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A nonlinear conjugate gradient method is derived for the inverse problem of identifying a treatment
parameter in a nonlinear model of reaction–diffusion type corresponding to the evolution of brain tumours
under therapy. The treatment parameter is reconstructed from additional information about the tumour
taken at a fixed instance of time. Well-posedness of the direct problems used in the iterative method is
outlined as well as uniqueness of a solution to the inverse problem. Moreover, the parameter identification
is recasted as the minimization of a Tikhonov type functional and the existence of a minimizer to this
functional is shown. Finite-difference discretization of the space and time derivatives are employed for
the numerical implementation. Numerical simulations on full 3D brain data are included showing that
information about a spacewise-dependent treatment parameter can be recovered in a stable way.
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1. Introduction

In Jaroudi et al. (2016, 2019, 2020), the inverse ill-posed problem of finding the initial cell distribution
for brain tumours was studied for a nonlinear tumour growth model, and a Landweber method was
derived for the stable reconstruction of the initial data. We continue this direction of research by adding
a treatment parameter into the model and studying the problem of reconstructing this parameter by a
conjugate gradient method. This work is inspired by Cao et al. (2020), where parameters in parabolic
heat transfer models are simultaneously recovered using a conjugate gradient method. We focus on
recovering one parameter only but consider additionally a nonlinear model and presenting 3D numerical
simulations in the space variables.

We frame the parameter identification problem in the language of tumour detection. However, details
on how to realize the proposed method in a concrete medical situation (such as collecting the necessary
data) is not presented here, and the results can be adopted to other situations governed by the similar
equations.
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2 G. BARAVDISH ET AL.

The model to be studied is the following reaction–diffusion equation

⎧⎪⎪⎨
⎪⎪⎩

∂tu(x, t) − div(D(x)∇u(x, t)) − f (u(x, t)) = −α(x, t)u(x, t), in Ω × (0, T)

D(x)∇u(x, t) · n(x) = 0, on ∂Ω × (0, T)

u(x, 0) = ϕ(x), in Ω .

(1.1)

This model is well-known for studying the growth of brain tumours under treatment (see, for example
Swanson et al. (2003), Powathil et al. (2007), Stamatakos & Giatili (2017), Rockne et al. (2009), Rockne
et al. (2010), Martín-Landrove (2017) and Murray (2002)) with u(x, t) the tumour cell density at location
x of the brain region Ω (assumed smooth). Furthermore, α(x, t)u(x, t) is the treatment term describing the
death of cells due to chemotherapy or radiation therapy, div(D(x)∇u) corresponds to the diffusion term,
D is the diffusion coefficient of cells in the brain tissue modelling a random tumour cell movement as a
diffusive flux proportional to the cell density gradient. The function f (u) is the reaction term considered
here to be the logistic growth model f (u) = ρua(1 − ub)c, where ρ is the proliferation rate and a, b and
c are positive real numbers, describing the rapid reproduction of cells in the brain as a combination of
birth and death processes of the cells. The boundary condition in (1.1) guarantees that tumour cells do
not diffuse outside the brain region (the skull), with n being the outward unit normal to the boundary.
The element ϕ is the known initial tumour cell density obtained at time t = 0.

In the model (1.1), the diffusion coefficient D is assumed to comprise of two regions; the white and
grey matter as used in Swanson et al. (2000), Swanson et al. (2002) and Dolgushin et al. (2017). This
accounts for the spatial heterogeneity of the brain tissue, and is specified as

D(x) =
{

dw : x ∈ white matter

dg : x ∈ grey matter

where dw >> dg > 0 stand for the respective diffusion coefficients for the white and grey matter.
Given values of the coefficients and the initial cell distribution in (1.1), it is a well-posed problem

to generate the solution u to (1.1) forward in time. We shall instead consider the following: Inverse
problem: Given the additional data

u(x, T) = ψ(x), x ∈ Ω (1.2)

where T > 0, determine the treatment profile α(x, t). This nonlinear inverse problem is ill-posed and
we assume that data are compatible such that a solution exists, however, stability cannot be guaranteed.
Furthermore, uniqueness is a subtle issue.

It is pointed out in the introduction to Yamamoto & Zou (2001) that uniqueness in finding α is not
to be expected when α depends both on space and time. Since it is not either expected to find a time-
dependent profile α from final time data, we focus on the spacewise-dependent case. Then, in the linear
case when the reaction term f is zero or linear, uniqueness is shown in Rundell (1987); Isakov (2017)
provided that α > 0. The case of a non-zero reaction term is covered in Choulli (1994) (in the case
of Dirichlet boundary conditions) and with general boundary conditions in Prilepko & Kostin (1993);
Kaltenbacher & Rundell (2019). Thus, there are cases in which the inverse problem (1.1)–(1.2) has a
unique solution when finding a spacewise-dependent treatment profile. However, since a both space and
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 3

time-dependent coefficient α does not pose any problems in the derivation of a method for the inverse
problem (1.1)–(1.2) it is only in the numerical section that we shall specify α to be space-dependent.

Inverse problems of finding coefficients, the initial distribution or sources in parabolic equations
is a too vast area to survey here. To guide the reader to some works related to the present work, we
refer to Prilepko et al. (2000); Isakov (2017) and additionally Hasanov (2007); Johansson & Lesnic
(2007a,b); Hao et al. (2013); Klibanov (2013); Kerimov & Ismailov (2015); Van Bockstal & Marin
(2017); Huntul et al. (2018); Cao et al. (2020); Slodička (2020) and references therein. Note also the
recent development of inverse problems for degenerate parabolic equations Hussein et al. (2020). In
terms of parameter reconstruction for a growth model of the above type, see Amir et al. (2016); Mang
et al. (2018); Nguyen et al. (2019); Sabir & Raissi (2019); Mang et al. (2020).

Parameter identification for parabolic equations is thus classical. Novelties of the presented work are
the derivation of a nonlinear conjugate gradient method for the realization of the identification together
with mathematics to justify the method, along with the actual numerical implementation on full brain
data. Comparisons are done with the classical Landweber method.

For the outline of this work, in Section 2 we outline that the inverse problem (1.1)–(1.2) has a
unique solution when the logistic growth model is considered. Precise statements of uniqueness is given
in Theorem 2.1. In Section 3, we briefly go over the well-posedness of (1.1) rendering Theorem 3.1. In
Section 4, the inverse problem (1.1)–(1.2) is formulated as the minimization of a certain Tikhonov type
functional. Properties are discussed and it is outlined that there exists a minimizer, see Proposition 4.1.
A proof of the existence of a minimizer is given in an appendix. A conjugate gradient method is derived
in Section 5 for the minimization. Section 6 is devoted to numerical experiments for a spacewise-
dependent treatment profile on full 3D synthetic brain data. Finally, we give some conclusions and
remarks about our findings in Section 7.

