
Optimization Methods for Snow Removal of Bus
Stops

Department of Mathematics, Linköping University

Corina Hüni

Credits: 15 hp

Level: G2

Supervisor: Roghayeh Hajizadeh,
Department of Mathematics, Linköping University

Examiner: Elina Rönnberg,
Department of Mathematics, Linköping University

Linköping: May 2023

Abstract

Snow removal is an important optimization problem in countries with snowfall.
Bus stops can only be cleared after the adjacent street is cleared. The problem
of optimizing snow removal for bus stops in an urban area is a special case of the
Travelling Salesman Problem with Time Windows, where each stop only can be
cleared after a certain time has passed. The solver Gurobi is used to solve the
mathematical model of this problem to optimality. A local search and a tabu
search is implemented. The results of the mathematical model are compared to
the results of the implemented tabu search method. The results show that if a
solution needs to be produced quickly, the tabu search provides better solutions
than Gurobi.

Keywords:
Snow removal, Travelling Salseman Problem with Time Windows, Heuris-
tic, Local search, Tabu search

Hüni, 2023. iii

Sammanfattning

Snöröjning är ett viktigt optimeringsproblem i länder med snöfall. Busshåll-
platsen kan bara röjas efter att den angränsande vägen är röjd. Problemet att
optimera snöröjning av busshållplatser i en stad är ett Handelsresandeproblem
med tidsfönster, där varje hållplats bara kan röjas efter att en tid har gått. I ar-
betet har vi implementerat en tabusökning för att hitta snabbt hitta bra tillåtna
lösningar till problemet. För att utvärdera prestandan hos tabusökningen har
vi också implementerat en matematisk modell och använt Gurobi som lösare.
Resultaten visar att tabusökningen är snabbast på att hitta tillåtna lösningar
av god kvalité.

Nyckelord:
Snöröjning, Handelsresandeproblemet med Tidsfönster, Heuristik, Lokal-
sökning, Tabusökning

Hüni, 2023. v

Acknowledgements

I would like to thank my supervisor Roghayeh Hajizadeh for helping me find a
project, for coaching me and for her great flexibility. Special thank also to my
examiner Elina Rönnberg.

Hüni, 2023. vii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Purpose . 2
1.3 Goal . 2
1.4 Problem definition . 2
1.5 Method . 3
1.6 Limitations . 3
1.7 Structure . 3

2 Theory 5
2.1 Traveling Salesman Problem with Time Windows 5
2.2 Model formulation for travelling salesman

problem with time windows . 6
2.3 Heuristic methods . 6

2.3.1 Constructive heuristic . 6
2.3.2 Local search . 7

2.4 Meta heuristics . 7
2.4.1 Tabu search . 7
2.4.2 Further heuristic methods 8

3 Mathematical model 9
3.1 Parameters and variables . 9
3.2 Model . 10
3.3 Objective and constraints . 10
3.4 Solution with Gurobi optimizer 10

3.4.1 Example of solution of model with Gurobi 11

Hüni, 2023. ix

x Contents

4 Heuristics 13
4.1 Constructive heuristic . 13
4.2 Local search . 14
4.3 Tabu search . 16

5 Results 19
5.1 Provided data . 19
5.2 Tests on the smaller networks . 20
5.3 One example in detail: midi-15a 21
5.4 Midi-networks . 24

6 Conclusion 27

List of Figures

3.1 Network mini-05a . 11

5.1 Progression of tabu search on midi-15a 24

Hüni, 2023. xi

List of Tables

5.1 Results small networks . 20
5.2 Tabu search with 100 iterations on midi-15a 21
5.3 Tabu search with 500 iterations on midi-15a 22
5.4 Tabu search with tabu list length 28 on midi-15a 23
5.5 Methods comparison for midi-15a with tabu list length 28 and

iterations 300 . 23
5.6 Tabu search on larger networks with tabu list length 28 and 500

iterations . 25

Hüni, 2023. xiii

List of Algorithms

1 Constructive Heuristic(u) . 14
2 Get Neighbourhood(v, t) . 15
3 Local Search(s) . 15
4 Tabu Search(s,ml,mp) . 17

Hüni, 2023. xv

Chapter 1

Introduction

In countries with snowfall, it is a big challenge to clear streets from snow during
winter. In these countries, especially in Sweden the amount of snow can vary a
lot. Therefore new tours should be planed every year depending on the amount
of snow. The snow removal can be done on urban or rural areas. Since the street
network is more dense in urban areas, the problem is more challenging in those
areas. The problem is to plan the snow removal of an area in the city network
in order to minimize the time and/or cost. All the streets, including pedestrian
paths, bicycle paths, car paths, bus stops, intersections, etc. should be cleared.
The job can be done by a number of different vehicles. In a city network, streets
are indicated by links and intersections are shown by nodes. There are different
kind of tasks on nodes and links. There are a lot of cases and different aspects
to consider. For instance, some work need to be done before some other can
begin. Snow removal problem with all details has been studied in [9]. It is
focused on snow removal in urban areas, including streets and crossings. It
considers different types of vehicles for different types of tasks. The problem
has been formulated as a huge time-indexed mixed integer programming model.
The solutions keep track of all the details in order to give an exact planning
of which tasks are to be done at which time by which vehicle. In practise, the
problem is not solvable. Hence, some relaxations of the problem, where some
details were not included, have been considered in order to find a lower bound.
Heuristics have been implemented in [9], [6] and [7] in order to find a feasible
solution to the problem and improve it. One special case, which has not been
studied in those works is the clearing of bus stops in the street network. This
project aims to model the snow removal of bus stops mathematically, solve the
model with Gurobi and implement heuristics.

