Co-Cr-Fe-Mn-Ni Oxide as a Highly Efficient Thermoelectric High-Entropy Alloy

Daria Pankratova, Silvia Maria Giacomelli, Khabib Yusupov, Farid Akhtar, and Alberto Vomiero*

ABSTRACT: Among the existing materials for heat conversion, high-entropy alloys are of great interest due to the tunability of their functional properties. Here, we aim to produce single-phase high-entropy oxides composed of Co-Cr-Fe-Mn-Ni-O through spark plasma sintering (SPS), testing their thermoelectric (TE) properties. This material was successfully obtained before via a different technique, which requires a very long processing time. Hence, the main target of this work is to apply spark plasma sintering, a much faster and scalable process. The samples were sintered in the temperature range of 1200−1300 °C. Two main phases were formed: rock salt-structured Fm̅3m and spinel-structured Fd̅3m. Comparable transport properties were achieved via the new approach: the highest value of the Seebeck coefficient reached −112.6 μV/K at room temperature, compared to −150 μV/K reported before; electrical properties at high temperatures are close to the properties of the single-phase material (σ = 0.2148 S/cm, σ ≈ 0.2009 S/cm reported before). These results indicate that SPS can be successfully applied to produce highly efficient TE high-entropy alloys in a fast and scalable way. Further optimization is needed for the production of single-phase materials, which are expected to exhibit an even better TE functionality.

INTRODUCTION

The energy demand is increasing constantly.1 Considering the environmental issues related to the use of fossil fuels, this demand needs to be fulfilled using renewable energy resources, like, for instance, solar, wind, and water energy. Among all, the reuse of wasted heat through thermoelectric (TE) materials is very appealing. Among the mentioned examples, TE technology is an attractive option because it can be easily used wherever a temperature difference is present.2 Other advantages of TE materials are their small operational size, which does not require large surface areas to be effective, and the lack of parts in motion or gas emissions.3,4

TE materials are used for the direct conversion of waste heat energy into electrical power. They have potential applications for waste heat recovery from different energy sources, such as power generation in deep space, solid-state cooling, portable and wearable electronics, etc.5,6

The efficiency of TE materials is described by the figure-of-merit ZT:

\[ZT = \frac{S^2 \sigma}{\kappa T} \]

where S is the Seebeck coefficient, μV/K, σ is the electrical conductivity, S/cm, T is the temperature, K, and κ is the total thermal conductivity, W/(m·K).7,8 To achieve a high ZT, materials are required to have high values of Seebeck coefficient S, high electrical conductivity σ, and low thermal conductivity κ. The commercialization threshold for TE materials is ZT ≥ 3.4

The most common TE materials are oxyselenides,9−11 Heusler alloys,12 etc. Among the materials, the highest TE yield is found for PbTe-based13 and Bi₂Te₃-based14 materials; however, Pb-based or any toxic-based materials should be

Received: December 30, 2022
Accepted: March 31, 2023
Published: April 14, 2023
Recent studies show that multicomponent oxide systems with high configuration entropy can exhibit impressive electrical, thermal, catalytic, or magnetic properties. As a result, high-entropy oxides (HEOs) are considered the alternative to conventional materials for different fields, such as microelectronics, catalytic converters, and energy and data storage. HEAs are materials with a highly disordered structure that can help improve thermoelectric performance, by manipulating the high-entropy alloys (HEAs).

In the present work, we report on the synthesis of a HEO \(\text{Sr(Ti}_{0.2}\text{Cr}_{0.2}\text{Nb}_{0.2}\text{Ba}_{0.2}\text{La}_{0.2})O_{3} \), which significantly reduced the time from 20 h to less than 1 h. Whereas in our approach, this was replaced with the SPS method, the same was applied to another sample side. The transport properties, i.e., electrical conductivity and the Seebeck coefficient, were measured by the 4-probe measurement method in the temperature range of 25–500 °C using a NETZSCH SBA 458 Nemesis. During the measurements, two microheaters generated the temperature gradient in both sample directions (one sample side was heated and cooled down, and after that, the same was applied to another sample side). The scheme of the TE measurements is reported in Figure S1.