2. A note on uniqueness of a solution to the inverse problem (1.1)–(1.2)

We will in particular be concerned with a reaction term in the form f (u) = ρu(1 − u) modelling
logistic growth. We outline a uniqueness result for the inverse problem (1.1)–(1.2) with this reaction
term. Following the case of a linear governing equation studied in Prilepko & Kostin (1993) assume that
(1.1)–(1.2) has two solution pairs u and α respectively u1 and α1. Define w = u − u1 and h = α − α1.
Then, as the reader can check,

⎧⎪⎪⎨
⎪⎪⎩

∂tw(x, t) − div(D(x)∇w(x, t)) − β(x, t)w = −h(x)u(x, t) in Ω × (0, T),

D(x)∇w(x, t) · n(x) = 0 on ∂Ω × (0, T),

w(x, 0) = w(x, T) = 0 in Ω ,

(2.1)

with β = −α1 + ρ(1 − u − u1). The solution pair w and h satisfying (2.1) can be considered as a
solution to the inverse problem of reconstructing w and a spacewise-dependent source term h from final
time data in a linear parabolic governing equation with a Neumann boundary condition. According to
(Prilepko & Kostin, 1993, Thm. 2) (see also Rundell (1980)) that problem has a unique solution, hence
w = 0 and ϕ = 0. This in turn, by definition, gives u = u1 and α = α1, and uniqueness of a solution to
the inverse problem (1.1)–(1.2) has been shown.

In fact, following Prilepko & Kostin (1993), we can make precise conditions for uniqueness. Let
L∞(Ω) be the space of measurable essentially bounded functions in Ω , and let the space Hk(Ω), k > 0,
be the standard Sobolev space of functions with weak and square integrable derivatives up to order k.
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4 G. BARAVDISH ET AL.

Moreover, W2,1(Ω × (0, T)) is the standard anisotropic Sobolev space with two weak derivatives in
space and one in time.

Theorem 2.1. Assume that ψ ∈ H2(Ω) with ψ > 0. Then the solution to the inverse problem (1.1)–
(1.2) is unique in the class of pairs u ∈ W2,1(Ω × (0, T)) and α ∈ L∞(Ω) with α ≥ 0 with the standard
compatibility conditions assumed to be satisfied.

Alternative classes of functions and restrictions can be derived for uniqueness, see, for example
Choulli (1994) (Dirichlet boundary condition) and Kaltenbacher & Rundell (2019).

We remark that it is possible to generalize further and consider a time-dependent treatment parameter
in the form α(x, t) = α(x)g(t), with g(t) known. Uniqueness of α(x) can still be shown for some suitable
g as above and the methods we develop can be directly applied to that case.

3. Well-posedness of the direct treatment model (1.1)

We shall investigate existence and uniqueness of a solution to the treatment model (1.1), and begin by
introducing some function spaces. The space L2(0, T; X), where X is a Hilbert space, consists of those
measurable functions u(·, t) : (0, T) → X, with∫ T

0
‖u(·, t)‖2

Xdt < ∞.

By Ck([0, T]; X), we denote the functions u for which the mapping u(·, t) : [0, T] → X has continuous
and bounded (in the usual norm) derivatives of order up to k ≥ 0. The trace space of Hk(Ω), k > 0, is
Hk−1/2(Γ ). For simplicity, we denote by Ωt = Ω × (0, t). In the logistic function f (u) = ρua(1 − ub)c,
we assume that a ≥ 1, b ≥ 1 and c ≥ 1.

Concerning the existence and uniqueness of a solution to (1.1), we follow the approach given in a
previous work Jaroudi et al. (2020) when α = 0. The treatment problem in (1.1) can be recast in an
abstract form as {

u′
t + Bu = f (u(t)) − α(t)u

u(0) = ϕ

making it essentially an ordinary differential equation in the time-variable but having values in a function
space. Here, B corresponds to the divergence term in (1.1), and generates a semi-group S, see (Pazy,
1983, Theorem 7.2.5). Existence and uniqueness of what is known as a mild solution,

u(t) = S(t)ϕ +
∫ t

0
S(t − s)(f (u(s)) − α(s)u(s)) ds (3.1)

in the space C(0, T; H1(Ω)) is given by (Pazy, 1983, Theorem 6.1.2). An additional advantage with the
abstract formulation is that recovering the treatment parameter α from additional data u(x, T) = ψ(x)
can, by using (3.1), be considered as a nonlinear operator equation

A(α) = ψ . (3.2)

However, since we shall recast the inverse problem (1.1)–(1.2) as a minimization problem we need a
more standard weak formulation in order to show properties of the minimization problem.
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 5

Multiplying (1.1) by an element v ∈ H1(Ω) and using integration by parts in the space variables (a
Green’s formula), incorporating the zero flux condition on the boundary, give

∫
Ω

u′
t(x, ·)v(x) dx +

∫
Ω

D∇u(x, ·) · ∇v(x) dx =
∫

Ω

(f (u(x, ·)) − α(x, ·)u(x, ·))v(x) dx. (3.3)

An element u is termed a weak solution to (1.1) if (3.3) holds for every t in [0, T] and u(x, 0) = ϕ(x),
for every v ∈ H1(Ω).

To approximate the time-derivative in (1.1), we apply the backward difference

u′
t(x, tk) ≈ uk(x) − uk−1(x)

τ
,

where tk = (T/N)k, k = 0, 1, . . . , N, is a uniform mesh on the time interval [0, T] with step size
τ = T/N, and uk(x) = u(x, tk).

Employing this time-discretization in (3.3) together with evaluating the nonlinear term at the
previous mesh point, we derive the identity

∫
Ω

uk(x) − uk−1(x)

τ
v(x) dx +

∫
Ω

D∇uk(x) · ∇v(x) dx

=
∫

Ω

(f (uk−1(x)) − α(x, tk−1)uk−1(x))v(x) dx,

or by rewriting this,

1

τ

∫
Ω

uk(x)v(x) dx +
∫

Ω

D∇uk(x) · ∇v(x) dx

=
∫

Ω

(
f (uk−1(x)) − α(x, tk−1)uk−1(x) + uk−1(x)

τ

)
v(x) dx.

This is then a standard linear elliptic problem for uk (for k = 0 the condition u(x, 0) = ϕ is used).
Existence and uniqueness of uk ∈ H1(Ω) is settled via the Lax-Milgram lemma, see (Ciarlet, 1978,
Chapter 1). There is scope for further generalizations here in terms of smoothness of the coefficients, in
particular the diffusion tensor D can be more general than what is specified in the current work.