Hüni, 2023. 1

2 Chapter 1. Introduction

1.1 Background

A complete model for the snow removal of urban street networks is presented in
[9]. The model is time-indexed and includes different vehicle types. Several for-
mulations and relaxations are studied and rather good lower bounds are found.
Beside clearing streets, one named task is the clearing of bus stops. The size of
bus stops implies that the clearing of a bus stop is usually done with a smaller
vehicle than the one used for the adjacent street. Furthermore, the street must
be cleared before the clearing of the bus stop can be done. Therefore, the prob-
lem of clearing all bus stops can be seen as a kind of independent problem. In
[10], [7], [8], [6] different approaches for solving (a part) of the big problem in [9]
are presented. In [10] heuristics are presented for the problem with one vehicle.
In [6] those solutions are improved by a branch-and-dive heuristic. There are
often trees in the graph of a street network. The paper [8] uses the advantage
of those trees in order to improve the computational efficiency of the solution
method. Finally, in [7] heuristics are given in order to find feasible solutions to
the snow removal problem by coordinating several vehicles.

1.2 Purpose

This project treats the case of clearing bus stops. This part is not included in
the papers mentioned in Section 1.1. The snow removal on bus stops is different
from the snow removal in a street network. When only the clearing of bus stops
is considered, another network is considered where nodes represent bus stops
and edges represent the paths between the bus stops. In this problem, only the
nodes should be cleared of snow and edges are used for transportation. This
makes the problem easier to model.

1.3 Goal

This project aims to mathematically model, solve the model with Gurobi, im-
plement heuristic methods and compare the results of snow removal of bus stops
in urban areas.

1.4 Problem definition

The problem consists of optimizing the total time needed for clearing all bus
stops in a network while there are time restrictions on every bus stop, when the
clearing can begin. The solution presented in [9] of clearing all the streets in

1.5. Method 3

a network yields that each bus stop can be cleared only after a certain time.
The adjacent street to a bus stop needs to be cleared before the bus stop itself
can be cleared. Otherwise there would be a risk of having snow in the bus stop
again when the adjacent street is cleared afterwards.

1.5 Method
The first step is to model the problem mathematically. Then the model is
solved with Gurobi, an optimization solver. As interface, Python is used. Then
different heuristic methods are implemented in Python. Some artificial networks
are used as examples. The objective value and time of the heuristics, depending
on the chose of the parameters, are compared. Furthermore, the solution of the
heuristics are compared to the solution of the model with Gurobi.

1.6 Limitations
It is supposed that the clearing of each bus stop takes the same fixed time and
that the travelling time between two bus stops is the same in both directions.
This yields a symmetric model. Furthermore only one clearing vehicle is con-
sidered and all simplifications made in the parent problem are assumed as well.
The departure and end point is called depot. Each bus stop should be cleared
exactly once, including the depot. The interest is in minimizing the total time
of the tour.

1.7 Structure
There are six Section. In Section 1, the introduction to the problem is given. In
Section 2, the theory of the model and the heuristic methods are presented. The
problem is mathematically modeled and solved in Section 3. In Section 4, the
implemented heuristics are described. The results and conclusion are presented
in Section 5 and 6.

Chapter 2

Theory

2.1 Traveling Salesman Problem with Time Win-
dows

The problem of minimizing the time of a tour in a graph while visiting each
node exactly once is known by [11] as the Travelling Salesman Problem (TSP).
The Salesman starts at a point and returns to the same point at the end of the
tour. The underlying graph is complete, this means that there is a link between
any two nodes. Each node is visited exactly once and the aim is to minimize the
time (or cost/length) of the total tour. The problem is called symmetric if the
time between two nodes is the same in both directions for any pair of nodes. One
extension to the TSP is the Travelling Salesman Problem with Time Windows
(TSPTW) as studied in [12]. In this case, there are restrictions on every node
that give the time window it can be visited in. This means that each node i
can be visited only after time ai has passed and not later than bi. The problem
in this project is a special case of the Travelling Salesman Problem with Time
Windows. There are constraints on when the nodes may be visited the earliest
but no constraint on the latest visiting times. Therefore, it is easy to see that
there always exists a feasible solution, compared to the general TSPTW which
can be infeasible in some cases.

Hüni, 2023. 5

6 Chapter 2. Theory

2.2 Model formulation for travelling salesman
problem with time windows

There are different possible formulations for the Travelling Salesman problem
with time windows. A compact way to formulate TSPTW is given in [2]. It
is very short but not so easy to implement due to permutations. The Big-M
formulation studied in [3] is intuitive but it does not keep track of the time
at every bus stop. Because it is interesting to keep track of all details, this
formulation is not suitable. In [12], two time indexed models are presented.
The Baker’s Formulation uses absolute value and is therefore nonlinear. The
second formulation is an integer linear programming formulation and therefore
more convenient for the purpose in this project. Therefore, the time indexed
model in [12] has been chosen to adapt to the specific problem of snow removal
of bus stops. The complete model is given in Section 3.2.

