Linképing University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Datateknik
2023 | LIU-IDA/LITH-EX-A--23/019--SE

A model to evaluate front-end
frameworks for single page appli-
cations written in JavaScript

En modell for att utvdrdera front-end ramverk for single page
applications skrivna i JavaScript

Sara Abrahamsson

Supervisor : Olaf Hartig
Examiner : Olaf Hartig

External supervisor : Erik Cederlof

LINKOPING e
. U N |VERS|TY +46 13 28 10 00 , www.liu.se

http://www.liu.se

Upphovsritt

Detta dokument halls tillgangligt pa Internet - eller dess framtida ersattare - under 25 ar fran publicer-
ingsdatum under férutsattning att inga extraordinidra omstandigheter uppstar.

Tillgang till dokumentet innebar tillstand for var och en att lasa, ladda ner, skriva ut enstaka ko-
pior for enskilt bruk och att anvinda det oférandrat fér ickekommersiell forskning och fér undervis-
ning. Overfdring av upphovsritten vid en senare tidpunkt kan inte upphéva detta tillstand. All annan
anvandning av dokumentet kraver upphovsmannens medgivande. For att garantera dktheten, saker-
heten och tillgangligheten finns I6sningar av teknisk och administrativ art.

Upphovsmannens ideella ratt innefattar ratt att bli namnd som upphovsman i den omfattning som
god sed kraver vid anvandning av dokumentet pa ovan beskrivna sitt samt skydd mot att dokumentet
andras eller presenteras i sddan form eller i sdadant sammanhang som &r kriankande fér upphovsman-
nens litterdra eller konstnarliga anseende eller egenart.

For ytterligare information om Link&ping University Electronic Press se forlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for a
period of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to down-
load, or to print out single copies for his/hers own use and to use it unchanged for non-commercial
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional upon the consent of the copyright owner. The publisher
has taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work
is accessed as described above and to be protected against infringement.

For additional information about the Linkdping University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Sara Abrahamsson

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

Despite a constantly growing selection of front-end JavaScript frameworks, there is a lack
of research to guide the choice of which one to use in a software project. Instead, the deci-
sion is generally based on experience and personal preferences within the team. The aim
of this thesis is therefore to present a structured evaluation model to provide for more in-
formed decisions. A preliminary study is carried out where the most important qualities of
a framework are identified, both according to previous literature and to practitioners. The
pre-study result is used to construct a structured model to assess framework performance
for the identified qualities. Finally, a test of the model is carried out to see if it can guide
the choice of framework in a specific project. The study shows that the design of the model
does contribute with important insights on framework performance in prioritized quality
areas and the trade-offs that this entails for other important qualities. Thus, the model
provides necessary information to make well-founded decisions. Furthermore, it fills the
gap in contemporary research by providing an understanding of what is important in a
framework according to practitioners.

Acknowledgments

I would like to thank everyone who made this master’s thesis project possible. Firstly, I
want to thank Tietoevry Care for the opportunity to carry out this project. Thanks to all the
employees who contributed with important and meaningful insights during the interviews.
I would like to extend an extra big thank you to my external supervisor, Erik Cederlof, for
fruitful discussions and tips along the way, both technical and non-technical. Of course, I also
want to thank my supervisor and examiner from Linkoping University, Olaf Hartig, for all the
valuable guidance during this thesis project. Finally, I would like to thank Oskar Hallstrém
for valuable feedback and discussions during the opposition.

- Sara Abrahamsson, Linkoping 2023

iv

Contents

Abstract

Acknowledgments

Contents

List of Figures

List of Tables
1 Introduction
1.1 Motivation
1.2 Aim . ..o
1.3 Researchquestions
1.4 Delimitations
2 Background
2.1 Single-page applications
2.2 JavaScript frameworkso L
23 TietoevryCare
2.4 Cambio OpenServices API
3 Related Work
3.1 Evaluation of JavaScript front-end frameworks
3.2 Data collection in software engineering research
3.3 Designing an evaluationmodel L Lo L
4 Method
41 Pre-study
42 Definition of evaluationmodel oo L.
43 Evaluation
5 Results
51 Pre-study
52 Definition of evaluationmodel o L.
53 Evaluation
6 Discussion
6.1 Results
62 Method
6.3 Theworkinawidercontext
7 Conclusion
71 Futurework

iii

iv

vii

viii

10

11
11
14
15

16
16
18
21

27
27
29
31

32

Bibliography

A Interview Structure
A.l Introduktion och presentation avstudien
A2 Inledandefragor.
A3 Intervjusession.