The sequence of functions {uk} can be interpolated into a time-dependent approximation simplest
by defining it to be piecewise constant in each interval [tk−1, tk), alternatively to be linear in each
such interval. This is known as the Rothe approximation. As the step size τ decreases, the interpolated
function tends to a solution of (3.3) in the appropriate norms. In this way, existence of a weak solution
can be shown. For the linear case, an introduction to the method of Rothe is given in (Kačur, 1985,
Chapter 1).

For the uniqueness, assume that there are two weak solutions u and ũ to (1.1). Put w = u − ũ, then w
satisfies a relation of the form (3.3) with f (u) in the right-hand side replaced by f (u) − f (ũ) and ϕ = 0.
Note that (3.3) can be extended to hold for functions v, which are piecewise constant in time, and by a
limiting argument this relation holds for all v(x, t) ∈ L2(0, T; H1(Ω)). Hence, choosing v = w in the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/88/2/378/7103503 by Linkopings universitetsbibliotek user on 29 Septem

ber 2023



6 G. BARAVDISH ET AL.

weak formulation for w, we have

∫
Ω

w′
t(x, ·)w(x, ·) dx +

∫
Ω

D∇w(x, ·) · ∇w(x, ·) dx

=
∫

Ω

(f (u(x, ·)) − f (ũ(x, ·)))w(x, ·) dx −
∫

Ω

α(x, ·)w2(x, ·) dx

≤
∫

Ω

(f (u(x, ·)) − f (ũ(x, ·)))w(x, ·) dx,

where in the last step it is used that α is non-negative (it is for such α we have uniqueness in the inverse
problem, see Theorem 2.1). Integrating in time over [0, t] noting that ∂tw

2 = 2w′w and estimating the
second term in the left-hand side from below, we obtain

‖w‖2
L2(Ωt)

+ ‖∇w‖2
L2(Ωt)

≤ C
∫

Ωt

(f (u(x, t)) − f (ũ(x, t)))w(x, t) dx dt.

The function f is Lipschitz continuous, hence we can further estimate using this and Cauchy’s inequality,

‖w‖2
L2(Ωt)

+ ‖∇w‖2
L2(Ωt)

≤ C‖w‖2
L2(Ωt)

. (3.4)

A version of Grönwall’s lemma, see (Roubíček, 2005, p. 25), implies that the left-hand side is zero,
which in turn, since t with 0 < t < T was arbitrary, forces w = 0 in ΩT and we have uniqueness.

The above steps albeit on a more general level is performed in (Roubíček, 2005, Chapter 8), where
the reader can find full details on the above arguments, which renders the following result (combining
(Roubíček, 2005, Theorem 8.33 and Proposition 8.37)).

Theorem 3.1. Let f be Lipschitz continuous in L2(0, T; H1(Ω)), ϕ ∈ L2(Ω) and α > 0 be a
bounded measurable function in Ω . Then there exists a unique weak solution u ∈ L2(0, T; H1(Ω))

with u′
t ∈ L2(0, T; L2(Ω)) to the treatment reaction–diffusion problem (1.1), and this element u depends

continuously on the data.

It is also possible to show existence of a classical solution being Hölder continuous, see, for example
(Kaltenbacher & Rundell, 2020, Theorem 2.1).

4. Reformulation of the inverse problem (1.1)–(1.2) as a minimization problem

As pointed out in the introduction, here and in the sequel, we only consider the case of α(x, t) = α(x)
in order to have uniqueness in the inverse problem according to Theorem 2.1. Let

A = {α(x) : α ∈ L∞(Ω), 0 < C1 ≤ α(x) ≤ C2 a.e.}. (4.1)
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 7

To recover the unknown function α in the inverse problem (1.1)–(1.2) we shall attempt to minimize the
following Tikhonov type functional with regularization parameter μ ≥ 0,

E (α) = 1

2
‖u (·, T; α) − ψ(·)‖2

L2(Ω)
+ μ

2
‖α(·)‖2

L2(Ω)
, (4.2)

where α ∈ A and u (x, t; α) is the weak solution of (1.1) in L2(0, T; H1(Ω)) guaranteed by Theorem 3.1.
In particular, using integration by parts it follows that the weak solution satisfies,

−
∫

ΩT

u(x, t)∂tη(x, t) dxdt +
∫

ΩT

(D(x)∇u(x, t)) · ∇η(x, t) dxdt

=
∫

ΩT

(f (u(x, t)) − α(x)u(x, t)) η(x, t) dxdt +
∫

Ω

ϕ(x)η(x, 0) dx (4.3)

for a class of test functions η with η(x, T) = 0.
We briefly outline that the minimization of (4.2) admits a solution. We point out that (4.2) is well-

defined since L∞(Ω) is contained in L2(Ω) due to Ω being bounded. It is clear that infα∈A E(α) is
finite and non-zero. Thus, there exists a minimizing sequence {αn} such that limn→∞ E(αn) attains
the infimum. Verbatim the arguments given for example in Hao et al. (2013); Cao et al. (2020) it is
possible to extract a subsequence with the limit point being a minimizer of (4.2). We point out that we
additionally have a nonlinear term compared with Hao et al. (2013); Cao et al. (2020) but according to
the previous section, (1.1) is a well-posed problem with a standard parabolic estimate of the solution
in terms of the data. Thus, the requested estimates needed in (Hao et al., 2013, Thm. 4.5), (Cao et al.,
2020, Thm. 3) are still valid in our case.

Proposition 4.1. The problem of minimizating (4.2) over the set A given by(4.1) and with u being a
weak solution of (1.1) has a solution.

Following (Sect. 4 Hao et al. (2013)), we show existence of a minimizer together with Lipschitz
continuity and Fréchet differentiability of the mapping from α to the corresponding solution u(α), see
the Appendix.

The minimization problem (4.2) can be written, to highlight that it is subjected to the constrains of
the partial differential equation for u, as

{
min
α∈A

1
2 ‖u(·, T; α) − ψ(·)‖2

L2(Ω)
+ μ

2 ‖α(·)‖2
L2(Ω)

s.t. ∂tu(x, t) − div(D(x)∇u(x, t)) − f (u(x, t)) + α(x)u(x, t) = 0
(4.4)

subjected to the initial and boundary conditions in (1.1).
We solve (4.4) by an iterative scheme that necessitates the use of the sensitivity function v(x, t) and

the Lagrangian multiplier λ(x, t) that are obtained from the sensitivity problem and the adjoint problem
respectively as shown below.

Specifically, we apply a conjugate gradient method for the minimization, where the descent direction
involves the gradient of the functional and will be calculated by an adjoint problem. The step size in the
descent direction will be determined by a so-called sensitivity problem
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8 G. BARAVDISH ET AL.

4.1 The sensitivity problem

Suppose that the cell density u(x, t) is perturbed by εv(x, t) when the therapy parameter α(x) is perturbed
by εa(x), where ε > 0 is a small number. The perturbed cell density u(x, t) + εv(x, t) and perturbed
therapy parameter α(x) + εa(x) are substituted into the original problem in (1.1) to obtain a perturbed
problem. The perturbed problem having the original problem subtracted from it and taking limits yields
the so-called sensitivity problem.