2.3 Heuristic methods

In [11], heuristic methods for TSP are described. A heuristic is an approximate
algorithm. Solutions are created and/or optimized and the best found solution
is taken. It is clear that the best solution can be obtained by testing all possi-
bilities. For bigger instances, it is impossible to create all possible solutions and
compare them in a reasonable time. In heuristics, specific chosen solutions are
compared. There is no guarantee to find an optimal solution with heuristics.
The focus is on getting near-optimal solutions in a reasonable time.

2.3.1 Constructive heuristic

In [11], some basic constructive heuristic methods for TSP are presented. They
aim to find some (if possible somewhat good) feasible solutions. This solution
can be used for search methods later on. The solution is constructed iteratively
but there is no improvement of the found solution during the algorithm. There
is a constructive heuristic based on nearest neighbor and on insertion. Those
algorithms are general for TSP and not specific for TSPTW. Because there are
not upper limits in time, when every node must be cleared, it is possible to wait
at any bus stop until the clearing can begin. This implies that for any clearing
order a feasible solution can be found. Therefore, any constructive heuristic for
TSP or TSPTW can be used. However, they may not provide good solutions
for TSPTW without upper bounds.

2.4. Meta heuristics 7

2.3.2 Local search
Local search, studied in [13], is a heuristic method improving an existing feasible
solution, for example the one found by a constructive heuristic. It is called local
because it compares the current solution with solutions obtained by a small
change in the current solution. There are a lot of possibilities for the definition
of small changes. All feasible solutions obtained by small changes are called the
neighbourhood of a solution. Then, all the solutions in the neighbourhood are
compared with the current one. If there is a better solution in the neighbourhood
it is set as current solution and local search is repeated with this solution.
Otherwise the algorithm stops. Local search is good in finding a local optimum,
but the global optimum might be much better than some local optima. As the
local search stays in the neighbourhood of the solution, it is impossible to escape
a local optimum to get another better local optimum.

2.4 Meta heuristics
In [1], meta heuristics are defined as high level strategies to explore different
search spaces. They can be used to escape a local minimum and find another
local minimum. It is called meta because it is always based on another heuristic.
In the different search spaces chosen by the meta heuristic, the basic heuristic
is used to find the local minimum.

2.4.1 Tabu search
Tabu search is one possible meta heuristic. The tabu search, studied in [5],
is based on the local search described in Section 2.3.2. The aim is to avoid
getting stuck in a local optimum. To achieve this, the solution is temporarily
allowed to get worse. In order to avoid getting the same solution as in the
step before, a tabu list is introduced. This is a list with temporarily forbidden
moves. The list is specified by an attribute and maximum length. The attribute
defines what information on the forbidden moves are stored in the list. If the
maximum length of the tabu list is attained, the first items are removed and
therefore those moves are allowed again. When determining the neighbourhood,
only moves which are not tabu are considered. The current solution and best
solution are always kept track of. In each tabu iteration, the current solution
is updated with the best solution in the neighbourhood. The best solution is
only updated if the best solution in the neighbourhood is better than the so far
best solution. There is a need for stopping criteria in tabu search. This can
be chosen for example as a maximum running time or a maximum number of
iterations without progress.

8 Chapter 2. Theory

2.4.2 Further heuristic methods
There are a lot of different heuristics for TSP and TSPTW. Beside the imple-
mented heuristics in this project, for example insertion heuristic is studied in
[11]. Insertion builds a feasible solution with a subset of nodes and adds one
after the other node at a good point in tour. A further variant studied in [11]
is 3-opt, an similar heuristic to the 2-swap used in this project. It uses a larger
neighbourhood due to taking all (or a subset) possibilities when changing exactly
three nodes in the tour. This creates more and probably better solutions but
takes also more time because of the larger neighbourhood. In [4] a generalized
insertion heuristic for TSPTW is studied. This means a route is constructed by
inserting a node at each step. Since this heuristic is for general TSPTW, it can
be used to solve the problem in this project as well.

Chapter 3

Mathematical model

In this project, the time indexed model in [12] is modified and used. In order
to get a model for the specific case of clearing bus stops from snow, the upper
limits are removed and the time needed to clear the snow at nodes 1, ..., n is
added. The complete model is given in Section 3.2.

3.1 Parameters and variables
Consider a complete network with nodes N = {0, 1, ..., n} and links L where
nodes indicate bus stops and links show the paths between each two nodes. As-
sume that node 0 is the depot node where the tour starts and ends at. Let tij
be the travel time from node i to node j and ai be the earliest visiting (snow re-
moval begins) time for node i. The time needed to clear one bus stop is constant
for each node and shown by A. Finally, constant M is a sufficient large number
which is defined for each problem depending on the other parameters and the
number of nodes. The formulation with big M comes from an formulation with
absolute value. There are two different types of variables. The first one ti for
i = 0, 1, ..., n+ 1 is the time passed until visiting the node i. Note that tn+1 is
the time when the vehicle reaches the depot at the end. The second ones are
binary variables yij for i, j ∈ N which indicate if node i is visited before node j
(yij = 1) or the other way round (yij = 0).