B Survey Structure
B.1 Informationtext e
B2 Survey

C Evaluation model
C.1 Scoring of quality attributes
C.2 Calculation of total qualityscores
C.3 Presentationofresults

vi

List of Figures

2.1

3.1
3.2
3.3

5.1
52
53
54
5.5
5.6

C1

Example of a single-page application’s life-cycle

Criteria for comparative analysis of frameworks according to Gizasetal.
Evaluation criteria for frameworks according to Graziotin and Abrahamsson
Step-by-step process for thematic analysis presented by Braun and Clarke

Distribution of survey respondents’ experience in front-end web development. . .
Summary of important qualities from literature search, interviews and survey.

Chosen qualities for evaluationmodel.
Start view in prototype for applications. oo oL
Medication view in prototype for applications.
The compiled scoring result presented in a spider chart.

Evaluation model qualities with related quality attributes and weights.

vii

25

List of Tables

3.1
3.2

5.1
52
53
54
5.5
5.6
5.7

Areas and features presented by Panoetal. 7
Important factors according to Ferreiraetal. 7
Important qualities in a JavaScript framework derived from the literature study . . 17
Ranking of qualities derived from the literature study according to the interviews . 17
Important qualities in a JavaScript framework derived from the interviews 18
Most important qualities in a JavaScript framework according to the survey 19
Scoring of quality attributes for Vuejs. o L o oo oL 22
Scoring of quality attributes for Reactjs. L. 23
Scoring of quality attributes for Angular 0 0L, 24

viii

Introduction

This chapter provides an introduction to the thesis project, starting with a motivation in Sec-
tion 1.1. Thereafter, the aim is presented in Section 1.2 followed by the research questions in
Section 1.3. Lastly, in Section 1.4, the delimitations are considered.

1.1 Motivation

Web applications are constantly increasing in popularity and are thus gradually replacing
the old desktop applications. There are two main design patterns to chose from when devel-
oping web applications. Firstly, the traditional multipage application, running most of the
logic on the server [1]. Secondly, the newer single-page application pattern, where most user
interface logic instead executes in a web browser [1]. The use of the latter is continuously
increasing thanks to the possibility of creating a richer user interface without interruptions
and waiting time due to page reloads [10]. Instead, the content is loaded into the single web
page using JavaScript.

Statistics show that 98.2% of today’s websites use JavaScript to some extent [17]. This, com-
bined with the increased popularity of single-page applications, has resulted in a large and
continuously growing selection of frameworks for developing this type of application. Cur-
rently, the three most popular frameworks for single-page applications written in JavaScript
are: React, Angular and Vue [15]. As a consequence of options increasing at a high rate,
developers are repeatedly faced with the choice of which framework is most suited for a
particular software project. The decision is generally based on experience within the team,
without considering other parameters of potential importance for the outcome of the project.

Despite the number of frameworks increasing at a high rate, there is a lack of knowledge
and research to guide decision makers when choosing between them [13, 6]. Therefore, it is
interesting to develop a method for evaluating the fit of a framework for a specific project to
be used as a basis for such decision-making.

This master’s thesis is done in collaboration with the IT-consultant firm Tietoevry, at their
department, Care. As of today, the selection of a frontend framework for projects is described

as arbitrary: mostly based on experience or, in some cases, curiosity to test a new framework.

1

1.2. Aim

Overall, this suggests a need for a more thorough understanding of important parameters to
consider when evaluating a framework, and a more structured approach for such an evalua-
tion.

1.2 Aim

The aim of the thesis project is to obtain a deeper understanding of what is of importance
when evaluating a framework for a software project. Thereafter, based on that, develop a
structured model that can guide decision makers when approaching the question of which
framework to use in a project.

1.3 Research questions

The aim of the thesis project is divided into three research questions. The first two questions
intend to create a thorough understanding of important considerations when evaluating a
framework. The third aims to develop a method to guide the decision of choosing a frame-
work for a project, using the results of question one and two as a basis.

* RQ1: What s, according to contemporary research projects, important to consider when
deciding which web front-end framework to adopt in a project?

* RQ2: What is, according to professional web front-end developers, important to con-
sider when deciding which framework to adopt in a project?

¢ RQ3: How can a structured method to evaluate a front-end framework and how well it
fits a project look like based on the parameters identified in RQ1 and RQ2?

1.4 Delimitations

The thesis project implementation focuses only on three frameworks for applications written
in JavaScript: React, Angular and Vue. Partly due to time constraints: a very large time
frame is needed to include all available frameworks in the implementation. Partly because
the thesis is done in collaboration with the Care department at Tietoevry and those three
frameworks are the ones previously used in their projects.

