be tweaked in ways that improve the performance for a particu-
lar problem that might generally not even guarantee convergence. Paper B in-
troduces even more possibilities for optimization, including hardware selection,
compiler options, and explicit trade-offs between required memory and compu-
tations.

High-performance computing The method in Paper A is highly suitable for par-
allelization. Hence, it has the potential for being applied to larger MPC problems
than the ones considered in this thesis. A straightforward way to parallelize the
algorithm is to use domain decomposition; that is, by splitting the parameter
space into regions and then apply the certification method for each region on
separate workers. A more sophisticated way is to dynamically allocate regions
to workers as the parameter space is made finer by the partitioning described in
Paper A.
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