Hüni, 2023. 9

10 Chapter 3. Mathematical model

3.2 Model

Minimize tn+1 − t0
subject to

ti − t0 ≥ t0i + A i = 1, ..., n (3.1)
tn+1 − ti ≥ ti0 + A i = 1, ..., n (3.2)

ti ≥ ai i = 1, ...n (3.3)
ti ≥ 0 i = 0, ..., n+ 1 (3.4)

ti − tj +Myij ≥ tij + A i, j = 1, ..., n (3.5)
tj − ti −Myij ≥ tij + A−M i, j = 1, ..., n (3.6)

yij ∈ {0, 1} i, j = 1, ..., n, i ̸= j (3.7)
t0 = 0 (3.8)

3.3 Objective and constraints

The objective function is the difference of time when the vehicle starts at depot
(t0) and reaches the depot at the end (tn+1). Therefore, the objective is to
minimize the total time of the tour. The first constraint (3.1) ensures that
the visiting time of each node is at least the starting time plus the travelling
time from the depot to the respective node and the clearing time of the depot.
Constraint (3.2) stats that the difference of the visiting time of each node and
the end point (depot) is at least the travelling time between those nodes plus
the time for clearing one bus stop. Earliest visiting time of each node, which is
after the adjacent street is cleared, is described by constraint (3.3). Constraint
(3.4) ensures that all visiting times are nonnegative. The binary variable yij in
constraints (3.5) and (3.6) decides which of the constraints ti− tj ≥ tij +A and
tj − ti ≥ tij + A is satisfied. The big number M makes the other constraint
trivial. If yij = 0 the first constraint should be fulfilled and ensures that the
difference between tj and ti is at least the clearing time plus travelling time
between the two of them. Constraint (3.8) ensures that the cleaning at the
depot starts at time 0.

3.4 Solution with Gurobi optimizer

Gurobi optimizer is a software built to solve optimization problems to optimality
as fast as possible. It has a programming interface with Python. For smaller
examples, Gurobi is able to give the optimal solution in a reasonable time but for

3.4. Solution with Gurobi optimizer 11

larger problems this method can be slow. In real life, faster methods might be
necessary. Heuristic methods do not give optimal solutions but they can provide
good solutions in a reasonable time. To be able to decide if the constructed
heuristics in this project are efficient, they are compared to the solutions of
Gurobi. For small examples, Gurobi solves the problem to optimality. For
larger examples, the best found solution after some minutes is compared to the
solutions of the heuristics. The aim is to get better solutions in shorter times
for large problem with heuristics than with Gurobi optimizer.

3.4.1 Example of solution of model with Gurobi

How the Gurobi works is explained with the smallest network mini-05a. It has
only five nodes. Figure 3.1 shows how it looks like.

Figure 3.1: Network mini-05a

The circles represent nodes. The number above in each circle is the index
of the node. The numbers below is the earliest clearing time. The numbers
on the connections are the traveling times. The model is based on a complete
graph, which means there needs to be a connection between any two nodes in
the graph. There is no direct connection between nodes 0 and 4 and the shortest
path between them passes through node 1. The traveling time between node 0
and 4 is therefore given by the sum of the traveling times between 0 and 1 and
between 1 and 4. This is the shortest path between node 0 and 4. The resulting
matrix is

12 Chapter 3. Mathematical model

0 1 3 1 2
1 0 2 2 1
3 2 0 4 3
1 2 4 0 2
2 1 3 2 0

The earliest cleaning times are given by the vector [0, 12, 9, 17, 12] where

the first number is for node 0, the second for node 1 and so on. The needed
cleaning time at each node is 4. Gurobi gives the objective value 31 and the
order of visiting the nodes in optimal case is [0, 2, 1, 4, 3, 0]. The visiting times
in increasing order of indexes are given by [0, 15, 9, 26, 20, 31]. This solution is
in the complete graph but it is important to know the solution in the original
network. In order to be able to translate the solution back to the original graph
there is a predecessor matrix. In this matrix a −1 symbolise a direct connection
(edge). Otherwise the index of the preceding node in the connection is written.
The predecessor matrix for mini-05a is

−1 −1 1 −1 1
−1 −1 −1 0 −1
1 −1 −1 1 1
−1 0 1 −1 −1
1 −1 1 −1 −1

For example to go from 0 to 2 one needs to go first from 0 to 1 and then from 1
to 2. With the predecessor matrix the solution from Gurobi can be translated
back to the original network and the visiting order [0, 1, 2, 1, 4, 3, 0] is obtained.

Chapter 4

Heuristics

For a network with small number of bus stops, Gurobi may provide an optimal
solution but for a large number this is impossible in polynomial time because
it is known by [11] that Travelling Salesman Problem is an NP-hard problem.
Therefore, it is important to use heuristics. There is no guarantee to find an
optimal solution with heuristics. The focus is on getting near-optimal solutions
in a reasonable time. The goal of the heuristics in this project is to get a lower
objective value in a short time and to compare the results to the Gurobi solver
results.

4.1 Constructive heuristic

For the problem in this project, it is easy to construct a feasible solution, as
there are no upper bounds in the time windows. In fact, every order of nodes is
feasible. It is supposed to be possible to wait at every bus stop till the clearing
can begin. However the aim is to find a solution which is somehow good. In
this report, the choice is made to clear the bus stops in the order of the earliest
possible visiting time. The distances between the nodes are not considered. This
solution is especially good in the case that all nodes are close to each other and
the lower bounds for visiting the nodes varies a lot. This initial solution can be
quite good or arbitrarily bad depending on the data. This method is very easy
and there are for sure other constructive heuristics giving better results but it
does not matter that much when proceeding afterwards a search method on the
initial solution.