Furthermore, as the project thesis is done in collaboration with Tietoevry, the results from in-
terviews will be limited in the sense that all interviewees work for the same company. They
can, however, be considered a representative for the main users of the technologies to be
evaluated, as they all work with front-end web development. In addition to the interviews,
a natural survey is performed with web front-end developers from outside the company as
well. The answers from the survey are then used to supplement and compare the answers
obtained in interviews within the case company. Because of this, the project altogether covers
the main intended users of the evaluated technologies.

Lastly, the project focuses on front-end frameworks for single-page applications. Therefore,
the developed method will be specially adapted for evaluation of such frameworks.

Background

This chapter provides the reader with relevant background information for the thesis project.
Section 2.1 describes the single page application design pattern in more detail. Thereafter,
Section 2.2 explains the usage and advantages of JavaScript frameworks. Lastly, Section 2.3
and 2.4 describes the case company with which the project is carried out as well as the API
that will be used to test HTTP requests in the evaluation.

2.1 Single-page applications

As previously mentioned, the single-page application, or SPA, design pattern is increasing
in popularity. In consistency with that, the applications developed in this project will follow
that design pattern. In traditional multipage applications, a new HTML page is loaded from
the server every time the content on the web page is to change. With SPA’s, new content is
loaded into the single HTML page dynamically using JavaScript. As a result, the interface in
single-page applications is perceived as more responsive and faster than traditional ones [10].
As users interact with the SPA, their actions can cause updates in the application and /or send
an HTTP-request to an APL Figure 2.1 illustrates an example of a single-page application’s
life-cycle. An initial request is sent to the server and an HTML page is loaded as a response.
Then, actions from the user cause the content of the page to update by re-rendering the DOM
using JavaScript.

2.2 JavaScript frameworks

Use of Client-side JavaScript frameworks is becoming an increasingly large part of front-end
web development. By using frameworks, developers are provided with tested and well-
developed tools and libraries that bring good conditions for developing scalable and respon-
sive web applications. Moreover, Borissova et al. [3] explains how using frameworks reduces
the amount of code developers need to write. This, in turn, leads to reduced time spent
debugging code [3]. The evaluation model developed in this master’s thesis is tested by eval-
uating the three most popular frameworks: React, Angular and Vue.

2.3. Tietoevry Care

CLIENT SERVER

4 N

Initial request

HTML page

HTTP-request

Response

_ /

Figure 2.1: Example of a single-page application’s life-cycle

2.3 Tietoevry Care

The department Tietoevry Care deliver IT-solutions for the health care sector. The rapid
development within technology combined with the increasing demands on quality and
coordination results in a great pressure on actors in the sector. Tietoevry contributes with
knowledge and expertise in the interface between IT and healthcare. !

In essence, the department describes themselves as .NET developers. However, in terms of
front-end frameworks, there is no established procedure to decide what framework to adapt
for a new project. As of now, the decision is often based on previous expertise in the team or
usage of frameworks in previously developed and similar applications. Occasionally, a new
framework is tested due to interest from developers in gaining experience and knowledge
in it. Thus, there is a need for a deeper understanding of important considerations when
deciding the framework to adopt for a project to make a correct assessment.

24 Cambio Open Services API

As mentioned in Section 2.1, calls to APIs are common in SPAs. It is therefore relevant to
include HTTP requests in the smaller applications that are developed to apply the evaluation
model to the frameworks. The Cambio Open Services APIs ? intend to facilitate for innova-
tion and integration within the healthcare sector. The open architecture of their APIs opens
up for collaboration and sharing of clinical data. An absolute majority of the Swedish regions
are expected to adopt the APIs. This makes it interesting for Tietoevry Care to study them and
how they work, as they will implement them in future solutions. Therefore, their open APIs
will be used in this master’s thesis for HTTP calls to an API. This will fulfill the needs from
a research perspective, by testing an important part of the frameworks. At the same time, it
can hopefully lead to insights about the API that will be of interest for the case company.

1h’rtps: / /www.tietoevry.com/en/care/healthcare/ehealth-consulting /
Zhttps:/ /www.cambio.se/ vi-erbjuder/open-services/

Related Work

This chapter provides a summary of related work previously conducted by other authors.
Section 3.1 presents related work on what to be considered when evaluating front-end
JavaScript frameworks. This is followed by Section 3.2 in which the choice of data collection
method for this type of research is discussed, based on previous literature. Lastly, in Section
3.3, the methodology for developing an evaluation model for frameworks is discussed.

