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Abstract

The sequencing of the human genome has changed life science research in
many ways. Novel measurement technologies such as microarray expression
analysis, genome-wide SNP typing and mass spectrometry are now producing
experimental data of extremely high dimensions. While these techniques pro-
vide unprecedented opportunities for exploratory data analysis, the increase in
dimensionality also introduces many difficulties. A key problem is to discover
the most relevant variables, or features, among the tens of thousands of par-
allel measurements in a particular experiment. This is referred to as feature
selection.

For feature selection to be principled, one needs to decide exactly what it
means for a feature to be ”relevant”. This thesis considers relevance from a
statistical viewpoint, as a measure of statistical dependence on a given target
variable. The target variable might be continuous, such as a patient’s blood
glucose level, or categorical, such as ”smoker” vs. ”non-smoker”. Several forms
of relevance are examined and related to each other to form a coherent theory.
Each form of relevance then defines a different feature selection problem.

The predictive features are those that allow an accurate predictive model,
for example for disease diagnosis. I prove that finding predictive features is a
tractable problem, in that consistent estimates can be computed in polynomial
time. This is a substantial improvement upon current theory. However, I also
demonstrate that selecting features to optimize prediction accuracy does not
control feature error rates. This is a severe drawback in life science, where the
selected features per se are important, for example as candidate drug targets.
To address this problem, I propose a statistical method which to my knowledge
is the first to achieve error control. Moreover, I show that in high dimensions,
feature sets can be impossible to replicate in independent experiments even
with controlled error rates. This finding may explain the lack of agreement
among genome-wide association studies and molecular signatures of disease.

The most predictive features may not always be the most relevant ones
from a biological perspective, since the predictive power of a given feature may
depend on measurement noise rather than biological properties. I therefore
consider a wider definition of relevance that avoids this problem. The resulting
feature selection problem is shown to be asymptotically intractable in the
general case; however, I derive a set of simplifying assumptions which admit an
intuitive, consistent polynomial-time algorithm. Moreover, I present a method
that controls error rates also for this problem. This algorithm is evaluated on
microarray data from case studies in diabetes and cancer.

In some cases however, I find that these statistical relevance concepts are

insufficient to prioritize among candidate features in a biologically reasonable

manner. Therefore, effective feature selection for life science requires both a

careful definition of relevance and a principled integration of existing biological

knowledge.
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Sammanfattning

Sekvenseringen av det mänskliga genomet i början p̊a 2000-talet tillsammans
och de senare sekvenseringsprojekten för olika modellorganismer har möjliggjort
revolutionerade nya biologiska mätmetoder som omfattar hela genom. Micro-
arrayer, mass-spektrometri och SNP-typning är exempel p̊a s̊adana mätmet-
oder. Dessa metoder genererar mycket högdimensionell data. Ett centralt
problem i modern biologisk forskning är s̊aledes att identifiera de relevanta
variablerna bland dessa tusentals mätningar. Detta kallas för variabelsökning.

För att kunna studera variabelsökning p̊a ett systematiskt sätt är en ex-
akt definition av begreppet ”relevans” nödvändig. I denna avhandling be-
handlas relevans ur statistisk synvinkel: ”relevans” innebär ett statistiskt
beroende av en m̊alvariabel ; denna kan vara kontinuerlig, till exempel en
blodtrycksmätning p̊a en patient, eller diskret, till exempel en indikatorvari-
abel s̊asom ”rökare” eller ”icke-rökare”. Olika former av relevans behand-
las och en sammanhängande teori presenteras. Varje relevansdefinition ger
därefter upphov till ett specifikt variabelsökningsproblem.

Prediktiva variabler är s̊adana som kan användas för att konstruera predik-
tionsmodeller. Detta är viktigt exempelvis i kliniska diagnossystem. Här be-
visas att en konsistent skattning av s̊adana variabler kan beräknas i polynomisk
tid, s̊a att variabelssökning är möjlig inom rimlig beräkningstid. Detta är ett
genombrott jämfört med tidigare forskning. Dock visas även att metoder
för att optimera prediktionsmodeller ofta ger höga andelar irrelevanta vari-
bler, vilket är mycket problematiskt inom biologisk forskning. Därför pre-
senteras ocks̊a en ny variabelsökningsmetod med vilken de funna variabler-
nas relevans är statistiskt säkerställd. I detta sammanhang visas ocks̊a att
variabelsökningsmetoder inte är reproducerbara i vanlig bemärkelse i höga di-
mensioner, även d̊a relevans är statistiskt säkerställd. Detta förklarar till viss
del varför genetiska associationsstudier som behandlar hela genom hittills har
varit sv̊ara att reproducera.

Här behandlas ocks̊a fallet där alla relevanta variabler eftersöks. Detta
problem bevisas kräva exponentiell beräkningstid i det allmänna fallet. Dock
presenteras en metod som löser problemet i polynomisk tid under vissa statis-
tiska antaganden, vilka kan anses rimliga för biologisk data. Ocks̊a här tas
problemet med falska positiver i beaktande, och en statistisk metod presen-
teras som säkerställer relevans. Denna metod tillämpas p̊a fallstudier i typ
2-diabetes och cancer.

I vissa fall är dock mängden relevanta variabler mycket stor. Statistisk
behandling av en enskild datatyp är d̊a otillräcklig. I s̊adana situationer är
det viktigt att nyttja olika datakällor samt existerande biologisk kunskap för
att för att sortera fram de viktigaste fynden.
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University, Karolinska Institutet and Clinical Gene Networks AB.

First, my main supervisor, professor Jesper Tegnér, who amazingly
always manages to understand arbitrarily complicated problems in five
minutes. More than once have a solution to an elusive puzzle dawned
on me only when discussing the problem with Jesper.

Second, my main supervisor at Clinical Gene Networks AB, associate
professor Johan Björkegren, who consistently provides a fresh ”what-is-
it-good-for?” perspective and a seemingly unlimited supply of creative
(and crazy) ideas.

Third, a special acknowledgement to my co-supervisor Dr. José M.
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Notation

X Feature vector; a vector-valued random variable
n The dimension of X.
Vn The set {1,. . . ,n}
X Domain (event space) of the random variable X
Xi Feature; a component of the vector X, a random variable
XS For S ⊆ {1, . . . , n}, the sub-vector X{i∈S} of X
X¬S The sub-vector X{i6∈S} of X
X1:n Equal to XS with S = {1, . . . , n}
Y Target variable; a random variable
Z A pair of features and target, Z = (X,Y )
x Observation of the random variable X
x

(j)
i Observation j the random variable Xi in a sample
x

(1:l)
j A sample (vector) of l observations of the random variable Xi

X(1:l) A vector of l independent, identical random variables X
p(x) Probability mass function
f(x) Probability density function
P (ξ) Probability of an event ξ ⊂ X
p(y |x) Conditional probability of Y = y given X = x.
Y ⊥ X|Z Y is conditionally independent of X given Z
Y 6⊥ X|Z Y is conditionally dependent of X given Z
g(x) Predictor; a function X 7→ Y
g∗ The Bayes predictor
G A set (domain, class) of predictors
I(Z(1:l)) Inducer; a map Z l 7→ G
h(ŷ | y) Loss function
R(g) Risk functional for classifier g
R̂(g) Empirical risk estimate for classifier g
ρ(I) Expected risk for inducer I
S∗ The Bayes-relevant feature set (Definition 3.4)
S† An expectation-optimal feature set (Definition 3.9)
S‡ Min-features set (Definition 3.10)
SA The set of all relevant features (Definition 3.11)
M∗ The Markov boundary of Y
E [X] Expectation value of X
O(f(n)) Order of f(n) (Landau notation)

x



1
Introduction

In the past decade, molecular biology has undergone something of a rev-
olution due to the sequencing of the human genome. Two decades ago,
a researcher seeking to discover molecular mechanisms behind a human
disease was largely confined to explore variants or close relatives of al-
ready known genes and pathways, able to extend biological knowledge
only in the immediate vicinity of already established facts. As a result,
molecular biology has largely concentrated on detailed studies of a fairly
small number of well-characterized mechanisms, rather than exploration
of completely new terrain. For example, a few well-known protein fam-
ilies form the basis of most of the known pharmaceutical compounds,
while the majority of human proteins are unexplored for this purpose
[80].

The human genome project [30, 48] and the subsequent sequencing
projects in mouse [31], rat [29] and other common model organisms is
changing this situation drastically. The genome projects did not by far
provide complete ”maps” of biology, but knowledge of complete genome
sequences for these important organisms has been crucial for the devel-
opment of massively parallel measurement technologies. Today, microar-
rays and mass spectrometry-based methods allows measuring transcript
levels [151], protein abundance or phosphorylation states [2] and DNA
mutations [115], covering entire genomes. Such measurements are herein
referred to as genome-wide in lack of a better term, although strictly
speaking, components other than genes are often being measured.

1



2 Introduction

With these new tools, biologists can now search for mechanisms behind
biological processes — for example those contributing to human disease
— in a much more objective, unbiased fashion. Correctly used, genome-
wide technology can reveal novel genes, transcripts, proteins and entire
signalling pathways. In this thesis, those genes, transcripts, proteins and
pathways, or whatever the unit of information may be, are called fea-
tures. The task of finding these pieces of information is called feature se-
lection. With successful feature selection, genome-wide techniques holds
the promise to open up entire new arenas of research.

At first glance, the genome-wide strategy is astoundingly simple: a re-
searcher interested in discovering completely new biological mechanisms
(and thereby publishing papers that will be cited for years to come) need
only measure as many genes as possible, somehow ”weed out” the genes
that correlate with the process of interest, and compile a list of sus-
pects. Unfortunately, this ”high-throughput biology” idea suffers from
one major problem: since measurements are always to some extent noisy,
increasing the number of measured features will drastically increase the
risk of finding ”significant” features simply by chance. Thus, measure-
ment noise effectively imposes a limit on how much information one can
discover from high-dimensional data with a limited number of samples.
A trade-off takes place: with more features, there are more potential
features to discover; but at the same time, the power to discover each
feature is reduced.

In the early days of genome-wide technology — around the mid-90’s
— this problem was not adequately appreciated by experimental re-
searchers. Often, existing statistical methods developed for one-dimen-
sional data were directly transferred to the new high-dimensional do-
main, usually meaning that statistical hypothesis tests were simply re-
peated thousands of times, whereafter the significant findings were se-
lected. In some cases, experimental replication and statistical treatment
was absent altogether [106]. As a result, many methodologically incor-
rect papers were published with alleged novel findings which were hard
to reproduce and validate.

In the past few years, statisticians have turned their attention to these
problems. As a result, more principled analysis methods have now
emerged [5]. However, these developments have mostly treated the
highly multivariate genome-wise data as a large number of univariate
measurements, each considered more or less in isolation. This is natural,
as this is the domain where statistical theory is most fully developed,
but it is also rather restrictive. Simultaneously, data analysis methods
from the field of machine learning has attracted considerable attention
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in genome-wide data applications [40]. A large body of machine learning
methods have been applied to genome-wide data in various forms, often
for prediction problems such as cancer diagnosis [62], protein structure
prediction [83] or gene/intron/exon prediction [188], but also for fea-
ture selection, for example in elucidating gene expression ”signatures”
of cancer cells [22, 142, 179].

However, while the machine learning field has developed a large body
of theory and an impressive array of techniques for prediction problems,
the purpose of feature selection in this context is traditionally different
from that in biology: in machine learning, feature selection is a means
to an end, a kind of pre-processing step applied to data with the ulti-
mate goal of deriving better predictors [85]. The actual identity of the
features (e.g., which genes, proteins, or pathways are used by your pre-
dictor to diagnose leukemia?) is here less important. Broadly speaking,
in machine learning, prediction accuracy is the goal. As a result, a sta-
tistical perspective which ensures that reasonably correct features are
selected has been notoriously lacking. Indeed, it is often not clear what
is a ”correct” feature even means.

This clashes with the typical goal of the biologist, who is most interested
in the mechanisms underlying the observed, predictable change in phe-
notype, for example, the mechanisms that transform a normal leukocyte
into a malignant cancer cell. This is a pity, since machine learning — I
believe — has a lot to offer to biology also in this area. This thesis is an
attempt to somewhat improve the situation in this intersection between
the fields of machine learning and statistics, and perhaps to some extent
bridge between the two; hence the thesis title. I address basic questions
such as what a ”correct” or ”relevant” feature is, how these concepts can
be described by statistical models, and how to develop inference meth-
ods that control error rates in this setting. To introduce these problems
and questions, perhaps a brief history of the research presented herein
is in order.

1.1 A brief background

The questions and ideas underlying this thesis began to take shape in
early 2003, at the time of writing my Master’s thesis at Stockholm Bioin-
formatics Center, also then supervised by Prof. Jesper Tegnér. We had
briefly investigated some feature selection methods for the classification
problems, and discovered some unsettling facts. Not only did the various
methods tested select widely different genes for a given problem (Fig-
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Figure 1.1: Overlap between the top 200 features selected by three ranking
methods tested on the leukemia gene expression data set from Golub et al.
[62]. For all methods, the corresponding predictor accuracy is around 95%
[125].

ure 1.1), but they also tended to change their selections quite drastically
when some of the samples in the data set in question was removed [125].
In other words, the methods were unstable and seemed to have different
”goals”, and we could not find any theory to to explain these goals or
support one particular method over another.

Our intention at this time was to apply feature selection methods to a
microarray gene expression data set being collected by Prof. Tegnér and
Dr. Johan Björkegren’s team, known as the the Stockholm Atherosclero-
sis Gene Expression (STAGE) study [70]. Our aim was to discover genes
associated with different aspects of atherosclerosis, a complex inflam-
matory disease underlying clinical cardiovascular complications such as
heart infarction and stroke [113]. The apparent lack of reliability in the
feature selection methods tested was therefore was deeply troubling for
our group. The underlying idea was that genes selected by these meth-
ods should form a ”subsystem” which would be more amenable (due
to its lesser dimensionality) to more advanced analysis such as network
reconstruction [59, 168]. Thus, all subsequent work hinged upon the
correctness of the initial feature selection step. We therefore decided to
investigate feature selection more thoroughly, and attempt to find a theo-
retical justification that satisfied our needs. This became the motivation
for my Ph.D. work.

We had several questions concerning feature selection which we could
not resolve within available literature. The most important were the
following:

1. What does ”relevance” mean? When is a feature relevant to a
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given target variable? Are there perhaps several perspectives on
relevance, and do we need to choose a particular perspective in a
subjective fashion?

2. What is the relation between a good predictive model and the
features ”relevant” to that model?

3. Why are feature selection methods so unstable? Is there any way
to ”stabilize” feature selection?

4. What types of feature selection methods are feasible given the lim-
ited sample sizes we have access to? (Presumably, too complex
methods involve too many parameters to be useful with small sam-
ples sizes.)

To answer the first question, I undertook a theoretical study of the no-
tion of relevance [126]. I decided that a statistical data model (where
features are random variables following some underlying distribution)
was reasonable in our context (Chapter 2). I found that there indeed
were different notions of relevance, and that the choice between these
notions largely depends on whether the end goal is prediction accuracy
or feature error rate control (Chapter 3). The theoretical study laid
the foundation of for this thesis by defining the ”ground truth” for fea-
ture selection. This allows for more principled methods, avoiding ad
hoc heuristics. Also, existing feature selection methods can be analyzed
with respect to these relevance notions in order to better understand
their function (Chapter 4).

In the course of this study I also found the first clues to the second
question by characterizing the set of features relevant for prediction. As
a rather unexpected side-development, this characterization also showed
that, under some mild assumptions, it is possible to perform such feature
selection in polynomial time. This is a strong improvement upon pre-
vious theory, which holds that the problem is intractable (Chapter 6).
Similarly, I also studied the problem of discovering all relevant features
(a larger set than the features relevant for prediction). While this prob-
lem was proven to be intractable in the general case, I found a set of
reasonable conditions which again admit correct, polynomial-time algo-
rithms (Chapter 8).

However, these theoretical results were mostly asymptotic (valid in the
limit of infinite samples), and finding results for the small sample case
proved difficult. I therefore conducted an extensive simulation study
[127] to investigate the second question in more detail. This verified our
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suspicions from my Master’s thesis: at small samples, there is little corre-
lation between obtaining good predictive models and selecting ”relevant”
features (Chapter 5). This phenomenon was especially pronounced for
the best predictive methods, such as Support Vector Machines [32]: these
often revealed few relevant features and large numbers of false positives,
while nevertheless delivering highly accurate predictors. From this study
I had to conclude that the typical predictive models were nearly useless
for our purposes.

The simulation study also suggested an answer to the third question:
many feature selection seem to be unstable because, for typical high-
dimensional data, the feature selection problem is under-determined :
there are many feature sets which are useful for making accurate predic-
tions, and which subset happens to be selected given the data at hand is
more less random. At this time (about mid-2005), a key paper by Ein-
Dor et al. appeared, which promoted similar conclusions [46]. I therefore
set out to investigate this problem more closely and attempt to find a
remedy. Again turning towards simulations, I found that the instability
was not only due to the under-determinedness of the problem, but in
part also derived from low power due to small samples. I developed a
simple feature selection framework based on the bootstrap, which for
the first time allowed general feature selection with proper control of
error rates (Chapter 7). This method was still to some extend unsta-
ble, but this instability is harmless and unavoidable. I also developed
a method of error rate control for the problem of finding all relevant
features (Chapter 8).

The fourth question was also answered, at least in part, by the simulation
studies and the work on error control. By measuring or controlling error
rates, respectively, one may simply assess the number of discoveries of
any method for a given acceptable error rate as a function of the sample
size. This number may then be compared to the actual number of true
features (in simulations) or to an estimate thereof (in the bootstrap
method. This is not an entirely satisfactory answer, since simulations
always entail relevance problems (does the distribution used resemble
real data?) and the error controlling methods are only approximate (the
bootstrap method) or limited to particular distributions (Chapter 8),
but it is currently the best I am aware of.

This is as far as my knowledge has reached at the time of writing this
thesis. Along the way I also found that in some cases, feature selection
solely based on experimental (e.g., microarray) data sometimes renders
too large gene sets to be readily interpretable, even with stringent error
rate thresholds (Chapter 8). I therefore concluded — as have many oth-
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ers have by now [60, 150] — that integration of other data types would be
essential to identify the genes we were most interested in. Fortunately,
the theory of feature selection presented herein is quite general and is
in no way limited to particular data types. Therefore, I hope that this
thesis will afford a useful framework also for discovering biological knowl-
edge using multiple data sources. Work along these lines is currently in
progress. I also plan to apply the methodology developed herein to more
complicated inference problems such as network reconstruction, which
also can be cast in the form of a feature selection problem. In conclu-
sion, I anticipate that the theory and results presented herein should be
of broad interest.

1.2 A guide to the thesis

While this work originated in biological scientific questions, the develop-
ment of sound feature selection strategies for genome-wide data quickly
became a rather theoretical task. Thus, most of the material is mathe-
matical. I have tried to make the content as self-contained as possible
by providing a fairly detailed background on machine learning and sta-
tistical concepts in Chapter 2, but nevertheless the text is probably not
very accessible to readers without a fair background in mathematics.

For the reader with a more practical/biological background, I would
recommend first reading the summaries at the end of each chapter, which
I have strived to make more accessible. Also, some recommendations
are provided in Section 9.2 which might be helpful to the newcomer. An
overview of the remaining chapters follows.

In Chapter 2 I introduce statistical data models, the setting for the re-
mainder of the thesis. I consider parametric and graphical/axiomatic
distribution classes. I briefly review some principles of for statis-
tical inference, with particular emphasis on methods for learning
predictive models from data. I explain key theoretical concepts in
machine learning such as over-fitting and regularization, and very
briefly survey some popular methods in supervised learning.

In Chapter 3 I examine the feature selection problems and the con-
cept of feature relevance in detail. I argue that feature selection
can be used for different purposes, and that the end goal must
be specified carefully before one can choose a method in a ratio-
nal way. Thus, a number of different feature selection problems
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are defined, describing the ”ground truth” against which we may
evaluate feature selection methods.

In Chapter 4 a number of existing feature selection methods for are
reviewed. Importantly, I attempt to determine which of the prob-
lems defined in Chapter 3 each method tries to solve. This analysis
is to my knowledge novel in many cases. Hopefully, this helps to
bring some order to the multitude of available methods, which can
be quite confusing.

In Chapter 5 I present a benchmark study in which the performance
of some of the methods from Chapter 4 is assessed in the context
of high-dimensional data. Importantly, building on the definitions
established in Chapter 3, this also includes a thorough assessment
of feature error rates.

In Chapter 6 some important theoretical results are presented which
explain how the different feature selection problems relate to each
other. This chapter also establishes predictive features can be
found consistently in polynomial time (i.e., with a reasonable amount
of computations). This result is a major improvement over the
long-standing consensus in the feature selection field which holds
that the problem is intractable.

In Chapter 7 I consider the issue of feature selection instability. I show
that instability derives may result from low power to detect truly
relevant features, so that it does not imply excessive amounts of
false positives. I develop a general framework for error control for
feature selection methods based on the bootstrap. This methodol-
ogy is shown to be sound in simulations studies, and some results
on gene expression data is presented.

In Chapter 8 I consider the problem of discovering all relevant fea-
tures, as opposed to only the most predictive ones. This problem
is shown to be intractable in the general case, but feasible in a
somewhat restricted class of data distributions. I propose two al-
gorithms which I show to be consistent, and develop a methods for
error control also for this problem. Case studies indicate that this
approach is useful for genome-wide applications with high noise
levels.

In Chapter 9 I present my overall conclusions, provide some recom-
mendations for practical applications, and outline some possible
future developments.



2
Statistical Data Models

In a statistical data model, we think about experimental systems as sta-
tistical distributions. A biological experimental system might be human
patients or biological model organisms such as mus musculus (mouse),
or perhaps a cell culture. We observe the system by making measure-
ments, hoping that these measurements can be used to derive facts or
at least corroborate hypotheses about the system. A schematic of this
perspective is given in figure 2.1. The model is ”statistical” in that,
when experiments are repeated, there is some random variation in the
measurements which we cannot explain by the experimental design.

For example, we might study the blood cholesterol level in mice on dif-
ferent diets, as illustrated in Figure 2.2. While we expect — or rather,
hope — to find variation in the measurement (cholesterol level) related
to the diet, we probably also realize that across different individuals,
there will also be variation unrelated to that diet. For example, the
cholesterol level might vary with age, or depend on unknown genetic
factors. We might be able to control some of these ”nuisance” variables
by experimental design (choose mice of the same age for the experiment),
but this is not always possible. For example, even with careful breed-
ing, genotypes are never completely identical. Moreover, many factors
that influence the cholesterol levels are probably unknown to us since
our knowledge of biology is incomplete, and these are of course impossi-
ble to control. Also, the measurements themselves may be more or less
corrupted with noise from various physical or chemical factors.

9
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Measurements

Statistical inference
(learning)

Experimental
system

Observations
from distribution

X2

X1

Figure 2.1: An schematic of the statistical data model. Left, an experimental
system, here represented by the mouse. Top, taking measurements amounts
to observing the system. Right, repeated measurements yields observations
following some statistical distribution. Bottom, from a set of such distributions
(a sample), statistical inference (learning) is used to learn new facts about the
system.

Therefore, one will inevitably observe variation that cannot be explained.
We describe this variation using statistical models, using probability
distributions to capture the fact that measurements are always slightly
uncertain. In this view, we assume that there indeed exists a true dis-
tribution, the properties of which is determined by some parameters,
but that noise and limited samples prevents us from determining those
parameter exactly.

In a statistical perspective, we often speak about any variation that can-
not be explained by the chosen model as noise. However, it should be
understood that this does not imply that the variation is truly random.
Much of the variation one observes between individuals in biology is
probably deterministic, and could in principle be explained if our knowl-
edge of biology was more complete. But biological systems are very
complex and our knowledge about them is merely partial. Therefore,
the variation we cannot explain must at present be regarded as noise, in
absence of any better alternative.

Let us establish some definitions. Throughout, I will represent experi-
mental measurements by a vectorX = (Xi, . . . , Xn) of random variables.
Its components Xi are called features, following machine learning termi-
nology. I also refer to X as the feature vector. The domain or event
space of X is the set of possible observations, denoted by calligraphic
X . The domains of the individual features are correspondingly denoted
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Low-fat diet (Y = -1)

High-fat diet (Y = +1)
Two-class
distribution

X2

X1

Figure 2.2: An example of a two-class experiment. Left, the classes are
represented by mice on low-fat (lean) and high-fat (obese) diets. Taking mea-
surements together with the class variable results in a two-class distribution
(right), different classes indicated by open or filled circles.

by Xi, etc. Since the features we are considering are mostly physical
measurements, we will typically take Xi = R, so that X = Rn. In gen-
eral, we will take X to be a cartesian product of the domains of the
features, X = X1 × X2 × · · · × Xn. In this thesis, I will in particular
study the relation between X and a target variable Y . A target vari-
able is some known, well-understood factor such as gender, age, body
weight, whether a person has a particular type or cancer or not, etc. In
contrast, the features Xi are typically less well understood variables, for
example indicating the presence of genetic mutations at certain points
in the genome, so that by discovering relations between these less known
features and the target variable, we may learn something about the fea-
tures. At this point, an example of these rather abstract notions might
be helpful. Let us return again to the mouse example of Figure 2.2.

Example 2.1 Consider an experiment where two populations of mice
are given two different diets with high and low fat content, respectively
(Figure 2.2). This is called a two-class experiment; each of the popu-
lations is referred to as a class, and the target variable is discrete, e.g.,
Y = {+1,−1}, with +1 denoting the high-fat diet population and −1
the low-fat diet population. Now consider some measurements: for ex-
ample, it might be interesting to measure the low density lipoprotein
(LDL) and high density lipoprotein (HDL) blood cholesterol levels in
each population. This yields a two-dimensional X (two features repre-
senting LDL and HDL) and thus a f(x, y). Interesting parameters of
this distribution could be the difference in the mean (expected) values
for each class. This would determine how the HDL and LDL levels are
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related to the difference in diet.

When Y is discrete, we refer to the model as a classification model. One
could of course extend the above example to several classes (consider,
for example, using several different strains of mice). In this case we
usually take Y = {1, 2, . . . ,K} to represent K classes. In the case of
two-class problems we will often use {+1,−1} as it is a mathematically
convenient notation; of course, the particular values of Y serve only as
indicators and have no meaning per se). Most of the examples in this
thesis concerns two-class problems. However, generalizations to multiple
classes is often straightforward.

The target variable could also be continuous. In Example 2.1, we might
let the target variable be the weight or age of the mice. When studying
how the features relate to continuous variables, we speak of a regression
model. For regression, we typically have Y = R. Although I treat
regression problems at some points in this thesis, my main focus will be
on classification.

In the statistical data model, both the features X and the target vari-
able Y are random (stochastic) variables with a joint distribution over
(X, y), specified by the probability density function f(x, y), or, if X is
discrete, by the probability mass function p(x, y). This data distribution
contains all information about the features Xi, their statistical relations
to each other and their relations to the target variable Y . Learning
from experiments is therefore equivalent to learning properties of this
distribution.

In practise, the data distribution f(x, y) is of course unknown, and one
can obtain information about it only indirectly, through observations
(x(i), y(i)) ∈ X×Y from this distribution. I will denote a set of such pairs
of observations by z(1:l) = {z(1), . . . , z(l)} = {(x(1), y(1)), . . . , (x(l), y(l))},
where l is the sample size. This process has many names in the litera-
ture: statistical learning, statistical inference, induction or estimation.
Through inference, we learn new facts about the experimental system.
Depending on what properties of f(x, y) we are interested in, different
inference methods can be used.

The main topic of this thesis is a type of inference that attempts to
determine which of the features Xi are ”related” to the target variable
Y . This type of inference is called feature selection. Feature selection is
a special inference problem in that the question ”is Xi related to Y ” is
a discrete, binary problem; there are only two possible answers, ”yes” or
”no”. This discrete nature sometimes gives rise to hard combinatorial
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problems; this is one reason why feature selection is difficult. The feature
selection problem will be treated in detail in Chapter 3. The remainder
of this chapter will be devoted to a brief survey of methods for statistical
inference. This chapter is intended as a reference and as a way of relating
the remainder of the thesis to other techniques which perhaps are better
known to the reader. It is not necessary to read this entire chapter to
appreciate the main contributions of the thesis; one may skip ahead at
this point if desired, and come back to the material below when needed.

Before delving into details, for completeness it should be noted that while
the statistical perspective is probably the most common in any kind of
data analysis, not all inference problems are suitable to be handled statis-
tically. For example, in applications that involve logical inference from
observed facts, the ”measurements” are truly noise-free, and a deter-
ministic view of data may be more appropriate [177]. Such problems are
outside the scope of the present work, however. For biological data, the
statistical model is usually appropriate, and in this thesis I will make
use of it exclusively.

2.1 Parametric models

2.1.1 The exponential family

To make any kind of statistical inference, it is necessary to introduce
some assumptions. In classical statistics, this is done by assuming that
the data comes from a particular distribution family (a fix set of dis-
tributions). Among all distributions in such a family, a particular one
can be identified by a set of parameters. The problem of identifying the
distribution from data thus becomes equivalent to of identifying these
parameters.

A particularly tractable family of distributions which one often encoun-
ters in statistics is the exponential family, consisting of distributions with
densities of the form

f(x) = exp

{∑
i

θiφi(x)− g(θ)

}
. (2.1)

Here θ = {θi} is a parameter vector; a particular value of θ identifies
a particular member of the family. Thus we may casually equate a
distribution with a parameter value θ. The φi(x) : X 7→ R are known as
sufficient statistics; I will explain the meaning of this term shortly. The
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g(θ) is a normalization term, which ensures that the density integrates
to 1 (as it must, being a probability). From the identity

∫
X f(x)dx = 1

we immediately find

g(θ) = ln
∫

exp

{∑
i

θiφi(x)

}
dx, (2.2)

which may be used to compute the normalization term for a particular
choice of φ and θ.

The most well-known member of the exponential family is probably the
Gaussian distribution, which we will make use of quite often.

Example 2.2 The univariate Gaussian distribution is given by

f(x) = N(x |µ, σ) = (2π)−1/2σ−1 exp
{
− (x− µ)2

2σ2

}
, x ∈ R. (2.3)

To put this in the form (2.1), write

ln f(x) = − (x− µ)2

2σ2
+

1
2

ln(2σπ2)

= −x
2 + µ2 − 2xµ

2σ2
+

1
2

ln(2σπ2)

=
xµ

σ2
− x2

2σ2
−
(
µ2

2σ2
− 1

2
ln(2σπ2)

)
=
∑

i

θiφi(x)− g(θ),

here identifying φ(x) = (x, x2), θ = (µσ−2,−σ−2/2) and g(θ) = µ2σ−2/2−
ln(2σπ2)/2. Solving the latter for θ1, θ2 yields

g(θ) = −1
4
θ21θ

−1
2 +

1
2

ln(2π2) +
1
4

ln(−2θ2).

While the parametrization θ may not be the most convenient in this case,
the above demonstrates that that the Gaussian distribution is indeed of
the form (2.1). Similar derivations can be made for the multivariane
Gaussian distribution and for a number of other distributions. Table 2.1
lists some distributions in the exponential family, covering a wide variety
of common statistical models. Many inference methods throughout this
chapter can be related to members of this family.
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Name X φ(x)

Bernoulli {0, 1} x
Gaussian R (x, x2)
Exponential (0,∞), −x
Poisson {0, 1, . . . } x
Laplace [0,∞) x
Gamma [0,∞) (lnx, x)
Beta [0, 1] (lnx, ln(1− x))

Table 2.1: Some distributions in the exponential family.

2.1.2 Maximum likelihood estimation

Learning a distribution from data means to estimate the parameters θ,
and given a vector of sufficient statistics φ, this is particularly simple in
exponential families using the maximum likelihood (ML) principle. In
ML estimation, assuming independence of the given observations x(1:l) =
{x(1), . . . , x(l)}, we simply maximize the joint likelihood

L(θ, x(1:l)) = f(x(1), . . . , x(l) | θ) =
∏

i

f(x(i) | θ).

Although the likelihood function L(θ, x(1:l)) is identical to the density,
we sometimes distinguish between the two because their interpretation is
different. In the likelihood function, the observations xi (the data from
an experiment) are treated as constants and we study its dependence
on θ to find the most parameter value most likely to have generated the
data. In the probability distribution, on the other hand, the parameter θ
is a (possibly unknown) constant, and x is the variable. The maximum
likelihood principle and maximum likelihood estimation is by far the
most common statistical inference method in use. It has been studied
extensively for nearly a century [4] and has very strong support [21].

Since the logarithm function is monotone, for any distribution in the
exponential family one may obtain the ML parameter estimate by max-
imizing

lnL(θ, x(1:l)) =
∑

i

∑
k

θkφk(x(i))− lg(θ). (2.4)

Setting its derivatives to zero,

∂(lnL(θ, x(1:l)))
∂θk

=
∂

∂θk

∑
i

θkφk(x(i))− l ∂
∂θk

g(θ) = 0,
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we conveniently obtain the maximum likelihood solution

∂

∂θk
g(θ) =

1
l

∑
k

φk(x(i)) (2.5)

Thus, the estimate for parameter θk is obtained by averaging the suf-
ficient statistic φk(x(i)) over the samples. This explains the term ”suf-
ficient statistic”: the values of the functions φk contain all information
we need for learning, so that, having computed these φk, all other parts
of the data is irrelevant and can be discarded.

In some cases, depending on the form of g(θ), equation (2.5) can be
solved analytically for θ. In the Example 2.2, we identified the sufficient
statistics φ1 = x and φ2 = x2. Equation (2.5) then becomes

−1
2
θ1θ

−1
2 =

1
l

∑
x(i)

1
4
θ1θ

−2
2 − 1

4θ
=

1
l

∑
(x(i))2

which in the (µ, σ) parametrization gives the familiar ML estimates µ∗ =
x̄ =

∑
i x

(i)/l and (σ∗)2 =
∑

i(x
(i) − x̄)2/l. The most important fact

about the ML method however, is that the problem of maximizing the
likelihood is always numerically tractable, even when no analytic solution
is available. To see this, note that

∂g(θ)
∂θi

=
∂

∂θi

(
ln
∫

exp

{∑
i

θiφi(x)

}
dx

)

=
∫
φi(x) exp {

∑
i θiφi(x)} dx∫

exp {
∑

i θiφi(x)} dx
= E [φi(X)] ,

and similarly,

∂2g(θ)
∂θi∂θj

= Cov(φi(X), φj(X))

Since the covariance matrix is always positive definite, it follows that
g(θ) is always convex. Therefore, the global maxima of (2.4) can always
be found by numeric optimization (for example using Newton’s method).
This feature makes the exponential family very useful in practise. Several
machine learning methods can be seen as variants of maximum likelihood
estimation; see Sections 2.7.2 and 2.7.3.
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2.2 Graphical models

An important aspect of a probabilistic model is independence between
variables.

Definition 2.1. Two discrete variables X, Y are said to be independent
if

p(x, y) = p(x)p(y) ∀x, y.

This is denoted X ⊥ Y . Two variables X, Y are said to be conditionally
independent given the observation Z = z if

p(x, y |Z = z) = p(x |Z = z)p(y |Z = z) ∀x, y.

If the above holds for all z,

p(x, y | z) = p(x | z)p(y | z) ∀x, y, z,

we say that X is conditionally independent of Y given Z, denoted X ⊥
Y |Z.