For the obtained materials, electrical conductivity and Seebeck coefficient properties were measured during heating and cooling (AC and DC, but due to the very similar results, only plots for DC data are presented). The accuracy of the properties is around 3–5%. The values for the electrical conductivity are

EXPERIMENTS AND METHODS

Synthesis. The alloys were prepared through the SPS method. The compositions of the alloys were determined by adjusting the relative fraction of the components in the precursor powders (\(\text{CoO}_{3} \) (Sigma-Aldrich, <10 μm), \(\text{CrO}_{3} \) (Sigma-Aldrich, ≥98%), \(\text{FeO}_{3} \) (KeBo, no more information was given), \(\text{MnO} \) (Sigma-Aldrich, 60 mesh, 99%), and \(\text{NiO} \) (Sigma-Aldrich, 325 mesh, 99%)). The powders were manually ground for 10 min. After that, the powders were placed in a 14 mm-diameter graphite die and sintered via SPS (SPS-211Lx SPS Dr. SINTER LAB Jr. SERIES, Fuji Electronic Industrial) under a uniaxial pressure of 38 MPa under vacuum (1.6 × 10^{-5} Pa). A series of samples were synthesized by varying the temperature from 1200 to 1300 °C during SPS, labeled according to Table 1. The highest temperature during the process was chosen below the melting temperature of almost all reagents. One of the precursors, \(\text{CoO}_{3} \), has a melting point of 895 °C. This oxide is the mix of two oxides \(\text{CoO} \) and \(\text{CoO}_{2} \). An important note is that the melting temperature (Table S1) for the precursors can be lower in vacuum and under pressure. To prevent the leakage of the sample around the melting point of \(\text{CoO}_{3} \), an additional step was added to the procedure waiting point around 850 °C. One of the samples (H1) was synthesized with a predrying step to identify if the presence of water molecules affects the SPS. Predrying was done at 85 °C for 15 min.

Characterization. The phase compositions of the samples were studied by X-ray diffraction (XRD). XRD patterns were collected from bulk samples using a PANalytical Empyrean X-ray diffractometer equipped with a Cu LFF HR X-ray tube (\(\lambda = 1.5419 \text{ Å} \)). The analysis was conducted at room temperature for 45 min. XRD patterns were postprocessed with normalization of the background. For Rietveld analysis, HighScore Plus software was used.

The morphology/composition was investigated via scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) analysis. The sintered sample’s microstructural and elemental compositions were studied with dispersive X-ray spectroscopy on an FEI Magellan 400 extreme high-resolution X-Max 80 silicon drift detector (Oxford Instruments).

The density of the materials was obtained by combining the measured weight of the samples and their volume, calculated from the measured dimensions of the cylindrical samples. The volume \(V \) is the volume of the sample, \(V = \pi h r^{2} \) (applicable for the cylinder shape), where \(h \) is the height of the sample, \(cm \) and \(r \) is the radius of the sample, \(cm \).

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were measured on NETZSCH STA 449 F3 Jupiter equipment. Measurements were done with a heating rate of 10 K/min and in air.

The transport properties, i.e., electrical conductivity and the Seebeck coefficient, were measured by the 4-probe measurement method in the temperature range of 25–500 °C using a NETZSCH SBA 458 Nemesis. During the measurements, two microheaters generated the temperature gradient in both sample directions (one sample side was heated and cooled down, and after that, the same was applied to another sample side). The scheme of the TE measurements is reported in Figure S1.

<table>
<thead>
<tr>
<th>sample</th>
<th>temperature during SPS</th>
<th>predrying</th>
<th>total process time, min</th>
<th>heating, K/min</th>
<th>diameter, mm</th>
<th>width, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>1200</td>
<td>15 min at 85 °C</td>
<td>26.0</td>
<td>50–82 °C</td>
<td>13.7</td>
<td>2.02</td>
</tr>
<tr>
<td>H2</td>
<td>1200</td>
<td></td>
<td>26.0</td>
<td>50–82 °C</td>
<td>13.7</td>
<td>1.70</td>
</tr>
<tr>
<td>H3</td>
<td>1250</td>
<td></td>
<td>31.5</td>
<td>25–82 °C</td>
<td>13.3</td>
<td>1.55</td>
</tr>
<tr>
<td>H4</td>
<td>1300</td>
<td></td>
<td>26.5</td>
<td>50–82 °C</td>
<td>13.6</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Avoided due to their environmental impact. An alternative to such materials could be found in multielemental systems or high-entropy alloys (HEAs).