Hüni, 2023. 13

14 Chapter 4. Heuristics

Algorithm 1 Constructive Heuristic(u)
Input earliest possible visiting time for nodes, u
Output indices in increasing order of the values of u, v

1: v ← [0]
2: m← max(u) +1
3: u[0]← m
4: n← length of u
5: for i from 1 to n-1 do
6: append the index of the smallest element of u to v
7: max(u) ← m
8: end for

In Algorithm 1, the algorithm for the constructive heuristic is given. The
input is u containing the earliest possible visiting tines for every node. The first
element of u is the earliest possible visiting time for node 0, the second for node
1 and so on. First the output list v is initialized with the first index (index 0).
m gets the maximum value of u plus 1. The first element of u is set to m. The
length of u is stored in variable n. For every node except the depot (node 0)
the algorithm appends to v the index of the smallest element in u and sets the
maximum value of u to m. The output is v with the indices of increasing order
of the values in u.

4.2 Local search

The chosen local search in this project is 2-swap. This means the neighbourhood
of a solution consists of any other solution where exactly two nodes change
places compared to the original solution. As every route is feasible, there is a
new solution for the sweep of every two nodes. As the name says, it is a local
procedure and it might stuck in a local minimum which can be quite bad. The
algorithm used to determine the neighbourhood of a solution is the same for
local search and tabu search. For the local search the algorithm is used with
empty tabu list.

4.2. Local search 15

Algorithm 2 Get Neighbourhood(v, t)
Input order of nodes in a solution, v, tabu list, t
Output set of all possibilities to change exactly two nodes , S

1: S ← ∅
2: for i in v do
3: for for j in v, i < j do
4: if i ̸= 0 and j ̸= 0 then
5: if i, j /∈ t then

u← v
swap nodes i and j in u
add u to S

6: end if
7: end if
8: end for
9: end for

The algorithm for getting the neighbourhood of a solution v and a tabu list
t is given in Algorithm 2 . The neighbourhood S of v is initialized by the empty
set. For every two indices i, j in v which are strictly increasing, the solution
when changing exactly places of nodes i and j in the solution v is added to the
neighbourhood set S. The output of this algorithm is the neighbourhood S to
the solution v.

Algorithm 3 Local Search(s)
Input start solution, s
Output solution of local search, c

1: c← s
2: N ← Get Neighbourhood(c, ∅)
3: A← all the objective values of the solutions in N
4: b← solution corresponding to the lowest element in A
5: while objective of c > objective of b do
6: c← b
7: N ← Get Neighbourhood(c, ∅)
8: b← best solution in N
9: end while

In Algorithm 3, the implemented local search heuristic is given. As the input,
a start solution s is needed. First, the current solution c is initialized with the
starting solution s. The neighbourhood N of the current solution c is found by
2 and using an empty tabu list. While objective of the current solution c is more

16 Chapter 4. Heuristics

than the objective of the best solution b in the neighbourhood N , the algorithm
replaces the current solution c by the best found in the neighbourhood b. The
neighbourhood N of the updated current solution c is found by Algorithm 2
and using an empty tabu list. The algorithm stops when no better solution is
found and the output is the current solution c which is also the overall best
found solution.

4.3 Tabu search

The tabu search in this project is based on the 2-swap neighbourhood defined
in Section 4.2. The tabu list attribute are the indices that are changed in the
2-swap. The rule is that indices in the tabu list may not be chosen again to
swap. As those moves should be forbidden only temporarily a maximum list
length is introduced. The first items are removed until the tabu list length is
no longer than the maximum length. This length may depend on the data and
size of the problem and is determined experimentally. The stopping criteria
is a maximum number of iterations without progress. This number is as well
determined by experiments and can vary for different data.

In Algorithm 4, the implemented tabu search heuristic is given. As the input
a start solution s, a maximum tabu list length ml, and a maximum iterations
without progress mp are needed. First the current solution c and the best found
solution are initialized with the starting solution s. The number of iterations
without progress p is set to zero and the tabu list t is empty. While the number
of iterations without progress p is less than the maximum number of iterations
mp the algorithm finds the neighbourhood N of the current solution c with tabu
list t using Algorithm 2. The current solution c is updated with the solution
with the best objective value in the neighbourhood N . The indices of the move
to the current solution c is added to the tabu list t. If the tabu list length
is more than the maximum allowed length ml, the first two items of the tabu
list are removed. If the objective value of the current solution c is lower than
the objective value of the best found solution b then the best found solution b
is updated with the current solution. If this was not the case the number of
iterations without progress p is increased by one. The output is the best found
solution when the algorithm stops.