The above definitions are appropriate for discrete X,Y, Z; for continuous
variables, the definition should be modified so that the factorizations
must hold almost surely, that is

P (f(X,Y ) = f(X)f(Y )) = 1,

and similar for the conditional case.

Independencies are useful because these factorizations simplify the math-
ematics of parameter inference. To represent (conditional) independen-
cies we use graphical models. A graphical model over n variables can be
defined as a graph G over the vertices {1, . . . , n} taken together with a
criterion for reading dependencies or independencies from that graph.
Graphical models can be constructed using both directed and undirected
graphs. The undirected graphs are in some sense simpler, but also less
powerful. They give rise to Markov networks, while directed graphs yield
Bayesian networks.

2.2.1 Markov networks

An undirected graph G can be used as a graphical probability model
using the following criterion for reading independencies.
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A B

Figure 2.3: Examples of graphical independence criteria. A: An undirected
graph. By the U-separation criterion of Definition 2.2 we can identify for
example X{2,3} ⊥G X5 |X4 (highlighted node and dashed edges). B: A di-
rected graph. By the D-separation criterion (Definition 2.6) we here find that
X1 ⊥ X4 |X2, since X3 has two parents in the path between X1 and X4 (that
is, here X1 6⊥ X4 |X2,3).

Definition 2.2 (U-separation). For an undirected graph G and three
disjoint subsets R,S, T of Vn, we say that R is U-separated from S by T
in G, denoted R ⊥G S |T , if and only if there is a node k ∈ T in every
path from each i ∈ R to each j ∈ S.

This criterion has the intuitive interpretation that two nodes are condi-
tionally independent if the conditioning set ”blocks” all paths between
the two. An illustration is given in Figure 2.3A.

Naturally, to be useful for inference the graph G must be such that the
criterion ⊥G does indeed identify independencies that hold true in the
actual distribution P which G is supposed to model. This requirement
is embodied in the following definition.

Definition 2.3 (Independence map). A graphical model G is an inde-
pendence map (I-map) of a distribution f(x) over X if it satisfies

R ⊥G S |T =⇒ XR ⊥ XS |XT (2.6)

for all disjoints sets R,S, T .

Note that the I-map property is only ”one-way”: if G is an I-map, then
we can use ⊥G to find independencies in P , but we cannot identify de-
pendencies, because it is not clear that R 6⊥G S |T impliesXR 6⊥ XS |XT

(the converse of (2.6) need not hold). Thus, one cannot in general inter-
pret edges in a graphical model as dependencies. A graphs where this
is possible is called a dependence map (D-map). A graph which is both
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an I-map and a D-map is called a perfect map. Thus, in a perfect map,
R ⊥G S |T is equivalent to XR ⊥ XS |XT . However, many distribu-
tions do not have perfect undirected maps, because their independence
structure is not possible to represent with undirected graphs.

Example 2.3 Consider the distribution over X = {0, 1}3 given by

P (X3 = 1 |x1, x2) =
{

1/5, x1 = 1 ∧ x2 = 1
4/5, otherwise

p(x1, x2) = 1/4

This distribution clearly satisfies the marginal independence X1 ⊥ X2,
but

p(x1, x2 |X3 = 1) =
{

4/7, x1 = 1 ∧ x2 = 1
1/7, otherwise

So that X1 6⊥ X2 |X3. It is easy to see that no undirected graph can
represent both of these statements simultaneously.

In cases like this, an alternative to a perfect map is the following.

Definition 2.4 (Minimal I-map). A graph G is a minimal I-map if of
a distribution P if G is an I-map of P while no G′ ⊂ G is an I-map of
P .

Here, ”minimality” essentially means that there are no ”unnecessary”
edges in G; if we were to remove any edge from G, then the criterion
⊥G we would give us additional independencies that do hold true in the
actual distribution. The minimal I-map is the ”best” alternative in the
sense that it allows one to identify as many independencies as possible.
This is highly desirable because independencies simplify statistical infer-
ence by ”uncoupling” features from each other, so that one may solve a
number of small inference problems instead of one large problem, in a
”divide-and-conquer” fashion.

Relying on the I-map property, we now define the Markov network model.

Definition 2.5. A Markov network for a given distribution f(x) is an
undirected graph G which is a minimal I-map of f(x) and satisfies

f(x) =
∏
k

ψk(xCk
), (2.7)

where {Ck} is the set of maximal cliques of G. The factors ψk(xCk
) are

called potential functions.
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Markov networks are also known as Markov Random Fields, especially
in physics applications. I will not make use of the actual factorization
of f(x) into potential functions in this thesis; I provide the above defi-
nition for completeness. It should be noted that the factors ψk are not
themselves probabilities. A thorough treatment of Markov networks is
given by Chellappa and Jain [24].

2.2.2 Bayesian networks

The most popular graphical model is probably the Bayesian network, a
directed graph which can be used to encode causality as well as statistical
dependence [129]. Bayesian networks are powerful models, but they are
also somewhat more complicated than Markov networks. This is evident
already in the definition of the the independence criterion, which is more
involved than for undirected graphs.

Definition 2.6 (D-separation). For an directed, acyclic graph G and
three disjoint subsets R,S, T of {1, . . . , n}, we say that R is D-separated
from S by T in G, denoted R ⊥G S |T , if and only if there is a node k
in every undirected path from each i ∈ R to each j ∈ S, such that either
(i) k has two parents in the path and neither k nor any descendant of k
is in T , or (ii) k has less than two parents in the path and k is in T .

This independence criterion is illustrated in Figure 2.3B. Using the D-
separation criterion, we define a Bayesian network as follows.

Definition 2.7. A Bayesian network (BN) for a distribution f(x) is a
directed acyclic graph G which is a minimal I-map of of f(x) and satisfies

f(x) =
∏

i

f(xi |xΠi
), (2.8)

where Πi is the parents of i in G. The factors f(xi |xΠi
) are called local

distributions.

As with the undirected models of the previous section, the graph struc-
ture G of a Bayesian network is useful because it simplifies statistical in-
ference: instead of inferring parameters for the full n-dimensional f(x),
we may now divide the inference problem into n smaller inference prob-
lems for the local distributions f(xi |xΠi

), and then compute the full
f(x) from Equation (2.8).
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DCBA

Figure 2.4: A: A Bayesian network which cannot be represented as a Markov
network. B: A Markov network cannot be represented as a Bayesian network.

Example 2.4 Any distribution p(x) over X = {0, 1}n can be described
by a set of 2n parameters

θk = P

(
n∑

i=1

2Xi = k

)
, k = 1, . . . , 2n.

For a given sample x(1:l), these θk have the straightforward ML estimates

θ̂k =
1
l

∣∣∣∣∣
{
x(j) :

n∑
i=1

2x(j)i=k

}∣∣∣∣∣ .
Clearly, the number of samples l required for an accurate estimate of θ
is on the order of 2k. However, if p(x) can be represented by a Bayesian
network such that each node i has at most K < n parents, then each
local distributions p(xi |xΠi) involve no more than 2K parameters. Thus,
for such a Bayesian network, no more than n2K � 2n are non-zero,
simplifying the estimation problem considerably.

An advantage with the Bayesian network representation is that the lo-
cal distributions are ordinary conditional probabilities, which are usu-
ally easier to interpret than the potential functions of Markov networks.
Moreover, Bayesian networks are capable of representing some distri-
butions which cannot be represented by a Markov network: the BN in
Figure 2.4A is a perfect map of the distribution in Example 2.3. How-
ever, there are also examples of the opposite: the Markov network in
Figure 2.4B has no directed perfect map, since no matter how the edges
are oriented, we always get at least one node with two parents, which
leads to an extra dependency not present in the undirected map. For
example, in Figure 2.4C we get X2 6⊥ X3 |X1,4 and in Figure 2.4D we
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get X1 6⊥ X4 |X2,3. Nevertheless, Bayesian networks are generally con-
sidered to be more ”expressive” (be able to represent a wider class of
distributions) than Markov networks [130].

Since by definition a BN is an independence map, we know that it can
be used to identify independencies. However, the above example shows
that in general, we cannot use Bayesian networks to identify dependen-
cies. This is problematic in genomic applications, where one is often
very interested in identifying interacting nodes (e.g., proteins or mRNA
transcripts). To avoid this problem, it is common to simply assume that
the data distribution has a perfect directed map.

Definition 2.8. A distribution that has a perfect directed map is said
to be faithful to a Bayesian network (DAG-faithful).

In biology, this ”faithfulness” assumption can be motivated by the view
that genes, proteins, metabolites, etc. interact with each other in a ”net-
work”, that is, in pairwise interactions, thus forming a graph structure
[95]. See Section 8.2.3 for a discussion on this issue.

When the graph G is unknown, which is typically the case, then one
must first infer it from data. This is a difficult computational problem.
Inference of Bayesian is known to be asymptotically NP-hard [25, 26].
However, several more or less heuristic algorithms exist, which have been
shown to be effective in particular cases [122]. All of these assume that
the data distribution is DAG-faithful. I will not consider methods for
inferring graphical models in this thesis; rather, I will use graphical
models as theoretical tools.

2.2.3 Probability axioms

Conditional independence provides a different way of defining classes of
distributions, by define a set of ”probability axioms”, properties that
members of a class must satisfy. This manner of defining classes of dis-
tributions is sometimes called axiomatic characterization. The approach
was pioneered by Pearl [130], and is closely related to graphical models
of probability distributions. I here briefly review some commonly used
probability axioms. These will be needed for various proofs later on.

The following theorem due to Pearl [130] establishes the basic proper-
ties of conditional independence that all probability distributions satisfy.
Below, for brevity I use juxtaposition of sets as a shorthand for union,
i.e., XST = XS∪T .
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Theorem 2.9. Let R,S, T, U denote any disjoint subsets of Vn. Any
probability distribution over X satisfies the following properties:

Symmetry: XS ⊥ XT |XR =⇒ XT ⊥ XS |XR

Decomposition: XS ⊥ XTU |XR =⇒ XS ⊥ XT |XR

Weak union: XS ⊥ XTU |XR =⇒ XS ⊥ XT |XRU

Contraction: XS ⊥ XT |XRU ∧ XS ⊥ XU |XR =⇒ XS ⊥ XTU |XR

Since these properties are ”universal”, they do not identify any particular
class of distributions, but they are useful for proving other results. If we
assume any further properties, we will effectively restrict attention to the
set of distributions which satisfy the properties we require. I will make
use of this technique in Chapters 6 and 8 to simply feature selection
problems. The following important property is satisfied by the set of
distributions that are everywhere strictly positive.

Theorem 2.10. Let R,S, T, U denote any disjoint subsets of Vn. Any
distribution such that f(xRST ) > 0 satisfies the following property:

Intersection: XU ⊥ XR |XST ∧ XU ⊥ XT |XSR =⇒ XU ⊥ XRT |XS

Proof. The statement XU ⊥ XR |XST is equivalent to

f(xRSTU ) = f(xU |xRST )f(xRST )
= f(xU |xST )f(xRST ),

for every x ∈ X . Similarly, XU ⊥ XT |XSR is equivalent to

f(xRSTU ) = f(xU |xRS)f(xRST ),

also for every x ∈ X . Since f(xRST ) > 0, it now follows that

f(xU |xST ) = f(xU |xRS)

Therefore both of these probabilities must be constant with respect to
both R and T , that is,

f(xU |xST ) = f(xU |xRS) = f(xU |xS).

Hence, XU ⊥⊥ XR |XS and XU ⊥ XT |XS holds. The intersection
property then follows using the contraction property togeher with the
assumptions,

XU ⊥ XR |XST ∧ XU ⊥ XT |XS =⇒ XU ⊥ XRT |XS .
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A B C

&

Figure 2.5: An illustration of the intersection property. A: Conditioning
on the set {X2, X3} (gray nodes) ”blocks the information flow” from X1 to
X4 (dashed arrows), yielding the conditional independence X1 ⊥ X4 |X2,3. B:
Similarly, Conditioning on {X2, X4} gives X1 ⊥ X4 |X2,3. C: If the probability
distribution satisfied intersection, (A) and (B) implies that X1 ⊥ X3,4 |X2,
i.e., X2 must be the node that blocks the paths.

This intersection property essentially states that if both of the indepen-
dencies to the right hold, then it must be the variables (S) that are
responsible for ”blocking the flow of information” from R and T to U ,
rendering U independent from both R and T conditioned on S (Fig-
ure 2.5).

The following properties are useful when they hold true, but they are
not satisfied by all distributions.

Definition 2.11. Let R,S, T, U denote any disjoint subsets of Vn and
also take i ∈ Vn.
Composition:

XS ⊥ XT |XR ∧ XS ⊥ XU |XR =⇒ XS ⊥ XTU |XR

Strong transitivity:

XR ⊥ XT |XU =⇒ XR ⊥ XS |XU ∨ XS ⊥ XT |XU

Weak transitivity:

XS ⊥ XT |XR ∧ XS ⊥ XT |XR∪{i} =⇒ XS ⊥ Xi |XR ∨ Xi ⊥ XT |XR

The strong transitivity property is perhaps easier recognized in its con-
trapositive form,

XR 6⊥ XS |XU ∧ XS 6⊥ XT |XU =⇒ XR 6⊥ XT |XU .
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A common misconception is to assume that strong transitivity holds true
in all distributions. This is disproved by Example 2.3, where X1 6⊥ X3

and X3 6⊥ X2, but X1 ⊥ X2. The composition and weak transitivity
properties are satisfied by all DAG-faithful distributions [130]. I will
make use of these properties in Chapter 8.

2.3 Conditional probability models

In our setting, we are often not interested in learning everything about
the data distribution. Moreover, for whole-genome data sample sizes are
typically small compared to the number of features (the dimension of
X), so that estimating the entire distribution is not realistic. Instead,
given a joint data distribution of f(x, y) over features and the target
variable Y , we will focus on the conditional density

f(y |x) =
f(x, y)
f(x)

. (2.9)

This is referred to as the posterior probability of Y given (conditioned
on) X, or just ”the posterior”, for short. In words, the posterior is
the distribution of the target variable conditioned on having observed
X = x. This is the only distribution that matters for prediction: all
information we can possibly obtain about Y from the observation X = x
is contained in f(yx). Learning the posterior is often referred to as
supervised learning, the idea being that the target variable acts as a
”supervisor” which provides the ”correct” value yi for each observation
xi.

If our end goal is to find the posterior, then it seems reasonable to
estimate it directly, rather than ”taking a detour” by first estimating
the full density f(x, y) and then computing f(y |x) from (2.9). This
intuition is correct, and in fact, the posterior is often much easier to
estimate than the full f(x, y). This is seen in the following very common
distribution example.

Example 2.5 A two-class multivariate Gaussian mixture with Y =
{+1,−1} is defined by

f(x, y) = p(y)N(x |µy,Σ) + p(−y)N(x |µ−y,Σ).

Here p(y) denotes the marginal class probability. Importantly, the co-
variance matrix Σ is here set to be equal for both classes. Without loss
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+

w

Figure 2.6: A two-class Gaussian distribution in R2. Left, the mixture
f(x) =

∑
y f(x | y) distribution, with plus/minus signs indicating the mix-

ture components f(x |Y = +1) and f(x |Y = −1), respectively. Right, the
posterior p(y |x). Arrow indicates the parameter vector w.

of generality we may also assume µ = µ+1 = −µ−1, since all problems
can be reduced to this case by the translation X ′ ← X− (µ+1 +µ−1)/2.
We rewrite the posterior as

p(y |x, µ,Σ) =
p(y)p(x | y, θ)p(y)

p(x | θ)

=
p(y)N(x | yµ,Σ)

p(y)N(x | yµ,Σ) + p(−y)N(x | − yµ,Σ)

=
[
1 +

p(−y)N(x | − yµ,Σ)
p(y)N(x | yµ,Σ)

]−1

After substituting the normal densities and some further simplifications,
we obtain

p(y |x, µ,Σ) =
[
1 +

p(−y)
p(y)

exp
{
−2yxT Σ−1µ

}]−1

(2.10)

A two-dimensional example of a two-class Gaussian distribution is shown
in figure 2.6 for an example two-dimensional X. Note that in the poste-
rior, the parameters Σ, µ occur only as the vector w = Σ−1µ. Therefore,
we may re-parameterize the posterior as

p(y |x,w) =
[
1 +

1− p(y)
p(y)

exp{−2yxTw}
]−1

. (2.11)

It now suffices to estimate w to completely determine this distribution.
Geometrically, w is the direction of change in the posterior; p(y |x) is
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constant in all direction orthogonal to w (figure 2.6). Intuitively, this di-
rection should be along the line joining the two class-conditional means.
This intuition is correct when Σ is the identity matrix, while in the gen-
eral case this direction is transformed to w = Σ−1µ, to account for the
covariance structure.

While the full distribution f(x, y) has n(n+3)/2 free parameters (ignor-
ing p(y)), the posterior (2.11) clearly has only n parameters. Therefore,
estimating the posterior should be an ”easier” inference problem than
estimating the full f(x, y). The posterior can of course be found by ML
estimation of the parameters Σ, µ (here treating p(y) as known, for sim-
plicity) of the full distribution f(x, y), resulting in a ”plug-in” estimate

p̂(y |x) =
f̂(x, y)

f̂(x)
.

This approach results in the popular linear discriminant method, first
introduced by Fisher [50].

A different approach to estimating the posterior is to maximize the joint
conditional likelihood L(y(1:l) |x(1:l), w) =

∏
i p(y

(i) |w, x(i)). This leads
to a logistic regression model [73, pp. 95]. From (2.11) we have

L(y(1:l) |x(1:l), w) =
∏

i

[
1 + c(i) exp{−2y(i)(x(i))Tw}

]−1

=

[∏
i

(
1 + c(i)e−2y(i)(x(i))T w

)]−1

,

where c(i) = (1− p(y(i))/p(y(i). This likelihood can be shown to be con-
vex for n ≤ l [144], so that numerical optimization is feasible. However,
a degenerate case occurs if the training data is separable, the likelihood
will not be bounded away from zero, i.e., the posterior is not directly
identifiable. Much has been written about the relative merits of logistic
regression vs. the fisher discriminnat; see for example Press and Wilson
[137] and Efron [43].

One may simplify the posterior estimation by adding some conditional
independence assumptions. The following is know as the ”Naive Bayes”
method, which is quite common in machine learning.

Example 2.6 (Naive Bayes) Let the features Xi are conditionally
independent given the (discrete) target variable Y , that is, f(x | y) =
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∏
i f(xi | y). A posterior with parameter θ is then given by

p(y |x, θ) =
f(x | y)p(y)

f(x)

=
p(y)

∏
i f(xi | y)
f(x)

Then the joint conditional likelihood is given by∏
j

p(y(j) |x(j), θ) =
∏
j

p(y(j))
∏

i f(x(j)
i | y(j))

f(x(j))

Using this form of p(y |x), it suffices to estimate the one-dimensional
f(xi | y), which is considerably easier. For example, if X,Y is a Gaussian
mixture X |Y ∼ N(µy,Σy), then the Naive Bayes assumptions imply
that p(y |x) is a product of univariate Gaussians, p(y) =

∏
iN(xi |µyi, σ

2
yi).

We are then left with only 2|Y|n parameters {µyi, σ
2
yi}, which are easily

estimated. For comparison, the full Gaussian mixture without Naive
Bayes assumptions has |Y|n(n+ 3)/2 parameters.

This predictive model is called ”naive” because the conditional indepen-
dence assumption is rarely true in practise. Nevertheless, one should
note that this assumption is considerably weaker than marginal inde-
pendence of the Xi, i.e., it does allow for correlations between Xi due
to the target variable. For instance, in terms of Example 2.1 the Naive
Bayes model does allow for both types of LDL cholesterol to be affected
by the diet, but it assumes that when the diet is kept constant, the two
are independent. Further, it has repeatedly been shown that the Naive
Bayes predictor often gives good performance on real problems. It should
therefore not be dismissed, and it often serves as a useful ”benchmark”
for gauging the performance of more sophisticated methods [67].

2.4 Predictors and inducers

Having estimated a posterior, we are usually interested in using it to
predict the target variable y for new examples x. The practical utility
of this should be obvious: consider for example the case of Y being a
clinical diagnosis such as ”poor-prognosis, malignant breast cancer”.

Definition 2.12. A predictor is a function

y = g(x) : X 7→ Y
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which assigns (predicts) a value y ∈ Y for every possible data point
x ∈ X .

For classification problems, I will often use the term classifier instead. Of
course, we would prefer predictors that are able to predict as accurately
as possible the true value of Y . An intuitive way of constructing a
predictor is to predict the y with maximal posterior probability. This is
called the Bayes predictor.

Definition 2.13 (Bayes predictor). For a given posterior p(y |x), the
Bayes predictor is given by

g∗(x) =
{

y, if ∀y′p(y |x) > p(y′ |x)
g′(x), otherwise (2.12)

Here we have introduced the function g′(x) merely to ”break ties”, that
is, to ensure a unique decision in cases where several values of y are
equally likely. The name ”Bayes predictor” (or Bayes classifier, for dis-
crete Y; or sometimes ”Bayes’ rule”), stems from the connection with
Bayes’ theorem. It is easy to show that the Bayes predictor is optimal;
see Theorem 2.18. The Bayes predictor is a property of the data dis-
tribution: it is determined by p(y |x), which in turn is determined by
f(x, y).

Example 2.5 (Continued) The Bayes predictor is given by solving
p(y |x,w) > 1/2 for y. With c = p(Y = −1)/p(Y = 1) we find

p(Y = 1 |X = x) =
[
1 + c exp

{
−2xTw

}]−1
> 1/2

⇐⇒ c exp
{
−2xTw

}
< 1

⇐⇒ 2xTw − ln c > 0,

yielding the predictor

g∗(x) = sign
(
2xTw − ln c

)
. (2.13)

The critical region {x : xTw = 0} where p(y |x,w) = 1/2 and the Bayes
classifier changes sign is called the decision boundary. For p(y) = 1/2,
c = 0 and this boundary is a hyperplane through the origin, and w is
its normal vector. For p(Y = 1) > p(Y = −1), the decision boundary is
translated towards the center of class −1, reflecting that g∗(x) is more
inclined to predict +1 in this case, and vice versa.
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Figure 2.7: Comparison of the estimation problems discussed in this chap-
ter. The density estimation problem is the hardest, the posterior estimation
problem is intermediate, and the predictor estimation problem is easiest.

In linear classification, c is referred to as the bias term. For convenience,
I will mostly consider linear predictors with c = 0. This is does not incur
any loss of generalization since one may always let w subsume the bias
term by introducing an additional, constant feature Xn+1 = 1, so that
wTx+ c = (wT , c)(x, xn+1) = (w′)Tx′.

As seen in Equation (2.12), g∗ is easily derived from p(y |x), but it con-
siders only for the maxima of p(y |x) at each point x. Therefore, g∗

retains only the part of the information contained in p(y |x) that deter-
mines its maxima, and discards the information required for assessing
the confidence (e.g., variation) in this prediction. In the above example,
this is evident from the fact that in (2.13) the magnitude of the vector
w is irrelevant to the sign of g∗(x), even though it does affect the pos-
terior (2.11). Thus, g∗ is again over-parameterized: setting ‖w‖2 = 1
reduces the number of parameters from n to n − 1 while retaining the
same classifier.

In general, p(y |x) is more difficult to learn from data than g∗ is. There-
fore, it may be better to estimate g∗ directly from data than attempting
to first estimate p(y |x) and then computing g∗ from (2.12). Note that
this reasoning is in analogue with the previous section, where we found
that estimating the posterior directly is easier than estimating the full
distribution. To summarize the discussion so far, the estimation prob-
lems become easier as we move from full distribution to posterior to
predictor (Figure 2.7). (By ”easier” I here mean that the estimates ob-
tained will in general be more accurate, not that the associated equations
will be easier to solve.)
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Thus, assuming that we care mainly about the prediction itself and not
about its variance, we will be interested in procedures that directly esti-
mate predictors from given data. Such estimation procedures are referred
to as inducers.

Definition 2.14 (Inducer). For a given set of classifiers G and data
z(i:l), an inducer I is a mapping

g = I(z(i:l)) : (X × Y)l 7→ G (2.14)

This type of inference is probably the most common in machine learning,
and the theory on inducers (supervised learning) is comparatively well
developed, especially for the classification case [37].

2.5 Loss and risk

Beyond learning predictors, it is of course important to have a sensible
way of measuring their accuracy in making predictions. How to measure
accuracy depends on the loss function, which is used to measure the
gravity of a prediction error.

Definition 2.15 (Loss function). A loss function is a function h(ŷ | y)
on Y × Y satisfying

∀ŷ : h(ŷ | y) ≥ h(y | y).

h(ŷ | y) measures the ”loss” (cost, penalty) of making the prediction ŷ
when the true target variable is y.

The loss function determines what types of predictors we prefer. The
choice of loss function is subjective; it reflects the experimenter’s opinion
on how severe particular errors are. This subjectivity is usually not a
problem however, since typically one has a fairly good understanding of
the target variable and what a reasonable loss function should look like.
For classification problems, the following loss function is a very common
choice.

Example 2.7 (0-1 loss) For classification problems the ”0-1 loss” is
given by

h(ŷ | y) =
{

1, ŷ 6= y
0, ŷ = y
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The 0-1 loss function considers both types of prediction errors as equally
severe. In some applications however, these may differ. For example,
if our classifier is a medical diagnosis system where +1 corresponds to
”disease” whereas −1 means ”no disease”, then h(−1 | + 1) is the loss
associated with failing to diagnose (and treat) a disease, while h(+1 | −1)
is the loss when one wrongly diagnoses a disease when there is none.
The latter is often more acceptable: this is the case for example with
melanoma (skin cancer), where physicians prefer to perform surgery in
uncertain cases since the cost of not doing so could be fatal, while the
procedure itself is fairly harmless [187]. For such ”asymmetric” cases,
the following loss may be more reasonable.

Example 2.8 A generalization of 0-1 loss is given by

h(ŷ | y) =

 a, ŷ 6= y, y = +1
b, ŷ 6= y, y = −1
0, ŷ = y

If we here take a > b, errors of the type ŷ = −1 when y = +1 are
penalized more than the opposite case.

For regression problems (Y = R), common loss functions are h(ŷ | y) =
(ŷ − y)2 or h(ŷ | y) = |ŷ − y|. Thus, while for classification problems
the loss is usually bounded, for regression this may not be the case. For
two-class problems, it is also common to deviate somewhat from Defi-
nition 2.15 by using an ”intermediate” function with continuous range
g′(x) : X 7→ R, such that the predictor is given by g(x) = sign(g′(x)),
and defining the loss function on g′ as

h(g′(x) | y) : R× Y 7→ R.

This is useful since loss functions on the discrete Y × Y are difficult to
optimize (Section 2.7.2). A number of common loss functions are shown
in Table 2.2.

Having chosen a loss function, we measure the accuracy of a predictor
on a given data distribution f(x, y) as follows.

Definition 2.16 (Risk). The risk R(g) of a predictor g on a data dis-
tribution f(x, y) is defined as the expected value of the loss function,

R(g) = E [h(g(X) |Y )] . (2.15)

Note that risk is the ”inverse” of accuracy: low risk means high accu-
racy and vice versa. For classification problems with discrete Y and
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Y Name(s) h(ŷ | y)
{0, 1} 0-1 1− δŷ,y

{0, 1} Hinge∗ (1− g(x)y)+
{0, 1} BNLL∗ ln(1− e−g(x)y)
Rn L2/Gaussian (ŷ − y)2
Rn L1/Laplacian |ŷ − y|2
Rn ε-insensitive (|ŷ − y| − ε)+
Rn Huber’s

{
(ŷ − y)2, |ŷ − y| ≤ a
2|ŷ − y|+ a(a− 2), |ŷ − y| > a

Table 2.2: Examples of common loss functions. BNLL, Binomial Negative
Log-Likelihood. ∗defined on R× Y

.

continuous X, the risk functional can be written as

R(g) =
∑
y∈Y

∫
X
h(g(x) | y)f(x, y)dx

If we use 0-1 loss, this simplifies to

R(g) =
∑
y∈Y

p(y)
∫
X
δ(g(x), y)f(x | y)dx

=
∑
y∈Y

p(y)P (g(X) 6= Y |Y = y)

= P (g(X) 6= Y ),

so that risk is equivalent to the overall probability of making an error in
this case. For the two-class Gaussian case of Example 2.5, this proba-
bility has a particularly simple form.

Example 2.9 For a two-class Gaussian f(x, y |µ,Σ) and any classi-
fier gw(x) = sign(wTx), consider the projection of the class-conditional
variable (X |Y = 1) onto the normal vector w = Σ−1µ,

t =
wTXy

wTw

Since Xy is a multivariate Gaussian, all linear combinations of Xy are
themselves Gaussian. Thus t ∼ N(µt, σ

2
t ), with

µt = E [t] =
wT E [Xy]
wTw

=
wTµy

wTw
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and

σ2
t = E

[
(t− µt)2

]
=

E
[
(wT (Xy − µ))2

]
(wTw)2

=
wT Σw
(wTw)2

Now gw(x) = 1 ⇐⇒ t > 0, and by symmetry we can write R(gw) as

R(g) = P (wTx > 0 |Y = −1)

=
∫ 0

−∞
N(t |µt, σt)dt

=
∫ 0

−∞
N

(
t
∣∣∣ wTµ

wTw
,
wT Σw
(wTw)2

)
dt

=
1
2

[
1− erf

(
wTµ√
2wT Σw

)]
(2.16)

where erf(x) = 2π−1/2
∫ x

0
e−t2dt is the error function.

Using the risk measure, we now define an optimal predictor.

Definition 2.17. A predictor g∗ is optimal if it has minimal risk,

∀g : R(g∗) ≤ R(g).

It is fairly easy to show that the Bayes predictor (2.12) is optimal.

Theorem 2.18. For any data distribution f(x, y), the Bayes predictor
g∗ attains the lowest possible risk.

Proof. We here give a proof for the case of discrete Y and 0-1 loss;
this can be generalized to other Y and any loss function with minor
modifications. Take any classifier g. We have for every x ∈ X that

P (g(X) 6= Y |X = x) = 1− P (g(X) = Y |X = x)

= 1−
∑

y

P (Y = y ∧ g(X) = y |X = x)

= 1−
∑

y

1{g(x)=y}p(y |x).
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Thus, for any y0 ∈ Y,

P (g(X) 6= Y |X = x)− P (g∗(X) 6= Y |X = x)

=
∑

y

1{g∗(x)=y}p(y |x)−
∑

y

1{g(x)=y}p(y |x)

= p(y0 |x)(1{g∗(x)=y0} − 1{g(x)=y0})
+ (1− p(y0 |x))(1{g∗(x)=y0} − 1{g(x)=y0})

= (2p(y0 |x)− 1)(1{g∗(x)=y0} − 1{g(x)=y0}) ≥ 0.

The last inequality follows directly from the definition of g∗. Integrating
with respect to p(x)dx now yields

P (g(X) 6= Y )− P (g∗(X) 6= Y ) ≥ 0.

From here on, I will use the terms ”optimal predictor” and ”Bayes predic-
tor” interchangeably. To gauge the ”difficulty” of a particular prediction
problem (i.e., of a particular data distribution) it is also useful to define
the Bayes risk, the risk of the Bayes predictor R(g∗). This is clearly the
lowest risk achievable, and is determined solely by f(x, y). Again, for
example 2.5 we obtain a particularly simple expression.

Example 2.9 (Continued) 2.9 Inserting the Bayes classifier g∗(x) =
sign(µT Σ−1x) into (2.16), we obtain

R(g∗) =
1
2

[
1− erf

(
wTµ√
2wT Σw

)]
=

1
2

[
1− erf

(√
µT Σ−1µ/2

)]
≤ 1/2. (2.17)

This simple expression and that of (2.16) makes the two-class Gaussian
case attractive for evaluating inducers on simulated data: one may then
calculate the accuracy of each predictor directly from these expressions.
This can be done efficiently even for high-dimensional X. I take advan-
tage of this property in the simulation studies in Chapter 5.

The risk functional measures the accuracy of a particular classifier g(x)
on a given data distribution. This is relevant when the exact classifier
to use for a certain problem is fixed. For example, we may be interested
in evaluating the performance of an existing diagnosis scheme for some
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Figure 2.8: Illustration of a risk distribution (right) for a two-class classifi-
cation problem (left). The risk distribution is bounded below by R(g∗).

disease. Often, however, one is more interested in comparing the per-
formance of inducers rather than particular classifiers [38]. This is of
relevance for example to ensure that an inducer is reasonably accurate
before applying it to experimental data.

In this case, the risk R = R(I(Z(i:l))) is itself a random variable since the
data set Z(i:l) is a random variable, drawn from the data distribution.
For a particular realized data set z(i:l), the risk of an induced classifier
g = I(z(1:l)) is merely one observation from this distribution. The per-
formance of an inducer I is therefore described by the distribution of
R(I(Z(i:l))). For classification and 0-1 loss, this is a distribution over
[0, 1]. Figure 2.8 illustrates this situation. Usually, it is convenient to
summarize the risk distribution into a single number. For this, I will use
the expected risk.

Definition 2.19 (Expected risk). For a given data distribution, inducer
I and sample size l, the expected risk is defined as

ρ(I) = E
[
R(I(Z(i:l)))

]
. (2.18)

In simulation studies, the expectation in (2.18) can be estimated simply
by averaging the risks R(g) of particular classifiers g = I(z(1:l)) obtained
over a number of independent data sets. Confidence intervals are likewise
easy to obtain by standard methods.
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2.6 Nonparametric methods

So far, we have assumed that we can model the experimental system
using some convenient distribution family. This is not always an appro-
priate assumption in biology. In many applications of classical statistics,
sample sizes are large, and one is often interested in inferences about the
sample mean x̄. In this advantageous setting, the central limit theorem
ensures that x̄ is Gaussian to a good approximation [21]. This is defi-
nitely not the typical situation for high-throughput measurements such
as microarray profiling or proteomics. In many practical situations in
modern biology, we have high dimensionality, which is often counter-
intuitive, and due to experiment costs sample size is small, so that we
are not protected by the central limit theorem when making Gaussian
assumptions.

For these reasons, many researchers believe that parametric approaches
are dangerous, as we have no way of assessing that the model assump-
tions are reasonable. In this section I review some nonparametric or
”distribution-free” methods for learning predictors, which attempt to
avoid such assumptions. In the nonparametric approach, we still as-
sert that there exists some distribution f(x, y) that generates our data,
although we hold that it is entirely unknown to us. We may use this
unknown distribution and its properties in definitions and theoretical
arguments, but we avoid making assumptions about the particular form
of this distribution for inference purposes.

2.6.1 Empirical risk minimization

Instead of maximizing a likelihood function which always depends on
distribution assumptions, we might consider to learn a predictor by di-
rectly minimize the risk R(g) over some set G of possible predictors.
Naturally, since R(g) depends on the unknown data distribution, it
cannot be computed in practise. However, we might attempt to es-
timate the risk of a given predictor directly from the observed data
{z(1:l) = (x(1), y(1)), . . . , (x(l), y(l))}, and then minimize the estimate.
An intuitive risk estimate is the following.

Definition 2.20 (Empirical Risk). The empirical risk R̂ of a predictor
g is defined as

R̂(g, z(1:l)) =
1
l

l∑
i=1

h(g(x(i)) | y(i)),



38 Statistical Data Models

where h is some given loss function.