In the past few years, considerable research was performed on HEOs with different chemical compositions, such as \(\text{Co}_{0.2}\text{Ni}_{0.2}\text{La}_{0.2}\text{Sm}_{0.2}\text{Y}_{0.2}\text{CoO}_{4} \), \(\text{Co-Cr-Fe-Mg-Mn-Ni-O} \), \(\text{Sr(Ti}_{0.2}\text{Fe}_{0.2}\text{Mo}_{0.2}\text{Nb}_{0.2}\text{Cr}_{0.2})O_{3} \), \(\text{Nd}_{0.2}\text{Sr}_{0.2}\text{Ba}_{0.2}\text{Pb}_{0.2}\text{La}_{0.2})\text{TiO}_{3} \), \(\text{Pb}_{0.99}\text{Sr}_{0.01}\text{SnSe}_{1-x}\text{Te}_{x} \) (\(x = 0.25, y = 0.05, 0.10, 0.20, \) and \(y = 0, x = 0.10, 0.20, \) and 0.25). The highest reached ZT for those materials is \(\sim 2.26 \).

One of the downsides of the materials described above is the required synthesis time. For most of the chemical compositions from the literature, the time for synthesis is 15–50 h. Hence, there is a need to simplify or shorten the obtaining process for such systems.

In the present work, we report on the synthesis of a HEO material with the chemical composition \(\text{Co-Cr-Fe-Mn-Ni-O} \) prepared via spark plasma sintering (SPS). Previously, Stygar et al. used a 20 h sintering procedure to prepare such a material, whereas in our approach, this was replaced with the SPS method, which significantly reduced the time from 20 h to less than 1 h.

The transport and structural properties were thoroughly studied, and the influence of the obtained parameters demonstrates that the SPS method is potentially beneficial for HEO synthesis. This study emphasizes that obtaining a two-phase HEO material with good TE properties in less than 1 h is possible. A further tweak of parameters should lead to the formation of a single-phase HEA, further improving the TE functionality.

Table 1. Sample Preparation Conditions and Final Dimensions

<table>
<thead>
<tr>
<th>sample</th>
<th>temperature during SPS</th>
<th>predrying</th>
<th>total process time, min</th>
<th>heating, K/min</th>
<th>diameter, mm</th>
<th>width, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>1200</td>
<td>15 min at 85 °C</td>
<td>26.0</td>
<td>50–82 °C</td>
<td>13.7</td>
<td>2.02</td>
</tr>
<tr>
<td>H2</td>
<td>1200</td>
<td></td>
<td>26.0</td>
<td>50–82 °C</td>
<td>13.7</td>
<td>1.70</td>
</tr>
<tr>
<td>H3</td>
<td>1250</td>
<td></td>
<td>31.5</td>
<td>25–82 °C</td>
<td>13.3</td>
<td>1.55</td>
</tr>
<tr>
<td>H4</td>
<td>1300</td>
<td></td>
<td>26.5</td>
<td>50–82 °C</td>
<td>13.6</td>
<td>1.34</td>
</tr>
</tbody>
</table>
lower than 1 S/cm, so they are around the accuracy of the measurements. The same properties of the material during AC and DC measurements indicate that synthesized alloys are stable till 500 °C. The temperature of 500 °C was chosen to prevent the evaporation of the secondary phases.

RESULTS AND DISCUSSION

The XRD patterns for the samples are shown in Figure 1a. All samples have the main phase with the spinel structure *Fd*3*m* (81.4%), which means that a higher temperature is needed to synthesize a single-phase material.

Crystal structures for *Fm*3*m* and *Fd*3*m* are presented in Figure 1b,c. Different reagents have different crystal structures (*Fd*3*m*, *Fm*3*m*, and *R*3*c*), but during the sintering process, they start to react with each other and transform into one crystal structure *Fd*3*m*, with the chemical formula AB,X4 (A and B, cations; X, oxygen). The formation of the main phase depends on different parameters such as temperature, time, and pressure during the sintering process. The biggest amount of the targeted phase *Fd*3*m* was in sample H4, which was prepared under the highest temperature during the sintering process. It means that temperature makes a major contribution to phase formation.