Lemma 4.1. The sensitivity problem corresponding to (1.1) is given by⎧⎪⎪⎨
⎪⎪⎩

∂tv − div(D∇v) − f ′
uv = −αv − au, in ΩT

D∇v · n = 0, on ∂ΩT

v(x, 0) = 0, in Ω

(4.5)

where ΩT = Ω × (0, T), ∂ΩT = ∂Ω × (0, T) and f ′
u is the Fréchet derivative of f at u.

Note that this is a linear problem and well-posedness is classical. The sensitivity problem will
be used to determine the step size in the descent direction (corresponding to the parameter a) in the
conjugate gradient method.

4.2 The adjoint problem

We rewrite the constrained minimization problem (4.4) as an unconstrained minimization using the
Lagrange multiplier method:

min
α∈A

E (α)

where E (α) is the Lagrange functional given by

E (α) = 1

2
‖u(·, T; α) − ψ(·)‖2

L2(Ω)
+ μ

2
‖α(·)‖2

L2(Ω)

+
∫

ΩT

λ(x, t)
[
f (u(x, t)) + div(D(x)∇u(x, t)) − ∂tu(x, t) − α(x)u(x, t)

]
dxdt, (4.6)

subjected to the initial and boundary conditions in (1.1), the element λ will be specified below.
The directional derivative of E in the direction a is given by

E ′
α(a) = lim

ε↘0

E (α + εa) − E (α)

ε
. (4.7)

Direct calculations yield

E (α + εa) − E (α) = 1

2

∫
Ω

[2ε((u(x, T) − ψ(x))v(x, T) + ε2v2(x, T)] dx

+ μ

2

∫
Ω

(2εαa + ε2a2) dx
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 9

+
∫

ΩT

λ(x, t)
[
f (u(x, t) + εv) − f (u(x, t) + εdiv(D(x)∇v) − ε∂tv − ε(αv + au) − ε2av

]
dxdt.

Hence, applying a Green’s formula the directional derivative in (4.7) is formally given by

E ′
α(a) =

∫
Ω

(u(x, T) − ψ(x))v(x, T) dx

+
∫

Ω

λ(x, 0)v(x, 0) dx −
∫

Ω

λ(x, T)v(x, T) dx

+
∫

ΩT

[λ(x, t)f ′
u(u(α)) + div(D(x)∇λ(x, t)) + ∂tλ(x, t) − α(x)λ(x, t)]v dxdt

+
∫

Ω

(
μα(x)a(x) −

∫ T

0
a(x)u(x, t)λ(x, t) dt

)
dx.

Instead of continuing and writing out all the details in finding the directional derivative in (4.7) and the
adjoint equation, we make a list of the required steps:

• Use the boundary condition (D(x)∇v) · n(x) = 0 on ∂Ω .

• Restrict the derivations to functions with v(x, 0) = 0.

Carrying out these steps, we finally arrive at

E ′
α(a) =

∫
Ω

(
μα(x) −

∫ T

0
u(x, t)λ(x, t) dt

)
a(x) dx −

∫
Ω

λ(x, T)v(x, T) dx

+
∫

Ω

(u(x, t) − ψ(x))v(x, T) +
∫

ΩT

[
λ(x, t)f ′

u(u(α))

+ div(D(x)∇λ(x, t)) + ∂tλ(x, t) − α(x)λ(x, t)
]
v(x, t) dxdt.

Hence, it is possible to establish to following result.

Theorem 4.1. The Fréchet derivative of the Lagrange functional (6) is given by

E
′
α = μα(x) −

∫ T

0
u(x, t)λ(x, t) dt, x ∈ Ω , (4.8)

where the Lagrange multiplier satisfies the following adjoint problem⎧⎪⎪⎨
⎪⎪⎩

∂tλ(x, t) + div(D(x)∇λ(x, t)) + (f
′
u − α(x))λ(x, t) = 0, in ΩT

(D(x)∇λ(x, t)) · n(x) = 0, on ∂ΩT

λ(x, T) = ψ(x) − u(x, T), in Ω .

(4.9)

As for the sensitivity problem, the adjoint problem is also linear. By change of variables τ = T − t
the adjoint problem can be reformulated as an initial value problem and thus classical well-posedness
results can be applied.
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10 G. BARAVDISH ET AL.

Having derived the sensitivity problem and the adjoint, we can then specify a conjugate gradient
method for minimizing (4.2).

5. A conjugate gradient method for the inverse problem (1.1)–(1.2)

We propose an iterative method based on the conjugate gradient method for the estimation of α by
minimizing E (α) in (6). A sequence {αk} is generated via

α(k+1)(x) = α(k)(x) + β(k)d(k)(x), (5.1)

where k denotes the number of iterations and α(0)(x) is an initial guess for α(x). The descent direction
d(k) and step size β(k) have specific values as given below. As mentioned above, the decent direction
d(k) will involve the adjoint problem whilst the step size will be determined by the sensitivity problem.

5.1 Computing the search direction

The spacewise-dependent descent direction is given by

d(k) =
{

−E
′(0)

−E
′(k) + γ (k)d(k−1), k = 1, 2, . . . ,

(5.2)

where for simplicity we introduced the notation E
′(k) = E

′
α(k) . The Fletcher-Reeves type conjugate

gradient coefficients γ (k) is specified by

γ (k) =
∥∥E

′(k)∥∥2
L2(Ω)∥∥E ′(k−1)
∥∥2

L2(Ω)

. (5.3)

5.2 Computing the step size

The search step sizes β(k) in (5.1) is obtained by minimizing

E(α(k+1)) = 1

2

∫
Ω

[u(x, T; α(k)(x) + β(k)d(k)(x)) − ψ(x)]2 dx

+μ

2

∫
Ω

(α(k)(x) + β(k)d(k)(x))2 dx.

(5.4)

Linearizing the functional E(α(k+1)) in (5.4) to first order using the Taylor series expansion,

E(α(k+1)) ≈ 1

2

∫
Ω

[u(x, T; α(k)) + β(k)δu(x, T; α(k)) − ψ(x)
]2

dx

+μ

2

∫
Ω

[(α(k)(x))2 + 2β(k)α(k)(x)d(k)(x) + (β(k)d(k)(x))2] dx.
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 11

Differentiating the right-hand side with respect to β and solving, yields

β(k) = −
∫
Ω

(
u(x, T; α(k)) − ψ

)
δu(x, T; α(k)) dx + μ

∫
Ω

α(k)(x)d(k)(x) dx∫
Ω

(
δu

(
x, T; α(k)

))2
dx + μ

∫
Ω

(d(k)(x))2 dx
, (5.5)

where v = δu as in Lemma 4.1.