4.3. Tabu search 17

Algorithm 4 Tabu Search(s,ml,mp)
Input start solution, s, max tabu list length, ml , stopping criteria maxi-

mum iterations without progress, mp
Output solution of tabu search, b

1: c← s
2: b← s
3: p← 0
4: t← ∅
5: while p < mp do
6: N ← Get Neighbourhood(c, t)
7: A← all the objective values of the solutions in N
8: bn← solution corresponding to the lowest element in A
9: c← bn

10: add indices of swap in c to t
11: if length tabu list > ml then remove first two items of t
12: end if
13: if objective of c < objective of b then
14: b← c
15: p← 0
16: else
17: p← p+ 1
18: end if
19: end while

Chapter 5

Results

The implementations of Gurobi solver and the heuristic methods were done
in Python, and were run on a MacBook (Retina, 12-inch, Early 2016), 1.1
GHz Dual-Core Intel Core m3. Data communication was made via files. The
first test data consists of different small networks called mini-0xy with x =
5, 6, 8, 9 and y = a, b, c. The number of nodes is increasing when x is in-
creasing. For a fix sized network different y index gives different time data.
The second test data consists of medium sized networks: midi-0xa with x =
10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Here only one time data for each network is
considered. The heuristic approach is tested on those data sets and the solutions
are compared to the solution of the mathematical model obtained by Gurobi.
For each of the problems the maximum tabu list length and the number of iter-
ation of tabu search for the heuristic approach are decided on an experimentally
basis. For the small networks, Gurobi is able to find the optimal solution in a
reasonable time. For bigger networks this is not the case and it can even take a
long time to get a feasible solution at all.

5.1 Provided data

The provided example data consists of different artificial networks in different
sizes. A network is defined by a number of nodes and the travelling time be-
tween each two nodes, stored as a symmetric matrix. Furthermore, the time for
clearing a bus stop and the earliest visiting time for each bus stop are included
in the data files. The problem is treated as a complete graph, i.e there is an edge
between any two nodes which represent the shortest path between those nodes
in the original network. In the original networks there is tough not a need to

Hüni, 2023. 19

20 Chapter 5. Results

have an edge between any two nodes. The connection between two nodes might
be by passing one or several other nodes. To be able to make an exact plan for
the vehicle, the solution needs to be translated back into the original network.
In order to do that, a predecessor matrix is provided, which defines if there is a
direct connection (edge) between two nodes or if you need to pass other nodes.

The studied examples consist of two different kinds. The first group consists
of small examples. They have five to eighteen nodes and for one network there
are different time examples (indexed by a − c in the name). The goal of these
examples is to understand the problem and the heuristics as well as test if the
code is working. The second group contains bigger networks with a number of
nodes between twenty and one hundred. Those are near the realistic networks.
The aim of those networks is to test the heuristic with different parameters and
to compare the solutions.

5.2 Tests on the smaller networks

In Table 5.1, the results of tabu search and the solution to the model with
Gurobi on the small networks are shown. Each row represents one network. A
tabu list length with maximum length 5 is considered. The maximum number
of iterations of tabu search is set to 100.

Data Tabu search Model with Gurobi
Network Number

of
nodes

Objective
value

Time
(s)

Lower
bound

Upper
bound

Gap
(%)

Time
(s)

mini-05a 5 31 0.002096 31 31 0 0.0243
mini-05b 5 31 0.002062 31 31 0 0.067
mini-05c 5 30 0.003716 29 29 0 0.083
midi-06a 9 74 0.053083 72 72 0 0.52
mini-06b 9 57 0.033032 57 57 0 0.46
mini-06c 9 57 0.035512 56 56 0 0.24
mini-08a 9 66 0.031546 66 66 0 0.017
mini-08b 9 59 0.034542 57 57 0 0.67
mini-08c 9 64 0.031305 64 64 0 0.031
mini-09a 18 156 0.347883 156 165 0 0.075
mini-09b 18 116 0.383275 115 115 0 109
mini-09c 18 107 0.448602 67.768 107 36.7 5 min

Table 5.1: Results small networks

5.3. One example in detail: midi-15a 21

Only for the very small networks the Gurobi solver is able to find the optimal
solution for the model fast. Already for a network with 18 nodes it can take
a longer time. For the networks mini-09b/c, Gurobi does not find an optimal
solutions in 2 minutes. It is easy to see that tabu search is able to provide nearly
optimal solutions in very short time. Of course, on such small networks Gurobi
might be the better choice because it is able to find an optimal solution. Even
if in some examples tabu search provides an optimal solution, it is not possible
to know if it is optimal only through heuristics. In urban areas the networks
of bus stops used to be much larger than those small networks, therefore it is
more important how the tabu search behaves on bigger examples.

5.3 One example in detail: midi-15a

The network midi-15a is chosen to be investigated in more details and to test for
different parameter choices. With 70 nodes, its size is somewhere in the middle
of all the larger examples. Furthermore, it is still possible to find a feasible
solution with Gurobi solver in a reasonable time (this is not the case for all
examples). When running the Gurobi solver 5 minutes, a lower bound of 375,
upper bound of 793 and a gap of 52.7 % is obtained. There are tests on different
maximum tabu lengths and number of iterations in the tabu search.

First, the tabu search is tested for different tabu length and a fixed number
of iterations equal to 100. The results are given in table 5.2.