For classification problems with 0-1 loss, the empirical risk is simply
the fraction of errors on the training data. Thus, a direct strategy for
learning a predictor g from data is to simply minimize R̂(g, z(1:l)) over
all g ∈ G. This procedure is known as Empirical Risk Minimization.

Definition 2.21 (Empirical Risk Minimization (ERM)). In empirical
risk minimization, the inducer estimates a classifer from a set of possible
classifiers G as

I(z(1:l)) = arg min
g∈G

R̂(g, z(1:l)).

Empirical risk minimization has a long history in machine learning. One
of the first successful machine learning algorithms, the ”perceptron” de-
vised by Rosenblatt [148], performs a kind of ERM by adjusting itself
to accommodate the training examples (i.e., minimizing the training er-
ror).ERM was studied in depth by Vladimir Vapnik in a series of influ-
ential papers in the 1970’s. Importantly, Vapnik and co-workers derived
conditions that determine when empirical risk minimization will work
(yield a good predictor) and when it will not [181]. While this theory
is far too extensive and complicated to be covered here, some informal
remarks may nevertheless be in order. The crucial point in ERM is the
set G of possible classifiers. If this set is too ”large” in comparison with
the amount of data available for estimating g, meaning that it contains
to ”complex” g, then the estimated classifier ĝ will ”over-fit”, and gener-
alization ability will be poor. Several methods that implement variations
on ERM are discussed in Section 2.7.2.

2.6.2 Nearest-neighbor methods

Early classification methods were based on simply matching a new x to
the closest example in the training data, so-called ”template matching”
[87]. The k-nearest-neighbor (k-NN) classifier, introduced by Fix and
Hodges, Jr. [51] is by far the most well-known and successful example.
This classifier uses a distance metric d on X (which must be defined in
advance) and classifies each x by ”voting” among the k observations xi

nearest to x in the metric d. For Y ∈ {+1,−1},

gk(x) = sign

 ∑
i∈Nk(x)

yi

 ,
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X H

φ

Figure 2.9: Illustration of the feature space concept. A complex decision
surface (solid line) between two classes (white vs. gray areas) in the input
space X (left) can be mapped to a higher-dimensional feature space H by a
feature map φ(x).

where
Nk(x) = {i : |{xj : d(x, xj) > d(x, xi)}| ≥ k − 1}

is simply the set of the k nearest observations in the training data. This
is simple to generalize to multiple classes. For discrete X , one also needs
some strategy for breaking ties (cases where two xi, xj are at an equal
distance from x).

Despite its simplicity, the k-nearest neighbor rule is quite powerful, and
has many attractive properties. Remarkably, it can be shown to be
consistent for any underlying data distribution f(x, y), provided that one
chooses k dependent on the sample size l such that k →∞ and k/l→ 0
as l → ∞ [37, pp. 170]. Thus, this method is ”distribution-free”. The
k-nearest neighbor method is often used as a ”baseline” against which
to compare other methods. A drawback is that the computation of
N(x) can be computationally expensive, and that performance tends to
degrade with increasing dimensionality [103]. A wealth of theoretical
results on the k-NN classifier can be found in [37].

2.6.3 Kernel methods

Linear predictors such as gθ(x) = θTx can be generalized with the use of
kernel functions. While I do not make explicit use of kernel functions in
this thesis, many of the results I present can be lifted to higher generality
by this mechanism, so that a brief explanation of the concept may never-
theless be in order. A comprehensive introduction is given by Schölkopf
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and Smola [153]. A kernel function K(x, x′) : X ×X 7→ R has the special
property that it corresponds to a second function φ(x) : X 7→ H called
a feature map, which maps each x ∈ X to some Hilbert space H, called
a feature space, and satisfies

K(x, x′) = 〈φ(x), φ(x′)〉.

In other words, K(x, x′) implicitly computes an inner product in the
space H without explicitly computing the map φ. This is often referred
to as the ”kernel trick”. The main idea here is that we can implement var-
ious non-linear predictors through kernel functions by computing scalar
products (linear functions) in some space H that corresponds to a non-
linear functions in X (Figure 2.9). For example, predictors which are
linear in the coefficients of a polynomial of x are easily represented by
kernels.

Example 2.10 A polynomial kernel of degree d on X = Rn is defined
by

K(x, x′) = (1 + xTx′)d.

To find the feature map corresponding to this kernel, note that, for the
case d = 2,

K(x, x′) = (1 +
∑

i

xix
′
i)

2

= 1 + 2
∑

i

xix
′
i + (

∑
i

xix
′
i)

2

= 1 + 2
∑

i

xix
′
i +
∑

i

∑
j

(xix
′
j)

2

= (1, x1, . . . xn, x
2
1, . . . , x

2
n)T (1, x′1, . . . x

′
n, (x

′
1)

2, . . . , (x′n)2).

Thus, we can write K(x, x′) = 〈φ(x), φ(x′)〉 with

φ(x) = (1, x1, . . . xn, x
2
1, . . . , x

2
n),

So in this case H = R2n+1. Similarly, one can show that for arbitrary
d, this kernel computes polynomials of (x, x′) of degree d, corresponding
to a feature space of dimension dimH = dn+ 1.

It is also possible to compute kernel functions that correspond to infinite-
dimensional H. One way to think about this is to consider φ(x) ∈ H as
points in a function, space, i.e., φ : x 7→ K(·, x). A prominent example
of this is the Gaussian kernel, suggested by Boser et al. [18].
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Example 2.11 The Gaussian kernel with kernel parameter γ is given
by

Kγ(x, x′) = e−γ‖x−x′‖22 .

The corresponding feature map φ : x 7→ e−γ‖x−(·)‖22 is a Gaussian func-
tion centered at x. Some properties of φ(x) are immediate: for example,

‖φ(x)‖2H = K(x, x) = 1,

so that all φ(x) are on a unit sphere in H. Similarly, φ(x)Tφ(x′) ≥ 0 for
all x, x′, which means that no two points in H make obtuse angles.

The Gaussian kernel is ”universal” in that any function K(x, x′) can be
approximated with arbitrary precision by a Gaussian kernel Kθ(x, x′)
provided that γ is small enough. Importantly, this property can be
exploited to construct universally consistent inducers based on Gaussian
kernels by choosing a sample size-dependent sequence of γl → 0 as l→∞
[160]. Therefore, the Gaussian kernel allows distribution-free methods.

When the feature space H is very high-dimensional, it is impractical
to represent a solution vector w ∈ H explicitly. However, it turns out
that in many cases, the predictors themselves can also be represented
implicitly as a linear combination of kernel functions,

g(x) =
l∑

i=1

αiK(xi, x).

This result is known as the representer theorem [153, pp. 89]. Due to
this theorem, it is possible to perform inference with kernels without
ever computing the high-dimensional feature space vectors.

In general, any inference method for which computations can be ex-
pressed as scalar products of the training data can be ”kernelized” by
replacing xTx′ byK(x, x′) where appropriate. This applies to a rich fam-
ily of inference methods. Consequently, researchers in kernel methods
have been quite busy during the last decade with kernelizing many well-
known methods for classification, regression, clustering, dimensionality
reduction, and more. A good source of literature for these developments
is the Neural Information Processing Systems (NIPS) conference pro-
ceedings. Some examples will be discussed in Section 2.7.2.
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X
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X1
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Figure 2.10: Two examples of the over-fitting phenomenon. Left, a regression
model. Solid line shows the true model; dotted line, an over-fitting polynomial.
Right, two-class model with Y = {+1,−1},X = R2. Filled boxes denote
points x for which y = 1, open boxes y = −1. Solid line shows the true
decision boundary, dotted line, an over-fitting model.

2.7 Priors, regularization and over-fitting

2.7.1 Over-fitting

The phenomenon of over-fitting has been a core issue of machine learn-
ing research since its inception. In essence, over-fitting means that the
inference method ”mistakes” random variation in the training for mean-
ingful information about the target variable. This results in an overly
complex (”over-fit”) predictive model, which will have poor predictive
accuracy (high risk) when applied to new observations. The over-fitting
phenomenon appears in a wide variety of settings; examples of classifi-
cation and regression problems are given in Figure 2.10. In classification
and regression alike, the problem appears when one tries to learn too
”complex” models from limited data in the presence of noise. The op-
posite problem is ”under-fitting”, which occurs when the model is not
sufficiently complex to fit the data well.

The over-fitting phenomenon is perhaps best appreciated by an example.
To this end, I here reproduce a classic example due to Trunk [174].

Example 2.12 (Trunk) Consider a two-class problem with data X ∈
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dim X

Expected Risk

Bayes Risk

Empirical Risk
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Figure 2.11: Comparison of the Bayes risk, expected risk and empirical risk
estimate for Trunk’s example, plotted vs. data dimension n = dim X. Topmost
line, estimate of the expected risk ρ = E [R(ŵ)] at sample size l = 20, averaged
over 100 training sets. Cross marks estimated minima of ρ. Middle line, Bayes
risk R(g∗) (strictly decreasing). Bottom line, empirical risk R̂, also at sample
size l = 20 and averaged over 100 training sets.

Rn, targets Y ∈ {−1,+1}, with each feature distributed as a Gaussian

f(xi | y) = N(xi | y/
√
i, 1).

All features Xi are independent (identity covariance matrices for both
classes), and we set the class probabilities p(y) = 1/2, so that

f(x, y) = p(y)
∏

i

N(xi | y/
√
i, 1).

The Bayes classifier g∗ for this problem can then be expressed as

g∗(x) = sign(wTx)

with w = (1, 1/
√

2, . . . , 1/
√
n), that is, the hyperplane normal is the

same as the +1 class mean. Using equation (2.17), the Bayes risk is
found to be

R(g∗) =
1
2

[
1− erf

(√
wTw/2

)]
=

1
2

1− erf

√√√√ n∑
i=1

1
2i


The Bayes risk is strictly decreasing in n (Figure 2.11). Hence, more
features improves the optimal prediction performance, as every new fea-
ture contributes some extra information about the target variable, even
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though this added information becomes smaller for large n. As n tends
to infinity, R(g∗)→ 0.

Now, consider that w is unknown, so that we have to estimate this pa-
rameter from a data set z(1:l) (we assume that Σ = I is known, though).
The complete likelihood is then

f(z(1:l) |w) =
∏

i

N(x(i) | y(i), w, I)

∝
∏

i

∏
j

exp
{
−(x(i)

j − y
(i)wj)2/2

}
So the log-likelihood is

ln f(x, y |w) = −1
2

∑
i

∑
j

(x(i)
j − y

(i)wj)2 + C

Maximizing this, we obtain the ML estimates

ŵj =
1
l

l∑
i=1

y(i)x
(i)
j (2.19)

Note that the ML estimate is simply the mean of the data points ”weighted”
by their label, which seems reasonable considering the symmetry of the
distribution.

Since ŵ is now estimated from data, the corresponding classifier ĝ and
the risk measure risk R(ĝ) are now random variables, both dependent on
the training data (see Figure 2.8). To estimate the overall performance
of this inducer, we use the expected risk (Definition 2.19). Figure 2.11
compares the expected risk E [R(ĝ)] of the ML estimate to the expected
empirical risk E

[
R̂(ĝ)

]
of the same. As n increases, the empirical esti-

mate becomes increasingly optimistic. The expected risk first decreases
until n & 40; after this point, over-fitting ensues, and the expected risk
begins to increase. In fact, is it easy to show that E [R(ĝ)] → 1/2 as
n→∞, while E

[
R̂(ĝ)

]
→ 0 [174].

The problem in the above example is that, as the number of features n in-
creases, the predictive model becomes too complex for reliable inference
to be feasible from limited training data. Even though the information
about Y actually increases with increasing n (as evidenced by the strictly
decreasing Bayes risk), the increase in model ”complexity” soon becomes
overwhelming, and the actual performance beings to deteriorate. Thus,
for high-dimensional data it is necessary to somehow constrain the com-
plexity of the predictive model. This is known as regularization.
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2.7.2 Regularization

Regularization, the idea of avoiding ”too complex” models, has appeared
in literature in many guises, and has many names. To name but a few,
in phylogenetic analysis, it is known as maximum parsimony [100]; in
statistics, it appears in the form of Bayesian prior distributions (Sec-
tion 2.7.3); and in coding theory, it appears in the minimal description
length principle [146]. A classical reference to regularization is the prin-
ciple known as ”Occam’s razor”, attributed to the 14th century English
logician William of Ockham:

”entia non sunt multiplicanda praeter necessitatem”
(entities should not be multiplied beyond necessity)

In essence, this means ”other things being equal, the simplest solution
is usually the best one”. One way of simplifying a predictive model is
to constrain the number of features; this is one motivation for feature
selection.

In various inference problems, including that of learning predictors, reg-
ularization is implemented by constraining the ”complexity” of the so-
lution. This method was introduced by Tikhonov and Arsenin [171] and
has been used in a number of problem settings. In empirical risk min-
imization, the method amounts to adding a regularization term to the
empirical risk estimate,

R̃(g) = R̂(g) + λγ(g). (2.20)

The term γ(g) in essence measures the complexity of a predictor g. The
regularization parameter λ controls how much ”weight” is given to γ(g)
compared to the risk estimate. Of course, various choices of γ are possi-
ble, and the question now becomes how to make this choice in a rational
way. In the next section I will discuss one possible solution to this prob-
lem, motivated by a parametric data model. Often, the choice of γ
is dictated by practical requirements. In particular, one would like to
choose γ so that the optimization problem ming R̃(g) is convex. The
following case is probably the best known.

Example 2.13 (Support vector machine) For Y = {+1,−1}, let
g′(x) = wTx, h(g′(x), y) = (1−g′(x)y)+ and γ(w) = wTw. For a sample
z(1:l), The linear Support Vector Machine (SVM) induces a classifier
gw(x) = sign(g′(x)) by minimizing

R̃ =
1
l

∑
i

h(g′(x(i))y(i)) + λγ(w). (2.21)
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Y {0, 1} R

γ \ h |ξ| ξ2 (1− ξ)+ (|ξ| − ε)+ ξ2

‖w‖22 LS-SVM,KFD SVM SVR RR, RVM
‖w‖1 S-KFD LP-SVM LR
‖w‖0 AROM

Table 2.3: Some popular combinations of loss functions and regularizers.
Here, ξ = wT xy and g(x) = sign(wT x). SVM, Support Vector Machine [18];
LS-SVM, Least Squares-SVM [166]; SVR, Support Vector Regression [158];
RR, Ridge Regression [76]; RVM, Relevance Vector Machine [172]; LR, Lasso
Regression [170]; S-KFD, Sparse Kernel Fisher Discriminant [118]; AROM,
Approximation of the zero norm [186].

The SVM has become exceedingly popular during the last decade. The
name ”support vector” derives from the fact that the minima of (2.21)
turns out to depend only on a subset of the observations x(i), namely
those that are closest to the decision boundary. These were named ”sup-
port vectors” by Boser et al. [18], from the mechanistic analogy that they
”support” the decision boundary.

The formulation (2.20) appears in a multitude of linear methods, each
with a particular choice of loss function h and regularization term γ.
Some examples are shown in Table 2.3. All of these methods can be
”kernelized” by setting

g′(x) =
∑

i

αiy
(i)K(x(i), x).

There are many other ways of implementing regularization schemes. For
example, one may simplify inference problems by ”tying together” re-
lated parameters. This idea was explored in the context of Bayesian
network inference by Segal et al. [154]. Also, the probability density
factorization represented by Bayesian networks is itself a means of re-
ducing the set of solutions. The parametric assumptions explored at the
beginning of this chapter may also be viewed as a regularizing technique;
loosely speaking, parametric distribution classes are smaller than their
non-parametric counterparts.
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2.7.3 Priors and Bayesian statistics

One way to understand the problem arising in Trunk’s example is by
studying the properties of ŵTX, since the risk is given by R(gŵ) =
P (ŵTX > 0 |Y = −1). While the density of ŵTX is difficult to calcu-
late, a fairly straightforward calculation [174] shows that, for a training
data set of l samples,

E
[
ŵTX

]
=

l∑
i=1

1
i

and

Var[ŵTX] =
(

1 +
1
l

) n∑
i=1

1
i

+
n

m

Thus, while the ML estimates are unbiased, their variance increases with
n. Intuitively, with larger variance the risk of errors ŵTX > 0 |Y = −1
may increase. Therefore, if one could reduce this variance, one might
alleviate the over-fitting problem. One method for doing this is to use
a prior distribution over w, denoted π(w). The prior distribution is
thought to describe our beliefs about w before (prior to) we make the
experiment and obtain the data. We then augment the ML estimate to
take into account both the data and the prior. Specifically, we define a
posterior distribution over the parameters using Bayes’ theorem,

π(w |x) =
f(x |w)π(w)

p(x)
=

f(x |w)π(w)∫
f(x |w)π(w)dw

. (2.22)

This distribution is then used to estimate w. Some remarks are in order:

• Note that the posterior distribution over the parameter π(w |x)
has nothing to do with the posterior distribution over the target
p(y |x) defined in (2.9). In general, the term ”posterior” is used
for any distribution derived through Bayes theorem. Hopefully,
the meaning will be clear from the context throughout this thesis.

• The prior and posterior distributions use probability to describe
a ”belief” (uncertainty) about a variable rather than randomness
(the parameters wi are really constants, not random variables).
The use of the symbol π rather than p or f is meant to emphasize
this difference. This is a characteristic feature of Bayesian statis-
tics, the appropriateness of which has been a long-standing debate
in statistics; in ”classical” or ”frequentist” statistics, this interpre-
tation of probability is not ”allowed”. For the interested reader, a
good exposition of this topic is given by Berger [13].
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For inference from a sample x(1:l), one may maximize the posterior under
the usual independence assumptions,

π(w |x(1:l)) =
f(x(1:l) |w)π(w)

f(x(1:l))
=
∏

i f(x(i) |w)π(w)
f(x(1:l))

The resulting estimate is called the maximum a posteriori (MAP) esti-
mate. Other possible estimates include the mean or median of p(w |x(1:l)).
The factor f(x(1:l)) =

∫
f(x(1:l) |w)π(w) is often difficult to calculate,

but can be ignored in MAP estimation since it does not depend on w.
For Trunk’s example, consider a prior belief that most components of wi

are positive (as is actually the case). A reasonable prior might then be
a spherical Gaussian distribution over w centered at unity,

π(w) = N(w | 1, ν2I),

Having chosen a prior, we can calculate the posterior for w according to
(2.22),

π(w |x, y) ∝ f(x, y |w)π(w)

∝ e−(1−wj)
2/(2ν2)

∏
j

e−(xj−ywj)
2/2.

For data z(1:l), the joint log-posterior is

lnπ(w | z(1:l)) = −1
2

∑
i

∑
j

(x(i)
j − y

(i)wj)2 +
1

2ν2
(1− wj)2 + C.

Maximizing this, we obtain the MAP estimate as

w̃j =
ν2
∑

i y
(i)x

(i)
j + 1

lν2 + 1
. (2.23)

Note that as ν → ∞, this approaches the ordinary ML estimate (2.19);
this represents a ”completely uncertain” prior, so that the data dictates
the estimate. Conversely, for small ν the estimate will be close to the
prior mean wj = 1 regardless of the data. Moreover, if one increases
the sample size l while ν is held constant, the MAP estimate again ap-
proaches the ML estimate. A comparison of the original and regularized
estimators is given in Figure 2.12. As expected, the prior-regularized
estimate gives lower risk.

It is interesting to note that many of the regularized, non-parametric
methods discussed in the previous section (Table 2.3) can be intepreted
as Bayesian models. For example, consider the Lasso regression scheme.
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Figure 2.12: Effect of a prior distribution in Trunk’s example. Risks plotted
vs. data dimension n = dim X as in Figure 2.11. Topmost line, risk of the ML
estimate E [R(ŵ)] at sample size l = 20. Middle line, risk of prior-regularized
estimate E [R(w̃)] given by Equation (2.23). Bottom line, Bayes risk R(g∗).

Example 2.14 (Lasso regression) For Y = R, let g(x) = wTx,
h = (ŷ − y)2 and γ(g) = ‖w‖1 =

∑
j |wj |. The Lasso estimate is then

given by

min
w

∑
i

h(g(x(i)), y(i)) + λγ(g).

Lasso regression (or ”the lasso”, for short) was first introduced by Tib-
shirani [170] as an alternative to the commonly used ”ridge regression”,
which uses the regularizer γ(g) = ‖w‖2 instead [76]. A feature of the
Lasso is that the estimates of w is sparse due to the use of the L1 reg-
ularizer. While the Lasso might be considered non-parametric since no
distribution arguments are used to derive the loss and regularization
terms, it is easy to see that the method can also be obtained in a para-
metric, Bayesian setting.

Example 2.14 (Continued) Consider a regression situation with
Y |X ∼ N(w.X, σ), X ∈ Rn. For a sample z(1:l), assuming conditional
independence of the y(i) as usual, the conditional likelihood is

f(y(1:l) |x(1:l), w) =
∏

i

N(y(i) |wTx(i), σ2)

Choosing a prior over w given by

π(w) ∝ e−λ′‖w‖1 ,
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we obtain the posterior

π(w | z(i)) ∝ π(w)
∏

i

f(y(i) |x(i), w)

∝ e−λ′‖w‖1
∏

i

e−(y(i)−wT x(i))2/(2σ2).

The negative log-posterior becomes

1
2σ2

∑
i

(y(i) − wTx(i))2/+ λ′‖w‖1.

Taking λ = 2σ2λ′ and minimizing the above gives the Lasso regression
scheme.

Thus, the loss function in Lasso regularization corresponds to a Gaussian
conditional distribution Y |X, while the L1 regularizer corresponds to
a a Laplace prior π(w) = e−λ‖w‖1 , expressing a prior belief that many
wi are zero. Note that the above reasoning applies to any regularized
empirical risk of the form (2.20), and that the corresponding conditional
and prior distributions are always from the exponential family. Whether
these assumptions are reasonable or not is a separate question, but this
type of interpretation of regularization methods is useful in that it sheds
light on the underlying model.

2.8 Summary

In this chapter I have reviewed a number of concepts related to the
developments in later chapters. I introduce a statistical model where
experimental data is considered as observation from an underlying but
unknown data distribution, which contains all information about the
experiment. The data distribution can be described at different levels
of detail by parametric models (Section 2.1) or graphical models (Sec-
tion 2.2). Various learning problems, are then posed as statistical in-
ference problems. In particular, we discuss the problem of learning a
predictor the target variable (Sections 2.3 and 2.4). I then discuss how
to estimate the accuracy of predictors (Section 2.5) and discuss some
popular learning methods based on minimizing such accuracy estimates
(Section 2.6). I consider the central problem of over-fitting and various
methods of regularization that address this problem. Feature selection
is one possible solution to this over-fitting problem.
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An important idea in this chapter is that it is important to identify the
assumptions that underlie learning methods, because this makes it eas-
ier to interpret the models. Also, making assumptions explicit helps the
practitioner to choose among methods, according to what assumptions
can be judged reasonable in each particular application. An example
of this is the Bayesian interpretation of regularized linear methods dis-
cussed in Section 2.7.3. This idea is central also to the remainder of the
thesis.

There are of course many interesting methods and aspects of statistical
inference and machine learning that cannot possibly be covered in this
brief introduction. Important examples are decision trees [120], boosting
methods [53, 54] and neural networks [75]. Further, I do not consider
the density estimation problems such as data clustering [84]. However,
recent developments in the machine learning field increasingly finds that
these methods, while originating in separate ideas and often motivated
by heuristics, are in fact related in intricate ways [39, 143]. Thus, a more
coherent theory of these predictive models is now emerging, which again
is useful for the practitioner since it allows a more principled choice of
methodology.
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3
Feature Selection

Problems

In this chapter I consider in some detail various definitions of feature
selection problems, assuming a statistical data model as discussed in the
previous chapter. The main issue here is to choose a suitable definition of
relevance: when is a feature relevant to the target variable? The feature
selection problem is then to discover the relevant features from data as
accurately as possible.

The choice of a relevance definition depends on the end goal of the anal-
ysis. There may be several reasons for performing feature selection:

• Reducing dimension may improve the accuracy of an inferred pre-
dictive model.

• Each feature may be expensive to measure.

• Inference and/or prediction may be computationally costly in high
dimensions.

• Reducing the number of features may give insights into the working
of the system itself.

As I will argue in this chapter, these criteria are not wholly compatible
with each other; it may not be possible to satisfy all of them simultane-
ously. Therefore there does not exist a single feature selection problem,

53
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but rather several different feature selection problems, depending on the
precise end goal. Hence the title of this chapter.

I will devote this section to establishing rigorous mathematical defini-
tions of feature selection problems. The material in this section is purely
theoretical — I will discuss no real data and propose no algorithms. The
next chapter provides a survey of a number of feature selection algo-
rithms that attempt to solve the problems defined here.

3.1 Predictive features

As we learned in the previous chapter, in machine learning, feature se-
lection is usually intended to facilitate learning of an accurate predictor.
This is motivated by the fact that features which do not carry any in-
formation about the target variable may hinder inference of accurate
predictors due to over-fitting, as described in Section 2.7.1. A natural
point of view is then that only the predictive features should be consid-
ered to be ”relevant” for learning predictors, while the remaining features
should be ignored (the corresponding observations discarded). However,
upon careful examination it turns out that ”predictive” can be inter-
preted in different ways, depending on whether we are estimating the
posterior p(y |x) or merely a predictor g(x).

3.1.1 The Markov boundary

In Section 2.3 we discussed predictive models based on the posterior
p(y |x), which is useful when one is interested not merely in a prediction
of the most likely y, but also in some estimate of the confidence in
this prediction. For example, one may require not merely a prediction
of the type ”patient X has breast cancer”, but rather a probabilistic
statement such as ”there is a 93% probability that patient X has breast
cancer”. In this case, the ”predictive” features is the set of features that
influences the the posterior p(y |x). This feature set is known as the
Markov boundary of Y .

Definition 3.1 (Markov boundary). The Markov boundary XM of a
variable Y is the smallest set S ⊆ Vn that satisfies

Y ⊥ X¬S |XS (3.1)

Here ⊥ denotes conditional independence (Section 2.2). By the definition



3.1 Predictive features 55

A B

Figure 3.1: Illustration of the Markov boundary (circles) of a target variable
Y (square) using graphical models. A: Markov (undirected) network represen-
tation. B: Bayesian (directed) network representation.

of conditional independence, equation (3.1) is equivalent to the identity

P (p(Y |X) = p(Y |XM )) = 1. (3.2)

From this is should be clear that the Markov boundary indeed consists
exactly of the features which affect the posterior. Note that here p(Y |X)
and p(Y |XM ) are themselves random variables, representing the true
probability (density) functions evaluated at X,Y . The outer P (· · ·) = 1
is a technicality required for continuous X to ensures that events ξ ∈ X
with zero probability do not affect the statement of conditional indepen-
dence. For discrete X , the above can also be written as

∀y, x : p(y |x) = p(y |xM ).

An equivalent definition for discreteX and Y given by Koller and Sahami
[101] is ∑

x∈X ,y∈Y
p(y |x) ln

p(y |x)
p(y |xM )

= 0.

For continuous X or Y , the respective sum is replaced by an integral.
The left hand side here is the well-known Kullback-Leibler divergence
between p(Y |X) and p(Y |XM ), which is always nonnegative and equals
zero if and only if the distributions coincide [104].

The Markov boundary concept can be visualized using graphical models
(Section 2.2). For Markov networks (undirected graphs), the Markov
boundary of a node Y can be shown to consist exactly of the neighbors
of Y in the graph (Figure 3.1A). The intuitive interpretation is that these
neighbors ”captures” all ”information flow” to Y , and hence contains all
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information needed to predict the state of Y . For Bayesian networks
(directed graphs), the Markov boundary consists of the parents of Y ,
the children of Y , and the parents of the children of Y (Figure 3.1B).

A related concept is a Markov blanket, defined as any set S satisfy-
ing Y ⊥ X¬S |XS [130]. Hence, the Markov boundary is the minimal
Markov blanket. A Markov blanket is clearly not unique, since any su-
perset of the Markov boundary is a Markov blanket. The trivial Markov
blanket is of course X itself. Unfortunately, this terminology is not stan-
dardized: some authors instead refer to the Markov boundary as ”the
Markov blanket” [175], so care must be taken when consulting the liter-
ature. Guyon et al. [69] also refer to the Markov boundary as a ”surely
sufficient feature subset”.

An important fact for devising feature selection algorithms is that the
Markov boundary is unique for any strictly positive data distribution.
The following theorem is given by Pearl [130].

Theorem 3.2. For any data distribution f(x, y) satisfying f(x) > 0,
the Markov boundary M∗ is unique.

Proof. Let S be the set of all Markov blankets of Y ,

S = {T ⊆ Vn : Y ⊥ X¬T |XT }.

Let T1, T2 be any two Markov blankets in S. Since f(x) > 0, by Theo-
rem 2.10 the intersection property holds, so with T ′ = T1 ∩T2 we obtain{

Y ⊥ X¬T1 |XT ′∪(T1\T ′)

Y ⊥ X¬T2 |XT ′∪(T2\T ′)
=⇒ Y ⊥ X¬T ′ |XT ′

Hence T ′ is a Markov blanket of Y . Continuing in this fashion for all
members of S, we obtain the unique Markov boundary M∗ = T1 ∩ T2 ∩
· · · ∩ T|S|.

Feature selection methods for inferring the Markov boundary of Y from
data will be discussed in Section 4.1.4.

3.1.2 The Bayes-relevant features

From equation (3.2) it is clear that the Markov boundary contains ex-
actly the features that affect the posterior distribution p(y |x). However,
we saw in section 2.4 that often, one does not estimate the posterior di-
rectly, but rather directly estimates the Bayes predictor g∗(x). In some
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P = 1

g(X'1,X2)

g(X1,X2)X1

X2

x1 x'1

g(x)

Figure 3.2: The concept of relevance to a predictor g for a two-dimensional
case. Left, a function g(x1, x2) which is constant with respect to x1. Crosses in-
dicate two observations (x1, x2) and (x′1, x2) where x2 is held constant. Taking
samples in this manner defines two random variables g(X1, X2) and g(X ′

1, X2),
where X ′

1 and X1 and independent and identically distributed. If these are
equal with probability 1 (right), then X1 is not relevant to g.

cases, this an easier estimation problem (Section 2.4). This suggests a
different definition, which considers as relevant only the features that
affect the Bayes predictor. First we define this relevance concept for any
predictor.

Definition 3.3. A feature Xi is relevant to a predictor g iff

P (g(Xi, X¬i) 6= g(X ′
i, X¬i)) > 0, (3.3)

where Xi, X
′
i are independent and identically distributed., and X¬i de-

notes the vector of all features except Xi.

A definition of relevance very similar to the above was first suggested
by Blum and Langley [16], although not in the probabilistic form used
above. The left-hand side measures the probability that g will change
its value (its prediction) merely due to a change in Xi. Note that in
the above, Xi and X ′

i are two identical variables corresponding to two
samplings from the feature Xi, while the values of the remaining fea-
tures are held constant; an illustration is given in Figure 3.2. Thus, the
probability measure is over the domain X × Xi.
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As with definition 3.1, the criterion (3.3) can be put into integral form∫
X×Xi

p(x, x′i) [g(xi, x¬i)− g(x′i, x¬i)] d(x, x′i) > 0.

The Kullback-Leibler divergence is not appropriate here though, since
g∗ is not a probability.

The definition of relevance to the Bayes predictor is now simply a special
case of the above.

Definition 3.4 (Bayes-relevant). A feature Xi is said to be Bayes-
relevant if it is relevant to the Bayes predictor g∗ in the sense of definition
3.3. The set of Bayes-relevant features is denoted by S∗.

Note that we here implicitly assume that the Bayes predictor is unique;
otherwise definition 3.3 does not define a unique set S∗. Specifically, we
will require uniqueness of g∗ in the following sense.

Definition 3.5. The Bayes rule g∗ is said to be unique if for every g
with R(g) = R(g∗),

P (g(X) = g∗(X)) = 1

In words, by ”unique” we mean that every classifier attaining the Bayes
risk makes the same predictions with probability 1. This issue is not
entirely straightforward, because the definition of the Bayes predictor
(Equation (2.12)) does not define a unique function; it leaves open the
choice of the function g′ for breaking ties p(y |x) = p(y′ |x). Hence, if
”ties” occur with nonzero probability, then one could devise two optimal
classifiers with are not identical in the above sense. This is remedied
when necessary by the following assumption on f(x, y), which simply
prohibits ”ties” to occur.

Assumption 3.6.

P (∃y 6= y′ : p(y |X) = p(y′ |X)) = 0

Under this assumption, we now establish the required uniqueness.

Theorem 3.7. For any distribution f(x, y) satisfying assumption 3.6,
the Bayes classifier g∗ is unique in the sense of definition 3.5.

Proof. We consider the case of discrete Y and 0-1 loss. From Theo-
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rem 2.18 we have that, for any y0 ∈ Y,

P (g(X) 6= Y |X = x)− P (g∗(X) 6= Y |X = x)
= (2p(y0 |x)− 1)(1{g∗(x)=y0} − 1{g(x)=y0})
= |2p(y0 |x)− 1|1{g∗(x)6=g(x)}

Integrating with respect to p(x)dx,

R(g)−R(g∗) = P (g(X) 6= Y )− P (g∗(X) 6= Y )

=
∫
X
|2p(y0 |x)− 1|1{g∗(x)6=g(x)}f(x)dx.

For discrete Y, Assumption 3.6 implies |2p(y0 |x) − 1| > 0 with proba-
bility 1. Therefore, the above integral is positive if and only if∫

X
1{g∗(x)6=g(x)}f(x)dx = P (g∗(X) 6= g(X)) > 0.

This result immediately establishes uniqueness of S∗.

Corollary 3.8. For any distribution f(x, y) satisfying assumption 3.6,
the set S∗ of Bayes-relevant features is unique.

In some particular cases the Markov boundary and the Bayes-relevant
features coincide. An important example of this is the Gaussian mixture
in example 2.5. This is easy to see directly from the form of the posterior
and Bayes classifier in this case. If S = {i : wi 6= 0}, then

p(y |x,w) =
[
1 +

p(−y)
p(y)

exp
{
−2yxTw

}]−1

=
[
1 +

p(−y)
p(y)

exp
{
−2yxT

SwS

}]−1

= p(y |xS , wS),

so that S is the Markov boundary of Y . Also, g∗(x) = sign(wTx) =
sign(wT

SxS), so that (3.3) holds for g∗ iff i ∈ S, and therefore S = S∗.

3.2 Small sample-optimal features

In the previous section we identified two sets of predictive features, those
that influence the posterior (Markov boundary) or the Bayes predictor
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(Bayes-relevant features). Both of these concepts are idealizations, since
in practise, given limited training data, we cannot determine the poste-
rior or Bayes predictor exactly. One might say that these feature sets
are asymptotic cases, as they are optimal in the large sample limit. In
this section I consider the small-sample case.

We saw in 2.7.1 that the performance of an inferred predictor may de-
grade with the number of features, even if the Bayes error is decreasing,
due to over-fitting. Thus, in practise the feature set optimal for infer-
ring an accurate predictor may be smaller than S∗. A more appropriate
definition of the optimal feature set for small samples is the following.

Definition 3.9 (Expectation-optimal feature set). For a given data dis-
tribution, a sample size l, and an inducer IS, an expectation-optimal
feature set S† satisfies

∀S : E [R(IS†)] ≤ E [R(IS)] .