5.3 Stopping criterion

As a stopping rule the following discrepancy principle may be used:

E(α(k)) ≤ κ , (5.6)

where κ is a small positive number.
We summarize the steps of the minimization procedure.

5.3.1 Steps of the algorithm.

(S1). Set k = 0 and choose μ > 0 and an initial guess α(0)(x) for the unknown function α(x). Set
E(α(0)) = +∞.

(S2). Solve the direct problem in (1.1) to compute u(x, t; α(k)).

(S3). If the stopping condition in (5.6) is satisfied, then go to (S7). Else go to (S4).

(S4). Solve the adjoint problem in (4.9) to compute the function λ(x, t; α(k)) and the gradient E
′(k)
α in

(4.8). Compute the conjugate gradient coefficients γ (k) in (5.3) and generate d(k).

(S5). Solve the sensitivity problem in (4.5) to compute δu(x, t; α(k)) = v(x, t; α(k)) by taking a(k) =
d(k) and compute the search step size β(k) in (5.5).

(S6). Compute α(k+1) via (5.1) and E(α(k+1)). Set k = k + 1 and return to (S2).

(S7). End

5.4 A Landweber method for the inverse problem (1.1)–(1.2)

For numerical comparison, we briefly outline iterations based on the more classical Landweber method.
The inverse problem under consideration can be recast to find a solution α to

A(α) = ψ , (5.7)

where A : L2(Ω) → L2(Ω) is nonlinear operator.
The solution operator of (1.1) is completely continuous (a weakly converging sequence is turned

into a strongly convergent sequence under that operator) viewed as a mapping from L2(Ω) to
L2(0, T; L2(Ω)), see (Precup, 2013, Theorem 10.6 and p. 246) (for a more general result involving
also dependence with respect to the coefficients in the equation, see Coclite & Holden (2005)). Since
the operator A in (5.7) is a restriction of the solution to (1.1) to a fixed instance in time, we conclude that
also A is completely continuous. This implies, according to (Colton & Kress, 2013, Theorem 4.21), that
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12 G. BARAVDISH ET AL.

the Fréchet derivative A′(α) is a compact operator. An equation involving a compact linear operator is
the prototype of an ill-posed problem. Thus, simply linearizing in (5.7) will not remove the instability.

The Landweber method for solving the operator equation in (5.7) is given by the iterative scheme

αk = αk−1 − γ (A′(α))∗(A(αk−1) − ψ) (5.8)

where α0 ∈ L2(Ω) is an initial guess and 0 < γ < 1/‖A‖2. As a stopping rule the discrepancy principle
is used. The general definition of the Fréchet derivative is given in, for example, (Zeidler, 1986, Chapter
4.2). It is straightforward to show that the analogue of the Landweber method in (5.8) applied to the
inverse problem (1.1) is given by the following iterative scheme.

Let α0 > 0 be arbitrarily. Solve

⎧⎨
⎩

∂tu1 − div (D(x)∇u1) − f (u1) = −α0u1, in Ω × (0, T)

∂nu1 = 0, on ∂Ω × (0, T)

u1(0) = ϕ, in Ω .
(5.9)

Assume now that we have constructed uk, k = 1, 2 . . . . Solve the linear adjoint problem

⎧⎨
⎩

∂tvk + div (D(x)∇vk) + f ′
u(uk)vk = α1vk, in Ω × (0, T)

D∇vk · n = 0, on ∂Ω × (0, T)

vk(x, T) = uk(x, T) − ψ(x), in Ω .
(5.10)

Let

αk = αk−1 − γ vk(0).

We construct the next approximate solution uk+1 by solving the following problem

⎧⎨
⎩

∂tuk+1 − div (D(x)∇uk+1) − f (uk+1) = −αkuk+1, in Ω × (0, T)

D∇uk+1 · n = 0, on ∂Ω × (0, T)

uk+1(x, 0) = ϕ(x), in Ω .
(5.11)

The iterations continues by repeating the last two steps until a stopping criteria is met.

6. Numerical results

We do a rather direct implementation of the proposed nonlinear conjugate gradient (NCG) method under
logistic growth using finite differences. The treatment term will be identified for two different types, one
piecewise continuous and one continuous. Ideal reconstructions are not to be expected for this nonlinear
inverse ill-posed problem. However, as will be seen, sufficient accuracy can be obtained that can then
form the basis of further investigations with more involved regularization techniques. For comparison,
we include results with the Landweber method outlined in the previous section.

Model MRI data with chosen parameter values are used to generate synthetic data by applying the
forward tumour growth model. This synthetically generated data together with the conjugate gradient
scheme above will be used for the inverse problem of reconstructing the treatment parameter. Details
and results are given below.
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 13

6.1 Discretization

Following Jaroudi et al. (2019, 2020) we rewrite the reaction–diffusion model (1.1) in the form

∂tu = div(D(x)∇u) + f ∗(u). (6.1)

The element f ∗(u) = f (u)−αu = ρua(1−ub)c−αu, where a, b, c ≥ 1, comprises of the cell proliferation
term and the treatment term α > 0. The governing equation in (6.1) is discretized and solved iteratively
using the scheme

ui+1 = ui + hAui + hf ∗(ui),

where h > 0 is the step size, i is the i-th iteration. The matrix A is the discretization of the divergence
term div(D(x)∇u) as

div(D(x)∇u) = ∂x

(
d11(x, y, z)∂xu

) + ∂y

(
d22(x, y, z)∂yu

)
+ ∂z

(
d33(x, y, z)∂zu

)
. (6.2)

Each of the three terms in (6.2) is approximated using the average of the forward and backward finite-
difference operators as in Jaroudi et al. (2019, 2020), i.e.

∂x

(
d11(x, y, z)∂xu

) = 1

2

[
∂+

x

(
d11(x, y, z)∂−

x u
) + ∂−

x

(
d11(x, y, z)∂+

x u
)]

which is expanded as

∂x

(
d11(x, y, z)∂xu

)
§ =

(
1

2
d11(x + 1, y, z) + 1

2
d11(x, y, z)

)
u(x + 1, y, z)

−
(

1

2
d11(x + 1, y, z) + d11(x, y, z) + 1

2
d11(x − 1, y, z)

)
u(x, y, z)

+
(

1

2
d11(x, y, z) + 1

2
d11(x − 1, y, z)

)
u(x − 1, y, z).

In this derivation, we have used a spatial grid width equal to one, this can be easily adjusted to any
width. This adjustment is done in the implementation. The experiments presented below are done with
parameters as given in Table 1.

6.2 Parameters and setup

In the inverse problem (1.1)–(1.2), we are given two tumours, one before treatment, ϕ = ψBT , see
Fig. 1, and a tumour after treatment, ψ = ψAT . The aim is to recover the treatment parameter α in the
governing equation in the model (1.1).