Tabu length Iterations Objective
value

Time (s)

5 100 716 19.89
10 100 751 20.67
15 100 664 25.04
20 100 666 17.90
25 100 736 10.92
30 100 710 20.35
35 100 724 10.18
40 100 718 9.38
45 100 727 10.89
50 100 767 9.89

Table 5.2: Tabu search with 100 iterations on midi-15a

The heuristic method is very fast with only 100 iterations and gives for any
choice of tabu length better objective value than Gurobi in 5 minutes. The best

22 Chapter 5. Results

results are obtained with tabu length between 15 and 20.
Second, the tabu search is tested for different tabu length and a fixed number

of iterations equal to 500. The results are shown in table 5.3

Tabu length Iterations Objective
value

Time (s)

5 500 716 78.98
6 500 716 63.97
7 500 716 69.03
8 500 716 63.53
9 500 716 62.42
10 500 751 96.06
11 500 751 72.87
12 500 748 58.10
13 500 748 64.80
14 500 664 66.35
15 500 664 65.44
16 500 651 62.38
17 500 651 61.17
18 500 706 63.06
19 500 706 59.58
20 500 666 53.19
21 500 666 53.51
22 500 682 51.01
23 500 682 50.61
24 500 645 80.97
25 500 645 78.78
26 500 678 54.90
27 500 678 61.40
28 500 633 81.81
29 500 633 80.24
30 500 651 76.66
31 500 651 65.86
32 500 705 37.65

Table 5.3: Tabu search with 500 iterations on midi-15a

It is obvious that a larger number of iterations will imply at least as good ob-
jective values. For the short tabu list it does not matter to take more iterations,
but it does for longer tabu list. The best objective value 633 is attained with
tabu list length 28 and 29. The implemented tabu heuristic finds this solution

5.3. One example in detail: midi-15a 23

in 80 seconds. This is much faster for a better solution than Gurobi which needs
5 minutes to obtain an objective value of 793.

Third, the tabu search is tested for different number of iterations and a fixed
tabu length equal to 28. This choice is based on the tests before, where the best
result was achieve with tabu length 28. It is reasonable that more iterations
will provide at least as good results. The results are given in table 5.4.

Tabu length Iterations Objective value Time (s)
28 50 719 16.11
28 100 719 17.87
28 200 684 40.10
28 300 633 64.22
28 400 633 88.11
28 500 633 88.39
28 600 633 92.40
28 700 633 87.38

Table 5.4: Tabu search with tabu list length 28 on midi-15a

This shows that more iterations might not give better solutions. There is
a need for a minimum of iterations that tabu search works well (200 in this
example) but thereafter it does not improve any more. This number might of
course be different for different networks. Furthermore, it is obvious that more
iterations will also take more time, so it is important to take an enough large
number of iterations but not too large in order to achieve fast enough good
solutions.

The parameters which gave the best solutions were maximum tabu list length
28 and number of iteration of tabu search 300. Table 5.5 presents more details
of the network midi-15a with those parameters. Tabu search is compared with
Gurobi, constructive heuristic and local search.

Method Objective value Time (s)
Gurobi 785 5 min
constructive 1468 0.00023
local search 858 3.75
tabu search 633 64.22

Table 5.5: Methods comparison for midi-15a with tabu list length 28 and iter-
ations 300

24 Chapter 5. Results

The order of visiting the nodes in the tabu search solution in the complete
graph is [0, 2, 25, 55, 52, 47, 35, 28, 10, 4, 16, 27, 33, 37, 31, 32, 20, 21, 9, 3, 5,
11, 29, 41, 53, 59, 58, 57, 56, 51, 46, 45, 39, 40, 34, 22, 23, 17, 15, 14, 8, 7, 13,
19, 26, 38, 44, 50, 49, 43, 42, 54, 48, 36, 30, 24, 18, 12, 6, 1, 0]

The order of visiting the nodes in the tabu search solution in the original
network is [0, 1, 2, 19, 25, 49, 55, 51, 52, 46, 47, 41, 35, 29, 28, 22, 16, 10, 4, 10,
16, 21, 27, 33, 32, 31, 37, 31, 32, 26, 20, 21, 15, 9, 3, 4, 5, 11, 23, 29, 35, 41, 47,
53, 59, 58, 57, 56, 50, 51, 45, 46, 45, 39, 40, 34, 28, 22, 23, 17, 16, 15, 14, 8, 7,
13, 19, 20, 26, 32, 38, 44, 50, 49, 43, 42, 48, 54, 48, 42, 36, 30, 24, 18, 12, 6, 0, 1, 0]

In figure 5.1 the improvement of the tabu search method is shown

Figure 5.1: Progression of tabu search on midi-15a

5.4 Midi-networks

For all the medium sized networks, tabu search is applied with the parameters
which were the best for midi-15a. The maximum tabu list length is set to 28
and the number of iteration of tabu search to 300. In table 5.6, the time and
objective value of the tabu search method are compared to the objective value
obtained from Gurobi solver in 5 minutes for all medium sized networks.