To further analyze the chemical composition and microstructure of the samples, SEM/EDS techniques were used. The morphology of the samples is presented in Figure 2. Morphology analysis indicates that the synthesized materials have an uneven and porous surface. Closer analysis shows that there are both sintered powder and self-standing agglomerates. The reason can be that some reagents (we assume Co3O4 because this oxide has the lowest melting temperature) start to melt during the SPS process and mix with other powders. During the cooling of the system, the melting stops, and reagents solidify with each other forming self-standing agglomerates. Stygar et al.20 showed that after 20 h of sintering in the furnace, the microstructure of the sample looked like a powder, which slightly soldered on the sides to connect with other powders. The latter is the reason for the sample to exhibit a lot of pores and a lower density of the material. The current approach leads to fewer pores on the surface. Theoretical or ideal density was calculated via the equation $\rho_{\text{theory}} = (n \cdot A)/(V \cdot N)$, where n is the number of atoms per unit cell, A is atomic weight, g/mol, V is the volume of the unit cell, cm3/cell, and N is Avogadro’s number, 6.023 × 1023. The parameters for the crystal structure were taken from the HighScore database (ICDD 04-001-9399), and the atomic weight of the material was calculated based on the percentage of each element ($A = 232$ g/mol). The ideal density of the material is found to be ~5.24 g/cm3. Table 3 contains information regarding the density of the obtained samples and their comparison to the ideal scenario. The obtained density of samples is lower than the theoretical. The mismatch between ideal and obtained densities may be due to the presence of defects, holes, and intrusions. This mismatch is commonly observed for the SPS-obtained materials and is considered to be

![Figure 1](https://example.com/figure1.png)

Figure 1. (a) X-ray diffraction patterns for the samples H1–H4. Patterns in the bottom panel for the crystal structures *Fm*3*m* and *Fd*3*m* are taken from the HighScore database under numbers ICDD 01-08306168 and ICDD 04-001-9399, respectively. Crystal structures for (b) *Fd*3*m* and (c) *Fm*3*m*. The HEA structures were created via the application of the Python algorithm with the utilization of the special quasi-random structure approach. The base unit cell data were acquired from the open database.27

![Figure 2](https://example.com/figure2.png)

Figure 2. Morphology of the obtained materials with the chemical composition Co-Cr-Fe-Mn-Ni-O: (a) H1; (b) H2; (c) H3; (d) H4.

Table 2. Results of the Rietveld Analysis

<table>
<thead>
<tr>
<th>sample</th>
<th>amount of the phase, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fd3m</td>
</tr>
<tr>
<td>H1</td>
<td>61.1</td>
</tr>
<tr>
<td>H2</td>
<td>50.8</td>
</tr>
<tr>
<td>H3</td>
<td>52.4</td>
</tr>
<tr>
<td>H4</td>
<td>81.4</td>
</tr>
</tbody>
</table>

rock salt structures of *Fm*3*m* (shown as black arrows) with different parameters of the crystal structure (Table S2). Sample H2 has four phases (*Fd*3*m*, *Fm*3*m*, *Fm*3*m* |, and *R*3*c*). Phase *R*3*c* is shown as a red arrow on the graph (peak at 33.61°). In sample H2, these peaks present their maximum intensity. Sample H1 has a larger amount of phase *Fd*3*m*. We assume that this difference is due to the heat treatment before SPS for sample H1. None of these phases are detected in samples H3 and H4.

Samples H3 and H4 are composed of the rock salt structure and spinel structure. Sample H4 has the largest amount of phase...
The average chemical compositions for all samples are summarized in Table 4. During the preparation, different amounts of oxides were mixed to obtain high-entropy oxide (CoOₓ ≈ 34.5%, Cr₂O₃ ≈ 21.8%, Fe₃O₄ ≈ 22.9%, MnO ≈ 10.2%, and NiO ≈ 10.7%). Samples H3 and H4 have a close chemical composition due to the higher temperatures during the synthesis, and their average composition is close to the stoichiometry, which was expected (Co ≈ 15%, Cr ≈ 8.8%, Fe ≈ 9.2%, Mn ≈ 5%, and Ni ≈ 5%).