The two tumours are generated using the model (1.1). The initial tumour before treatment, ψBT , is
grown by specifying an initial cell density at t = 0 and running the model (1.1) forward to a time Tot > 0
with the logistic reaction function f (u) = ρu(1 − u) and treatment parameter α = 0. The initial cell
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14 G. BARAVDISH ET AL.

Table 1 This table shows the parameters used in the numerical experiments. The values of the
exponents a, b and c are given in Tables 2 and 3

Reaction function f = ρua(1 − ub)c

Parameters Construction ρ 0.009
h 0.05

Reconstruction ρ 0.007
h 0.025

Fig. 1. The brain and the tumour (in red) before treatment.

density is normally distributed with mean value zero and a diagonal covariance matrix. The diffusion
parameters in D(x) in the model (1.1) is chosen to be dw = 0.5 and dg = 0.25.
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 15

The tumour after treatment, ψAT , is generated using ψBT as data at t = 0 and running the model
(1.1) with the same logistic reaction function but with the treatment parameter varying according to the
different experiments as given below.

The treatment term α(x, t) is chosen to be spacewise-dependent only and positive to comply with the
uniqueness result of Theorem 2.1 and the well-posedness result Theorem 3.1. The chosen term is one of

α1(x) =
{

1
2 if x ∈ D

0 otherwise
(6.3)

or

α2(x) = max(0, 1 − ‖x − p‖2/d2), (6.4)

where D is the region where the cell density ψBT > 0. The parameter p is the centre of mass of the
tumour ψBT and d = 6.

After a final time T > 0 the treatment is terminated and the tumour (cell density) u(x, T; α) is
denoted by ψAT(x) as explained above. The NCG method is then applied to recover the treatment term
α given the synthetic data ψBT and ψAT . Note that these data are constructed on a coarser mesh according
to Table 1, hence the ‘inverse crime’ is avoided.

We use as reaction term in these numerical experiments one of the functions

f1(u) = ρu(1 − u) (6.5)

or

f2(u) = ρu1.2(1 − u1.3)1.1. (6.6)

We remark that f1 is used to generate that data, thus using f2 corresponds to having an error in the model
itself.

6.3 Results and error analysis

In Figure 2 are the 3D images of the two synthetically generated brain tumours ϕ = ψBT (before
treatment) and ψ = ψAT (after treatment) constructed as described in the previous section, with T = 3.
Furthermore, in the same figure is the tumour obtained after treatment at time T1 = 3.2 using the
reconstructed treatment function α(25) obtained after 25 iterations of the proposed NCG method. Here,
the logistic reaction function f1 in (6.5) is used and α(x) = α2 is as in (6.4).

Note that the time we end the treatment is chosen so we can visibly see, for comparison, some
remaining part of the tumour. That is, running the treatment for a sufficiently long time the tumour will
eventually vanish.

We point out that, as can be seen from Figure 2, if the treatment parameter α is recovered with a
small error then the tumour obtained with this parameter will be close to the tumour with the correct
treatment parameter. This is somewhat to be expected since it is possible, building on the steps in the
proof of Theorem 2.1, to estimate the difference of two tumours in terms of the parameters of the model.

We then turn to the reconstruction of the treatment parameter itself. Figure 3 shows the error ‖α −
α(k)‖L2(Ω) for k = 1, 2, . . . , 25, with α(k) the approximation obtained in the kth step of the NCG method,
and for the two different treatment parameters α given in (6.3) respectively (6.4).
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16 G. BARAVDISH ET AL.

Fig. 2. The two brain tumours before (a) and after (b) treatment used as data when α = α2 and with the reaction term f1 together
with the tumour (c) obtained from treatment with recovered α. The same zoom factor is used in all figures.

Fig. 3. The error ‖α − α(25)‖L2(Ω)
.

The error keeps decreasing during the iterations for both parameters. It takes longer time to
decrease the error with the choice of α being piecewise constant as expected since jumps are more
complicated to reconstruct. Also expected is that the error will be less with the correct reaction term
f1, however, it does not make much of a difference using f2, that is having an error in the model
itself.

In Figures 4–11 are the exact parameter α together with the reconstructed parameter α(25) for the two
different reaction terms f1 and f2 given in (6.5) and (6.6), respectively. The 3D function α is rearranged
as a vector, and we select points that are in the vicinity of the tumour. The ill-posedness is exhibited due
to oscillations. No choice of the regularization parameter μ or stopping index for the iterations appear to
improve the reconstructions much further. Note that we have errors both in the coarseness of the mesh
as well as in the model. Thus, continuing to iterate the reconstructions will eventually start to rapidly
deteriorate.

An interesting feature is that the reconstructions are of about the same accuracy even when the
reaction term f2 is used corresponding to an error in the model since f1 is used in generating the synthetic
data. We can also see that the reconstructions are more accurate for the continuous treatment parameter
α2.
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 17

Fig. 4. True α1 and estimated α
(25)
1 with f1 (NCG).

Fig. 5. True α1 and estimated α
(25)
1 with f1 (Landweber).

Since it can be visually difficult to estimate the errors, in Table 2 we give the relative errors
for the treatment parameter α as well as errors for the actual tumour itself. Note that the error
‖ψBT − ψ

(25)
AT ‖L2(Ω) is included to get an idea of the difference in size of the tumour before and after

treatment.
It is clear from the figures and tables that the reconstruction of the treatment term is approaching

the correct one. However, the ill-posedness of the nonlinear model makes it difficult to improve the
reconstructions much further unless additional special regularization methods and post-processing are
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18 G. BARAVDISH ET AL.

Fig. 6. True α1 and estimated α
(25)
1 with f2 (NCG).

Fig. 7. True α1 and estimated α
(25)
1 with f2 (Landweber).

applied. Since we have errors both due to the mesh size and model, we do not perform additional tests
with random errors added into the data. We remark here the recent result Harrach et al. (2020) showing
how additional errors can be filtered out by repeated measurements.
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IDENTIFYING A RESPONSE PARAMETER IN A MODEL OF BRAIN TUMOUR EVOLUTION 19

Fig. 8. True α2 and estimated α
(25)
2 with f1 (NCG).

Fig. 9. True α2 and estimated α
(25)
2 with f1 (Landweber).

7. Conclusion

A nonlinear conjugate gradient method has been proposed and investigated for the nonlinear inverse
problem of identifying a treatment parameter in a tumour model. Data are the tumour before and after
treatment. Uniqueness of a solution to the inverse problem is shown together with well-posedness of
the forward models. Finding the treatment parameter is recast as a minimization problem of a Tikhonov
type functional. It is shown that this functional has a minimum. Numerical experiments were carried out
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20 G. BARAVDISH ET AL.