To be precise, we here require a family of inducers {IS(Z(1:l)
S ) : S ⊆ Vn},

i.e., one inducer IS for each possible subset S, so that the expected risk
can be evaluated for every S. This is not a problem in practise since
inducers are typically well-defined for any input space XS (otherwise,
feature selection would not work). Consequently, when speaking of ”the
inducer”, it is implicitly that we have a family of IS .

By definition, S† is the best possible choice for a particular inducer, data
distribution and sample size. Unfortunately, this feature set is difficult to
analyze theoretically, precisely because it depends on the inducer. For
this reason, I will focus on the more tractable Bayes-relevant features
in chapter 6. Under some conditions on the data distribution and the
inducer I, it can be shown that S† ⊆ S∗. I will defer the discussion of
this issue to Section 6.1.3.

If two or more features Xi, Xj are identically distributed, then the set
S† may not be unique (even though S∗ is). In Chapter 7, we will find
that this leads to ”instability” for methods that attempt to approximate
S†; that is, different feature sets are obtained when one tries to replicate
experiments. Finally, it should be noted that one could consider opti-
mality with respect to other measures than the expectation value. For
example, one might want to minimize the median risk, or perhaps the
5%-percentile of the distribution of R(IS). Thus, the above definition of
S†, while reasonable, is somewhat subjective.

Tsamardinos and Aliferis [176] recently raised the issue that many fea-
ture selection papers (notably those concerning ”filter” methods, Sec-
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tion 4.1) unfortunately do not recognize that S† depends on the choice of
inducer. This dependence was also the major motivation for the ”wrap-
per” approach introduced by Kohavi and John [97], which I review in
Section 4.2.

3.2.1 The min-features bias

In many applications a small set of predictive features is preferable.
One reason may be that the computational cost of inference and/or
prediction is too high for large feature sets; this is important in real-time
applications such as computer vision [28], but probably less important
in biological applications. Another plausible reason is that a smaller
feature set may be easier to interpret intuitively. Thus, many methods
attempt to optimize the feature set with an explicit bias towards small
sets, even if this means sacrificing some predictive performance. This is
referred to as the min-features bias [6]. It may be formulated as follows.

Definition 3.10. The min-features problem is defined as

min
S⊆X

E [R(IS)] + λ|S|. (3.4)

A set which is a solution to this problem is called a min-features set and
is denoted S‡λ.

This feature set is also referred to as ”minimal approximately sufficient”
by Guyon et al. [69]. Like S†, this set clearly depends on the inducer
and the sample size, and is in general not unique. It also depends on
the parameter λ, which controls the strength of the bias towards small
S. This problem formulation may be viewed is a form of regularization,
with |S| as the regularization term (cf. Section 2.7.2); I will discuss this
connection further in Section 4.3. Note also that one obtains S† as
λ → 0 in (3.4). Hence, it must hold that S‡λ ⊆ S† for all λ. A number
of techniques that address the min-features problem are discussed in
Section 4.3.

3.2.2 k-optimal feature sets

A variant of the above is to simply fix the feature set size k in advance
and attempt to solve the optimization problem

min
S

E [R(IS)] subject to |S| = k.
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We call the solution to this problem a k-optimal feature set. This prob-
lem was studied extensively in early feature selection research [33, 94,
121]. This problem formulation was motivated in an optimization setting
rather than in a statistical setting, and is therefore somewhat difficult
to relate to the other formulations examined above. If we know that
k ≤ |S†|, then intuitively a k-optimal feature set corresponds to a min-
features set S‡λ for some value of λ, and in this case the latter formulation
may be used instead. However, if k > |S†|, then the meaning of a k-
optimal feature set is less clear.

3.3 All relevant features

In the previous section we considered the most predictive features, moti-
vated by the problem learning accurate predictors. This has also been the
primary motivation for performing feature selection in machine learning
literature [67, 97]. However, for biological data we are primarily inter-
ested in features of biological importance: examples include genes with
a genetic association to a particular disease, key players in biological
pathways of interest, residues in an enzyme that mediate its mechanism
of action, DNA sequence features that affect gene regulation, etc. Nat-
urally, ”biological interest” is a rather fuzzy concept — often in biology,
one cannot know in advance exactly what one is searching for, and so
precise definitions are unfortunately lacking. Consequently, in analy-
sis of biological prediction problems, researchers often use relevance for
prediction as a substitute for biological relevance, in want of a better al-
ternative. However, it is not obvious that the most predictive variables
are always the most ”interesting”. Consider the following example.

Example 3.1 A target variable Y is affecting the expression level
of a transcription factor T1, which in turn is affecting the expression
level T2 of some effector protein. Both T1 and T2 are observed only
indirectly, through measurements X1, X2. A Bayesian network repre-
senting this situation is given in Figure 3.3A. Here Y ∈ {+1,−1} and
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(T1, T2, X1, X2) ∈ R4. Let the local probabilities be

p(y) = 1/2,

f(t1 | y) = N(t1 | y, σ2)

f(t2 | t1) = N(t2 |βt1, σ2)

f(x1 | t1) = N(x1 | t1, ν2)

f(x2 | t2) = N(x2 | t2, ν2).

Here σ represents noisy transcriptional regulation while ν represents
measurement noise The marginal densities for x1 and x2 are easily found
by integrating out t1 and t2,

f(x1 | y) = p(y)N(x1 | y, ν2 + σ2)

f(x2 | y) = p(y)N(x1 |βy, ν2 + σ2 + β2σ2).

Clearly, the best individual predictors are g1(x1) = sign(x1) and g2(x2) =
sign(x2), respectively. From Equation (2.17) we find that R1(g1) >
R2(g2) if and only if

1
ν2 + σ2

<
β2

ν2 + σ2 + β2σ2

For σ = 1, Figure 3.3B depicts this region the parameter space (β, ν).

In this example, marginalizing out the unobservable true transcript levels
can result in a distribution f(x1, x2, y) where X2 is a better predictor of
Y than X1 even though T1 is a direct effect of the target Y , while T2

is a downstream effect. This happens because T1 is expressed in small
amounts compared to T2, i.e., when the amplification β is large (figure
X), while measurements X1, X2 have some constant additive noise level.

Indeed, transcription factors are often present in very small amounts and
are therefore difficult to detect with microarrays, leading to poor signal-
to-noise ratios [78]. Yet, these genes are biologically very important as
they are involved in regulation of other genes. For example, they are
often implicated in for example cancer development [35]. Therefore, to
avoid missing out on important but minutely expressed genes like T1,
we might prefer a definition of ”relevance” which includes all genes that
are somewhat statistically dependent of Y , as opposed to only the most
predictive ones. The notion of statistical dependency we require here is
the following.

Definition 3.11 (Relevance). A feature Xi is relevant to Y iff

∃S ∈ Vn : Y 6⊥ Xi |XS . (3.5)
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Figure 3.3: Graphical illustration of Example 3.1. A: Network structure for
the problem. β denotes the amplification factor while ν denotes measurement
noise. B: Plot over the parameter space (β, ν). In the shaded region, the risk
R1 for the predictor using X1 is greater than R2, using X2.

A feature Xi is irrelevant to Y iff it is not relevant to Y. The set of all
relevant features is denoted SA.

Unfortunately, the term ”relevance” is often used casually in feature
selection literature, without any clear definition. As often as not, some
other definition than the above may be intended, so care must be taken
when comparing literature. From the negation of (3.5),

∀S ∈ Vn : Y ⊥ Xi |XS , (3.6)

it is clear that if Xi is irrelevant, then it is statistically independent of Y
no matter which features are conditioned on or marginalized out. As with
the Markov boundary, this definition can also be expressed using a distri-
bution divergence measure. The following formulation is given by Guyon
et al. [69]. Since (3.6) can be written as p(y, xi |xS) = p(y |xS)p(xi |xS),
then for discrete X and Y it is equivalent to

∀S ∈ Vn :
∑

xi∈Xi,xS∈XS ,y∈Y
p(y, xi |xS) ln

p(y, xi |xS)
p(y |xS)p(xi |xS)

= 0.

Since the irrelevant features contain no information about Y whatsoever,
SA is the maximal set of features with some association to Y . Therefore,
if one could learn this set, that would ensure that no feature of potential
(biological) importance goes unnoticed.



3.3 All relevant features 65

3.3.1 The univariate case

In many applications to biological data, it is common to consider the par-
ticular subset of SA which are marginally dependent on Y , that is, the
features Xi which satisfy Y 6⊥ Xi | ∅, or equivalently p(Y |Xi) 6= p(Y ).
This is a rather narrow special case of (3.5), with the empty conditioning
set S = ∅. It is often further constrained to particular forms of depen-
dence, such as difference in class-conditional expectations E [Xi |Y = y]
for classification problems, or linear correlation for the regression case.
The primary reason for restricting analysis to the univariate case is of
course that univariate problems are comparatively simple. A survey of
methods for solving this case is found in Section 4.1.1.

3.3.2 The multivariate case

It is in no way apparent from biology that the above univariate case
should be the most ”interesting” one, even though it certainly is the
most tractable and (therefore) well-studied situation. While we in Ex-
ample 3.1 considered a simple network consisting of only two genes, in
reality gene expression is known to be governed by large, complex net-
works of regulatory interactions involving many transcription factors and
effector proteins [95, 167]. For example, the tumor suppressor p53, one
of the most studied cancer-related genes, is currently known to interact
with more than 200 other genes according to the HPRD database [133].
This suggests that the statistical dependencies among gene expression
levels and similar biological measurements may be highly multivariate.

I therefore consider the general problem of inferring SA in chapter 8. It
turns out that identifying SA from data is in many ways much harder
than identifying the Markov boundary or the Bayes-relevant features.
Yet, I find that there exists fairly general distribution classes where the
problem is tractable. However, in some cases the set SA may be very
large, and therefore not very useful for identifying ”interesting” genes.
In such situations, other methods of prioritizing among the genes in SA

are needed. One may then resort back to the predictive features, or
perhaps apply some external criteria motivated by biology.
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3.4 Feature extraction and gene set test-

ing

A different way to reduce dimension and thus overcome the over-fitting
problem (Section 2.7.1) is to somehow transform the input space X into
some lower-dimensional space X ′. For example, we might consider pro-
jecting the points in X onto a linear subspace of dimension m < n
[71]. This process is called feature extraction. It may be seen as a gen-
eralization of feature selection, since feature selection is the particular
transformation x 7→ xS for some set S ⊂ Vn. While feature extraction
methods can be effective for inferring predictors [11, 136], the results are
not easy to interpret in terms of the original features since each trans-
formed feature is a ”mix” of the original features Xi. For this reason, I
do not consider feature extraction methods in this thesis.

A related problem which has recently been given much attention in gene
expression analysis is gene set testing [61]. Here, prior knowledge of
functional groups of genes is used to define a number of feature sets
S1, . . . , SK independent of data. Then, for each k = 1, . . . ,K, a measure
of (multivariate) dependence between XSk

and Y is constructed. Similar
to feature extraction methods, this may be effective in terms of deciding
whether each Sk is associated with Y , but it says nothing about the
individual features Xi in each Sk. As with feature extraction methods,
dependence is now measured against some mixture of the Xi, and is
therefore more difficult to interpret. Nevertheless, gene set testing still
yields biologically informative results because the Sk were defined from
domain knowledge. Some methods for feature extraction and gene set
testing are briefly surveyed in Section 4.4.

3.5 Summary

In this chapter I have defined a number of feature selection problems.
In my opinion, a major impediment to feature selection research is that
the particular problem considered is often not stated clearly, with a for-
mal and operational definition. As a result, the various feature selection
problems are easily confounded. Perhaps this tendency is part of a more
general but unfortunate trend in machine learning, to focus on algo-
rithm development without first carefully considering what problem one
is trying to solve. Quoting from Almuallim and Dietterich [6],
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Figure 3.4: An overview of the feature sets defined in this chapter. Each
smaller set is included in the larger, surrounding set. Gray area represents the
univariate case of each set. Note that the inclusion S† ⊆ S∗ is subject to some
constraints; see Section 6.1.3.

”there is no separation between a specification of the desired
learning behavior of the algorithm and its implementation
. . . consequently, it is difficult to tell in advance whether the
[algorithm] is appropriate for a new problem.”

This quote is from 1991; as described in the previous chapter, the sit-
uation has improved since then, particular for prediction methods. For
feature selection, however, this problem is still present. In this chapter,
I have tried to address this issue by rigorously defining a set of common
feature selection problems and the corresponding feature sets. Figure 3.4
summarizes the relations between these sets. In summary, feature selec-
tion problems can be roughly divided into two rather different types: (i)
finding the predictive features, which are important for building accurate
predictors, and (ii) finding all features relevant to the target variable.

Problem (i) can be further subdivided depending on the type of predic-
tion. If one desires a measure confidence in the prediction (posterior
probability), then in general more features are required than if one does
not. Also, for large samples (the asymptotic case) more features are use-
ful than for small samples, as a consequence of the over-fitting problem
(Section 2.7.1). Most methods from the machine learning field are of this
type. In practise, this problem formulation is useful when (1) the end
goal is the predictor and the relevant features are of limited interest, or
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(2) when the set of relevant features is too large to analyze, and it seems
sensible to focus on analyzing the predictive features. In Chapter 6 I
consider this problem in detail.

Problem (ii) is relevant whenever one wants to ensure that no feature
associated with the target variable is missed. This problem formulation
can also be divided into several simplified subproblems by considering
particular classes of distributions. In particular, statistical methods such
as differential expression testing treat the one-dimensional special case of
problem (ii). I believe that this problem is often relevant in genome-wide
experiments, as illustrated in Example 3.1. I will treat this problem in
more detail in Chapter 8.



4
Feature Selection

Methods

In this chapter I review existing methods for feature selection. Formally,
I define a feature selection method as follows.

Definition 4.1. For a given data set z(1:l), a feature selection method
is a mapping

Φ(z(1:l)) : Z l 7→ 2Vn ,

where 2Vn is the power-set of Vn, 2Vn = {S : S ⊆ Vn}.

In words, a feature selection method selects a subset S of Vn for each
given data set z(1:l). As with inducers, when the data set is viewed
as a random variable Z(1:l), then naturally Φ(Z(1:l)) is also a random
variable on 2Vn . In machine learning literature, feature selection methods
are traditionally divided into filter methods (or simply ”filters”), which
perform feature selection independent of any particular inducer, and
wrapper methods (or ”wrappers”), which try to optimize the feature
set for a given inducer. More recently a third category, the embedded
feature selection methods, has been added to this system. This chapter
is organized according to this system. In addition, I provide a brief
summary of feature extraction and gene set testing in Section 4.4.

For each section and each method, I try to relate to the corresponding
feature selection problems defined in the previous chapter. This is not

69
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always trivial, since many methods are not grounded in any such theory,
but rather motivated by intuition and heuristics. Often, determining
exactly what problem each FS method really tries to solve is something
of a ”reverse engineering” task. In my opinion, this is unfortunate for
the interpretability of the results from these methods; more about this
issue in chapter 9. Therefore I will throughout this chapter strive to
identify the target set for each for each feature selection method dis-
cussed. Asymptotically, this amounts to analyzing the consistency of
each method.

Definition 4.2. A feature selection algorithm Φ(Z(1:l)) is consistent
with respect to a feature set S if

Φ(Z(1:l)) P−→ S.

The set S is called the target set of Φ.

The target set S to which a given method Φ can be shown to converge will
in general be various subsets of the sets defined in the previous chapter
(SA, S∗, S†, etc.). Often, it is hard to obtain convergence results to a
precisely determined target set S, but it may still be feasible to state a set
which must enclose the target set to which the method converges. To my
knowledge, this type of analysis is novel for many of the methods herein.
Hopefully, this will lead to better understanding of the available feature
selection methods and their relations to each other, and to some extent
explain which methods are suitable for which problems. An overview of
these (fairly complicated) relations is given in Figure 4.1.

Results for for small samples are much harder to derive and is known only
in some very simple situations. I will state such results when possible.

4.1 Filter methods

The distinction between filter and wrapper methods was first described
in a seminal paper by Kohavi and John [97]. The definition of a filter
method is that it ”attempts to assess the merits of features from the
data alone” [99], that is, without considering any particular inducer I.
Admittedly, this definition is somewhat vague. Nevertheless, it allows
a few observations: since filter methods are oblivious to the choice of
predictor (if any), they must be derived from, or at least motivated by,
properties of the data distribution itself.
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Figure 4.1: The feature sets established in the previous chapter, indicating
the ”target” set for methods presented herein.

Hence, filter methods cannot estimate the expected-optimal set S†, since
this set depends on a particular inducer I. More precisely, for a given
filter method Φ, it may be possible to construct an inducer I such that
its corresponding S† coincides with the target set of Φ; however, this
is then the only I for which Φ is optimal. In other words, there is no
”universal” filter method that is optimal at small samples regardless the
predictor chosen. This fact was stated as a ”no free lunch” theorem by
Tsamardinos and Aliferis [176]. Typically, the analysis in this section
will show that the target set of each filter method is some particular
subset of S∗ or SA.

4.1.1 Statistical hypothesis tests

Statistical hypothesis tests measure the dependency of individual fea-
tures Xi on the target variable, and hence concern themselves with the
marginal distributions f(xi, y) only. These tests will identify any feature
with a statistically significant dependence, and do not attempt single
out the most predictive features. Therefore, their target set is always
the subset of the relevant features SA which are ”marginally relevant”,
that is, Xi such that Y 6⊥ Xi | ∅ (Figure 4.1).

The ideas underlying hypothesis testing are part of classical statistics; a
comprehensive treatment is given by Lehmann [107]. Briefly, the hypoth-
esis tests we are interested in assume two complementary hypotheses: the
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null hypothesis Hi
0, which states that the feature Xi is irrelevant to (in-

dependent of) Y , and the alternative hypothesis Hi
1, which states that

it is relevant (dependent). Clearly, every feature belongs to either Hi
0 or

Hi
1. A statistical test can then be defined a function φi : Z l 7→ {1, 0} of

the observations for feature Xi, which decides (”calls”) that Hi
0 is true

if φi(z
(1:l)
i ) = 0 and H1 if φi(z

(1:l)
i ) = 1. This decision may or may not

be correct, of course. How often the test is correct is measured by two
error rates: the ”type I” error rate

P
(
φi = 1 |Hi

0

)
,

which measures how often feature Xi is called relevant by φi when it in
fact is not, and the ”type II” error rate

P
(
φi = 0 |Hi

1

)
,

which measure the opposite situation. The type I error rate is also re-
ferred to as the false positive rate, and the type II error rate is referred to
as the false negative rate. I prefer these latter terms since their meaning
is clearer and easier to remember. The power of a test is defined as 1
minus the false negative rate, that is, power is the probability that false
null hypotheses are rejected, P

(
φi = 1 |Hi

1

)
.

Classical statistical tests always have a single parameter α, referred to
as the level of the test. Ideally, tests are constructed so that, under
some appropriate distribution assumptions, the false positive rate can
be proven to be less than α,

P
(
φi = 1 |Hi

0

)
≤ α. (4.1)

When the above is satisfied, we say that φi is a level α test, or that the
test is exact. If equality holds in (4.1), then we say that φi is a size α
test [21]. (Some statistical textbooks do not distinguish between size and
level, however.) If a test does not satisfy (4.1), we distinguish between
the nominal level α and the realized level, which is the actual value of
P
(
φi = 1 |Hi

0

)
. Of course, one would always like to construct tests so

that the nominal and realized levels coincide, but in practise this is not
always possible.

From a set of hypothesis tests φi, i = 1, . . . , n, it is straightforward to
define a feature selection method

Φ(z(1:l)) = {i : φi(z
(1:l)
i ) = 1}. (4.2)

Since this Φ depends only on the marginal distributions f(xi, y), it
clearly ignores any multivariate effects. If we may further assume some
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particular density for these marginals, we obtained so-called parametric
tests; if we refrain from making such distribution assumptions, the tests
are nonparametric. But in either case, it should be remembered that
we are assuming that the relevant features can be detected merely by
observing their marginals. This is correct only in a rather narrow class
of data distributions f(x, y).

There are also many multivariate statistical tests which do consider the
joint distribution f(x, y). However, these are not interesting for feature
selection, since they test a single hypothesis for all features, and so con-
stitute a single function φ(z(1:l)) 7→ {0, 1}. This function cannot be used
directly as a feature selection method according to (4.2). However, mul-
tivariate tests can be used together with search methods (Section 4.1.5)
and are also useful for gene set testing; a brief survey is given in Sec-
tion 3.4.

Testing for marginal dependence

For continuous Y , the most popular tests for dependence concern linear
correlations between an Xi and Y ,

r =
Cov(Xi, Y )√
VarXi VarY

.

Fisher’s t-test is a parametric test for correlation assuming a bivariate
Gaussian f(xi, y), with null hypothesis Hi

0 : r = 0. Given the Pearson
sample correlation estimate

r̂ =

∑
j(x

(j)
i − x̄i)(y(j) − ȳ)√∑

j(x
(j)
i − x̄i)2

∑
i(y(j) − ȳ)2

,

The Fisher t-test computes a statistic

t =
r̂
√
l − 2√

1− r̂2
,

which under the Gaussian assumptions has a Student t distribution with
l−2 degrees of freedom [138]. Under these assumptions, this test is exact
for small samples, and is also known to have optimal power [21].

Another common test based on Pearson’s correlation measure is the
Fisher z-test (often confused with the above). This test computes the
statistic

t = tanh−1 r̂ =
1
2

ln
1 + r̂

1− r̂
,
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which is asymptotically Gaussian, f(t) = N(tanh−1 r, (l− 3)−1) for any
f(xi, y) due to the central limit theorem [49]. The test is therefore
asymptotically correct.

For small samples however, both tests may be misleading since Pearson’s
r̂ can be very inaccurate when f(xi, y) is not Gaussian. Notably, ”out-
liers” can have dramatic effects and may result in large false positive
rates. For such situations, tests based on rank correlation measures such
as Spearman’s may be used instead [108]. These are much more robust
against outliers and still retain most of the power of the parametric tests,
unless sample size is very small (l < 20). Note that, while these tests
are often referred to as ”distribution-free”, they still assume that we are
testing a linear correlation, so they are not general independence tests.

General independence tests for continuous Y exist, although they are
less well known. Some tests based on kernel methods are discussed by
Gretton et al. [65]. General independence measures such as the mutual
information [34] may be also be used, for example with together with
permutation tests [52] (see below). However, these independence mea-
sures generally require more data than the simpler tests discussed above
in order to be informative.

Differential expression tests

For binary Y = {+1,−1}, testing the null hypothesis Hi
0 : Y ⊥ Xi | ∅

is equivalent to testing whether the conditional distributions f(xi |Y =
+1) and f(xi |Y = −1) differ. A well-known non-parametric statistical
test for this is the Kolmogorov-Smirnov test [138], which is known to be
consistent for any distribution f(xi, y) by the Glivenko-Cantelli theorem
[181, pp. 42].

An important special case here are features which differ in expectation
between the two classes, i.e., features Xi that satisfy

E [Xi |Y = +1] 6= E [Xi |Y = −1] . (4.3)

In gene expression analysis, this type of dependence is termed differen-
tial expression. The most popular test in this case (and probably the
most well-known of all) is Student’s t-test [164]. This test is exact for
small samples if both f(Xi |Y = +1) and f(yi |Y = −1) are Gaussian
with equal variances. For unequal variance, the correction by Welch
[184] yields a conservative, nearly exact test. However, like Pearson’s
r̂, Student’s t-test is unreliable when the true marginal distributions
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are non-Gaussian. A variety of general non-parametric tests also exist,
including Wilcoxon’s rank sum test and the Whitney-Mann U test [108].

In microarray analysis, testing for differential expression has been stud-
ied extensively, and a plethora of methods tailored to the particular
distributions observed in microarray data have been proposed. Re-
cently, Bayesian hypothesis testing methods [10, 45, 124] have been es-
pecially popular, as these include correction for multiple testing (see
Section 4.1.2) and appear to have good power. For a recent review of
this topic, see Allison et al. [5].

Permutation tests

The permutation test, originally introduced by [135], is a general method
for obtaining a statistical test from any statistic T that measures de-
pendence between two variables. Permutation tests are non-parametric
and provide exact confidence levels under mild assumptions. A modern
treatment is given by [63].

Let Ti = T (X(1:l)
i , Y (1:l)) ∈ R be a measure of dependency such that,

under Hi
0, Ti ⊥ Yi. Then, under Hi

0 it is clear that the distribution
of Ti will not change if one permutes (re-orders) the vector Y (1:l) =
(Y (1), . . . , Y (l)). Thus, under Hi

0, every statistic T ′i computed from per-
mutations of Y (1:l) is distributed identically to Ti, so that a large number
of such permuted statistics may be used as an estimate of the distribu-
tion of Ti. Therefore, an observed ti which is ”extreme” with respect to
this distribution, that is P (|Ti| > |ti|) ≤ α indicates that Hi

0 should be
rejected. The key result is the following [63].

Theorem 4.3. For a set of permuted statistics T (1)
i , . . . , T

(N)
i , if Hi

0 is
true, then

1
N

E
[
|{j : |T (j)

i | > |ti|}|
]

= P
(
Ti > t |Hi

0

)
.

The above implies that the permutation test given by

φi(ti) =
{

1, |{j : |t(j)i | > |ti|}| < Nα
0, otherwise

has level α. However, to obtain a reasonably powerful test, N has to
be quite large. For a single test, N = 1, 000 might give good power
at α = 0.05, while for multiple tests or more stringent α we might
need much larger N , perhaps on the order of 106. Thus, unless the
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statistic T is easy to compute, permutation tests may require a lot of
computations. Nevertheless, permutation tests are very useful and quite
popular in biological applications [82].

4.1.2 The multiple testing problem

A pervasive problem in hypothesis testing for high-dimensional data is
test multiplicity, also known as the multiple testing problem. This issue
arises as soon as more than one test is made, in the following fashion.
Consider a feature selection method (4.2), which makes n tests φ1, . . . φn,
each of level α. By definition, the expected number of errors is then

E
[∣∣∣Φ(Z(1:l)) ∩ {i : Hi

0}
∣∣∣] = E

∑
i:Hi

0

φi(Z(1:l))

 .
In the worst case, if all Hi

0 are true, this expectation equals nα, which
for a typical genome-wide data set with n = 104, α = 0.05 yields 500
errors and no true positives. If the fraction of true Hi

1 is small, we still
obtain about 500 errors and only a few true positives. We might attempt
to compensate for this by lowering α (see next section), but when doing
so we will inevitably lose power. This is the multiple testing problem. It
is yet another manifestation of the problem that, with increasing data
dimension, statistical inference becomes more difficult.

The family-wise error rate

The most immediate technique for compensating for multiplicity is to
adjust the tests to be more stringent. Instead of constructing level α
tests, which control the false positive rate, a first intuitive idea is to
construct tests which control the family-wise error rate.

Definition 4.4. For a set of null hypotheses H1
0 , . . . ,H

n
0 and a corre-

sponding set of tests φ1, . . . , φn, the family-wise error rate (FWER) is
defined as

P
(
∃i : φi(Z(1:l)) = 1 |H(1:n)

0

)
,

where H(1:n)
0 is the complete null hypothesis

H
(1:n)
0 = H1

0 ∧ H2
0 , ∧ · · · ∧ Hn

0 .
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In words, the FWER is the probability that a single error is made by
any of the tests φ1, . . . , φn. Typical methods for controlling the FWER
are based on the p-value concept.

Definition 4.5 (P-value). A p-value for a given null hypothesis H0 is
a random variable p ∈ [0, 1] satisfying

P (p ≤ α |H0) ≤ α

for all α ∈ [0, 1].

The traditional notation here is a rather confusing: p is test statistic,
a random variable computed from data as p = p(Z(1:l)), and yet it is
denoted by a lowercase symbol. Moreover, it is easy to confuse p-values
with probability functions such as p(x). It should therefore emphasized
that the p-value is not a probability; it is a random variable. This is a
source of much confusion, but unfortunately the notation is now fixed
by convention.

The p-value statistic is useful because a level α test is immediately ob-
tained from p as

φ(p) =
{

1, p < α
0, p ≥ α .

The p-value also has the fairly intuitive interpretation that an observed
value p is the lowest level for which the test φ(p) would reject the null
hypothesis. Therefore, the p-value effectively measures the ”confidence”
in the rejection. However, I again emphasize that it must not be inter-
preted as the ”probability of H0”.

Returning to the family-wise error rate, for n independent level α tests,
the FWER can be controlled as

P
(
∃i : φi(Z(1:l)) = 1 |H(1:n)

0

)
= P

(
∃i : pi ≤ α |H(1:n)

0

)
= 1− P

(
∀pi ≥ α |H(1:n)

0

)
= 1−

∏
i

P
(
pi ≥ α |H(1:n)

0

)
= 1− (1− α)n

Inverting this equation, one finds that if the corresponding p-value is
adjusted as

p′i = 1− (1− pi)n, (4.4)

then one obtains P
(
∃i : p′i ≤ α |H

(1:n)
0

)
≤ α as desired. This idea of

”adjusting” p-values is common since the resulting p′i again serves as a
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measure of ”confidence” in the test result, but now with respect to the
FWER, which is easy to interpret. The above correction is sometimes
referred to as the Šidàk correction [155].

Often, assuming independence between the tests φi is not reasonable
with biological data, given that the features Xi are often dependent. In
this case, the Šidàk correction may be too liberal (or too conservative;
but as long as the nature of the dependencies is unknown, this cannot
be determined). A simple method that does not require independence is
obtained directly from the union bound,

P
(
∃i : pi ≤ α |H(1:n)

0

)
≤
∑

i

P
(
pi ≤ α |H(1:n)

0

)
= nα

This yields the correction p′i = min{npi, 1}. This is known as the Bonfer-
roni correction, named after Carlo Emilio Bonferroni, who first described
the union bound [1]. This correction always controls the FWER, since
we have made no additional assumptions other than that the test are
indeed level α. For large n, it is also close to the Šidàk correction.

The Bonferroni correction is unnecessarily conservative, however. More
powerful alternatives are the so-called step-down approaches, based on
ordered p-values p(1) ≤ · · · ≤ p(n). The following correction is due to
Holm [79], where the corrected, ordered p-value is given by

p′(i) = max
j=1,...,i

(
min{(n− j + 1)p(j), 1}

)
.

Note that the quantity (n− i+ j)p(j) need not be monotone in j; hence
the outer maxima over j = 1, . . . , i. This correction controls the FWER
under the same assumption as the Bonferroni correction but is more
powerful, and so is preferable. Another, yet more powerful correction was
proposed by [77]. However, this requires independent pi to be correct,
like the Šidàk correction. Hence, this correction is probably unreasonable
in many applications, and should be used with caution.

The false discovery rate

For high-dimensional data and small sample sizes, it is often the case that
all known procedures for controlling the FWER have very low power,
typically yielding no significant tests at reasonable levels [159]. This
is not primarily because the above correction methods are inefficient.
Rather, it is an unavoidable consequence of performing tens of thousands
of tests with only a handful of observations. In typical genome-wide
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data, there is simply too much multiplicity to be able to guarantee that
no single error is made during inference, as the FWER requires.

Luckily, in most situations one is willing to settle for something less strin-
gent than FWER control. In genome-wide biology, data analysis is often
explorative, and we expect that findings must be validated in follow-up
experiments. Therefore, a small proportion of errors in a selected set of
features is typically acceptable. If we thus settle for a type of control
where the proportion of errors among the list of findings is kept below
some given threshold, then we obtain the false discovery rate.

Definition 4.6. For a given feature selection method S = Φ(Z(1:l)) and
a set of null hypotheses H1

0 , . . . ,H
n
0 , the false discovery rate (FDR) is

defined as

FDR = E

[∣∣S ∩ {i : Hi
0}
∣∣

|S|

∣∣∣ |S| > 0

]
P (|S| > 0) . (4.5)

This error measure was introduced by Benjamini and Hochberg [12] and
has since then become something of a de facto standard for genome-
wide data analysis. While (4.5) may look complicated, it basically rep-
resents the expected fraction of false positives in the set S selected by
the method Φ(Z(1:l)). The conditioning on the event |S| > 0 is simply
needed to avoid division by zero, and the factor P (|S| > 0) is a techni-
cality required to obtain a quantity which is possible to control (bound
from above) [12]. Benjamini and Hochberg also introduced a simple
correction method

p′(i) = min
j=i,...,n

(
min{np(j)/j}

)
,

which they proved controls the FDR under the assumption that the tests
φi corresponding to the true null hypotheses are independent. Note that
this assumption is substantially weaker than complete independence of
all φi.

A variant of the FDR was later proposed by Storey [161], who argued
that one is really only interested in preventing false discoveries condi-
tional on the event |S| > 0. Consequently, Storey suggested the factor
P (|S| > 0) should be dropped from (4.5). The result is called the posi-
tive false discovery rate (pPDR),

pFDR = E

[∣∣S ∩ {i : Hi
0}
∣∣

|S|

∣∣∣ |S| > 0

]



80 Feature Selection Methods

While seemingly similar to the FDR, the pFDR has different proper-
ties. As noted already by Benjamini and Hochberg [12], the condition-
ing makes it impossible to actually control the pFDR; that is, we cannot
obtain an upper bound on this quantity. However, under some assump-
tions we can still estimate the pFDR from data in a consistent, unbiased
way [161].

While the FDR was devised in a traditional hypothesis testing setting,
the pFDR has intimate connections with Bayesian hypothesis testing
[162]. Under a Bayesian framework, it can be shown that the pFDR
equals the Bayesian posterior probability that a rejected hypothesis Hi

0

is true,
pFDR = π

(
Hi

0 |φi = 1
)
.

Assuming that we have observed a p-values pi for each test φi, Storey
defines the q-value (a pFDR counterpart of the traditional p-value) to
be the posterior probability of H0

qi = π
(
Hi

0 | pi

)
. (4.6)

The q-values may be viewed as ”local” false discovery rates for each
feature Xi. A procedure for estimating q-values is given in Storey and
Tibshirani [163].

The FDR paradigm, and in particular Bayesian methods for FDR es-
timation have become very popular recently, particularly in microarray
analysis [5]. This is understandable since they appear to be more power-
ful than other methods (rendering more significant findings). However,
lately some criticism concerning the validity of this Bayesian approach
has arisen. Mainly, the problem with most FDR estimation methods is
that they often require independent (or at least weakly dependent) test
statistics to be correct. As genome-wide data often display very corre-
lated features, this may be a serious problem, giving rise to highly vari-
able and sometimes even systematically optimistic FDR estimates [96].
It thus appears that there is reason for caution also in this paradigm.
Any solution to these problems — short of reverting back to more strin-
gent methods that do not impose independence assumptions — is yet to
be found.

4.1.3 Variable ranking

In addition to the above, several measures of marginal dependence have
been suggested in machine learning literature for the purpose of ranking
(ordering) features according to strength of the dependency on Y [67].
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These methods typically do not perform statistical tests, but merely
compute a measure of dependence. Examples include the signal-to-noise
ratio [62], the Gini index [141] and information-theoretic measures such
as mutual information [69, ch. 5]. The distributions of these measures
are often unknown, but since the ordering is the primary interest here,
this is not an issue.