Table 3. The Density of the Obtained Materials

<table>
<thead>
<tr>
<th>sample</th>
<th>density, g/cm³</th>
<th>ρ/theory, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>5.08</td>
<td>96.8</td>
</tr>
<tr>
<td>H2</td>
<td>5.20</td>
<td>99.0</td>
</tr>
<tr>
<td>H3</td>
<td>5.19</td>
<td>98.9</td>
</tr>
<tr>
<td>H4</td>
<td>5.10</td>
<td>97.1</td>
</tr>
</tbody>
</table>

Negligible. It indicated that SPS is a better option to sinter powder close to the bulk material. The reason is high pressure and temperature, i.e., the sample changes its compactness due to the conditions of the obtaining process.

Results of EDS elemental mapping are presented in Figure S2. In all samples, cobalt and nickel were mixed but separated from chromium, which was better mixed with iron and manganese in all samples. Samples H1 and H2 have a lower amount of manganese and iron in the scanned part of the sample. For the samples H3 and H4, Mn and Fe are homogeneously distributed and mixed with all other elements. This distribution of elements can be caused by the number of different phases in the material, and the reason for that can be duration and temperature during the sintering process. Also, it can depend on the atomic radius of the elements; Cr has the highest atomic radius, and Ni has the lowest. Probably, more time during the sintering process is needed, so there will be better interaction between all elements. The average chemical compositions for all samples are summarized in Table 4. During the preparation, different amounts of oxides were mixed to obtain high-entropy oxide (CoOₓ ≈ 34.5%, Cr₂O₃ ≈ 21.8%, Fe₃O₄ ≈ 22.9%, MnO ≈ 10.2%, and NiO ≈ 10.7%). Samples H3 and H4 have a close chemical composition due to the higher temperatures during the synthesis, and their average composition is close to the stoichiometry, which was expected (Co ≈ 15%, Cr ≈ 8.8%, Fe ≈ 9.2%, Mn ≈ 5%, and Ni ≈ 5%).

Table 4. EDS Results: Average Compositions (at. %)

<table>
<thead>
<tr>
<th>sample</th>
<th>Co</th>
<th>Cr</th>
<th>Fe</th>
<th>Mn</th>
<th>Ni</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>11.6</td>
<td>17.7</td>
<td>8.7</td>
<td>2.5</td>
<td>3.4</td>
<td>56.1</td>
</tr>
<tr>
<td>H2</td>
<td>15.4</td>
<td>18.1</td>
<td>6.3</td>
<td>0.5</td>
<td>4.0</td>
<td>55.7</td>
</tr>
<tr>
<td>H3</td>
<td>14.7</td>
<td>10.3</td>
<td>10.3</td>
<td>5.1</td>
<td>4.8</td>
<td>54.8</td>
</tr>
<tr>
<td>H4</td>
<td>18.0</td>
<td>7.4</td>
<td>11.4</td>
<td>6.2</td>
<td>5.5</td>
<td>51.5</td>
</tr>
</tbody>
</table>

Measurements of the samples: (a) TGA and (b) DSC.

The results of the TGA and DSC measurements are presented in Figure 3. All samples have a weight loss during the whole measurement process. The final weight loss in the samples is almost the same. Sample H2 has a few additional steps in the temperature range of 400–750 °C, which is associated with the presence of phase R3c.

All samples have exothermal and endothermal reactions, which are clearly observable in samples H2, H3, and H4. At temperatures around 450 °C and higher, the endothermal reaction turns into exothermal. The change in the reaction can be due to the destruction of the structure, which emits energy.

The transport properties are reported in Figure 4. The electrical conductivity exhibits the same semiconducting behavior for all the samples, i.e., the growth of the conductivity with increasing temperatures. The increase in conductivity is almost negligible around 300 K and increases monotonically with the temperature. The sample with the highest electrical conductivity at high temperature (773 K) is sample H2 (Table 5) followed by sample H1, both annealed at 1200 °C. In these samples, the Fm3m* phase may work as the main path for the flow of charge carriers. The other two samples exhibit lower electrical conductivity values, which is probably related to the lack of the Fm3m* phase, as highlighted by XRD analysis. Electrical conductivity depends on the charge carrier concentration and their mobility (σ = e·n·μ, where e is the electric charge, C, n is the carrier concentration, m⁻³, and μ is mobility of charge carriers, m²/(V·s)). We assume that for all samples, the carrier concentration grows, so the mobility is falling. For samples H1 and H2, growth of the carrier concentration prevails over the decrease of the charge mobility, but for samples H3 and H4, the carrier concentration is lower than those for samples H1 and H2. The electrical properties of the materials H3 and H4 at high temperatures are close to the values of the single-phase material (σ ≈ 0.2009 S/cm), which is presented in Stygar et al.’s article due to the high amount of theFd3m phase.