Fig. 10. True α2 and estimated α
(25)
2 with f2 (NCG).

Fig. 11. True α2 and estimated α
(25)
2 with f2 (Landweber).

using a finite-difference scheme together with synthetic MRI data for full 3D tumours. The proposed
method can recover information of both piecewise continuous respectively continuous treatment terms
also in the case of noise into the model. From the figures and tables, it is clear that the NCG method
produces (for most cases) more accurate results than Landweber with fewer iterations. We have not
optimized the parameters and in this sense, there is possibility for further improvements.
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Table 2 Algorithm performance analysis after 25 iterations with piecewise constant α1

Reaction function NCG

used in reconstruction
‖α−α

(25)
L ‖L2(Ω)

‖α‖L2(Ω)
‖ψAT − ψ

(25)
NCG‖L2(Ω) ‖ψBT − ψ

(25)
NCG‖L2(Ω)

f1(u) = ρu(1 − u) 0.8324 0.1010 1.2564
f2(u) = ρu1.2(1−u1.1)1.2 0.8354 0.1032 1.2546

Landweber

‖α−α
(25)
L ‖L2(Ω)

‖α‖L2(Ω)
‖ψAT −ψ

(25)
L ‖L2(Ω) ‖ψBT −ψ

(25)
L ‖L2(Ω)

f1(u) = ρu(1 − u) 1.2020 1.8764 0.6846
f2(u) = ρu1.2(1−u1.1)1.2 0.7766 1.3002 0.3195

Table 3 Algorithm performance analysis after 25 iterations for polynomial α2

Reaction function NCG

used in reconstruction
‖α−α

(25)
L ‖L2(Ω)

‖α‖L2(Ω)
‖ψAT − ψ

(25)
NCG‖L2(Ω) ‖ψBT − ψ

(25)
NCG‖L2(Ω)

f1(u) = ρu(1 − u) 0.5085 0.0391 1.5339
f2(u) = ρu1.2(1 − u1.1)1.3 0.5193 0.0454 1.5391

Landweber

‖α−α
(25)
L ‖L2(Ω)

‖α‖L2(Ω)
‖ψAT −ψ

(25)
L ‖L2(Ω) ‖ψBT −ψ

(25)
L ‖L2(Ω)

f1(u) = ρu(1 − u) 1.1759 2.0219 0.6301
f2(u) = ρu1.2(1 − u1.1)1.2 0.6425 1.4303 0.3582
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A. Appendix

We shall give details for a proof of Proposition 4.1 of Section 4 that the minimization of (4.2) has a
solution. We follow closely the proofs of the corresponding results of (Hao et al., 2013, Sect. 4) given
for a linear governing equation and adjust the arguments here to our nonlinear equation (1.1). There will
be three results proved before we at the end of this appendix give a proof of the existence of a minimizer
to (4.2).
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Define the anisotropic Sobolev space

W(0, T) = {u : u ∈ L2(0, T; H1(Ω)), ut ∈ L2(0, T; L2(Ω))

with the standard inner product and norm.
We prove two results on properties of the mapping of the parameter α to the corresponding weak

solution u(α).
Lemma A.1. The mapping α → u(α) is Lipschitz continuous from A to W(0, T), i.e., for any two

elements α and α + δα, both belonging to A , there holds

‖u(α + δα) − u(α)‖W(0,T) ≤ C‖δα‖L∞(Ω).

Proof. Let u(α + δα) and u(α) be the solutions to

⎧⎪⎪⎨
⎪⎪⎩

∂tu(α + δα) − div (D(x)∇u(α + δα)) − f (u(α + δα)) = −(α + δα)u(α + δα),

D(x)∇u(α + δα) · n = 0,

u(α + δα)(0) = ϕ,

(A.1)

and ⎧⎪⎪⎨
⎪⎪⎩

∂tu(α) − div (D(x)∇u(α)) − f (u(α)) = −αu(α),

D(x)∇u(α) · n = 0,

u(α)(0) = ϕ,

(A.2)

respectively. We rewrite the right-hand side in the governing equation for u(α) into

⎧⎪⎪⎨
⎪⎪⎩

∂tu(α) − div (D(x)∇u(α)) − f (u(α)) = −(α + δα)u(α) + δαu(α),

D(x)∇u(α) · n = 0,

u(α)(0) = ϕ.

(A.3)

Consider then the difference ν = u(α + δα) − u(α). Then ν satisfies the problem

⎧⎪⎪⎨
⎪⎪⎩

∂tν − div (D(x)∇ν) − [ f (u(α + δα)) − f (u(α))] = −(α + δα)ν − δαu(α)

D(x)∇ν · n = 0,

ν(0) = 0.

(A.4)

Note that

f (u(α + δα)) − f (u(α)) = ρ[(u(α + δα)(1 − u(α + δα)) − u(α)(1 − u(α))]

= ρ[ν − ν(u(α + δα) + u(α))] = ρν(1 − u(α + δα) − u(α)),
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thus the solution ν satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂tν − div (D(x)∇ν) − ρ(1 − u(α + δα) − u(α))ν = −(α + δα)ν − δαu(α),

D(x)∇ν · n = 0,

ν(0) = 0,

(A.5)

that is

⎧⎪⎪⎨
⎪⎪⎩

∂tν − div (D(x)∇ν) − [−(α + δα) + ρ(1 − u(α + δα) − u(α))]ν = −δαu(α),

D(x)∇ν · n = 0,

ν(0) = 0.

(A.6)

This is a linear parabolic problem. Due to the L∞-smoothness of the parameter α and initial data, and the
corresponding smoothness of the solutions u(α + δα) and u(α) (see (Roubíček, 2005, Table 3, p. 253)
for expected smoothness of a weak solution to (1.1)) standard estimates can be applied for parabolic
equations with coefficients in Sobolev spaces see (Ladyženskaja et al., 1968, Chpt III, Thm. 5.1) and
for a more recent account (Weidemaier, 2002, Thm. 3.2). Hence,

‖ν‖W(0,T) ≤ Cα‖δα‖L∞(Ω)‖u(α)‖W(0,T).