Typically, the ordered list obtained from the particular ranking criterion
chosen is then used to estimate a set of predictive features. This is usually
done by estimating the risks of a number of predictors gS = IS(z(1:l)

S ),
where S is the top K features from the ranked list, and finally choosing
the set S that minimizes R(gS) (Figure 4.1). As always when dealing
with empirical risk estimates, this method is prone to some amount of
over-fitting (section 2.7.1), but since the possible ”candidate” sets S are
quite constrained, this over-fitting is hopefully not that severe (see also
Chapter 5).

Since this method of choosing |S| involves an inducer, variable ranking
is not a ”pure” filter method — this is an example where the distinction
is somewhat blurred. Since risk estimation is involved, the target set of
a variable ranking method must be some subset of S† ∩ {i : Y 6⊥ Xi | ∅}.
The exact goal depends on the nature of the dependence measure used.
See Figure 4.1.

Recursive Feature Elimination (RFE) is a variation on the variable rank-
ing theme introduced by [68]. Here, an ordering of features is computed,
whereafter a given fraction of the worst-ranked features are removed;
the ordering is then re-computed for the remaining features, and the
process is repeated. RFE is intended for multivariate criteria functions,
for which the ordering is a function of all features. Also here, a risk
estimate is typically used to select the final feature set [68].

4.1.4 Multivariate filters

Multivariate filters attempt to take into account dependencies between
the Xi. This is a very difficult problem in general, so most methods
simplify the situation by various heuristics and restrictions to particular
domains X ×Y. Unfortunately, the heuristics are often difficult to trans-
late to statistical assumptions, so that it is unclear precisely for which
problems each of these methods is appropriate.
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Focus

Focus is one of the earliest multivariate algorithms, devised for binary
data (Xi, Y ∈ {0, 1}), introduced by Almuallim and Dietterich [6]. It
was designed to solve the ”min-features” problem (Section 3.2.1), which
was introduced in the same paper. Almuallim and Dietterich state this
problem as follows.

Definition 4.7 (Min-Features). Given a set of examples (x(i), y(i)), find
the smallest set S such that, for all (i, j) with y(i) 6= y(j), it holds that
x

(i)
S 6= x

(j)
S .

In other words, the min-features problem is to find a minimal feature
set S which is able to separate the classes on the training data. If the
training set is inseparable, no solution exists. This problem is known to
be NP-complete [36], and all known algorithms (including Focus) have
exponential complexity.

The Focus algorithm performs an exhaustive search over all subsets of
size k = 1, 2, . . . until a solution is found (assuming that one exists). If
the minimal set has size k, then the algorithm complexity is O(l(2n)k)
[6]. This is polynomial in the dimension n, but tractable only for small
k. Focus is known to be problematic when data is noisy, and is prone to
over-fitting: as Kohavi and John [97] pointed out, if the social security
number of a person is included as a feature, Focus will happily select
that feature as predictive of any target variable.

In fact, Focus is motivated by a more deterministic view of data, which
is rather incompatible with the statistical data model adopted in this
thesis. Under a statistical model with noisy data, Focus will fail eventu-
ally as sample size increases, since the probability of inseparable training
data will converge to 1. For the same reason, Focus is not a well-defined
inducer in the sense of definition 2.14, since some z(1:l) cannot be mapped
to any set S. Hence, the target set of Focus cannot be determined ex-
actly; intuitively, one might expect that it estimates some subset of S‡.
I have indicated this in Figure 4.1 by a dashed line.

Relief

Relief is a multivariate method for classification problems introduced
by Kira and Rendell [94]. While it was first introduced based on heuris-
tic considerations, Kononenko [102] and Robnik-Sikonja and Kononenko
[147] later provided more a detailed analysis which identified some prop-
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erties of the method. I describe the two-class case here; the generaliza-
tion to |Y| > 2 is generally done by transformation to a series of two-class
problems [94].

Relief is derived from the nearest neighbor classifier, described in Sec-
tion 2.6.2. For each sample x(i), define the nearest hit as the nearest
point of the same class,

hi = arg min
j:y(j)=y(i)

d(x(i), x(j)).

Similarly, define the nearest miss

mi = arg min
j:y(j) 6=y(i)

d(x(i), x(j)).

Here d is some pre-specified distance metric on X , usually taken to be
the Euclidean distance. We then compute a measure for each feature Xj

ĉ(j) =
1
l

l∑
i=1

(|x(i)
j − x

(mi)
j | − |x(i)

j − x
(hi)
j |).

Intuitively, ĉ(j) should be positive when the class-conditional distribu-
tions f(xj |Y = 1) and f(xj |Y = −1) differ. Further, because hi, mi

are defined based on the distance on the full space X , it may be possible
to detect multivariate dependencies as well. Thus, it seems that the tar-
get set of Relief is (a subset of) SA [97]. However, to my knowledge no
theoretical results of its correctness are known. As with Focus, I have
indicated this in Figure 4.1 by a dashed line.

Markov boundary methods

Several authors have proposed methods for feature selection which aim
to discover the Markov boundary M∗ of Y . All of these methods as-
sume that the data distribution is faithful to a Bayesian network (see
Section 2.2).

The Incremental Association Markov Blanket (IAMB) algorithm com-
putes an estimate M of the Markov boundary in two stages. In the
first stage, IAMB tests for the dependency Y 6⊥ Xi | ∅ and heuristically
accepts the strongest significant association as a member of M ; it then
tests the remaining features for Y 6⊥ Xi |XM , and so on, always ac-
cepting the one strongest association in each iteration, until no more
significant dependencies are found. In the second stage, for each each



84 Feature Selection Methods

i ∈M , IAMB tests Y ⊥ Xi |XM\{i} and removes any Xi that turns out
to be independent.

Tsamardinos and Aliferis [176] proved that IAMB is consistent (M P−→
M∗ as l → ∞), provided that the independence tests used are consis-
tent. However, the power of the conditional tests Y ⊥ Xi |XM\{i}, can
be shown to decrease exponentially with the size of the conditioning
set M \ {i} [175]. Therefore, the required training set size l increases
exponentially in |M |, resulting in small power for limited sample sizes.

A potentially more powerful approach is the Max-Min Markov Blanket
(MMMB) algorithm, due to Tsamardinos et al. [175]. The gain in power
is due to a more efficient strategy which uses smaller conditioning sets by
taking advantage of the local structure of the Bayesian network. MMMB
was claimed to be consistent by Tsamardinos et al. [175], but this was
later refuted by Peña et al. [131], who found errors in the original proofs.
Peña et al. also provided a corrected version named AlgorithmMB for
which consistency was proven, while retaining better power than IAMB.
Thus, both IAMB and AlgorithmMB estimate M∗ in a consistent fash-
ion, while AlgorithmMB has better power.

4.1.5 Multivariate search methods

A common multivariate type of filter method is based on the subset
search approach. Here, a ”criterion” function c(S) is chosen that for a
given subset S ⊆ Vn is supposed to estimate the strength of the depen-
dence Y 6⊥ XS . Then, a search procedure is used to maximize c(S) over
the possible subsets of Vn. A bewildering array of multivariate criteria
exist for measuring a dependence Y 6⊥ XS for a given feature set S.
Several multivariate statistical tests can be used; some are reviewed in
Section 4.4. For two-class problems, several measures of distance be-
tween the class-conditional densities f(xS |Y = 1) and f(xS |Y = −1)
can be used. Examples include the Mahalanobis distance and the Jef-
freys’ and Kullback-Leibler divergences [104]. A thorough discussion of
these is found in [37, ch. 2]. Information-theoretic methods such as the
mutual information between XS and Y can also be used [67, ch. 5]. From
the discussion in sections 3.1.1 and 3.1.2 it can be seen that, depending
on the divergence measure, the target set of subset search is M∗ or S∗.
However, a common problem with the more ambitious, non-parametric
divergence measures is that they are difficult to estimate reliably from
limited data.

Which search procedure to use has been the subject of much research
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[85]. Clearly, exhaustive subset search is not feasible for moderately large
dimensions, as the number of subsets of Vn grows as 2n. Greedy search
procedures either start with S = ∅ and iteratively adds the elements
that give maximal increase in c(S) (”forward” search), or start with
S = Vn and remove elements that give minimal decrease in c(S) (”back-
ward” search). These and more elaborate variants with ”back-tracking”
mechanisms are discussed by Pudil and Novovic̆ová [140].

Often, the search procedures presuppose an optimal feature set size |S|.
In this case, the target set is S‡. The size of S may be dictated by
practical considerations such as the computational complexity of a sub-
sequent predictor learning procedure, or one may desire to keep S small
to be interpretable. In this case, the branch-and-bound algorithm by
Narendra and Fukunaga [121] is known to be optimal when the crite-
rion function is monotone, that is, satisfies c(S) < c(S′) ⇐⇒ S ⊂ S′.
This assumption is rather strong however. A number of variations on
this theme, some of which are claimed to be robust against violations of
monotonicity, is surveyed by Kudo and Sklansky [103].

A general problem with all subset search strategies is that they tend
to ignore the fact that for finite samples, the criterion function c(S)
is necessarily an estimate which exhibits random variation. Therefore,
searching for its optimum over different S inevitably causes over-fitting
[145]. More about this in the next section.

4.2 Wrapper methods

Wrapper methods, or ”wrappers” for short, were first introduced by
Kohavi and John [97]. As with multivariate filters, wrappers make use
of subset search methods, but here the criterion function is based on
an empirical risk estimate for a particular inducer I, that is, c(S) =
1 − R̂(IS(z(1:l)

S ). Thus, wrapper methods perform a kind of empirical
risk minimization (see Section 2.6.1) over the the function class G =
{gS : S ⊆ Vn}. Therefore, wrapper methods attempt to estimate S†.
Often, a cross-validation estimate of R̂ is used, although theoretic risk
bounds [89, 181] are also possible.

Like any methods that attempts to minimize an empirical risk estimate,
the wrapper approach suffers from over-fitting problems [98]. Strictly
speaking, the estimate R̂(g) is biased downwards (over-optimistic) when-
ever two or more different predictors g are tried on the same (or even
dependent) data sets. Strictly speaking, the search scheme will begin to
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over-fit (slightly) already by the second evaluation of the risk estimate.
Thus, minimizing the number of feature sets tested by the search pro-
cedure is critical, not only for computational reasons, but also to avoid
over-fitting [145]. On the other hand, the search procedure must be al-
lowed to explore enough feature sets to be able to discover true minima
of R(g).

Generally speaking, the wrapper approach seems to have declined in
popularity in recent years, although it is still in use. The reason is
probably that most subset search methods are computationally feasible
only for problems of moderate dimensionality (n ≈ 10 . . . 100), while
in many recent applications of feature selection, including genome-wide
data analysis, dimensionality is much higher [67].

4.3 Embedded methods

A different approach to feature selection originates in the min-features
problem described in Section 3.2.1. This can be formulated as an op-
timization problem if one approximates the unobservable expected risk
with a risk estimate R̂. One then obtains

min
S⊆X

R̂(I(z(i:l)
S )) + λ|S|. (4.7)

This can be interpreted as a form of regularization, with |S| being the
regularizer (see Section 2.7.2). From this viewpoint, feature selection
regularizes predictor estimation by constraining the dimension of the
input space.

Some predictors are parameterized in a way that immediately reveals
how each feature influences the predictions. The most obvious case is
perhaps linear classifiers gw(x) = sign(wTx) or linear regression gw(x) =
wTx, where each ”weight” wi corresponds to feature Xi. For such pre-
dictors, Equation (4.7) can be written as

min
w
R̂(gw) + λ‖w‖0, (4.8)

where the ”zero norm” ‖w‖0 = |{i : wi 6= 0}| simply counts the number
of non-zero elements [186]. (Although strictly speaking ‖w‖p is not a
norm for p < 1, the term is motivated by the fact that the Lp norm ‖w‖p
approaches ‖w‖0 as p→ 0.) In this case, minimizing over w both induces
a classifier gw and a set of features {i : wi 6= 0}. This is referred to as
”embedded” feature selection, since feature selection happens ”inside”



4.3 Embedded methods 87

the inducer and is therefore inseparable from it. A key fact here is that,
due to the choice of regularizer, the solution w to the above problem is
sparse, that is, contain few non-zero elements.

4.3.1 Sparse linear predictors

The computational complexity of problem (4.8) is known to be expo-
nential [8], and is therefore intractable in practise. Consequently, the L0

norm ‖w‖0 is often approximated by an L1 norm such as ‖w‖1 to obtain
feasible optimization problems. In principle, any Lp norm with p ≤ 1 will
yield a sparse solution, but the L1 norm occupies a unique position since
it is the only Lp norm which gives both sparse solutions and a convex
optimization problem, so that a global optimum can be guaranteed [134].
Thus, the L1 norm is a popular choice, and several authors have explored
different variants of L1 regularized linear problems for feature selection;
see for example Bi et al. [15], Bradley and Mangasarian [19], Fung and
Mangasarian [57], Mika et al. [118]. Non-convex (p < 1) approximations
to (4.8) are certainly also possible, although the optimization problems
consequently become more difficult. A comprehensive treatment of this
topic is given by Weston et al. [186].

Sparse linear methods can also be derived within the Bayesian paradigm.
The Relevance Vector Machine due to Tipping [172] is a Bayesian ap-
proach applicable to both regression and classification problems, which
yields sparse solutions θ that can be exploited for feature selection. Also,
the Kernel Fisher Discriminant [117] technique with L1 regularization
can be interpreted as a Bayesian regression model with a Laplace prior
[118], as does the Lasso regression method [170]. See also Example 2.14.

At first glance, these regularization methods may appear to have a built-
in mechanisms for choosing the size of the selected feature set S. It is
true that for a fixed λ > 0, the set S is completely determined. In
this case, embedded methods employ the min-features bias, so that the
target set is S‡λ. In practise however, the λ parameter is usually selected
based on a cross-validation risk estimate for the resulting predictor. In
this case, the target set is S† (Figure 4.1).

4.3.2 Non-linear methods

For non-linear classifiers, the above approach breaks down since there is
no longer a natural mapping between the features Xi and the parameters
θ. This is a problem especially for kernel methods, where the parameter
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vector θ is implicit and may be very high-dimensional or even infinite
(see section 2.6.3). A solution for kernel methods is to define a ”scaled”
kernel

Kθ(x(i), x(j)) = Kθ(θTx(i), θTx(j))

which essentially evaluates any chosen kernel K with feature Xi scaled
by a factor θi [185]. One may then include an optimization step for θ
in the inducer, thus effectively estimating both the classifier ĝ and the
scaling parameters θi simultaneously. For support vector machines, it
turns out that an efficient gradient search procedure can be used for
this purpose. Unfortunately, the resulting optimization problem may
be severely non-convex, so there are in general no guarantees for the
accuracy of the estimate [23].

A recent alternative approach which avoids non-convex optimization is
the feature vector machine proposed by Li et al. [110]. This method
is essentially a modification of Lasso regression (section 2.7.2) where a
kernel function K is applied to the feature vectors x

(1:l)
j rather than

to the sample vectors x(i)
1:n. While method was proposed for regression

problems (continuous Y ), it may be adapted to classification problems
as well, for example through logistic regression, as with the relevance
vector machine [172].

4.4 Feature extraction and gene set test-

ing methods

In addition the feature selection methods described so far, there are also
many methods that perform feature extraction, that is, transform the
features X1, . . . , Xn into new (”extracted”) features X ′

1, . . . , X
′
m, typi-

cally with m � n (Section 3.4). For example, dimensionality reduction
methods such as Principal Component Analysis [73, pp. 485] can be used
prior to predictor induction [136]. Dimensionality reduction techniques
are also closely related to data clustering [39, 191]. Also, kernel meth-
ods (Section 2.6.3) perform a kind of feature extraction in that the the
training data x(1:l) is implicitly mapped into the l-dimensional subspace
of H spanned by φ(x(1)), . . . , φ(x(l)), and we typically have l � n. For
more information on feature extraction, see for example Liu and Motoda
[111].

I here briefly consider a related class of methods of particular interest
to applications in genome-wide data. These are called gene set testing
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methods since they originate in gene expression data analysis, although
one could easily conceive of applications for other data types, so that
feature set testing may be a more appropriate term. For a given set of
(disjoint) feature sets {Sk ⊆ Vn}, we are here interested in multivariate
tests for the null hypotheses

Hk
0 : XSk

⊥ Y (4.9)

for each gene set Sk. Many options for such multivariate testing are
available. Under the assumption of multivariate Gaussian X, a method
based on Hotelling’s T 2 distribution (a generalization of Student’s t [81])
is described by Lu et al. [112]. More general methods based on correla-
tions in feature space are described by Gretton et al. [64] and Borgwardt
et al. [17].

The currently most popular method for gene set testing is probably
Gene Set Enrichment Analysis (GSEA), introduced by Mootha et al.
[119]. This method can utilize any statistic Ti = T (Xi, Y ) to order the
features Xi. GSEA then tests for an enrichment of high-ranking features
in set Sk by a permutation test based on a Kolmogorov-Smirnov statistic
[119, 165]. Note that this method performs a ”competitive” test, in that
each set Sk is evaluated against all other sets. The null hypothesis
is thus not the same as (4.9). A good discussion on this topic and a
comprehensive review of gene set testing methods is given by Goeman
and Buhlmann [61].

4.5 Summary

Feature selection methods come in all shapes and sizes. For newcom-
ers, the multitude of available methods can be daunting. In order to
bring some structure to this large collection of methods and to better
understand their relations to each other, I have in this chapter reviewed
a number of methods of different types and attempted to relate them to
the feature selection problems defined in the previous chapter.

In machine learning, feature selection methods are typically divided into
filter (Section 4.1), wrapper (Section 4.2), and more recently embedded
methods (Section 4.3). This division largely depends on the algorithmic
form of each method (e.g., filters can be defined as ”algorithms that
do not invoke the inducer procedure”) rather than statistical arguments.
Consequently, I find that members of each class target various feature se-
lection problems. The details are often important — two methods cannot
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be concluded to target the same problem because the algorithms appear
similar. For example, the ”target set” of a given variable ranking meth-
ods (Section 4.1.3) may vary considerably (from SA to S‡) depending of
the precise criterion used to choose the number of selected features.

Figure 4.1 provides an overview of this chapter, where the various meth-
ods are fitted into the framework described in Chapter 3. This defines a
more fine-grained structure on the collection of feature selection meth-
ods, so that one may easier choose a method appropriate for a given task,
i.e., for one of the feature sets in Figure 4.1. This again emphasizes the
importance of clearly defining the data model and the feature selection
problem before choosing a method.

In this chapter I have also described a number of concepts relating to
hypothesis testing (Section 4.1.1) and the multiple testing problem (Sec-
tion 4.1.2) which is an important issue for high-dimensional data. These
also perform a type of feature selection, and in contrast to most methods
from the machine learning field they provide control over error rates. In
summary, I hope that this chapter may be useful to the reader as a refer-
ence and guide to the extensive literature on feature selection methods.



5
A benchmark study

Many of the features selection methods described in the previous chap-
ters have been designed for and tested with data distributions of moder-
ate dimensionality, on the order 10−100 features. It is therefore not clear
how the performance of these methods translates to modern applications
such as microarray data, where dimension is at least an order of magni-
tude higher and sample size is often very small. Moreover, it is not clear
whether feature selection is advantageous in this domain compared with
other regularization mechanisms employed by modern inducers such as
the support vector machine. Finally, the accuracy of feature selection
methods with respect to the features selected (i.e., feature error rates)
has not been systematically evaluated.

To assess these questions, in this chapter I present a ”benchmark” study,
a systematic evaluation based on simulated data of a number of feature
selection methods coupled with the linear support vector machine (SVM)
as a predictor. We designed the simulations used to be as representative
as possible for the data distributions encountered in microarray data
analysis. We chose the support vector machine as the ”reference” clas-
sifier for this study since it is very popular for microarray classification
problems [58, 68].

To my knowledge, this study is the first systematic evaluation of feature
set accuracy, and the first feature selection evaluation to simulate high-
dimensional data of the order encountered in microarray data analysis
(up to 5,000 dimensions are considered). Most of the material in this
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Figure 5.1: A schematic view of the evaluation process.

chapter can also be found in Nilsson et al. [127].

5.1 Evaluation system

An overview of our simulation and evaluation procedure is shown in Fig-
ure 5.1. For a given data distribution f(x, y), we first take a sample
Z(1:l) to be used as training data (step 1). We then perform feature
selection and classifier (SVM) induction (step 2) as discussed in section
5.2. We calculate classifier error probabilities (steps 3,4) by direct nu-
merical evaluation of the risk functional R(g), which is feasible here since
the data distribution is known (see below). For assessing the accuracy
of selected feature sets, we first calculate SA and S† for the given dis-
tribution (step 5; see below) and then measure the precision and recall
(step 6) of the selected feature sets as follows.

Definition 5.1. For a selected feature set S, we define the precision and
recall with respect to a ”true” set T as

Precision(S) =
|S ∩ T |
|S|

Recall(S) =
|S ∩ T |
|T |

In our evaluations, we consider as the ”true” feature set T either SA (all
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. . . 

Figure 5.2: A Bayesian network representation of the distribution used in
the simulations in this chapter. For m < n relevant features, there are m/4 of
the connected 4-blocks of features.

relevant features) or S† (the optimal feature set).

We designed a Bayesian network (see Section 2.2) to represent a high-
dimensional data distribution. We used a ”block structure” consisting of
small sub-networks of 4 nodes, chosen to contain both (i) features which
are in S∗ but are marginally irrelevant, e.g., Xi ⊥ Y | ∅, and (ii) features
which are relevant by Definition 3.11 but yet are not in S∗. This graph
structure is given in Figure 5.2. We then simply repeated the number
of ”blocks” to obtain any desired number of relevant features m. The
local (conditional) distributions of the Bayesian network was chosen to
achieve reasonable expected risks for the SVM, as follows.

f(x1) = N(x1 | 0, 32)
f(x2 |x1, y) = N(x2 | y − x1, 1)
f(x3 |x2) = N(x3 |x2, 1)
f(x4 |x3) = N(x4 |x3, 1)

A number of irrelevant features distributed as N(xi | 0, 1) were then cho-
sen, for a total dimension of n > m. We set p(y) = 1/2 throughout. For
this data distribution and the linear SVM, we found in preliminary simu-
lations that the optimal set S† coincides with the Bayes-relevant features
S∗ regardless of dimension. I will therefore use these two feature sets
interchangeably in this chapter.

Since the f(x, y) defined above is two-class Gaussian, the risk R(g) and
Bayes risk R(g∗) can be calculated as described in Example 2.9. Further,
since the structure of the Bayesian network yields a very sparse precision
matrix Σ−1, these quantities are efficiently calculated using sparse linear
algebra for large n even when the full matrix Σ is prohibitively large.
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Method Type Output Ref.

PC Filter Ranking [67]
WR Embedded Ranking [68]
RFE Wrapper Ranking [68]
LP-SVM Embedded Set [57]
AROM Wrapper Set [186]
IAMB∗ Filter Set [176]
R2W2∗ Embedded Set [23]

Table 5.1: Feature selection methods tested in this study. The two methods
marked by an asterisk were excluded early in the study due to very high
computational complexity.

For evaluating the expected performance of a given algorithm and ob-
taining statistical confidence measures, the simulation process is re-
peated a number of times, yielding a number of independent observations
of each error measure. Standard non-parametric statistical methods can
then be used to obtain correct confidence intervals for each error mea-
sure [105]. In preliminary experiments we found that confidence intervals
were sufficiently narrow for our purposes at l = 100 samples, and hence
fixed l = 100 for all subsequent evaluations.

5.2 Feature selection methods tested

We initially chose seven well-known feature selection methods for evalu-
ation. Three of these were variable ranking methods (Section 4.1.3), two
were filter methods (Section 4.1), two were wrappers (Section 4.2) and
three were embedded (Section 4.3). A summary is found in Table 5.1.
However, the Radius-Margin Descent method (R2W2) [23] and the In-
cremental Associative Markov Blanket (IAMB) [176] were unfortunately
too computationally demanding in high dimensions, wherefore they were
excluded from further analysis. We did not consider any feature extrac-
tion methods (Section 3.4). The remaining methods are described briefly
below; for details, please see the respective section of Chapter 4.

Pearson correlation (PC) is a simple filter method, ranking features
by the Pearson correlation with the target Y . Although PC is
intended to be used with continuous Y , it was included since it is
commonly used also for discrete Y in feature selection literature
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[67, 73].

SVM Weight Ranking This method ranks features by the absolute
value of the corresponding weight of a linear SVM hyperplane.
See Section 4.3.

Recursive Feature Elimination (RFE) This method was proposed
by Guyon et al. [68]. For a given ranking method, in each iteration
the RFE algorithm removes a fraction of the lowest-ranking fea-
tures to produce a sequence of feature sets S1 ⊃ S2 ⊃ S3, . . . , and
evaluates a goodness criterion c for each Si (typically a classifier
risk estimate). The set that maximizes c is then taken as the final
feature set.

Linear Programming-SVM This method induces a sparse linear clas-
sifier and simply selects the features with nonzero weights. See
Section 4.3.1. The regularization parameter was set to 1 through-
out.

Approximation of the nero norm (AROM) This method approx-
imates a ”zero norm”-regularized linear classifier and selects the
features with nonzero weights (Section 4.3.1). We used the L2 ver-
sion of the algorithm, which amounts to learning a linear SVM in
each iteration, as described by Weston et al. [186].

Throughout, we used a linear SVM [18, 32] as the inducer IS for each
selected feature set S. Briefly, the SVM estimates the hyperplane normal
vector by solving the optimization problem

min
w

∑
i

(1− wTx(i)y(i)) + λwTw.

This can be written equivalently as

min
w

wTw + C
∑

i

ξ(i)

s.t. y(i)wTx(i) ≥ ξ(i)

ξ(i) ≥ 0

where C = 1/λ is the regularization parameter. See also Example 2.13.
A comprehensive introduction is found in, e.g., Christianini and Shawe-
Taylor [27]. For SVM training, we used an in-house Java implementation
based on the Generalized Sequential Minimal Optimization (GSMO) al-
gorithm [93].
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Figure 5.3: A: Plot of expected SVM risk ρ(I) vs. number of relevant features
m and total number of features n. B: Dotted line, plot of SVM risk vs. n for
simulations, corresponding to the dotted diagonal in (A). Solid line, SVM risk
vs. n for microarray data. Here m is unknown but proportional to n.

5.3 Results

By the design of the data distribution, features X1, . . . , Xm were relevant
to Y , while Xm+1, . . . , Xn were irrelevant. Of the m relevant features,
m/2 were in the optimal feature set; further, half these (m/4) were
marginally independent of Y and thus undetectable by univariate filter
methods like PC. We sampled l = 100 training data points from this
distribution and normalized data to zero mean and unit variance before
applying each method, following standard practise for SVMs [68]. The
key parameters to the ”difficulty” of the learning problems represented
by this data distribution are m and n. We chose a parameter grid 8 ≤
m ≤ 500, 20 ≤ n ≤ 5000, with values evenly spaced on a logarithmic
scale (Figure 5.3A). For each (m,n) we repeated the simulations 100
times.

5.3.1 Robustness against irrelevant features

The expected risk ρ(I) = E
[
R(I(Z(1:l)))

]
for the SVM without feature

selection on the (m,n) parameter grid is shown in Figure 5.3A (we set
the regularization parameter C to 1; see next section). We find that ρ(I)
increases slightly with n, but decreases rapidly with respect to m. Thus,
more features is in general better for the SVM: as long as we can obtain
a few more relevant features, we can afford to include many irrelevant
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ones. Therefore, improving SVM performance by feature selection is
very difficult. In particular, a feature selection method must provide
very good recall (preserve the relevant features), or SVM performance
will degrade quickly.

To validate our results, we also tested the feature selection methods on
a microarray data set from prostate cancer biopsies [156]. This data set
consists of 12, 600 features (each feature corresponding to a microarray
probe interrogating a particular gene) and 136 samples. To obtain di-
mensionality and sample size comparable with our simulations, we first
pre-filtered this data by extracting the 5000 features with largest vari-
ance and then selected random subsets of sizes 10, . . . , 5000 from these.
Although m is unknown in this case, in expectation this procedure gives
a constant m/n ratio, since we sample features with uniform probabil-
ity. This roughly corresponds to a diagonal in Figure 5.3A. We used
random subsets of l = 100 samples for feature selection and classifier
induction and estimated R̂(g) by the hold-out error on the remaining
36 samples. This procedure was repeated 300 times for each n. The
resulting risk estimate was found to agree qualitatively with our simu-
lations (Figure 5.3B), suggesting that the simulated data distribution is
reasonable.

5.3.2 Regularization in high dimensions

The value of the regularization parameter C has been found to strongly
impact SVM classification accuracy for low-dimensional data [92]. To
study the effect of this parameter in high dimensions, we optimized C
over a range 10−4, . . . , 104 for each position (m,n) on our parameter
grid. We found that C was no longer important in higher dimensions
(Figure 5.4A), as classification accuracy was approximately constant over
the tested range of C, regardless of the value of m. At lower dimensions,
C did affect classification accuracy, in accordance with the results by
Keerthi [92]. We found that C ≈ 1 provided good performance (Fig-
ure 5.4B) at low dimensions, so we fixed C = 1 for the remainder of this
study.

The same (and even stronger) trend was observed for the microarray
data (Figure 5.4C), again suggesting that our high-dimensional simu-
lated distribution is a reasonable evaluation tool. It therefore seems
that the regularization parameter C has virtually no impact on classifi-
cation accuracy in high dimensions. A satisfactory explanation for this
phenomenon is yet to be found. I note that somewhat similar results
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Figure 5.4: Sensitivity to the SVM C-parameter. A: Sensitivity defined as
maxC R̂ −minC R̂ plotted against m and n. B: For simulated data, detailed
plot of R̂ against C for the cases (m, n) marked by arrows in (A), roughly
corresponding to the cases in (C). C: For microarray data, plot of R̂ against
C for n = 20 and n = 2000.

have been observed by Hastie et al. [74].

5.3.3 Rankings methods are comparable in high di-
mensions

Next, we investigated the accuracy of the feature rankings produced by
PC, WR and RFE. To address this question without involving the prob-
lem of choosing |S| at this stage, we measured precision and recall over
the range |S| = 1, . . . , n and visualized the results using Receiver Oper-
ator Characteristic (ROC) curves (Figure 5.5) [73, pp. 277]. We found
that RFE outperforms WR in this respect, which in turn outperforms
PC, in agreement with Guyon et al. [68]. This was expected, since 1/4 of
the relevant features are not detectable by PC. However, these differences
diminished with increasing n. At n = 5000, the simpler WR method was
as accurate as RFE. Thus, more sophisticated method motivated by ex-
periments in lower dimensions [68] may not be as advantageous in high
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Recall

1 - Precision

Figure 5.5: ROC-curves for the PC, WR and RFE methods. Here we fixed
m = 8 relevant features and varied n = 20, . . . , 5000 as indicated by grey
arrows. Dashed diagonals indicate expected result for randomly selected fea-
tures.

dimensions.

5.3.4 Number of selected features increases with
dimension

To use ranking methods for feature selection, a critical issue is how to
determine |S| (for LPSVM and AROM, this is determined by heuristics
that favor small feature sets [57, 186]). For this purpose, we used the
radius-margin risk bound [181, section 10.7] as a proxy for R(gS), and
minimized this over a number of possible choices of |S| as described in
Section 4.1.3. In preliminary experiments, we also tried the risk bound
due to Joachims [89] for this purpose; however, we found the radius-
margin bound to be more accurate, and hence chose this alternative for
the remainder of the study.

Using this method to determine |S|, we found that the ranking meth-
ods tend to select more features than AROM or LPSVM (Figure 5.6A).
Especially AROM was extremely ”sparse” and selected very few fea-
tures. We also found that |S| tends to increase with n. This might seem
counter-intuitive at first glance; as n increases, the inference problem
becomes more difficult, and one would therefore expect fewer features
to be selected. However, this phenomenon can be explained by noting
that (i) the ranking problem is harder for larger n, and that (ii) with
less accurate rankings (i.e., smaller area-under-curve in Figure 5.5), we
will need a larger |S| to include enough informative features to produce
an accurate classifier. Conversely, as n decreases and the rankings im-
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Figure 5.6: A: Number of selected features |S| for each (m, n) for simulated
data. All plots are scaled equally to (0, 300). B: Number of selected features
|S| vs. n, corresponding to the dashed diagonal in (A), for simulated and
microarray data. Plots are not on equal scales.
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prove, more informative feature are ”on the top list” and thus a smaller
|S| suffices to optimize R(gS). Accordingly, the PC method which is the
least accurate (Figure 5.5) chooses the largest |S|, and RFE the smallest.
This was also verified for the microarray data (Figure 5.6B).

More surprisingly, there was also a tendency for |S| to decrease with m
(most evident for RFE). This can be understood in the same fashion:
the feature selection problem becomes harder as m decreases, so that the
rankings become more inaccurate, and a larger |S| must be used. These
results already suggest that by selecting |S| to minimize risk, we obtain
methods that attempt to preserve a high recall but sacrifice precision.
More about these issues in Section 5.3.6.

LPSVM produced smaller feature sets than RFE, but otherwise exhib-
ited the same tendencies as above. It should be noted that for LPSVM,
|S| depends on the regularization parameter C, which we fixed at 1.
However, since the risk estimates were quite insensitive to C, it is diffi-
cult to choose this parameter in a principled manner.

AROM gave the smallest |S| of all methods, but here the dependence
on n was more complicated: |S| was maximal at n ≈ 100 (similar to the
data set used in the original paper [186]) and then decreased for n > 100.
We are not certain as to the cause of this behavior, but we note that
AROM merely guarantees convergence to a local maxima of its heuristic
(the approximation of the ”zero norm”). This might become problematic
in higher dimensions, so that a different behavior is observed in different
regimes. This underlines the importance of performing simulations in
a setting as close as possible to the real application data. Again, the
simulation results were consistent with microarray data (Figure 5.6B).

5.3.5 No method improves SVM accuracy

In principle, if the risk estimate (in our case the radius-margin bound) is
accurate, then optimizing this estimate over |S| should at least guarantee
that ranking methods do not increase classifier risk; in the worst-case
scenario, we should reach an optimum at |S| = n. Our simulations
verified this intuition. In Figure 5.7A, the difference ρ(I) − ρ(IS) is
close to 0 (where I is the SVM classifier without feature selection). We
did find ρ(IS) > ρ(I) at some (m,n) for all ranking methods, but the
difference was not substantial. These small discrepancies may be because
our procedure favored smaller |S| in cases where R̂(gS) was constant over
a range of |S|; thus, a possible improvement to this scheme is to choose a
|S| in the middle of such ”flat” ranges. Overall, the radius-margin bound
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Figure 5.7: A: Risk difference ρ(I) − ρ(IS), using each respective feature
selection method to obtain S (negative means worse accuracy with feature
selection), simulated data. B: Estimated risk vs. n, corresponding to the
dashed diagonal in (A), for simulated and microarray data.
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seems to be accurate. We therefore hold that the results concerning the
ranking methods can be attributed to the ranking methods themselves.

LPSVM and AROM gave the best accuracy around n ≈ 100 (Fig-
ure 5.7A,B), which is very close to the data sets used in the original
publications [57, 186]. In higher dimensions however, we found that
these methods tend to increase the SVM risk. AROM performed par-
ticularly bad in this respect, increasing ρ(I) by up to 15%, probably
because it insisted on very small feature sets. Results on microarray
data were similar (Figure 5.7B) except possibly for RFE, which was less
accurate on microarray data. In summary, none of the feature selection
methods managed to improve the SVM accuracy.