The Seebeck coefficient values (Figure 4b) for all the samples vary between −20 and −115 μV·K⁻¹. The values indicate the n-type nature of the materials, i.e., electrons are the main charge carriers in all the investigated samples. Lower absolute values of the Seebeck coefficient for H1 and H2 materials are most probably due to the presence of the third phase. On the contrary, the H3 and H4 values of S are higher due to the purer material overall. An additional explanation could be the lower content of the unsintered powder. As observed before, with the growth of
temperature, the carrier concentration also increased, which lowers the values of the Seebeck coefficient. The values of H3 are higher at elevated temperatures, whereas H4 values drop in this region. Even if obtained materials have more than one phase, the behavior of the Seebeck coefficient is close to the material with the $Fd\bar{3}m$ crystal structure, which was shown in the previous article.20

The highest PF value is for sample H3. The Seebeck coefficient is the main factor, which exhibits a quadratic contribution to PF ($PF = \sigma \cdot S^2$). Since H3 exhibits the highest values of S at the highest temperature range (above 475 K), this leads to the highest yield. For the single-phase material, which was presented in Stygar et al.’s article,20 PF was around 3395.21 × 10^{-12} W/(cm·K·PF).

The presence of the second phase ($Fm\bar{3}m$) may also have an effect on the transport properties. Its investigation would be useful to reach a single-phase system through the adjustment of SPS parameters and obtain a comparison of the TE properties between multiphase and single-phase systems. Further doping or alteration of the composition is planned to increase the yield and achieve the p-type behavior of the semiconductor material.

CONCLUSIONS

The main goal of this work was to reduce the duration of the HEO (Co-Cr-Fe-Mn-Ni-O) synthesis process via using SPS as a much faster and more scalable alternative technique, compared to the one reported in the literature. All the obtained samples mainly exhibit the presence of the two crystal phases $Fm\bar{3}m$ and $Fd\bar{3}m$, which is probably due to the sintering temperature. The highest amount of the spinel structure $Fd\bar{3}m$ is equal to 81.4%.

Low electrical conductivity values are due to only partial sintering of the precursor powder, generating powder agglomerates, which should be avoided by prolonging the sintering duration. The behavior of the Seebeck coefficient with temperature growth is close to that of the goal structure. The highest value of the Seebeck coefficient is around $115 \mu V/K$ at room temperature, which could be explained by a high content of the $Fd\bar{3}m$ structure. With further growth of temperature, the value drops to $22 \mu V/K$.

These results indicate that SPS is a fast and scalable alternative method in contrast to the conventional one. In future work, further adjustment of the SPS process to reach a single phase is planned, which may further increase the TE properties. Further steps to improve the TE functionality rely on doping and, more in general, the controlled composition of the HEA.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c08278.

Melting temperature of precursors, parameters of the crystal structures, scheme of the electrical measurements, and EDS mapping (PDF)

AUTHOR INFORMATION

Corresponding Author
Alberto Vomiero — Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden; Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venezia Mestre, Italy; orcid.org/0000-0003-2935-1165; Email: alberto.vomiero@ltu.se

Authors
Daria Pankratova — Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
Silvia Maria Giacomelli — Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova PD, Italy
Khabib Yusupov — Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linköping, Sweden
Farid Akhtar — Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden; orcid.org/0000-0003-4888-6237
Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c08278

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
A.V. and D.P. acknowledge the Knut & Alice Wallenberg Foundation, the Swedish Foundations Consolidator Fellowship, the LTU Lab fund program, and the Kempe Foundation for partial funding.

REFERENCES
(17) Zhang, P.; Lou, Z.; Qin, M.; Xu, J.; Zhu, J.; Shi, Z.; Chen, Q.; Reece, M. J.; Yan, H.; Gao, F. High-Entropy (Ca0.25Sr0.2Ba0.2La0.2Pb0.2)TiO3 Perovskite Ceramics with A-Site Short-Range Disorder for Thermoelectric Applications. *J. Mater. Sci. Technol.* 2022, 97, 182–189.

https://doi.org/10.1021/acsomega.2c08278

ACS Omega 2023, 8, 14484–14489

14489