5.4. Midi-networks 25

Data Tabu search Model with Gurobi(in 5 min)
Network Number

of nodes
Objective
value

Time
(s)

Lower
bound

Upper
bound

Gap
(%)

midi-10a 20 154 0.25 137 148 7.43
midi-11a 50 522 30.37 321 523 38.6
midi-12a 50 388 11.70 275 380 27.6
midi-13a 30 271 0.87 165 228 27.6
midi-14a 40 303 8.85 224 307 27
midi-15a 60 651 44.84 375 793 52.7
midi-16a 70 805 44.87 437 no objec-

tive found
-

midi-17a 80 884 174.93 496 no objec-
tive found

-

midi-18a 90 1057 327.97 549 no objec-
tive found

-

midi-19a 100 1185 304.90 595 no objec-
tive found

-

Table 5.6: Tabu search on larger networks with tabu list length 28 and 500
iterations

The solutions with tabu search are better or close to the Gurobi solutions
and were attained much faster. Of course, the objective values of tabu search
could be improved by testing values of parameters for each network on its own.
Especially, as the number of nodes varies, the optimal tabu list length can as
well vary a lot. However, Gurobi is able to improve the bounds if it is given
more time.

Chapter 6

Conclusion

In this project, a mathematical model for a Travelling Salesman Problem with
Time Windows has been adjusted in order to formulate a model for snow re-
moval of bus stops. A constructive heuristic, a local search and a tabu search
for snow removal of bus stops have been implemented. The different meth-
ods and tabu search with different parameter values for tabu list length and
number of iterations are tested on networks with different sizes and time re-
strictions. Furthermore, those results are compared to the solution of the model
with Gurobi. The heuristic methods, especially tabu search gave good results.
Even if tabu search is a basic heuristic method, it was possible to find good
solutions in a short time. Comparing the heuristic solutions to Gurobi solver
underlines clearly the efficiency of the implemented tabu search. Even if the
optimal solution cannot be found (or at least it is not clear that it is the opti-
mal solution), good solutions can be achieved. Those can help to save money
and time when clearing bus stops. Furthermore, it was clearly visible that tabu
search is working better on larger examples. This is good as networks in urban
areas usually are quite large. The implementation and tests show clearly the
efficiency of heuristic methods in the specific problem of snow removal of bus
stops.

Hüni, 2023. 27

Bibliography

[1] Enrique Alba. Parallel metaheuristics: A new class of algorithms. 47, 09
2005.

[2] Majed G. Alharbi, Ahmed Stohy, Mohammed Elhenawy, Mahmoud Ma-
soud, and Hamiden Abd El-Wahed Khalifa. Solving traveling salesman
problem with time windows using hybrid pointer networks with time fea-
tures. Sustainability, 13(22), 2021.

[3] Sanjeeb Dash, Oktay Günlük, Andrea Lodi, and Andrea Tramontani. A
time bucket formulation for the traveling salesman problem with time win-
dows. INFORMS Journal on Computing, 24(1):132–147, 2012.

[4] Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A gen-
eralized insertion heuristic for the traveling salesman problem with time
windows. Operations Research, 46(3):330–335, 1998.

[5] Fred Glover. Tabu search—part i. ORSA Journal on Computing, 1(3):190–
206, 1989.

[6] Roghayeh Hajizadeh and Kaj Holmberg. A branch-and-dive heuristic for
single vehicle snow removal. Networks, 76:509–521, 12 2020.

[7] Roghayeh Hajizadeh and Kaj Holmberg. Coordination of vehicles in ur-
ban snow removal. Technical Report LiTH-MAT-R–2021/06–SE, Linköping
University, Applied Mathematics, 2021.

[8] Roghayeh Hajizadeh and Kaj Holmberg. Urban snow removal : Tree elim-
ination. Technical Report 2022:1, Linköping University, Applied Mathe-
matics, 2022.

[9] Kaj Holmberg. Urban snow removal: Modeling and relaxations. Technical
Report 2014:08, Linköping University, Optimization, 2014.

Hüni, 2023. 29

30 Bibliography

[10] Kaj Holmberg. The (over) zealous snow remover problem. Technical Report
2016:04, Linköping University, Optimization, 2016.

[11] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. The traveling
salesman problem. Preprint, Universität zu Köln, 1995.

[12] Imdat Kara and Tusan Derya. Formulations for minimizing tour duration
of the traveling salesman problem with time windows. Procedia Economics
and Finance, 26:1026–1034, 2015. 4th World Conference on Business, Eco-
nomics and Management (WCBEM-2015).

[13] Joachim Paul Walser. Integer Optimization by Local Search. Springer
Berlin, Heidelberg, 1999.

Linköping University Electronic Press

Copyright
The publishers will keep this document online on the Internet – or its possible
replacement – from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for
anyone to read, to download, or to print out single copies for his/her own use
and to use it unchanged for non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional upon the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authentic-
ity, security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its www home page: http://www.ep.liu.se/.

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
från publiceringsdatum under förutsättning att inga extraordinära omständig-
heter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda
ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/.

© 2023, Corina Hüni

http://www.ep.liu.se/
http://www.ep.liu.se/

	Introduction
	Background
	Purpose
	Goal
	Problem definition
	Method
	Limitations
	Structure

	Theory
	Traveling Salesman Problem with Time Windows
	Model formulation for travelling salesman problem with time windows
	Heuristic methods
	Constructive heuristic
	Local search

	Meta heuristics
	Tabu search
	Further heuristic methods

	Mathematical model
	Parameters and variables
	Model
	Objective and constraints
	Solution with Gurobi optimizer
	Example of solution of model with Gurobi

	Heuristics
	Constructive heuristic
	Local search
	Tabu search

	Results
	Provided data
	Tests on the smaller networks
	One example in detail: midi-15a
	Midi-networks

	Conclusion