A reasonable interpretation for this negative finding is that the L2 norm
regularization employed by the SVM is more effective in high dimensions
if considering feature selection as an approximate minimization of the
L0 norm of a vector of feature weights, while the SVM minimizes the L2

norm [134]. From this perspective, our results on simulated and real data
imply that in high dimensions, the L2 norm is simply the better choice.
In accordance with this interpretation, the LPSVM method which ex-
plicitly minimizes the L1 norm seems to be closer to SVM performance
(Figure 5.7B).

5.3.6 Feature set accuracy

For the simulated data, we measured the accuracy of selected feature sets
by precision and recall vs. S† (Figure 5.8) and SA (Figure 5.9). There are
interesting differences between these two feature sets (recall that for our
data distribution, S† = S∗ constitutes half of SA). Concerning recall vs.
SA, the best method appears to be PC, followed by WR, RFE, LPSVM,
and lastly AROM, in that order. The filter method PC presumably
performs best here since it captures all marginally relevant features and
does not discard features outside S†. Further, PC selects more features
outside S†, since it gives lower recall vs. S†; this is presumably because
half of S† is not marginally relevant. In contrast, RFE, LPSVM and
AROM have higher recall vs. S† than vs. SA. WR seems to lie somewhere
in-between RFE and PC in this respect. These results are in accordance
with the analysis in Chapter 4: all of these methods involve some form
of risk optimization and therefore target S†. Consequently, they tend to
miss — or, avoid — many of the relevant features outside S†. Whether
this is a problem or an advantage depends on which problem one wants
to solve; hence, we conclude that it is important to carefully define the
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Figure 5.8: Feature set accuracy measured against the optimal set S† (which
here coincides with the set of Bayes-relevant features S∗).
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Figure 5.9: Feature set accuracy measured against the set of all relevant
features SA.
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feature selection problem before choosing a method.

All methods have low precision, often including more irrelevant feature
than relevant ones. AROM provided the best precision, but at the price
of lower recall. This is natural since AROM was biased towards very
small |S| (Figure 5.6). The remaining methods were comparable.

These results cannot be validated on microarray data since the true
feature sets are unknown (which of course is the reason for performing
simulation studies in the first place). However, given the good agreement
demonstrated in the previous tests (Figures 5.4, 5.6, 5.7), it is plausible
that the findings in this section also apply to real data.

5.4 Summary

A striking trend throughout this chapter is that classification and feature
selection methods behave very differently in high vs. low dimensions.
Thus, I would strongly recommend that simulation studies of feature
selection methods are performed with dimensions comparable to real
data. Since data dimensionality has increased sharply during the last
decade, one may suspect that much ”folklore” in the feature selection
field derived from earlier studies may not hold true for high-dimensional
applications such as genome-wide measurements.

While some of the methods tested were previously been found to improve
classification accuracy for SVMs at lower dimensions with few relevant
features [57, 186], I find no such improvement in high dimensions (Fig-
ure 5.7). Thus, the utility of these methods for prediction purposes in
seems marginal in high dimensions, unless the fraction of relevant fea-
tures is very small (on the order of 1 predictive feature out of 1,000)
in which case univariate filter methods may be helpful. Also, feature
selection may still be useful when sparse models is a goal in itself, since
several methods did manage to reduce dimension considerably without
compromising predictive accuracy to any large extent.

It is clear from figures 5.8, 5.9 and the discussion in section 5.3.4 that
none of the methods tested provide any control over false positives (pre-
cision). On the contrary, optimizing classifier risk results in a behavior
opposite to what one would expect from a statistical test: here, recall is
the most important factor, since this is essential for separating the classes
and outweighs the additional noise due to low specificity. This is perhaps
particularly true for regularized inducers such as the SVM, which tend to
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be noise-tolerant (and thus false positive-tolerant) in themselves. This
is probably the most serious problem for biological applications, where
the interpretation of the selected feature set is very important.

On the other hand, statistical hypothesis tests (Section 4.1.1) that do
control false positives are limited in that they cannot detect multivari-
ate relationships. It is therefore of interest to develop feature selection
methods that solves both of these problems. Such methods would be
very useful for example in microarray data analysis, as multivariate ana-
logues of the statistical methods currently available. I will consider two
approaches to such methods in Chapter 7 (for S†) and Chapter 8 (for
SA).
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6
Consistent Feature

Selection in Polynomial
Time

In this chapter I will study in detail the problem of finding a set of
predictive features. This is the most studied feature selection problem
in machine learning, on which a wealth of literature exists. The current
consensus in the feature selection field is that the problem in general is
intractable [67, 69, 85, 97]. Therefore, the focus has been on developing
various heuristic methods, which are typically shown to be effective on
various real-world data sets in terms of the predictive accuracy of some
particular inducer.

A number results for various feature selection problems are frequently
cited as evidence for intractability to motivate this direction of research.
Cover and van Campenhout [33] treated the problem of finding a set S
of size k with minimal Bayes risk (assuming that |S∗| < k, so that the
problem is non-trivial). These authors showed that there exists ”diffi-
cult” Gaussian distributions over matrix-valued X ∈ Rn×n such that no
method except exhaustive search can possibly find the optimal set. This
result is very often put forward as an argument for the difficulty of the
feature selection problem; however, van Campenhout [178] later showed
that this result is specific to matrix-valued X, and does not apply to
the typical case of X ∈ Rn. The paper by Cover and van Campenhout

109
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[33] thus appears to be frequently miscited. Devroye et al. [37], pp. 562
provides a different proof using a data distribution consisting of a com-
plicated mixture of dirac distributions. However, this distribution is zero
almost everywhere and thus not very realistic in practise.

Several particular cases have also been shown to be intractable. The
min-features problem as defined by Almuallim and Dietterich [6] (see
Section 4.1) was proved to be NP-complete by Davies and Russel [36].
This problem concerns deterministic data however, and is not relevant in
our setting. Similarly, the ”zero-norm” minimization (Section 4.3) was
shown to be NP-hard by Amaldi and Kann [8].

Note that all of the above problems concern ”noise-free” settings, ei-
ther asymptotic cases or the optimization of a deterministic quantity,
disregarding the statistical properties of data. The common question
addressed by these studied might be phrased as ”what is the computa-
tional complexity of the problem of finding the optimal feature set?”.
However, under a statistical data model, this question does not make
sense: we cannot compute optimal feature sets from noisy, small sam-
ples in the first place. What we can do is to estimate the optimal feature
set.

In this chapter I therefore take a different approach to the problem of se-
lecting predictive features. I show that with very mild restrictions on the
underlying data distributions, the problem of estimating S∗ is tractable.
Specifically, I prove that one can compute consistent estimates of S∗ in
polynomial time. Along the way, we will also find some interesting char-
acterizations of the Bayes-relevant features S∗ and the Markov boundary
M∗. The algorithms presented in this chapter are not meant as practical
suggestions however; their statistical power on real problems is probably
quite low. Most of the material in this chapter appears in Nilsson et al.
[126]. However, I herein generalize the exposition somewhat and also
include some additional results for the small-sample case.

6.1 Relations between feature sets

6.1.1 The Markov boundary and strong relevance

We saw in Chapter 3 that all predictive features are contained in the
Markov boundary M∗. However, the definition of M∗ does not by it-
self suggest any simple method for inference. We will therefore begin
this section by a result that relates M∗ to the following more tractable
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concepts of relevance.

Definition 6.1 (strong and weak relevance). A feature Xi is strongly
relevant to Y iff Y 6⊥ Xi |X¬i. A feature Xi is weakly relevant to Y iff
it is not strongly relevant, but satisfies Y 6⊥ Xi |S for some set S ⊂ X¬i.

Informally, a strongly relevant feature carries information about Y that
cannot be obtained from any other feature. A weakly relevant feature
also carries information about Y , but this information is ”redundant” —
it can also be obtained from other features. Note that in this terminology,
Definition 3.11 of relevance is equivalent to the following.

Definition 6.2 (relevance). A feature Xi is relevant to Y iff it is strongly
relevant or weakly relevant to Y.

Our first major theorem of this chapter proves that the Markov boundary
M∗ actually is identical to the set of strongly relevant features.

Theorem 6.3. For any strictly positive distribution f(x, y), a feature
Xi is strongly relevant if and only if i is in the Markov boundary M∗ of
Y .

Proof. First, assume that Xi is strongly relevant. Then Y 6⊥ Xi |X¬i,
which implies M∗ 6⊆ Vn \{i}, so i ∈M∗. Conversely, fix any i ∈M∗ and
let M ′ = M∗ \ {i}. If Xi is not strongly relevant, then Y ⊥ Xi |X¬i,
and by the definition of the Markov boundary, Y ⊥ X¬M∗ |XM∗ . We
may rewrite this as {

Y ⊥ Xi |XM ′∪Vn\M∗

Y ⊥ X¬M∗ |XM ′∪{i}.

The intersection property (Theorem 2.10 of Section 2.2) now implies
Y ⊥ X¬M ′ |XM ′ . Hence, M ′ is a Markov blanket smaller than M∗, a
contradiction. We conclude that Xi is strongly relevant.

This theorem is important for algorithmic complexity when estimating
the posterior p(y |x). The definition of strong relevance immediately
suggests a simple algorithm for estimating M∗: one need only test each
Xi for strong relevance, that is, test for the conditional independence
Y ⊥ Xi |X¬i. This procedure is clearly consistent and can be imple-
mented in polynomial time. It is not very practical though, since these
tests have very limited statistical power for large n due to the large condi-
tioning sets Vn\{i} [131]. However, realistic solutions have recently been
devised for the more narrow class of DAG-faithful distributions, yielding
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polynomial and consistent algorithms [131, 176]. These algorithms are
described in Section 4.1.4.

Tsamardinos and Aliferis [176] also proved a version of this theorem for
the class of distributions faithful to a Bayesian Network (see Section 2.2).
However, this distribution class is quite narrow and may be unreasonable
in many practical applications. Theorem 6.3 puts the Markov boundary
methods of Section 4.1.4 on a sound basis for a wide array of practical
problems.

6.1.2 The Bayes-relevant features

Next, we will investigate the connection between the concepts of Bayes-
relevance and strong relevance. For the proof of the main theorem of
this section, we will need the following lemma.

Lemma 6.4. For any conditional distribution p(y |x), it holds that

P (p(Y |Xi, X¬i)=p(Y |X ′
i, X¬i)) = 1

if and only if
P (p(Y |Xi, X¬i)=p(Y |X¬i)) = 1

provided that Xi, X
′
i are independent and identically distributed.

Proof. Assume that the left-hand side holds. Then we must have

P (p(Y |Xi, X¬i)=p0) = 1

for some p0 constant with respect to Xi. But

p(y |x¬i) =
f(x¬i, y)
f(x¬i)

=

∫
Xi
p(y |x)f(x)∫
Xi
f(x)

=
p0

∫
Xi
f(x)∫

Xi
f(x)

= p0

with probability 1, which implies the right-hand side. The converse is
trivial.

Theorem 6.5. If f(x, y) satisfies P (∃y 6= y′ : p(y |X) = p(y′ |X)) = 0
(Assumption 3.6), then every Bayes-relevant feature is strongly relevant.

Proof. For a Bayes-relevant feature Xi,we have

P (g∗(Xi, X¬i) 6= g∗(X ′
i, X¬i)) > 0,



6.1 Relations between feature sets 113

X1
-2 -1 0 1 2

-2

-1

0

1

2

X2 (weakly relevant)

(strongly relevant)

20 40 60 80 100

0.02

0.06

0.1

0.14

Risk

# samples

all features
strongly relevant featuresA B

Figure 6.1: A: The example density f(x2i−1, x2i) given by (6.1). Here, X1

is strongly relevant and X2 weakly relevant. Arrow and dashed line indicates
the optimal separating hyperplane. B: The risk functional R(g) for a linear
SVM trained on all relevant features (filled boxes) vs. on strongly relevant
features only (open boxes), for the 10-dimensional distribution (6.1). Average
and standard deviation over 20 runs are plotted against increasing sample size.
The Bayes risk (dashed line) is R(g∗) = 0.047.

where Xi, X
′
i are independent and identically distributed. From (Defi-

nition 2.12), we find that the event g∗(Xi, X¬i) 6= g∗(X ′
i, X¬i) implies

p(y |Xi, X¬i) 6= p(y |X ′
i, X¬i) ∨ ∃y 6= y′ : p(y |X) = p(y′ |X).

The right alternative has probability 0 due to Assumption 3.6. There-
fore,

P (p(y |Xi, X−i) 6= p(y |X ′
i, X−i)) ≥ P (g∗(Xi, X−i) 6= g∗(X ′

i, X−i)) > 0.

By Lemma 6.4 this is equivalent to P (p(Y |Xi, X−i) = p(Y |X−i)) < 1,
which is the same as Y 6⊥ Xi |X¬i. Hence, Xi is strongly relevant.

Theorem 6.5 asserts that for predictive purposes, one may safely ignore
weakly relevant features. This is important because it leads to more
efficient (polynomial-time) algorithms for finding S∗. We will explore
this consequence in Section 6.2. At this point it might be instructive to
consider some examples.

Example 6.1 Let f(x, y) be a 10-dimensional Gaussian mixture

f(x1, . . . , x10, y) ∝
5∏

i=1

e−
9
8 ((x2i−1−y)2+(x2i−1−x2i)

2). (6.1)
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Figure 6.1A shows the joint distribution of (X2i−1, X2i) (all such pairs
are identically distributed). Note that, although the shape of the dis-
tribution in Figure 6.1 suggests that both features are relevant to Y ,
it is easy to verify directly from (6.1) that X2, X4, . . . , X10 are weakly
relevant: considering for example the pair (X1, X2), we have

p(y |x1, x2) =
f(x1, x2, y)
f(x1, x2)

=
[
1 + exp

{
−9

8
((x1 + y)2 − (x1 − y)2)

}]−1

=
[
1 + exp

{
−9x1y

2

}]−1

which depends only on x1. Therefore, Y ⊥ X2 |X1, proving that X2 is
weakly relevant. The Bayes classifier is easy to derive from the condition
p(y |x) > 1/2 of Equation (2.12)) and turns out to be g∗(x) = sgn(x1 +
x3 + x5 + x7 + x9), so that S∗ = {1, 3, 5, 7, 9} as expected.

As the next example illustrates, the converse of Theorem 6.5 is false:
there exist strictly positive distributions where even strongly relevant
features are not relevant to the Bayes classifier.

Example 6.2 Let X = [0, 1],Y = {−1,+1}, f(x) > 0 and p(y =
1 |x) = x/2. Here X is clearly strongly relevant. Yet, X is not relevant
to the Bayes classifier, since we have p(y=1 |x) < 1/2 almost everywhere
(except at x = 1). We find that g∗(x) = −1 and R(g∗) = P (Y =1).

Clearly, this situation occurs whenever a strongly relevant feature Xi

affects the value of the posterior p(y |x) but not the Bayes classifier g∗

(because the change in p(y |x) is not large enough to alter the decision
of g∗(x)). In this sense, relevance to the Bayes classifier is stronger than
strong relevance.

Remarks on strict positivity

The above theorems seemingly contradicts several examples found in the
literature which indicate that weakly relevant features may be required
by the Bayes classifier [97, 190]. This is because all such examples violate
the requirement f(x) > 0. For example, a common ”counterexample” to
theorem 6.5 seen in the literature is the following: let X1 ∼ N(y, 1) and
let X1 = X2, that is, assume a functional, deterministic relation between
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X1 and X2. Here it is often claimed that both features are weakly
relevant, because one of them is ”needed” by the Bayes predictor, but not
both; which one to select is obviously arbitrary [190]. However, here we
have f(x) = 0 almost everywhere. For such distributions weak relevance
is not even well-defined, because (X1, X2) does not have a joint density
f(x1, x2), so that conditional independence is not well-defined. Thus, the
theory of feature relevance does not apply in this case. This situation
occurs whenever there exists a some functional relationship Xi = h(Xj)
between two features (or two sets of features) because this constrains
the entire probability mass to a zero-measure set {X : Xi = h(Xj)}, so
that f(x) is unbounded on this set and zero everywhere else.

In practise, distributions of this type can be excluded from consideration
whenever the data modeled is noisy. This is the case with physical
measurements in general. For example, consider the additive Gaussian
noise model

X = x0 + ε, ε ∼ N(0, σ).

Since the noise component ε is strictly positive over the domain of X, we
immediately obtain f(x) > 0. A similar argument holds for binary data
with Bernoulli noise, and indeed for any additive noise model with f(ε) >
0. In general, the strictly positive restriction is considered reasonable
whenever there is uncertainty about the data [130]. Note that the f(x) >
0 criterion by definition only concerns the actual domain X . If the data
distribution is known to be constrained for physical reasons to some
compact set such as 0 < X < 1, then naturally f(x) > 0 need not hold
outside that set.

There are examples of noise-free data in the machine learning literature,
however, for example inference of logic propositions [177]. But this type
of learning is not well-described by a statistical data model, and hence
outside the scope of this thesis. Finally, it should be pointed out that
for discrete features, it may happen that for some features the observed
data satisfies ∀k : x(k)

i = x
(k)
j or similar, especially for small data sets.

This observation is not incompatible with the notion that in distribution
P (Xi = Xj) < 1, and it does not invalidate a statistical data model. Of
course, if such a relationship should observed for large sample sizes, it
would render a noisy statistical model unlikely. I have not encountered
this problem in real data sets, however.

The feature set relations established at this point for strictly positive
distributions are summarized in figure 6.2. In Section 6.2, I exploit these
results to obtain polynomial-time algorithms for estimating M∗ and S∗.
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Figure 6.2: The identified relations between feature sets for strictly positive
distributions. The circle represents all features. The dotted line (S∗) denotes
a subset, while the solid lines denote a partition into disjoint sets.

Related work

The concepts of strong and weak relevance have been studied by several
authors. In particular, the relation between the optimal feature set and
strong vs. weak relevance was treated by Kohavi and John [97], who
conjectured from motivating examples that ”(i) all strongly relevant fea-
tures and (ii) some of the weakly relevant ones are needed by the Bayes
classifier”. As we have seen in example 6.2, part (i) of this statement
is not correct in general. Part (ii) is true in general, but theorem 6.5
shows that is not the case for the class of strictly positive f , and I would
therefore argue that it is rarely true in practise.

A recent study by Yu and Liu [190] examines the role of weakly relevant
features in more detail and subdivides these further into ”redundant”
and ”non-redundant” features, of which the latter is deemed to be impor-
tant for the Bayes classifier. For strictly positive distributions however,
it is easy to see that all weakly relevant features are also ”redundant” in
their terminology, so that this distinction is not meaningful.

6.1.3 The optimal feature set

The above theorems deal with M∗ and S∗, which are properties of the
true data distribution. Therefore, the results so far can be considered
asymptotic. For finite sample sizes, the situation is more complicated.
I next establish some conditions under which an expectation-optimal
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feature set S† is always contained in S∗, so that weakly relevant features
are not an issue even for small sample sizes. We will need the following
concept.

Definition 6.6. The design cost of an inducer IS is the functional

∆(IS) = ρ(IS)−R(g∗S) ≥ 0.

In words, the design cost is the excess risk incurred by the fact that
the inducer I cannot estimate the optimal classifier exactly. The design
cost generally increases with the size of the feature set S, which is one
motivation for using feature selection [86]. The following theorem out-
lines the conditions under which it there is a simple, intuitive relation
between S∗ and S†.

Theorem 6.7. Let f(x, y) be any distribution such that for every k ≤
|S∗|, and every S of size k,

∃S′ ⊆ S∗ : |S′| = k ∧ R(g∗S′) ≤ R(g∗S), (6.2)

and let I be any inducer with range G containing g∗ and design cost
∆(IS) depending only on |S|. Then there exists an S† ⊆ S∗.

Proof. By (6.2), take an S′ ⊆ S∗ with |S′| = |S†| and R(g∗S′) ≤ R(g∗S†).
Then

ρ(IS′) = ∆(IS′) +R(g∗S′)
≤ ∆(IS′) +R(g∗S†)

= ∆(IS†) +R(g∗S†) = ρ(IS†)

Whether the condition (6.2) is true in general is to my knowledge an open
problem. van Campenhout [178] studied the orderings of sets induced
by the Bayes risk, but always assumed that Vn = S∗ so that this issue
does not arise. Note that if the design cost increases only slowly with
|S|, then we would expect that S† ≈ S∗, so that the optimal feature set
S† can be well approximated by S∗ for the purpose of minimizing risk.
This was the case for the support vector machine in Chapter 5.

To illustrate the small-sample case, consider the following application
of a linear support vector machine to the distribution in Example 6.1.
Let I be a linear, soft-margin support vector machine (SVM) [32] with
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the regularization parameter C fixed at 1, and let training data Z(1:l)

be sampled from the density (6.1) with sample sizes l = 10, 20, . . . , 100.
Figure 6.1B shows the risk of g = I(Z(1:l)) and gS∗ = IS∗(Z(1:l)

S∗ ). We
find that IS∗ outperforms I, as expected. The risk functional R(g) was
here calculated by numerical integration of Equation (2.15) for each SVM
hyperplane g and averaged over 20 training data sets. Clearly, adding
the weakly relevant features increases risk in this example.

6.2 Consistent polynomial-time search al-

gorithms

By limiting the class of distributions, I have hitherto simplified the fea-
ture selection problem to the extent that weakly relevant features can
be safely ignored. In this section, we show that this simplification leads
to polynomial-time feature selection algorithms.

For finite samples, the optimal feature selection algorithm Φ (Defini-
tion 4.1) depends on both the unknown data distribution f and as well
as the inducer I [176]. However, a reasonable necessary condition for
a ”correct” feature selection algorithm is that it is consistent. Here,
consistency means convergence to the Bayes-relevant feature set,

Φ(Z(1:l)) P−→ S∗.

Conveniently, the consistency of Φ then depends only on the data dis-
tribution f . Next, we propose a polynomial-time feature selection algo-
rithm and show that it is consistent for any strictly positive f . As before,
feature sets used as subscripts denotes quantities using only those fea-
tures.

Theorem 6.8. Take any strictly positive distribution f(x, y) and let
ĉ(Z(1:l)

S ) be a real-valued criterion function such that, for every feature
subset S,

ĉ(Z(1:l)
S ) P−→ c(S), (6.3)

where c(S) depends only on the distribution f(x, y) and satisfies

c(S) < c(S′) ⇐⇒ R(gS) < R(gS′). (6.4)

Then the feature selection method

Φ(Z(1:l)) = {i : ĉ(Z(1:l)
¬i ) > ĉ(Z(1:l)) + ε}

where ε ∈ (0, η) with η = mini∈S∗(c(Vn \ {i})− c(Vn)), is consistent.
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Proof. Since f is strictly positive, S∗ is unique by Lemma 3.7. By Def-
inition 3.4 and the assumption (6.4) it holds that i ∈ S∗ iff c(Vn) <
c(Vn \ {i}). First consider the case i ∈ S∗. Fix an ε ∈ (0, η) and let
ε′ = min{(η − ε)/2, ε/2}. Choose any δ > 0. By (6.3) there exist an l0
such that for all l > l0,

P
(
max

S
|ĉ(Z(1:l)

S )− c(S)| > ε′
)
≤ δ/2n

Note that since the power-set 2Vn is finite, taking the maxima above
is always possible even though (6.3) requires only point-wise conver-
gence for each S. Therefore the events (i) ĉ(Z(1:l)) < c(Vn) + ε′ and
(ii) ĉ(Z(1:l)

¬i ) > c(Vn \ {i}) − ε′ both have probability at least 1 − δ/2n.
Subtracting the inequality (i) from (ii) yields

ĉ(Z(1:l)
¬i )− ĉ(Z(1:l)) > c(Vn \ {i})− c(Vn)− 2ε′

≥ c(Vn \ {i})− c(Vn)− (η − ε) ≥ ε

Thus, for every l > l0,

P
(
i ∈ Φ(Z(1:l))

)
= P

(
ĉ(Z(1:l)

¬i )− ĉ(Z(1:l)) > ε
)

≥ P
(
ĉ(Z(1:l)) < c(Vn) + ε′ ∧ ĉ(Z(1:l)

¬i ) > c(Vn \ {i})− ε′
)

≥ P
(
ĉ(Z(1:l)) < c(Vn) + ε′

)
+ P

(
ĉ(Z(1:l)

¬i ) > c(Vn \ {i})− ε′
)
− 1

≥ 1− δ/n

For the converse case i 6∈ S∗, note that since c(Vn) = c(Vn \ {i}),

P
(
i ∈ Φ(Z(1:l))

)
= P

(
ĉ(Z(1:l)

¬i )− ĉ(Z(1:l)) > ε
)

≤ P
(
|ĉ(Z(1:l)

¬i )− c(Vn \ {i})|+ |c(Vn)− ĉ(Z(1:l))| > ε
)

≤ P
(
|ĉ(Z(1:l)

¬i )− c(Vn \ {i})| >
ε

2
∨ |c(Vn)− ĉ(Z(1:l))| > ε

2

)
≤ P

(
|ĉ(Z(1:l)

¬i )− c(Vn \ {i})| > ε′
)

+ P
(
|c(Vn)− ĉ(Z(1:l))| > ε′

)
≤ δ/n

where in the last line we have used ε′ ≤ ε/2. Putting the pieces together,
we obtain

P (Φ(Z(1:l)) = S∗) = P (Φ(Z(1:l)) ⊇ S∗ ∧ Φ(Z(1:l)) ⊆ S∗)
= P (∀i ∈ S∗ : i ∈ Φ(Z(1:l)) ∧ ∀i 6∈ S∗ : i 6∈ Φ(Z(1:l)))
≥ |S∗|(1− δ/n) + (n− |S∗|)(1− δ/n)− (n− 1)
= 1− δ
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Since δ was arbitrary, the required convergence follows.

The requirement to choose an ε < η may seem problematic, since in
practise η depends on the true distribution f(x, y) and hence is unob-
servable. For convergence purposes, this can be remedied by choosing a
sequence ε = ε(l) → 0, so that ε < η will become satisfied eventually.
In practise, the parameter ε controls the trade-off between precision and
recall; a small ε gives high recall but low precision, and vice versa. With
this in mind, one might choose ε based on the (estimated) variance of ĉ,
so as to control precision and recall as desired.

The algorithm Φ evaluates the criterion ĉ precisely n times, so it is
clearly polynomial in n provided that ĉ is. The theorem applies to both
filter and wrapper methods, which differ only in the choice of ĉ(Z(1:l)

S )
[97]. As an example, let I be the k-NN rule with training data Z(1:l/2) =
{(X1, Y1), . . . , (Xl/2, Yl/2)} and let R̂ be the usual empirical risk estimate
on the remaining samples {(Xl/2+1, Yl/2+1), . . . , (Xl, Yl)}. Provided k is
properly chosen, this inducer is known to be universally consistent,

P
(
R(IS(Z(1:l/2)

S ))−R(g∗S) > ε
)
≤ 2e−lε2/(144γ2

S)

where γS depends on |S| but not on l [37, pp. 170]. Next, with a test
set of size l/2, the empirical risk estimate satisfies

∀g : P
(
|R̂(g)−R(g)| > ε

)
≤ 2e−lε2

[37, pp. 123]. We choose ĉ(Z(1:l/2)
S ) = R̂(IS(Z(1:l/2)

S )) and c(S) = R(g∗S)
so that (6.4) is immediate. Further, this choice satisfies

P
(
|ĉ(Z(1:l)

S )− c(S)| > ε
)

= P
(
|R̂(IS(Z(1:l/2)

S ))−R(g∗S)| > ε
)

≤ P
(
|R̂(IS(Z(1:l/2)

S ))−R(IS(Z(1:l/2)
S ))|+ |R(IS(Z(1:l/2)

S ))−R(g∗S)| > ε
)

≤ P
(
|R̂(IS(Z(1:l/2)

S ))−R(IS(Z(1:l/2)
S ))| > ε

2

)
+ P

(
|R(IS(Z(1:l/2)

S ))−R(g∗S)| > ε

2

)
≤ 2e−lε2/4 + 2e−lε2/(576γ2

S) → 0

as required by the theorem, and is polynomial in n. Therefore this choice
defines a polynomial-time, consistent wrapper algorithm Φ. Similarly,
other consistent inducers and consistent risk estimators could be used,
for example support vector machines [160] and the cross-validation error
estimate [37, chap. 24].
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Figure 6.3: A feature selection example on a 10-dimensional density with 5
strongly and 5 weakly relevant features (equation (6.1)). Averaged results of
50 runs are plotted for samples sizes 20, . . . , 200. Error bars denote standard
deviations.

The feature selection method Φ described in theorem 6.8 is essentially
a backward-elimination algorithm. With slight modifications, the above
shows that many popular feature selection methods that implement vari-
ants of backward-search, for example Recursive Feature Elimination [68],
are in fact consistent. This provides important evidence of the soundness
of these algorithms.

In contrast, forward-search algorithms are not consistent even for strictly
positive f . Starting a with feature set S, forward-search would choose the
feature set S′ = S ∪ {i} (that is, add feature Xi) iff ĉ(Z(1:l)

S′ ) < ĉ(Z(1:l)
S ).

But it may happen that R(g∗S′) ≮ R(g∗S) even though S′ is contained in
S∗. Therefore, forward-search may miss features in S∗. The ”noisy XOR
problem” [67, pp. 1116] is an example of a strictly positive distribution
with this property.

A simple example illustrating theorem 6.8 is shown in figure 6.3. We
implemented the feature selection method Φ defined in the theorem,
and again used the data density f from equation (6.1). Also here, we
employed a linear SVM as inducer. We used the leave-one-out error
estimate [37] as R̂. As sample size increases, we find that the frac-
tion of strongly relevant features selected approaches 1, confirming that
Φ(Dl) P−→ S∗. Again, this emphasizes that asymptotic results can serve
as good approximations for reasonably large sample sizes.
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Data set l × n No FS Φε=0 Relief FCBF

Breast cancer 569× 30 8 9(7) 69(8) 62(2)
Ionosphere 351× 34 11 9(14) 16(26) 14(5)
Liver disorder 345× 6 36 39(5) −(0) 43(2)
E.Coli 336× 7 36 20(5) 43(1) 57(1)
P.I. Diabetes 768× 8 33 36(7) 35(1) 35(1)
Spambase 4601× 57 12 17(39) 25(26) 40(4)

Table 6.1: Feature selection on UCI data sets. Test error rates are given
in %, number of features selected in parentheses. Significant differences from
the classifier without feature selection (”No FS”) are underscored (McNemar’s
test, p = 0.05). l denotes number of samples, n number of features.

6.2.1 Experimental data

The algorithm Φ is primarily intended as a constructive proof of the fact
that polynomial and consistent algorithms exist; we do not contend that
it is optimal in practical situations. Nevertheless, we conducted some
experiments using Φ on a set of well-known data sets from the UCI ma-
chine learning repository [123] to demonstrate empirically that weakly
relevant features do not contribute to classifier accuracy. We used a 5-
NN classifier together with a 10-fold cross-validation error estimate for
the criterion function ĉ. For each case we estimated the final accuracy by
holding out a test set of 100 examples. Statistical significance was eval-
uated using McNemar’s test [38]. We set ε = 0 in this test, as we were
not particularly concerned about false positives. For comparison we also
tried the Relief algorithm [94] and the FBCF algorithm by Yu and Liu
[190], both of which are based on the conjecture that weakly relevant
features may be needed. We found that Φ never increased test error
significantly compared to the full data set, and significantly improved
the accuracy in one case (table 6.1). The FCBF and Relief algorithms
significantly increased the test error in five cases. Overall, these methods
selected very few features (in one case, Relief selected no features at all)
using the default thresholds recommended by the original papers (for
FCBF, γ = n/ log n and for Relief, θ = 0, in the notation of each respec-
tive paper; these correspond to the ε parameter of the Φ algorithm).
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6.3 Discussion

I have here shown that there exists polynomial-time search (wrapper)
algorithms which converge to S∗ as l → ∞, regardless of the under-
lying data distribution. It is easy to obtain a similar result in the
case of consistent linear classifiers g(x) = sign(wTx): since in this case
R(I(Z(1:l))) P−→ R(g∗) as l → ∞, we must have g∗ = sign((w∗)Tx) and
i ∈ S∗ ⇐⇒ w∗i 6= 0. Hence, φ = 1{wi 6=0} is consistent. However, this
presupposes a fairly narrow class of data distributions where g∗ indeed is
linear. In contrast, the algorithm suggested in Theorem 6.8 is consistent
for arbitrary distributions, provided that the inducer used is. A possible
generalization here could be to ”kernelize” the linear classifier with a
universal kernel using the recent method of Li et al. [110].

One consequence of the results in this chapter that possibly is of general
theoretical interest is that it is sometimes possible to design tractable,
consistent algorithms for the small-sample case even when the asymp-
totic case is intractable. Often, the tractability of machine learning prob-
lems are considered in the asymptotic case; for example, [26] recently
proved that Bayesian network inference is NP-hard in the asymptotic
case. The results herein suggest that despite difficulties in the asymp-
totic case, it may be possible to design algorithms for computing esti-
mates at small samples which converge to the correct solution as l→∞.
Indeed, a recent paper by Kalisch and Bühlmann [91] establishes such a
consistent, polynomial-time procedure for Bayesian network inference.

6.4 Summary

In this chapter, I have explored an alternative approach to the problem
of finding predictive features: instead of designing suboptimal methods
for the intractable full problem, I propose to use consistent and efficient
(polynomial-time) methods for a restricted data distribution class. I find
that a very mild restriction to strictly positive distributions is sufficient
for the problem to be tractable. I argue that the condition of strict
positivity is satisfied in almost every experimental setting due to the
presence of noise. Therefore, I conclude that finding predictive features is
tractable for most practical problems, contrary to the current consensus
[67].

The results of this chapter are mainly theoretic. The algorithm outlined
in Section 6.2 is intended as a proof-by-example of the existence of cor-



124 Consistent Feature Selection in Polynomial Time

rect algorithms, and is not meant to be directly applicable in practical
settings. Nevertheless, these results provide a foundation upon which one
can build sound algorithms for practical problems. In the next chapter,
I propose a statistical method that addresses these problems.



7
Bootstrapping Feature

Selection

In Chapter 6 we found that it is possible to devise algorithms for discov-
ering predictive features which are consistent and yet computationally
efficient. However, we left open the question of the accuracy of the fea-
ture sets selected when such methods are applied in practise, for small
sample sizes: recall that or the algorithm presented in Section 6.2, the
parameter ε was seen to control the trade-off between false positives and
false negatives, but no principled method of adjusting this parameter
was devised. In this chapter, I will consider the issue of controlling false
positive rates for learning predictive features.

7.1 Stability and error rates

A problem which has recently received much attention in practical ap-
plications of feature selection, in particular cancer research, is instability
of feature selection methods [46, 47, 116]. Stability is defined as the
normalized expected overlap between two features S, S′ derived from
independent, replicate experimental data sets.

Definition 7.1 (Stability). Let S, S′ be two independent, identically
distributed random sets, that is, two random variable on 2Vn . Then the

125
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stability of S is defined as

S(S) = E
[

|S ∩ S′|
max{|S ∪ S′|, 1}

]
. (7.1)

This stability measure is always between 0 (no expected overlap) and
1 (complete overlap). Clearly, a feature selection method Φ applied
to two independent, replicate experimental data sets Z(1:l), (Z ′)(1:l)

yields two such random sets, so that the corresponding stability mea-
sure S(Φ(Z(1:l))) is well-defined. When this is close to zero, we say that
Φ is unstable.