Since ‖u(α)‖W(0,T) can be estimated by the initial data term ‖ϕ‖L2(Ω) and α is bounded whenever
α ∈ A (rendering Cα ≤ C) the proof is complete. �

Lemma A.2. The mapping α → u(α) from A to W(0, T) is Fréchet differentiable, that is for any
δα ∈ L∞(Ω) such that α + δα ∈ A there exists a bounded linear operator U from A to W(0, T) such
that

lim‖δα‖L∞(Ω)→0

‖u(α + δα) − u(α) − U δα‖W(0,T)

‖δα‖L∞(Ω)

= 0. (A.7)

Proof. We explicitly construct U as the solution to the linear parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

∂tU − div (D(x)∇U) − [−α + ρ(1 − 2u(α))]U = −δαu(α), in Ω × (0, T)

D(x)∇U · n = 0, on ∂Ω × (0, T)

U(x, 0) = 0, in Ω

(A.8)

where δα ∈ L∞(Ω) and α+δα ∈ A . As remarked in the previous proof, due to the Sobolev smoothness
of the coefficients, there exists a unique solution U ∈ W(0, T). Moreover, the map from δα ∈ L∞(Ω)

to U ∈ W(0, T) defines a bounded linear operator U . Let us show that U indeed qualify to be used in
the definition of Fréchet differentiability of the mapping α → u(α).
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Put w = ν −U with ν = u(α + δα)−u(α). Since ν satisfies (A.6) and U satisfies (A.8), the element
w is a solution to⎧⎪⎪⎨

⎪⎪⎩
∂tw − div (D(x)∇w) + αw − ρ(1 − 2u(α))w = −δαν − ρν2, in Ω × (0, T)

D(x)∇w · n = 0, on ∂Ω × (0, T)

w(x, 0) = 0 in Ω .

(A.9)

Applying a standard parabolic estimate of the solution in terms of the right-hand side, the element w can
be estimated as

‖w‖W(0,T) ≤ C‖δα‖2
L∞(Ω),

where we in estimate applied Lemma A.1. Dividing by ‖δα‖L∞(Ω) and taking the limit as ‖δα‖L∞(Ω) →
0, we obtain (A.7). Thus, the result is proved. �

We then turn to the existence of a minimizer of (4.2) and need the following (recall that weak
convergence in L∞ is denoted weakly-∗):

Lemma A.3. Let {αn} ⊂ A be a sequence converging to α∗ weakly-∗ in L∞(Ω). Then the sequence
{u(αn)} converges weakly to u(α∗) in the space W(0, T).

Proof. Since {αn} converges weakly-∗, the sequence {αn} is in particular bounded. By Theorem 3.1,
the solution u(αn) can in turn be bounded by αn. Hence, the sequence {u(αn)} is uniformly bounded in
W(0, T). Therefore, there is a subsequence, denoted again by {u(αn)}, which converges weakly to an
element u∗ ∈ W(0, T). We shall show that u∗ is a weak solution to (1.1) with parameter α∗.

A weak solution to (1.1) in W(0, T) with α = αn satisfies u(x, 0; αn) = ϕ(x) and similar to (4.3) for
any v ∈ L2(0, T; H1(Ω)):

∫
ΩT

ut(α
n)v dxdt +

∫
ΩT

D∇u(αn) · ∇v dxdt =
∫

ΩT

(f (u(αn)) − αnu(αn))v dxdt.

Since {u(αn)} converges weakly to u∗ ∈ W(0, T), we have

lim
n→∞

∫
ΩT

ut(α
n)v dxdt =

∫
ΩT

u∗
t v dxdt

and

lim
n→∞

∫
ΩT

D∇u(αn) · ∇v dxdt =
∫

ΩT

D∇u∗ · ∇v dxdt.

The space W(0, T) is compactly imbedded into L2(Ω × (0, T)), therefore the sequence u(αn) converges
to u∗ strongly in L2(Ω × (0, T)). This together with the explicit expression of the function f imply

lim
n→∞

∫
ΩT

f (u(αn))v dxdt =
∫

ΩT

f (u∗)v dxdt
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(we remark that a general nonlinear function of a weakly converging sequence is not necessary weakly
converging). The weak-∗ convergence of {αn} to α∗ ∈ L∞(Ω) implies weak convergence in L2(Ω)

since Ω is bounded. This together with the convergence of {u(αn)} to u∗ ∈ L2(Ω × (0, T)) render

lim
n→∞

∫
ΩT

αnu(αn)v dxdt = lim
n→∞

∫
ΩT

[αnu∗v − αn(u∗ − u(αn))]v dxdt =
∫

ΩT

α∗u∗v dxdt,

where we used that the product of a weakly converging sequence and a strongly converging sequence in
L2 converges in L1.

In total, we can conclude that for any ν ∈ L2(0, T; H1(Ω))

∫
ΩT

u∗
t v +

∫
ΩT

D∇u∗ · ∇v dxdt =
∫

ΩT

(f (u∗) − α∗u∗)v dxdt.

Since un converges weakly to u∗ in W(0, T) and W(0, T) is compactly imbedded in the space
C([0, T]; (H1(Ω))′), we have that un(·, 0) converges strongly to u∗(·, 0) in (H1(Ω))′. Hence, u∗(·, 0) =
ϕ(x). Thus, we have obtained that the limit u∗ is a weak solution to (1.1) with parameter α∗.

Taking any other weakly converging subsequence of {u(αn)} the above arguments render that the
limit element is a solution to (1.1) with parameter α∗. Due to the uniqueness of a solution of the
direct problem (1.1) the limit functions are one and the same, denoted u∗ = u(α∗). Thus, since every
subsequence of {u(αn)} has a further subsequence (due to the boundedness) converging to the same
limit, the whole sequence {u(αn)} then converges weakly. �

We can then prove the existence of a minimizer to (4.2).

Theorem A.1. The minimization problem (4.2) subject to (1.1) admits a solution.

Proof. Since Eμ(α) in (4.2) is finite over A , there exists a minimizing sequence {αn} ⊂ A such that

lim
n→∞ Eμ(αn) = inf

α∈A
Eμ(α).

Furthermore, since α ∈ A , and A is weak-∗ closed, there is a subsequence of {αn}, denoted by the same
symbol, and an element α∗ ∈ A such that αn → α∗ weak-∗ in L∞(Ω). The element α∗ is a natural
candidate for a minimizer. Let us show that this element is indeed a minimizer.

Lemma A.3 guarantees the weak convergence of u(αn) to u(α∗) in the space W(0, T), where u(α∗)
is a weak solution to (1.1). From the compactness of the imbedding W(0, T) ↪→ L2(Ω × (0, T)), we
find that u(αn) converges strongly to u(α∗) in L2(Ω × (0, T)). Hence,

lim
n→∞ ‖u(·, T; αn) − ψ‖L2(Ω) = ‖u(·, T; α∗) − ψ‖L2(Ω).

The weak-∗ convergence in L∞(Ω) of {αn} implies in particular weak convergence of that sequence
in L2(Ω), and it therefore follows directly from the weak lower semi-continuity of the norms, together
with the previous equality, that

lim
n→∞ Eμ(αn) = 1

2

∥∥u
(·, T; α∗) − ψ(·)∥∥2

L2(Ω)
+ μ

2

∥∥α∗(·)∥∥2
L2(Ω)

.

Thus, α∗ is a minimizer of the functional Eμ over the admissible set A . �
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