It has been observed experimentally that feature selection methods tend
to be unstable in high-dimensional settings [46, 116]. This has caused
a lot of concern regarding the reliability of these methods [88]. The
consensus among practitioners is naturally that analysis methods should
be reproducible, and it is expected that sound methods should yield
identical results on independent data sets. Therefore, instability has
been interpreted as evidence that the methods are incorrect, i.e., that
the fraction of false positives is high.

This is an understandable position, but it is grounded in intuition derived
from low-dimensional or even one-dimensional data sets. We will see
that — perhaps surprisingly — this notion of replication does not carry
over to high-dimensional data. For high-dimensional feature selection
problems, it is quite possible for a feature selection method to be both
unstable and correct.

To better understand the concept of instability, it seems reasonable to
relate it to better understood statistical concepts like false discovery
rate (FDR) and power. The false discovery rate was described in Sec-
tion 4.1.2. Power is here defined as the expected fraction of true positives
among the selected features,

E
[
|S ∩ S∗|

max{|S|, 1}

]
.

Here the the Bayes-relevant features S∗ is considered as the ”true” fea-
ture set. To examine these properties, I conducted a simple simulation
experiment using a two-class data distribution. Here n = 1000 while S∗

consisted of 200 (20%) differentially expressed features, (Xi |Y = y) ∼
N(yµ, 1). The remaining 800 features were distributed as N(0, 1). I then
investigated how stability, FDR and power depends on µ. To select fea-
ture sets, Student’s t-test with the Benjamini-Hochberg correction was
used, since this is known to control FDR at nominal levels [12].
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Figure 7.1: Simulation experiment of stability and power for differential
expression testing with the t-test. Left and right, Venn diagram illustrations
of the instability measure (see text). S∗, Bayes-relevant features; S, S′, selected
feature sets.

The t-test is in fact optimal in this setting [21]. Nevertheless, our simula-
tions revealed that it can exhibit low stability (Figure 7.1). Specifically,
when µ was small and the method exhibited low power, stability was
always low, even with a stringent FDR. Conversely, in situations with
strong differential expression and high power, stability was high and did
not depend much on the chosen FDR. I therefore conclude that instabil-
ity need not indicate that the feature selection method produces many
false positives. Rather, low stability results from low power to detect
true positives, so that in each experiment small feature sets are selected
at random among the many true positives, with little overlap between ex-
periments (figure 1, left). In essence, this result means that in situations
where many features are weakly associated with the target variable and
power is low, one cannot expect to reproduce feature sets in independent
experiments, even with the most stringent and correct methods.

7.2 Feature selection is ill-posed

The above shows that instability can arise merely from low power in high
dimensions. With simple univariate statistical tests like the t-test used
above, this is a satisfactory explanation for the phenomenon, as the false
discovery rate was controlled in this case. However, for feature selection
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methods that attempt to optimize the risk of a predictor, there is a
second component that contributes to instability. We found in section
Section 3.2 that for small samples, the optimal set S† may not be unique,
even if the expected risk could be determined exactly. As in practise we
must necessarily measure risk only approximately, it is to be expected
that the solution is even more degenerate. This may contribute to the
observed instability [116] of such methods.

Selecting features by optimizing predictor risk can thus be seen as an ill-
posed problem in the classic sense [181]. Finding an expectation-optimal
feature set S† amounts to solving the equation

E [R(IS)] = E [R(IS†)] (7.2)

for a feature set S. This problem is ill-posed in the sense that the
selected set S might deviate substantially from S† even for very small
changes in the right-hand side. Conversely, fairly large changes in S may
not have any substantial effect on E [R(IS)]. Hence, for real data where
one merely has access to noisy estimates of these quantities, one should
expect unstable feature sets.

In contrast to the situation in the previous section, this degeneracy may
contribute to false positives, as seen in Chapter 5. In summary, for
many feature selection algorithms there will be one ”harmless” compo-
nent component contributing to instability due to low power, without
inflating false positive rates; but there will also be one component due
to degeneracy that contributes both instability and false positives. Intu-
itively, this will happen whenever the feature set S is derived through an
”inverse” problem such as (7.2), as opposed to the ”direct” formulation
seen in hypothesis testing.

7.3 The bootstrap approach

From the above result and discussion, I conclude that stability is not an
operational measure of feature set accuracy. It would be preferable to be
able to perform statistical tests to decide whether to include each feature,
as with the t-test used above. This has hitherto not been attempted for
the more complex machine learning methods typically used to construct
feature sets [67]. This is probably because a rigorous definition of the
”true set” has been elusive. Building upon the definitions established in
Chapter 3, we are now in a position to design such tests. I next describe
a general method for this purpose.
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Figure 7.2: Illustration of the problem of permutation testing for predictive
models. A: Example data distribution where X2 ⊥ Y so that H2

0 is true. B:
The distribution of Wi corresponding to (A) satisfies E [W2] = 0. C: Distribu-
tion of permuted data X ′. D: The corresponding distribution of W ′

i satisfies
E [W ′

i ] = 0, but the distribution of W ′
2 may now be different from W2.

The first step in developing a hypothesis test is to define the null and
alternate hypotheses H0 and H1. In our case, as we are interested in
discovering predictive features, we define the null hypothesis for each
feature Xi to be Hi

0 : i /∈ S∗.

Next, for each Xi we need a statistic that can be used to test Hi
0. This

statistic depends on the learning method used; as an example we here
consider the linear Support Vector Machine (SVM) [32]. If we consider
the coefficients wi estimated from the training data as observations of a
statisticWi, then (for large samples) we may re-write the null hypotheses
simply as Hi

0 : E [Wi] = 0. In general, any learning procedure that for
each feature outputs a parameter estimate Wi = Wi(Z(1:l)) satisfying

E [Wi] = 0 =⇒ i /∈ S∗

can be used in this fashion. Several inducers are known to satisfy this
assumption in the large sample limit; for a proof in the case of the SVM,
see for example Hardin et al. [72].

Still, testing this null hypothesis is non-trivial, since the distribution of
the statistic Wi is difficult to determine. Given the unknown data dis-
tribution and the complex procedure for computing Wi from training
data (e.g., the SVM solves a quadratic programming problem), there is
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little hope deriving this distribution analytically. Non-parametric per-
mutation tests [63] are unfortunately not applicable here either, since
permuting the target variable does not correctly reconstruct the distri-
bution of Wi under Hi

0. This is because W depends on all features, and
permuting Y renders every feature independent of Y , which clearly is
different from the single independence Xi ⊥ Y that we want to test. An
illustration of this problem is shown in Figure 7.2. A possible remedy
for this problem would be to perform n permutation tests by permuting
each Xi instead. This is computationally very expensive, however.

I therefore considered a hypothesis testing framework based on the boot-
strap [44]. In this approach, one constructs a bootstrap sample con-
sisting of B data sets D(1), . . . D(B) (here subscript denote bootstrap
replication number, not feature indices) by sampling with replacement
from a given data set D = Z(1:l). Applying the inducer to each of these
yields the statistic vectors w(1) = W (D(1)), . . . , w(B) = W (D(B)). Then,
for each feature i, the corresponding bootstrap observations w(1:B)

i =
w

(1)
i , . . . , w

(B)
i are used to estimate the distribution of Wi. From this we

obtain bootstrap confidence intervals for each E [Wi], and by inverting
this interval (i.e., computing the confidence level at which 0 is covered)
we obtain p-values pi for each null hypothesis Hi

0.

7.3.1 Accuracy of the bootstrap

The bootstrap methodology is necessarily an approximate technique [42].
It is known that the bootstrap estimates of the distributions p(wi) are
consistent [21, pp. 480]. For finite samples however, one cannot obtain
exact hypothesis tests using the bootstrap; that is, bootstrap p-values
will satisfy P (pi ≤ α) ≤ α only approximately. Put differently, the
realized level of the bootstrap will only approximately equal the nominal
level α. More precisely, under some conditions on the data distribution,
it can be established that the bootstrap p-values satisfy

P (pi ≤ α) ≤ α+O(1/l).

See for example Efron and Tibshirani [44]. Thus, the tests converge
towards the nominal level α at a rate of 1/l. The main issue in practise
however, is the precise value of the termO(1/l) for a given sample size. In
the next section I verify by simulations that this term is indeed negligible.
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Figure 7.3: Results on simulated data for the bootstrap method using the
SVM inducer. A: Realized level and power at 5% nominal level, indicated
by dashed line. B: Realized FDR, power and stability after the Benjamini-
Hochberg correction. Here the nominal FDR was set at 5%, indicated by
dashed line.

7.3.2 Simulation studies

I conducted a simulation study of the proposed bootstrap procedure for
two-class data sets, using 1, 000 features and 100 samples. The data
distribution was the same as in Section 7.1, that is, 20% of the features
were differentially expressed, with varying effect size. The bootstrap
method was tested with a linear Support Vector Machine (SVM) [32],
the Kernel Fisher Discriminant (KFD) [117] and the Weighted Voting
(WV) algorithm of Golub et al. [62]. Since results were highly similar
for each of these learning methods, I here present the results for the
SVM only. For each learning method and for a range of effect sizes, our
bootstrap test produced correct p-values, resulting in test levels very
close to the chosen nominal level of 5%, while power increased with
increasing effect size (Figure 7.3A). This indicates that the bootstrap
test itself is sound. To yield reliable feature sets, we then corrected for
multiplicity using the procedure of Benjamini and Hochberg [12], setting
nominal FDR at the typical value of 5%. This did indeed control FDR
at nominal levels (Figure 7.3B), although power was limited, yielding no
significant features for predictors with less than approx. 90% accuracy.
I therefore expect that predictors must be quite accurate in order to
yield reliable feature sets. It was also observed that the stability of the
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Figure 7.4: Results on simulated data using the SVM inducer. A: feature
set selected by recursive feature elimination (RFE). B: feature set selected as
the top 200 features.

resulting feature sets was low (less than 20% in all of our experiments),
in agreement with previous result (Chapter 5).

The simulation study was repeated using the popular Recursive Feature
Elimination (RFE) method to select feature sets. While this method did
produce accurate predictive models (data not shown), the feature sets
derived from it contained excessive amounts false positives (Figure 7.4A).
This problem was most pronounced for difficult classification problems
(small effect sizes), where most of the features chosen were false positives.
Since RFE chooses the feature set based on the (estimated) accuracy
of the predictor, I believe that this phenomenon is a consequence of
predictor regularization, as discussed in the introduction. I conclude
that this method is not suitable for generating feature sets. Moreover,
this problem is not specific to RFE, as similar results have recently been
obtained with other methods that optimize the feature set for prediction
accuracy [126].

Similar results was also obtained when choosing as the feature set a ”top
list” of 200 features (the size of the true feature set in our simulations),
ranked by the wi statistics (Figure 7.4B). I would thus also advise against
the common practise of choosing a fix number of ”top features” from a
ranked list.

The performance of both the RFE and bootstrap methods are summa-
rized using ROC curves in Figure 7.5. The ROC curves were nearly
identical, indicating that the bootstrap does not alter the overall per-
formance of the learning method. However, merely summarizing the
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Figure 7.5: ROC curves for simulated data using the SVM inducer. Gray
arrow indicates decreasing effect size (harder prediction problem), percentages
indicate SVM error rates. A: Genes ranked by bootstrap p-values. Circles
indicate the points chosen on each ROC curve by the bootstrap method at the
5% level (dashed line). B: Genes ranked directly by the SVM weights. Circles
indicate the points chosen by recursive feature elimination.

Data set (ref.) n MCF(%) CV(%)

Alon [7] 62 35 19±7.2
Golub [62] 72 32 3.0±4.2
Singh [156] 136 43 7.4±3.0
van’t Veer [179] 97 47 38±8.4
Wang [183] 286 37 35±4.3

Table 7.1: Cancer gene expression data sets. n, number of samples; MCF,
minority class frequency; CV, cross-validation error with a linear SVM, mean
± std.dev.

performance of a feature selection methods using ROC curves is not suf-
ficient; to control error rates, it is also necessary to be able to choose
a point on this ROC correctly, for example at 5% level (dashed line in
Figure 7.5A). Existing feature selection methods have no such facility;
they choose points on the curve to optimize predictor accuracy, rather
than to avoid excessive false positives in the feature set, as in the case
of RFE (Figure 7.5B). This leads to loss of error rate control.
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Data set (ref.) BS BS0 RFE RFE0 DE

Alon [7] 19 0 62 125 316
Golub [62] 537 0 78 156 1092
Singh [156] 97 0 78 312 3822
van’t Veer [179] 0 0 76 153 2
Wang [183] 0 0 312 312 110

Table 7.2: Results of features selection on cancer gene expression data. BS,
significant genes using the bootstrap with SVM at 5% FDR; RFE, genes chosen
by recursive feature elimination; BS0 and RFE0, gene chosen by the bootstrap
and RFE methods respectively on permuted data. DE, differentially expressed
genes using the t-test at 5% FDR.

7.3.3 Application to cancer data

We next applied our bootstrap method with the SVM learning method
to analyze a number of publicly available cancer gene expression data
sets (Table 7.1). The feature selection results are summarized in Ta-
ble 7.2. Intuitively, a prerequisite for obtaining a good feature set is
that the predictor is accurate; a predictor which does not perform bet-
ter than random should not be expected to be useful for constructing
feature sets. For the van’t Veer and Wang data sets, the SVM was unable
to discriminate effectively between the classes (Table 7.1). Accordingly,
for these data sets the bootstrap method did not call any genes signifi-
cant. For the other data sets, the general trend is that higher predictive
accuracy results in greater power for the bootstrap test, with over 500
significant predictive genes at 5% FDR for the data set by Golub et al.
[62].

For comparison, we performed a conventional differential expression test
for each data set using the t-test statistic with the Benjamini-Hochberg
correction (Table 7.2). This identified many more genes than the boot-
strap test, the only exception being the van’t Veer data. This may
indicate that many of the differentially expressed genes are redundant
for prediction and therefore does not enter into the Bayes-relevant fea-
ture set S∗. In this way, we can identify the genes most predictive of
the clinical variable among a much larger set of indirectly related genes.
However, it may also be possible that the bootstrap test in some cases
has less power since the models fitted by the machine learning methods
could be overly complex.

We also tried re-running the bootstrap method on a permuted version
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of each original data set. This yielded zero findings in each case, thus
confirming that we do not obtain spurious findings where no predictive
power exists. In contrast, the RFE method reports even larger feature
sets with permuted data, and also reports gene lists for the difficult data
sets, in accordance with previous results (Chapter 5).

7.4 Discussion

For simplicity, I have in this chapter restricted attention to two-class
problems and linear predictors. However, the bootstrap framework out-
lined herein is in principle applicable to any learning method for which a
statistic can be derived to test the feature set null hypothesis. Continu-
ous clinical variables can easily be handled by substituting the classifiers
used here for, say, ridge regression [76] or the relevance vector machine
[172]. Moreover, non-linear dependencies could be possibly be addressed
using the recent method of Li et al. [110].

A number of issues remain to be considered. The statistics Wi used
herein are guaranteed to be correct (i.e., satisfy E [Wi] when g /∈ S∗)
only in the limit of large samples. In our experiments we have noted
that this property seems to hold for small samples as well, but formal
proofs are lacking. Also, even the multivariate inference methods tend
to favor the marginal distributions in high dimensions, and thus resem-
ble the simpler univariate methods. This is likely a consequence of the
specific type of regularization used (often, the regularizer strives towards
independent features), but it is unsatisfying given that gene expression
is governed by complex networks. Further research is needed concerning
the small-sample properties of the Wi statistics and possible alternative
regularization techniques that better take into account the biological
properties of gene expression data.

As discussed above, bootstrap hypothesis testing is known to provide
only approximate p-values. The validity of this approximation should be
verified in each situation by appropriate simulations. A possible future
extension for improved performance could be to also estimate the extra
term O(1/l) from simulations and correct the bootstrap p-values accord-
ingly, thus ”calibrating” the method for each particular application. As
mentioned, it would also be possible to apply a separate permutation
test by permuting each feature Xi independently. However, this would
vastly increase the computational burden for large n.
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7.5 Summary

While much attention has been given to the problem of learning predic-
tors from gene expression data, biology researchers are often more inter-
ested in the predictive genes than in the predictor itself. For example,
while being able to diagnose a tumor merely from its expression profile
is theoretically interesting, the improvement in accuracy compared with
existing diagnosis methods is still unclear [41, 128]. The feature set, on
the other hand, may supply important clues to the molecular pathology
of the tumor and is therefore of considerable interest. It is unfortunate
that the accuracy of the feature sets derived from predictive models is
poorly understood. Many researchers consider good predictive accuracy
as evidence for an accurate feature set. However, with modern machine
learning methods, this is not a valid assumption: many predictors have
internal mechanisms for suppressing noise and may perform well even
with excessive amounts of false positives in the associated feature set
[127, 134].

In this chapter, I therefore develop a method for controlling error rates
of feature sets directly, as is done with statistical tests for differential
expression. The resulting bootstrap method proposed herein can be used
to discover predictive genes in a statistically sound manner. In essence,
our test identifies the genes directly associated with the target variable,
rather than all genes with a significant association. The method is thus
primarily useful when expression changes are abundant, as in cancer gene
expression, so that prediction is feasible.

Many important inference problems in bioinformatics may be cast as
prediction problems. Case-control association studies can be viewed as
predicting phenotypes from SNP data, with the feature set correspond-
ing to the associated markers [182]; in protein structure prediction, the
feature set corresponds to the features (motifs, active sites, etc) of the
protein that determine its functional class [109]; in gene network recon-
struction, a model is fit to predict expression values of regulated genes
given the expression of their regulators and the feature set corresponds
to the interactions in such networks [189]. The bootstrap framework
describe here is potentially applicable in all of these situations, thus pro-
viding error control for important, complex inference problems where
permutation testing is not possible. Many more examples could be men-
tioned, also outside of the biological sciences. Therefore, I hope that the
developments in this chapter could to be of general interest.
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Features

In biological applications of feature selection, many researchers are pri-
marily interested in the ”biological significance” of features (genes) that
depend on the target variable Y [157], rather than their predictive power.
As a rule, biological significance means that a gene is causally involved
(either indirectly or indirectly) in the biological process of interest. As
previously discussed in Section 3.3, the most predictive features are not
in general the biologically most relevant ones, since features may be
predictive without necessarily being causally closely related, and may
therefore be quite irrelevant to the biologist.

In this section I therefore focus on the problem of identifying the set
SA consisting of all genes relevant to the target variable, rather than
the set S∗, which may be more determined by technical factors than by
biological significance. To the best of my knowledge, this problem has
not previously been studied in full generality, although several important
special cases have been considered (reviewed in Chapter 4).

8.1 Computational complexity

In Chapter 6, we found that for strictly positive distributions, the prob-
lem of finding the Bayes-relevant feature set S∗ is tractable in the sense
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that there exist consistent estimate computable in polynomial time. The
first result of this chapter demonstrates that because SA includes weakly
relevant features (figure 6.2), finding this set is computationally much
harder than finding the Bayes-relevant features.

Theorem 8.1. For a given feature Xi and for every S ⊆ Vn \ {i}, there
exists a strictly positive f(x, y) satisfying

Y 6⊥ Xi |XS ∧ ∀S′ 6= S : Y ⊥ Xi |XS′ . (8.1)

Proof. Without loss of generalization we may take i = n and S =
{1, . . . k}. Let XS∪{k+1} be distributed as a k + 1-dimensional Gaus-
sian mixture

f(xS∪{k+1} | y) =
1
|My|

∑
µ∈My

N(xS∪{k+1} |µ,Σ)

My = {µ ∈ {1, 0}k+1 : µ1 ⊕ · · · ⊕ µk+1 = (y + 1)/2}

where ⊕ is the XOR operator (My is well-defined since ⊕ is associative
and commutative). This distribution is a multivariate generalization
of the ”noisy XOR problem” [67]. It is obtained by placing Gaussian
densities centered at the corners of a k+ 1-dimensional hypercube given
by the setsMy, for y = ±1. It is easy to see that this gives Y 6⊥ Xk+1 |XS

and Y ⊥ Xk+1 |XS′ if S′ ⊂ S. Next, let Xi+1 = Xi + ε for k < i < n,
where ε is some strictly positive noise distribution. Then it holds that
Y 6⊥ Xi |XS for k < i < n, and in particular Y 6⊥ Xn |XS . But it is
also clear that Y ⊥ Xn |XS′ for S′ ⊃ S, since every such S′ contains a
better predictor Xi, k < i < n of Y . Taken together, this is equivalent
to (8.1), and f is strictly positive.

This theorem asserts that the conditioning set that satisfies the relation
Y 6⊥ Xi |S may be completely arbitrary. Therefore, no search method
other than exhaustively examining all sets S can possibly determine
whether Xi is weakly relevant. Since discovering SA requires that we
determine this for every Xi, the following corollary is immediate.

Corollary 8.2. Determining SA requires exhaustive subset search.

Exhaustive subset search is widely regarded as an intractable problem,
and no polynomial algorithm is known to exist. While the exact com-
plexity class of subset search is not known (Peter Jonsson, Linköping
University, personal communication), it is clear that finding SA is in-
tractable. This fact is illustrative in comparison with Theorem 6.5; the
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Function RIT(Y,X)
Input: target node Y , features X

Let S = ∅;
foreach Xi ∈ X do

if Xi 6⊥ Y | ∅ then
S = S ∪ {Xi};

end
end
foreach Xi ∈ S do

S = S ∪ RIT(Xi, X \ S);
end
return S

end

Figure 8.1: The Recursive Independence Test (RIT) algorithm.

problem of finding S∗ is tractable for strictly positive distributions pre-
cisely because S∗ does not include weakly relevant features.

Since the restriction to strictly positive distributions is not sufficient
in this case, we must look for additional constraints. In the following
sections I propose two different polynomial-time algorithms for finding
SA, and prove their consistency.

8.2 The Recursive Independence Test al-

gorithm

8.2.1 Outline

In this section I describe a simple algorithm named Recursive Indepen-
dence Test (RIT) based on pairwise tests for marginal (in)dependencies.
The algorithm pseudocode is given in Figure 8.1. In the first round, RIT
tests for the marginal dependencies Xi 6⊥ Y | ∅ for each gene Xi and ob-
tains a corresponding gene set S. Next, for each Xi ∈ S we recursively
call RIT to test for the marginal dependencies Xi 6⊥ Xj | ∅ against each
gene Xj /∈ S, and add the significant findings to S. We continue in this
fashion until no more dependencies are found.

An illustrating example of the RIT algorithm is given in Figure 8.2. Here
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Figure 8.2: Example illustrating the RIT algorithm. Edges (solid lines)
denote marginal dependencies between genes Xi (circles) and the class la-
bel variable Y (square). Gene sets found in each round of RIT are denoted
S1, . . . , S4. The final output of the algorithm is the union of these.

we have SA = {1, . . . , 11} with X1, . . . , X4 being marginally dependent
on Y . The remaining features are irrelevant to Y . In the first round
of RIT we obtain the set S1. In this contrived example we obtain a
S1 which differs from U , which of course may happen for small sample
sizes since the statistical tests used have limited power. In the next
recursion, RIT tests every feature in S1 against X¬S1 = X4,...,20; this
discovers the set S2, which is dependent onX2. Continuing the recursion,
RIT eventually finds two more feature sets S3, S4, after which no more
significant features are found and the algorithm terminates. In S3 we
obtain a false positive X12, and since 4 /∈ S1, we also fail to detect X9

because the required test is never made.

Since the RIT algorithm makes up to n = dimX tests for each element
of SA found, in total RIT will evaluate no more than n|SA| tests. Thus,
for small SA the number of tests is approximately linear in n, although
the worst-case complexity is quadratic.

There are many possible alternatives as to what independence test to
use. A survey of useful tests is found in Section 4.1.1. A popular choice
in Bayesian networks literature is Fisher’s Z-test, which tests for linear
correlations and is consistent within the family of jointly Gaussian dis-
tributions [90]. In general, a different test may be needed for testing
Y ⊥ Xi | ∅ than for testing Xi ⊥ Xj , since the domains X and Y may
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differ. For discrete Y and jointly Gaussian X, a reasonable choice is
Student’s t-test, which is known to be optimal in this special situation
[21]. For other possibilities, see Section 4.1.1.

8.2.2 Asymptotic correctness

I will next prove that RIT is consistent for the following class of distri-
butions.

Definition 8.3. The PCWT distribution class is the set of data dis-
tributions which satisfy the probability axioms of strict positivity (P),
composition (C) and weak transitivity (WT), as defined in Section 2.2.

The proof of asymptotic correctness of RIT for PCWT distributions rests
on the following theorem.

Theorem 8.4. For any PCWT distribution, let R ⊆ Vn denote the
feature set for which there exists a sequence Z1:m = {Z1, . . . , Zm} be-
tween Z1 = Y and Zm = Xk for every k ∈ R, such that Zi 6⊥ Zi+1 | ∅,
i = 1, . . . ,m− 1. Then R = SA.

Proof. Let I = Vn \ R and fix any k ∈ I. Since Y ⊥ Xk | ∅ and Xi ⊥
Xk | ∅ for any i ∈ R, we have {Y } ∪ XR ⊥ XI | ∅ by the composition
property. Then Y ⊥ Xk |XS for any S ⊆ Vn \ {k} by the weak union
and decomposition properties, so Xk is irrelevant; hence, SA ⊆ R.

For the converse, fix any k ∈ R and let Z1:m = {Z1, . . . , Zm} be a
shortest sequence between Z1 = Y and Zm = Xk such that Zi 6⊥ Zi+1 | ∅
for i = 1, . . . ,m− 1. Then we must have Zi ⊥ Zj | ∅ for j > i+1, or else
a shorter sequence would exist. We will prove that Z1 6⊥ Zm |Z2:m−1 for
any such shortest sequence, by induction over the sequence length. The
case m = 2 is trivial. Consider the case m = p. Assume as the induction
hypothesis that, for any i, j < p and any chain Zi:i+j of length j, it holds
that Zi 6⊥ Zi+j |Zi+1:i+j−1. By the construction of the sequence Z1:m it
also holds that

Z1 ⊥ Zi | ∅, 3 ≤ i ≤ m =⇒ Z1 ⊥ Z3:i | ∅ (8.2)
(composition)

=⇒ Z1 ⊥ Zi |Z3:i−1. (8.3)
(weak union)
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Now assume to the contrary that Z1 ⊥ Zp |Z2:p−1. Together with (8.3),
weak transitivity implies

Z1 ⊥ Z2 |Z3:p−1 ∨ Z2 ⊥ Zp |Z3:p−1.

The latter alternative contradicts the induction hypothesis. The former
together with (8.2) implies Z1 ⊥ Z2:p−1 | ∅ by contraction, which implies
Z1 ⊥ Z2 | ∅ by decomposition. This is also a contradiction; hence Z1 6⊥
Zp |Z2:p−1, which completes the induction step. Thus Xk is relevant and
R ⊆ SA. The theorem follows.

The above theorem asserts that RIT is correct if each marginal indepen-
dence test is exact. Assuming consistent tests, we obtain the following
corollary.

Corollary 8.5. For any PCWT distribution and any consistent marginal
independence tests φij for Hij

0 : Xi ⊥ Xj and φi for Hi
0 : Y ⊥ Xi, the

RIT algorithm is consistent.

Proof. The RIT algorithm makes n tests φi and no more than n2 tests
φij . Since the tests are consistent, to each δ > 0 we can find an l such
that for a data set Z(1:l) it holds that

P (∀i, j : φi =1 |Hi
0 ∧ φij = 1 |Hij

0 ) < δ.

Thus the RIT algorithm will discover every sequence Z1:m = {Z1, . . . , Zm}
between Z1 = Y and Zm = Xk with probability 1 − δ. It then follows
from theorem 8.4 that for the set S returned by the RIT algorithm,

P
(
S = SA

)
≥ 1− δ.

Hence, as the sample size l increases, the RIT algorithm will eventually
produce a correct estimate of the set SA with high probability, provided
that the PCWT assumption holds for the data distribution. Next, I will
demonstrate that the PCWT class is a reasonable model for measure-
ments of biological systems.

8.2.3 Biological relevance of the PCWT class

Since cellular systems are believed to be well described by complex net-
works [95], it is reasonable to assume that the distribution of all vari-
ables X ′ comprising a cellular network (transcripts, proteins, metabo-
lites, etc.) can be assumed to be faithful to a Bayesian network [55].
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A B

Figure 8.3: DAG-faithful distributions are not closed under conditioning. A:
Graphical model of a DAG-faithful distribution over X1, . . . , X5. Conditioning
on node X5 in (A) here results in the distribution X1234 |X5 = x5. B: Markov
network (perfect undirected map) of the conditional distribution. No DAG is
a perfect map of this distribution (see Section 2.2).

The following theorem, given by Pearl [130], asserts that the PCWT
class contains all data distributions associated with such networks.

Theorem 8.6. Any strictly positive distribution faithful to a Bayesian
network is PCWT.

However, in practise we typically cannot measure all variables X ′, but
merely a subset X; for example, with microarrays we can perhaps mea-
sure most transcripts, but certainly no proteins or metabolites. Unfor-
tunately, this means that in many cases the distribution of X ⊂ X ′ will
not be faithful to a Bayesian network, even though that of X ′ is. An
example illustrating this problem is given in Figure 8.3; see also Chick-
ering and Meek [25]. Nevertheless, the next theorem asserts that X is
still PCWT.

Theorem 8.7. Let X ′ be a random vector with a PCWT distribution
and let S, T be any two disjoint subsets of the components of X ′. Then
the distribution of X = (X ′ \ {S, T} |T = t) is also PCWT.

A proof is given by Peña et al. [132]. Theorem 8.7 states that for PCWT
distributions, we may fix some variables T to constant values t and
ignore other variables S, and the remaining variables will still form a
PCWT distribution. Thus, given that the distribution of all variables
X ′ comprising the cellular network are PCWT, then any measurements
X we make will also have a PCWT distribution, even though we fail to
measure many variables of the system and perhaps fix others to constant
values by experimental design. From this I conclude that PCWT is a
realistic distribution class for biological data.
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8.2.4 Multiplicity and small-sample error control

While the consistency is an important necessary condition for a ”sound”
algorithm, it is still merely an asymptotic result, and far from satisfac-
tory for the small sample sizes typical for microarray data. With small
samples and high-dimensional X, large amounts of tests will be made,
and it is necessary to properly adjust for multiplicity, or else many find-
ings are likely to be false positives (Section 4.1.2). While the multiplicity
problem has been thoroughly investigated for univariate tests [5], our
situation is more complicated since RIT performs multiple iterations of
testing, and also chooses which tests to make in each round depending
on the outcome of previous iteration.

To obtain a version of RIT with multiplicity control, we will require a
correction procedure that, for ordered p-values p(1) ≤ p(2) ≤ . . . p(n) and
a given significance level α, produces k (possibly zero) corrected p-values
p̃1, . . . , p̃k that satisfy

P (p̃i ≤ α |Hi
0) ≤ α, i = 1, . . . , k, (8.4)

where Hi
0 is the corresponding null hypothesis. That is, we require (8.4)

to hold for each of the ”top genes” chosen. This is a weaker requirement
than FWER control, but slightly stronger that FDR control. We next
prove that the procedure of Benjamini and Hochberg [12] satisfies the
above.

Lemma 8.8. Assume p1, . . . pn0 are independent p-values correspond-
ing to true null hypotheses H1

0 , . . . H
n0
0 , while pn0+1, . . . pn are p-values

corresponding to the remaining false null hypotheses, taking any joint
distribution on [0, 1]n−n0. Then the Benjamini-Hochberg procedure

p̃(i) =
np(i)

i

satisfies
P (p̃(i) ≤ α |Hi

0) ≤ α

Proof. Since the p1, . . . pn0 are independent, the p(i) |Hi
0 are order statis-

tics of a U(0, 1) distribution. These are well known to be beta dis-
tributed,

p(i) ∼ Beta(i, n− i+ 1),

and therefore

P (p̃(i) ≤ α |H0) = P (p(i) ≤ iα/n |H0)
= Iiα/n(i, n− i+ 1)
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where Iz is the regularized incomplete beta function. For all α, this
function takes its largest value for i = 1, so it suffices to note that for
all n,

Iiα/n(1, n) = 1−
(
1− α

n

)n

≤ α.

Other FDR-controlling procedures than the above could probably also
be used for this purpose. However, it is currently not known whether
(8.4) holds for any procedure that controls the FDR, and I have not
attempted to prove it for other procedures.

To establish error rate control, we employ an induction argument. Fix
an α ∈ [0, 1]. Assume as the induction hypothesis that in the first
foreach loop of the RIT algorithm (Figure 8.1) we have tested the null
hypotheses Hi

0 = Xi ⊥ Y | ∅ for each Xi and obtained corrected p-values
p̃i satisfying (8.4) and a gene list S = {i : p̃i ≤ α} . Now consider the
recursive calls RIT(X \ S,Xi). For each i ∈ S, this will test the null
hypotheses Hij

0 = Xi ⊥ Xj | ∅ for every j /∈ S, producing the p-values
pij . We now combine the previously obtained p̃i with these pij to obtain
a single p-value pj for each j /∈ S. To accomplish this, note that by
Theorem 8.4, j /∈ SA is possible at this point only if, for every i ∈ S,
either Hi

0 or Hij
0 holds true. Hence, the null hypothesis for Xj is

Hj
0 =

⋂
i∈S

(Hi
0 ∪H

ij
0 ). (8.5)

This situation is known in statistics as intersection-union testing [14,
149]. By the intersection-union method one can calculate p-values pj

for (8.5); correcting these using the Benjamini-Hochberg procedure then
results in p̃j satisfying (8.4) and a new gene list. This completes the
induction step. As the induction hypothesis is easily satisfied in the first
round of testing, it follows by induction that the p-values produced by
the RIT algorithm all satisfy (8.4). A formal statement and proof of this
fact follows.

Theorem 8.9. Assume that the distribution of (X,Y ) is PCWT. For a
given set S ⊆ Vn and i ∈ S, let pi be a p-value for the null hypothesis
Hi

0 : i /∈ SA. Choose a j /∈ S, and let pij be p-values for Hij
0 = Xi ⊥

Xj | ∅ for each i ∈ S. Then the null hypothesis

Hj
0 =

⋂
i∈S

(Hi
0 ∪H

ij
0 ) (8.6)
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holds true if j /∈ SA, and

pj = |S|min
i∈S

(max{pi, pij}) (8.7)

is a p-value for Hj
0 .

Proof. Since the data distribution is PCWT, we know from Theorem 8.4
that

∃i : i ∈ SA ∧ Xi 6⊥ Xj | ∅ =⇒ j ∈ SA.

Negating this, we obtain

j /∈ SA =⇒ ∀i : i /∈ SA ∨ Xi ⊥ Xj | ∅.

Thus, equation (8.6) is a null hypothesis for j /∈ SA. Further, since pi

and pij are p-values, it holds that

P
(
pi ≤ α |Hi

0

)
≤ α and P

(
pij ≤ α |Hij

0

)
≤ α.

Equation (8.7) is now computed using the intersection-union method
[14]. We find that

P
(
pj ≤ α |Hj

0

)
= P

(
|S|min

i∈S
(max{pi, pij}) ≤ α |

⋂
i∈S

(Hi
0 ∪H

ij
0 )

)
≤
∑
i∈S

P
(
max{pi, pij} ≤ α/|S| |Hi

0 ∪H
ij
0

)
≤
∑
i∈S

P
(
pi ≤ α/|S| |Hi

0 ∧ pij ≤ α/|S| |Hij
0

)
≤
∑
i∈S

min
{
P
(
pi ≤ α/|S| |Hi

0

)
, P

(
pij ≤ α/|S| |Hij

0

)}
≤ |S| · α/|S| = α

which proves that pj is a p-value for the null hypothesis (8.6).

An version of the RIT algorithm that implements these corrections for
error rate control is given in Figure 8.4.

8.2.5 Simulated data

To illustrate the above result and also to assess the statistical power of
RIT as a function of the sample size, I conducted a simulation study. As
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Function RIT(X,S, p, φ, α)
Input: data X, set S ⊂ X, p-values p, test φ, level α

foreach Xj /∈ S do
foreach Xi ∈ S do

Let pij = φ(Xi, Xj);
end
Let pj = |S|mini max{pi, pij} ; // Theorem 8.9

end
Let pj = |X \ S|pj/rj ; // Theorem 8.8
Let S′ = {Xj /∈ S : pj ≤ α};
if S′ 6= ∅ then

p = RIT(X \ S, S′, p, φ, α);
end
return p ; // Result is modified vector

end

Figure 8.4: Modified version of the RIT algorithm, implementing cor-
rections for error control.

in Chapter 5, multivariate Gaussian distributions were used. Here n =
1, 000, of which |SA| = 100, of which 50% were differentially expressed
(differed in the marginal distribution Xi 6⊥ Y | ∅). To this end, a 4-
dimensional Gaussian distribution was used, with class-dependent mean
vector µy = 2y · (0, 0, 1, 1) and covariance matrix

Σ = 4 ·


2 1 1 1
1 2 2 2
1 2 5 5
1 2 5 8

 ,

equal for both classes. The full distribution over SA was then constructed
using 25 of these 4-dimensional blocks. The remaining features had the
same covariance matrix but had mean µ = (0, 0, 0, 0). Sample sizes
l = 10, 20, 30, . . . , 100 were tested.

We compared the performance of RIT against a typical univariate test,
namely Student’s t-test [21] with the Benjamini-Hochberg correction
[12]. We also compared the method against the popular Recursive Fea-
ture Elimination (RFE) feature selection method [68].

Figure 8.5 summarizes the results of this experiment. We find that RIT
does indeed control the FDR at the nominal level (α = 0.05), in the same
way as the univariate t-test. The power of the t-test converges to 0.5
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0.1

0.2

0.3

0.4

A B

Figure 8.5: Simulation results for the RIT algorithm, differential expression
using the t-test, and RFE. Left, statistical power (1− false negative rate) as
a function of sample size. Right, false discovery rate (FDR) as a function of
sample size. Grey arrow marks the nominal FDR = 0.05.

as expected (since only half of the relevant features SA were marginally
relevant), while the RIT converges to 1.0, in agreement with the above
theoretical results. This indicated that, when multivariate effects are
present, RIT affords more power than the univariate test at the same
FDR level.

In contrast, the RFE method clearly does not control the FDR, choos-
ing many genes unrelated to Y . This is in agreement with the results
of Chapter 5. RFE also displays low power, most likely because it con-
siders some of the features in SA to be ”redundant” for prediction and
consequently ignores these. Indeed, it can be verified that only half of
SA is in S∗ in this case, which roughly agrees with the power curve for
RIT. Further, the previous results of Chapter 5 indicates that similar
behavior is to be expected from other feature selection methods. I con-
clude that it is feasible to apply the RIT algorithm to small-sample data
while controlling the FDR at the desired level. Note that sample size re-
quirements cannot be inferred from Figure 8.5 however, as this depends
the particular data distribution, in particular the fraction of MDE genes
and the amount of noise.

8.2.6 Microarray data

We next tested the RIT algorithm on two publicly available microar-
ray data sets (see methods section). A diabetes data set was obtained
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from the study by [66]. It is publicly available through the Diabetes
Genome Anatomy Project, http://www.diabetesgenome.org. This data set
contrasts human pancreas islets expression from 7 normal vs. 15 type
2 diabetic patients. The original data comprises 44,928 probesets from
the Affymetrix U133A and B chips. We used only the A chip in our
experiments, since we needed to evaluate our results against literature
and the A chip contains better annotated sequences. We also filtered
genes by variance before any further analysis, keeping only the 5,000
most variable genes.

The second data set derives from a breast cancer study by van’t Veer
et al. [179]. This consists of l = 78 samples from patients divided into
one ”good prognosis” group (l = 44) and one a ”poor prognosis” group
(l = 34) based on the time until relapse [179]. The data set is publicly
available at www.rii.com/publications/2002/vantveer.html. The microarrays
used contains approx. 25,000 transcripts, out of which 4,918 were selected
using the same quality filter as in the original publication.

For the diabetes data, the original study identified 370 genes as differen-
tially expressed using the t-test, but this unfortunately did not account
for multiplicity [66]. Using the Benjamini-Hochberg correction, only the
top three genes of the original study were declared to be significant:
Arnt, Cdc14a, and Ddx3y. The RIT algorithm identified an additional
21 transcripts as relevant, of which 5 were unknown EST:s and 16 were
known genes according to the NCBI Gene database [114]. Naturally,
RIT is an hypotheses-generating method, and the discovered genes may
or may not be of functionally related to the target variable even though
they are statistically dependent. We therefore conducted a literature
validation of the 16 known genes (Table 8.1) to search for possible bio-
logically important findings. Five of these (31%) were previously asso-
ciated with diabetes. Among the remaining 11 novel genes, several give
rise to interesting hypotheses: dor example, Dopey1 was recently shown
to be active in the vesicle traffic system, the mechanism that delivers
insulin receptors to the cell surface. Four genes encoded transcription
factors, as do the majority of previously discovered diabetes-associated
genes [66]. The Usp9y gene discovered by RIT is associated with male
infertility and Sertoli cell-only syndrome. Interestingly, so is the differen-
tially expressed Ddx3Y gene; this is unlikely to be a coincidence as only
6 human genes were annotated with this function in NCBI Gene. This
is an example of general tendency we have observed in our experiments,
that the additional genes with multivariate dependencies discovered by
RIT often are functionally related to the marginally dependent genes.
This seems reasonable, given that RIT relies on pairwise independence
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tests. The chloride channels Clca2 and Clcn1 are also highly interesting
findings, as ion channels in pancreas islets has been shown to regulate
insulin secretion [139]. The diabetes-associated potassium ion channel
Kcng1 was also discovered by RIT, strengthening this hypothesis.

For the breast cancer data set we observed large amounts of pairwise
correlations among genes, resulting in a highly connected dependence
graph. This is an example where the set SA is problematic as a hy-
pothesis class. To limit the number of findings in this case, we required
significant correlations to exceed a threshold 0.85 to be considered by
RIT (see discussion below). The original study identified a set of 70
cancer-related genes using a variable ranking method [179]. In addi-
tion to these, the RIT algorithm identified 43 relevant genes (Table 8.2).
Literature validation revealed that 23 of these (53%) had a previously
known function in cancer development, whereof 6 (14%) were specifi-
cally implicated in breast cancer (table 2). An additional 10 transcripts
(23%) were cell cycle-related and may also be considered as potential
cancer proliferation genes. Our literature validation thus confirmed 39
(77%) of the genes reported by RIT to be cancer-related. The higher
percentage in this case as compared to the diabetes data may reflect the
fact that more genes are known for cancer than for diabetes. To assess
the amount of cancer annotations among the 5,000 genes considered, we
examined an additional 43 genes chosen at random. Indeed, we found
that about 25% of all genes had some cancer or cell cycle-related anno-
tation. Nevertheless, the above fraction of 77% validated genes is highly
significant with a Binomial tail p-value < 10−20.

Encouraged by the above result, we set out to investigate the remaining
10 genes that were not previously associated with cancer. We found three
histone proteins, which may be related to chromatin remodelling. One
novel gene Gpr116 was recently identified as a G-protein with a potential
role in immune response. The novel gene Prr11 had predicted binding
sites for the transcription factor E2F, which in turn is known to be crucial
in the control of tumorigenesis. Ube2s is an essential component of
the ubiquitin-protein conjugation system, which is implicated in various
cancer forms. This gene is also functionally related to the known cancer
gene Ube2c, which also was discovered by RIT. Also interesting were the
novel proteins Depdc1 and Depdc1b, both containing RhoGAP domains.
This may implicate them in the regulation of various Rho GTPases,
which are currently being investigated as cancer-therapy targets [56].
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8.2.7 Discussion

The RIT algorithm is a principled, general approach that increases the
power of small-sample, genome-wide expression studies by considering
not only univariate differential expression but also multivariate effects.
RIT may thus be very useful in situations where little univariate differ-
ential expression is observed. However, the RIT algorithm itself does not
address the conceptually different problem we encountered in the breast
cancer data set: since cancer is associated with major transcriptional
changes, a large fraction of the genes were found to be relevant. Indeed,
for cancer data sets, even the fraction of differentially expressed genes
has previously been estimated to be on the order of 50% of all genes
[163], and the set SA is presumably much larger, perhaps encompassing
most of the known genome.

With small sample sizes this does not impose a practical problem, since
typically only a small fraction of the relevant genes can be called sig-
nificant; but as power increases, a principled approach for prioritizing
among all relevant genes is urgently needed. For the cancer data, we
had RIT prioritize the findings by considering stronger correlations to
be more important. This is not entirely unreasonable, and we were able
to confirm the end results in this case against the literature. However,
the problem ultimately does not lie with the inference method; rather,
the notion of relevance that defines SA is simply not useful in this case.
To obtain a more precise definition of relevance that admits reasonable
number of candidate features, it seems necessary to integrate other kinds
of information into the analysis [60]. A possible step towards a princi-
pled solution building upon the present work would be to combine the
independence tests used here with other data sources and prior beliefs
(perhaps in the form of Bayesian probabilities) to guide the RIT algo-
rithm towards more ”interesting” genes.

In the studies presented in this section have been limited to two-class
data. However, it is straightforward to extend the RIT algorithm to find
multivariate expression patterns with other types of target variables,
such as multiple classes data or continuous target variables such as sur-
vival times. To accomplish this, only the independence tests used need
to be replaced. This ”modularity” is a useful property of RIT: to handle
different situations, it is sufficient to ”plug in” different independence
tests. For example, a continuous target variable could be handled by us-
ing the Fisher z-transformation also for testing Xj ⊥ Y . More complex,
non-linear independence relations may be handled using nonparametric
tests such as the Kolmogorov-Smirnov test [138] or kernel-based tests
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Function RMB(X,Y, V )
Input: target node Y , data X, visited nodes V

Let S = M(Z(1:l)), the estimated Markov boundary of Y in X;
foreach Xi, i ∈ S \ V do

S = S ∪ RMB(Y,X¬i, V );
V = V ∪ S

end
return S

end

Figure 8.6: Recursive Markov Boundary (RMB)

[65]. See Section 4.1.1.

Dynamic (time-series) data could also be considered, although some ad-
ditional assumptions may be necessary to ensure PCWT distributions in
this case. For example, assuming a Markov condition, time-series data
can be modelled using Dynamic Bayesian Networks (DBNs) [55]. The
DBN methodology essentially transforms a dynamic model over n nodes
into an ordinary BN over 2n nodes. Thus, DBNs also result in PCWT
distributions as described herein (albeit of twice the dimensionality) and
RIT is therefore applicable to detecting multivariate changes in dynamic
as well as in static data.

8.3 The Recursive Markov Boundary al-

gorithm

8.3.1 Outline

In this section I consider a second algorithm for discovering SA called
Recursive Markov Boundary (RMB). Instead of the pair-wise tests em-
ployed by RIT, this algorithm based on a given estimator of Markov
boundaries of Y . The idea here is that existing feature selection meth-
ods may be re-used for Markov boundary estimation as a component of
this algorithm. In this section, we need to consider Markov boundaries
with respect to different feature sets. I denote a Markov boundary of Y
with respect to a feature set S as M∗(S) ∈ 2S .

Assume that for everyM∗(S) we have an estimateM(Z(1:l)
S ). Briefly, the
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Figure 8.7: A contrieved example of the RMB algorithm for a distribution
faithful to the DAG shown in black arrows. Numbers denote the relevant fea-
tures, Y denotes the target variable. As in theorem 8.12, Mi denotes Markov
boundaries and Zi denotes marginalized nodes. Note that the marginal distri-
butions from step 2 onwards may not be DAG-faithful, so absence of arrows
should not be read as independencies.

RMB algorithm first computes the estimate M(Z(1:l)), then M(Z(1:l)
¬i )

for each i ∈ M(Z(1:l)), and so on recursively until no more nodes are
found (Figure 8.6). For efficiency, we also keep track of previously visited
nodes V to avoid visiting the same nodes several times. We start the
algorithm with RMB(X,Y, V = ∅). A contrived example of the RMB
algorithm for a DAG-faithful distribution is given in Figure 8.7. Note
that the recursive formulation allows the algorithm to ”backtrack” as in
step 7 in this example.

8.3.2 Asymptotic correctness

Next, I prove that also the RMB algorithm is consistent for any PCWT
distribution, assuming that the estimator of Markov boundaries used is
consistent. The proof relies on the existence of a minimal independence
map (see Section 2.2) for the distribution. We need only require the
graph over X to be a minimal I-map (not over X ∪ {Y }), so that this
minimal I-map is unique for any positive distribution satisfying f(x) > 0.
[130]. The proof is similar in spirit to that for RIT; we will develop two
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lemmas assuming that the estimators M(Z(1:l)
S ) are correct, so that we

may substitute these for the true Markov boundaries M∗(S). Consis-
tency then follows for consistent estimators since the number of Markov
boundaries estimated is finite.

Lemma 8.10. For any PCWT distribution, and any shortest path Z1:m =
{Xi1 , . . . Xim} between Z1 = Xi1 and Zm = Xim in the undirected min-
imal I-map over X, it holds that Z1 6⊥ Zm |X \ Z1:m.

Proof. Since f(x) > 0, the undirected minimal I-map over X is unique.
The proof proceeds by induction. For m = 2, the lemma follows imme-
diately from the definition of the minimal I-map [130]. Also, it holds
that

Zi 6⊥ Zi+1 |X \ Zi,i+1 (8.8)
Zi ⊥ Zj |X \ Zi,j , j > i+ 1. (8.9)

Take any distinct Zi,i+1, Zk and assume that Zi ⊥ Zi+1 |X \ Zi,i+1,k.
Then Zi ⊥ Zi+1,k |X \ Zi,i+1,k by contraction with (8.9), and therefore
Zi ⊥ Zi+1 |X \ Zi,i+1 by weak union. This contradicts (8.8), so we
conclude that

Zi 6⊥ Zi+1 |X \ Zi,i+1,k. (8.10)

Next, take any sequence Zi:i+2. Applying (8.10), we obtain Zi 6⊥ Zi+1 |X\
Zi:i+2 and Zi+1 6⊥ Zi+2 |X\Zi:i+2. Using weak transitivity implies either
Zi 6⊥ Zi+2 |X \ Zi:i+2 or Zi 6⊥ Zi+2 |X \ Zi,i+2. The latter alternative
contradicts (8.9), so we conclude

Zi 6⊥ Zi+2 |X \ Zi:i+2. (8.11)

Finally, take any Zi, Zj , Zk such that neither Zi, Zj nor Zj , Zk are con-
secutive in the path Z1:m. Using (8.9) with the intersection (Theorem
2.10) and and decomposition (Theorem 2.9), properties, we find

Zi ⊥ Zj |X \ Zi,j

Zj ⊥ Zk |X \ Zj,k

}
=⇒ Zi ⊥ Zj |X \ Zi,j,k. (8.12)

Equations (8.10),(8.11) and (8.12) show that the properties (8.8) and
(8.9) hold also for the shortened path Z ′1, . . . , Z

′
m−1 given by Z ′1 = Z1

and Z ′i = Zi+1, 2 ≤ i < m (i.e., removing Z2). The lemma follows from
(8.8) by induction.

Lemma 8.11. For any PCWT distribution, a feature Xim
is relevant iff

there exists a path Z1:m = {Xi1 , . . . Xim
} in the minimal I-map of f(x)

between im and some i1 ∈ M∗. In particular, for such a path it holds
that Y 6⊥ Zm |X \ Z1:m.
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Proof. If im ∈ M∗ (that is, m = 1), the lemma is trivial. Consider
any im /∈ M∗. First, assume that there exists no path Z1:m. Then
Zm ⊥ XM∗ |XS for any S ⊆ Vn \M∗ \{im}. Fix such an S. Since Zm ⊥
Y |XM∗∪S , contraction and weak union gives Zm ⊥ XM | {Y } ∪ XS .
Again using Zm ⊥ XM∗ |XS , weak transitivity gives

Zm ⊥ Y |XS ∨ Y ⊥ XM∗ |XS .

The latter alternative is clearly false; we therefore conclude that Zm ⊥
Y |XS . Next, fix any S′ ⊆M∗. By decomposition, Zm ⊥ XM∗ |XS =⇒
Zm ⊥ XS′ |XS . Combining with the above result, by the composition
property

Zm ⊥ XS′ |XS

Zm ⊥ Y |XS

}
=⇒ Zm ⊥ {Y } ∪XS′ |XS .

Finally, weak union gives Zm ⊥ Y |XS∪S′ . Since S ∪ S′ is an arbitrary
subset of Vn \ {im}, we conclude that Zm is irrelevant.

For the converse, assume that there exists a path Z1:m. By lemma 8.10,
we have Z1 6⊥ Zm |X\Z1:m. Also, since i1 ∈M∗ and {i2, . . . , im}∩M∗ =
∅, it holds that Y 6⊥ Z1 |XS for any S that contains M∗ \ {i1}. In
particular, take S = Vn \ {i1, . . . , im}. Weak transitivity then yields

Z1 6⊥ Zm |X \ Z1:m

Y 6⊥ Z1 |X \ Z1:m

}
=⇒ Zm 6⊥ Y |X \ Z1:m ∨ Zm 6⊥ Y |X \ Z2:m.

But the latter alternative is false, since X\Z2:m contains M∗ by assump-
tion. We conclude that Zm 6⊥ Y |X \ Z1:m so that Zm is relevant.

With these lemmas in place, we are now in a position to prove the main
theorem of this section.

Theorem 8.12. For any PCWT distribution such that a given estimator
M(Z(1:l)

S ) of the Markov boundary of Y with respect to a feature set S is
consistent for every S ⊆ Vn, the RMB algorithm is consistent.

Proof. For every S ⊆ Vn, the marginal distribution over S is strictly pos-
itive, and therefore every Markov boundary M∗(S) is unique by The-
orem 3.2. Let G be the minimal I-map over the features X, and let
M1 = M∗. Fix any k in SA. If k ∈ M1, we know that Xk is found
by RMB. Otherwise, by Lemma 8.11, there exists a shortest path Z1:m

in G between some i1 ∈ M1 and im = k. We prove by induction over
m that RMB visits every such path. The case m = 1 is trivial. Let
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the induction hypothesis be that Zp is visited. For Zp+1, Lemma 8.11
implies Y 6⊥ Zp+1 |X \Z1:p+1. Since Zp is visited, RMB will also visit all
nodes in Mp+1 = M∗(Vn \ {i1, . . . , ip}). However, Mp+1 contains ip+1,
because it contains all i satisfying Y 6⊥ Xi |X \ Z1:p \ {Xi} by theorem
6.3.

It is easy to see that the RMB algorithm (Figure 8.6) requires computing
|SA| Markov boundaries. We might attempt to speed it up by marginal-
izing out several nodes at once, but in that case we cannot guarantee
consistency. A general algorithm for estimating Markov boundaries is
given by Peña et al. [131]. This estimator is consistent assuming that
f(x) > 0 and the composition property holds, so it follows that RMB is
consistent in PCWT with this choice of M(Z(1:l)

S ).

At first sight, RMB may seem to be more computationally intensive
that RIT. However, since the Markov boundary is closely related to
S∗ (Chapter 3), an approximate version of RMB may be implemented
using existing methods for estimating S∗ in place of M(Z(1:l)). This
approximation would of course be exact for distribution classes where
the Markov boundary coincides with the set S∗. For example, this holds
for two-class Gaussian distributions discussed previously (Section 3.1.2).
From a computational point of view, SVM-based methods (Section 4.3)
are an attractive option, as there exist efficient optimization methods for
re-computation of the SVM solution (and thus the estimate M(Z(1:l)

S ))
after marginalization [92].

8.4 Related work

I have not been able to find any previous work directly treating inference
of the set SA. The problem is somewhat related to inference of graphical
probability models: for the class of DAG-faithful distributions, one can
discover SA by inferring a Bayesian network and then taking SA to be
the connected component of Y in that network. However, this is clearly
less efficient than our direct approach, since Bayesian network inference
is asymptotically NP-hard even in the rather restricted DAG-faithful
class [26]. Certainly, such a strategy seems inefficient as it attempts to
”solve a harder problem as an intermediate step” (by inferring a detailed
model of the data distribution merely to find the set SA), thus violating
Vapnik’s famous principle [180, pp. 39].

Some features selection methods originally intended for optimization of
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predictor performance do in fact attempt to find all relevant features,
since they do not rule out the weakly relevant ones. These include Fo-
cus [6], which considers the special case of binary X and noise-free la-
bels; Relief [94], a well-known approximate procedure based on nearest-
neighbors; and Markov blanket filtering [101, 190], which considers a
particular case based on marginal dependencies (and is therefore fun-
damentally different from RMB, despite the similar name). All known
methods are either approximate or have exponential time-complexity.
None of these methods is known to be consistent. See Chapter 4 for
more details on these algorithms.

8.5 Summary

In this chapter I have analyzed the problem of discovering the set SA of
all features relevant to a target variable Y . This problem has hitherto
received little attention in the machine learning field. With the advent
of new, major applications in genome-wide biology, where identifying
features per se is often a more important goal than building accurate
predictors, we anticipate that the set SA may constitute an important
inference problem, since many biologically important features may not be
predictive (Section 3.3). I have herein provided a first analysis, showing
that discovering SA is harder than discovering the predictive features S∗

— the problem is intractable even for strictly positive distributions (cf.
Chapter 6). I have therefore proposed two consistent, polynomial-time
algorithms for a more restricted distribution class, which I argue to be
realistic for biological data.

Importantly, for the RIT algorithm I have also provided a method of
error control, which enables a principled application to real data. This
algorithm is sound, reasonably computationally efficient, and can utilize
a wide array of hypothesis test to accommodate different data types or
data distributions. However, application of RIT to real biological data
also shows that the set SA in some cases (e.g. cancer gene expression) is
much too large to be useful as for hypothesis generation. In such cases,
prior knowledge must be used to reduce the number of candidates. Cur-
rently, RIT is primarily useful in situations where standard differential
expression tests yield few candidates. In comparison with gene set test-
ing methods (Section 4.4), RIT is useful in that it still gives evidence for
individual genes, not sets of genes. It may thus be viewed as a direct
multivariate analogue of differential expression tests.
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9
Conclusions

9.1 Model-based feature selection

In this thesis, I have tried to promote a statistical view of feature se-
lection, where algorithms are based on a statistical data model. His-
torically, feature selection has to a large extent focused on algorithmic
and computational issues. In my opinion, the definition of underlying
models and precise, operational measures of feature relevance has often
been treated casually or even been entirely neglected. A multitude of
algorithms have been proposed, but since most are heuristic, it is often
difficult to understand how they relate to each other, or what their exact
purpose is. A typical example is the Relief algorithm [6], which has been
largely successful on practical problems, while a precise understanding
of its working principles is still lacking [102, 147].

One reason why feature selection has been effective in practise — in spite
of little theoretical understanding — may be that the final ”quality” of
feature selection has always been easy to assess: the most important
measure of the ”success” of feature selection has been the final accuracy
of the predictor, and possibly the dimension of the reduced data. Both of
these criteria are straightforward to evaluate in practise for experimental
data; all that is required is a separate data set for testing. Granted,
such data sets may be expensive to obtain, but at least there is no major
conceptual problem as to how to proceed.
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This no longer holds true when feature selection is applied in life science.
Previously, the selected features per se have not truly been important, as
long as they are few and the resulting predictor is accurate. In solving
biological and medical problems, however, the identity of the relevant
features are of great importance, since they provide information about
the underlying biological mechanisms. Therefore, it here becomes crucial
to avoid false positives (and false negatives), so that the ”candidates”
generated by feature selection do not lead the researcher astray.

But what is a false positive? To answer this question, we must first ask
”what is a positive?”, that is, what is the precise meaning of ”relevance”.
To precisely define ”relevance”, we require a data model. In this thesis,
the data model is a statistical distribution over data (features) and the
target variable. Thus, the requirements of biology inevitably lead to the
problem of defining a data model and specifying the precise meaning of
relevance. This issue was treated in Chapter 3, where different types of
relevance were defined. Without a data model, the result of inference
methods is hard to interpret.

Only with this foundation in place is it possible to construct sound al-
gorithms which are able to discover the relevant features with statistical
control over false positives. Thus, I conclude that feature selection algo-
rithms for life science must necessarily be model-based. Without a data
model, we cannot define relevance, the goal of the analysis; without a
clearly defined goal, we cannot measure success. This insight, although
it might seem trivial to the reader by now, has only recently surfaced in
the feature selection field. Guyon et al. [69] lists among topics for future
research ”to understand what problem [feature selection algorithms] seek
to solve”. Hopefully, this thesis constitutes a step towards that goal.

A fundamental difference between optimizing predictive accuracy and
controlling false positives is that the true features are always unknown
in biology. Therefore, one can never test feature selection algorithms
in this respect — there are no ”test sets”. Instead, one must prove —
using model assumptions and mathematical arguments — that a partic-
ular algorithm cannot select excessive amounts of false positives. This
cannot be done unless inference is model-based. This is a quite general
conclusion that applies to many important inference problems in modern
biology. An important example which has received much attention re-
cently is gene network reconstruction [59, 167, 168]. Also here, current
algorithms are to a large extent heuristic, their results are difficult to
interpret, the relations between different algorithms are not clear, and
there are no statistical methods for controlling error rates.
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Another benefit of model-based feature selection is that the inference
problems may be simplified. In machine learning, researchers seem re-
luctant to admit any assumptions on the data distribution. Certainly,
one should be restrictive in making assumptions, and those made should
be carefully justified; but in general, some assumptions are required
to obtain tractable problems. A striking example of this is found in
Chapter 6, where a mild restriction to strictly positive distributions is
sufficient to turn an intractable problem into one which can be solved in
polynomial time. Without assumptions, one must resort to heuristics;
but heuristics are in a sense assumptions ”in disguise”. An example of
this is the correspondence between loss/regularizer and conditional/prior
distribution discussed in Section 2.7.3. In my opinion, this is more prob-
lematic, since it may imply assumptions that are not even understood
(and may therefore be quite severe).

9.2 Recommendations for practitioners

The literature on feature selection is extensive and quite bewildering to
the newcomer or experimentalist. Probably the most pressing question
from a practical data analysis perspective is ”which method should I
choose for my problem?”. Of course, the answer to this question depends
on many aspects of the problem at hand. Below, I list ten points that
may serve as a first guide to the methods available.

1. First, are you at all interested in the selected features per se, or
is your goal an accurate predictive model? These are two different
problems. If your goal is prediction, then probably there is no
reason to perform feature selection in the first place. Any modern,
regularized inducer such as the support vector machine [18] can be
used directly. If it is suspected that the great majority of features
are irrelevant, try a sparse (L1) regularizer, e.g., the Lasso [170] or
the LP-SVM [57].

2. Is your data high-dimensional, that is, do you have many more
features than samples? If not, then again the techniques described
herein are of less interest. For low-dimensional data, handling non-
linearities is typically more important, and the best bet is probably
a regularized kernel method [27, 153].

3. Are you particularly interested in predictive features? If so, you
might consider the bootstrap method described in Chapter 7. Care-
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fully choose a predictive model with reasonable assumptions. Try
simple methods first, e.g., the Naive-Bayes classifier (Example 2.6).

4. Are you mainly interested in marginal dependencies? Do you have
a particular dependency in mind (e.g., differential expression)? If
so, choose an appropriate univariate statistical test (Section 4.1.1).
Carefully examine whether the assumptions of your test is reason-
able in your situation.

5. Is your target variable continuous? If so, use a regression method.
Try to avoid discretization if possible, since discretizing a continu-
ous variable will inevitably waste information.

6. Carefully consider your sample size. If you have very small samples,
it is likely that simple, univariate methods will work best.

7. Can you safely reduce dimension before applying feature selection?
For example, if you know the detection limit of your measurement
device, try to remove ”silent” features which cannot possibly con-
tain information. This is important prior knowledge which should
be utilized.

8. If you end up with too many features to be interpretable, consider
any external information that could be used to prioritize among
the results, such as functional annotations [9]. Simply taking a
fix number of ”most significant” features may be misleading. Also
consider higher-level interpretations if possible, e.g., gene set test-
ing [61, 165, 169].

9. Be aware that feature selection in high dimensions may not be pos-
sible to replicate between independent data sets (see Chapter 7).
Rather, take care to ensure acceptable false discovery rates through
sound statistical methodology.

10. Keep in mind that not all statistically relevant features are likely
to be biologically relevant. Statistical significance should be viewed
as a necessary but not sufficient condition. Domain knowledge is
also essential to select high-quality candidates.

9.3 Future research

In the cancer gene expression example in Chapter 8 we encountered
a fundamental limitation of feature selection by statistical dependence
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measures: in some cases, there are too many significant findings, even
with stringent error control. This somewhat ironical situation of hav-
ing ”too much power” clearly cannot be remedied by developing bet-
ter algorithms. Here, statistical dependence simply is not a sufficiently
fine-grained criteria for prioritizing between findings; other measures of
relevance must be added. In the cancer gene expression case, we cir-
cumvented the difficulty by heuristically prioritizing the strongest corre-
lations. However, this is not a satisfactory long-term solution. A more
natural approach to this problem is to integrate additional data sources
into the analysis [60, 150]. Kernel methods [152] provide an attractive
solution for such data integration. While such methods have been used
successfully for prediction purposes [3, 20], employing data integration
in feature selection is still largely unexplored. An important question in
this context is how to weigh the importance of the different data sources
against each other [173].

On the theoretical side, there are many unanswered questions. As men-
tioned, many popular feature selection methods are still poorly under-
stood. Further analysis is needed to establish consistency and error con-
trol results. For example, Relief [6] is an interesting candidate for such
analysis in the context of finding all relevant features. Moreover, the set
of features optimal for prediction S† (the small-sample case) warrants
a closer analysis. An interesting fact observed empirically in Chapter 5
is that S† tends to coincide with the asymptotically optimal S∗ for the
support vector machine. An interesting conjecture then is that, because
the support vector machine (and many other kernel methods) bases all
inference on the gram matrix K(xi, xj), which is independent of input
space dimension, the size of S is not important, so that indeed S∗ = S†.
If, and to what extent, this is true is an open problem.

Many ”NP-hard”-results in machine learning concern asymptotic cases
[8, 26, 36]. In contrast, in Chapter 6 I explore the computational com-
plexity of computing consistent estimates. I believe that this is a more
relevant problem in practise. An interesting question is whether prob-
lems which are intractable in the asymptotic case may still permit con-
sistent estimates which are computable in polynomial time. If so, one
might find good approximations to many problems which are currently
considered intractable. For example, such a consistency result was re-
cently found by Kalisch and Bühlmann [91] for the case of Bayesian
network inference, even though this problem is NP-hard in the asymp-
totic case [26]. A similar study could be of interest for the problem of
finding all relevant features.
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[131] José M. Peña, Johan Björkegren, and Jesper Tegnér. Scalable, efficient
and correct learning of markov boundaries under the faithfulness as-
sumption. In Proceedings of the Eighth European Conference on Symbolic
and Quantitative Approaches to Reasoning under Uncertainty, pages
136–147, 2005.

[132] Jose M. Peña, Roland Nilsson, Johan Björkegren, and Jesper Tegnér.
Identifying the relevant nodes before learning the structure. In Proceed-
ings of the 22nd Conference on Uncertainty in Artificial Intelligence,
pages 367–374, 2006.

[133] Suraj Peri, J. Daniel Navarro, Ramars Amanchy, Troels Z. Kristiansen,
Chandra Kiran Jonnalagadda, et al. Development of human protein
reference database as an initial platform for approaching systems biology
in humans. Genome Research, 13(10):2363–2371, 2003.

[134] Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, incre-
mental feature selection by gradient descent in function space. Journal
of Machine Learning Research, 3:1333–1356, March 2003.

[135] E.J.G. Pitman. Significance tests which may be applied to samples
from any populations. Supplement to the Journal of the Royal Statistical
Society, 4(1):119–130, 1937.

[136] Natalie Pochet, Frank de Smet, Johan A.K. Suykens, and Bart L.R.
de Moor. Systematic benchmarking of microarray data classification:
assessing the role of non-linearity and dimensionality reduction. Bioin-
formatics, 20(17):3185–3195, 2004.

[137] S. James Press and Sandra Wilson. Choosing between logistic regression
and discriminant analysis. Journal of the American Statistical Associa-
tion, 73(364):699–705, December 1978.

[138] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical recipes in C. Cambridge University Press, 2nd
edition, 1992.



178 BIBLIOGRAPHY

[139] P. Proks and J.D. Lippiat. Membrane ion channels and diabetes. Current
Pharmaceutical Design, 12(4):485–501, 2006.

[140] Pavel Pudil and Jana Novovic̆ová. Novel methods for subset selection
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[143] Gunnar Rätsch and Manfred K. Warmuth. Efficient margin maximizing
with boosting. Journal of Machine Learning Research, 6:2131–2152,
December 2005.

[144] Jason D.M. Rennie. Regularized Logistic Regression is Strictly Convex.
Unpublished manuscript.
URL people.csail.mit.edu/jrennie/writing/convexLR.pdf.

[145] Juha Reunanen. Overfitting in making comparisons between variable
selection methods. Journal of Machine Learning Research, 3:1371–1382,
2003.

[146] Jorma Rissanen. Modeling by the shortest data description. Automatica,
14:465–471, 1978.

[147] Marko Robnik-Sikonja and Igor Kononenko. Theoretical and empirical
analysis of ReliefF and RReliefF. Machine Learning, 53:23–69, 2003.

[148] F. Rosenblatt. Principles of neurodynamics. Spartam Books, 1962.

[149] S.N. Roy. On a heuristic method of test construction and its use in mul-
tivariate analysis. Annals of Mathematical Statistics, 24:220–38, 1953.

[150] Eric E Schadt, John Lamb, Xia Yanh, Jun Zhu, Steve Edwards, et al.
An integrative genomics approach to infer causal associations between
gene expression and disease. Nature Genetics, 37(7):710–717, 2005.

[151] Mark Schena, Dari Shalon, Ronald W. Davis, and Patrick O. Brown.
Quantitative monitoring of gene expression patterns with a complemen-
tary dna microarray. Science, 270:467–470, October 1995.

[152] Bernhard Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in
Computational Biology. MIT Press, 2004.



BIBLIOGRAPHY 179

[153] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels.
Adaptive computation and machine learning. MIT Press, 2002.

[154] Eran Segal, Nir Friedman, Daphne Koller, and Aviv Regev. A mod-
ule map showing conditional activity of expression modules in cancer.
Nature Genetics, 36:1090–1098, 2004.
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