3.1 Evaluation of JavaScript front-end frameworks

Common in contemporary research is that the extent of knowledge on how frameworks
should be evaluated does not correspond to the rate at which the range of alternatives is
growing [6, 13, 8].

Gizas et al. [7] highlight the importance of applying the correct metrics to make a good
assessment on what framework to adapt in a project. In their article, Gizas et al. conducted
a comparative study of the six most popular frameworks at that time (2012). The compar-
ison was based on software metrics identified as important in previous research. Further,
the investigation was divided into three main areas considered important for evaluating
frameworks: quality, validation and performance. What was evaluated more specifically in
each area is presented in Figure 3.1. Gizas et al. [7] evaluate these criteria with traditional
software metrics. For example, the size is evaluated with metrics such as lines of code and
ratio between comment lines and code lines.

Graziotin and Abrahamsson [8] extended the criteria presented by Gizas et al. [7]. Their be-
lief was that the research needs that are evaluated based on the previously presented criteria
must be supplemented with the needs of the real practitioners: the developers. According
to Graziotin and Abrahamsson, the considerations when evaluating a framework depend on
the context in which it will be used. Because of this, the authors mean that only considering
traditional software metrics, representing the research needs, when comparing frameworks
is insufficient.

Through discussions with four different front-end web developers, the authors present three
additional areas of importance when selecting a framework: documentation, community

5

3.1. Evaluation of JavaScript front-end frameworks

Validation Performance

* Critical + Execution time
* High severity
* Overall

« Size
* Complexity

* Maintainability
In seven different
browsers and four
operating systems

Of the code as a whole
and by function

Errors in the source
code

Figure 3.1: Criteria for comparative analysis of frameworks according to Gizas et al. [7]

-
Validation Performance
-
-
Documentation Community Pragmatics
- J

Figure 3.2: Evaluation criteria for frameworks according to Graziotin and Abrahamsson [8]

and pragmatics. The discussions mainly concerned important criteria in decisions on what
framework to use, and how the ones currently used by the developers were chosen. Be-
cause of this, the authors further state that by adding these areas to the evaluation model,
a new layer, covering the needs of the practitioners, is added. In the extended framework,
documentation is defined as the sufficiency of the documentation [8]. Community as the
extent of activity in the community, for example asked and answered questions on Stack
Overflow or the frequency of updates and therewith the freshness of the framework. Lastly,
the pragmatics is described as how the framework, and its architecture contributes to the
“code less, do more” factor. The resulting framework, after adding the new layer presented
by Graziotin and Abrahamsson [8] is illustrated in Figure 3.2, where the added areas are
represented in pink.

Pano et al. [13] further develop the thesis that practitioners’ need to be included in a model
for evaluating frameworks. The authors identify four types of actors involved in the selec-
tion of a framework for a project: customers, developers, the team, and the team leader.
Moreover, in the article, Pano et al. present a model of important features in a framework.
The model was developed using results from semi-structured interviews with 18 different
decision makers. The interview questions first touched on the interviewee’s background in
web development, JavaScript and with frameworks. This was followed by some questions
about the framework the person was using at the time of the interview and how the choice
to do so was made. Finally, a number of questions were asked about the person’s experience
of that framework. In Table 3.1, the areas of the model are presented, as well as the features
included in each of the areas.

A more recent work was published in 2021 by Ferreira et al. [6]. When Gizas et al. [7], Grazi-

otin and Abrahamsson [8] and Pano et al. [13] published their articles, the frameworks that
are the most popular today did not yet exist. Ferreira et al. [6] intended to examine impor-

6

3.2. Data collection in software engineering research

Table 3.1: Areas and features presented by Pano et al. [13]

Area Features ‘

Performance
Performance expectancy si
ize

Automatization
Learnability
Complexity
Understandability
Competitor analysis
Collegial advice
Community size
Community responsiveness
Suitability

Updates
Facilitating conditions Modularity
Isolation
Extensibility

Price value Cost

Effort expectancy

Social influence

Table 3.2: Important factors according to Ferreira et al. [6]

Factor Explanation ‘ Count
Popularity That the framework is widely used and known 19
Learnability That the framework is easy to learn and use 17
Architecture That the framework forces a good architecture in the client | 15
Expertise That previous experience in the framework exists 10
Community That the framework is maintained by a large community 9
Performance That the framework’s performance is good 8
Gain experience | That increased experience with the framework is desired 6
Documentation | That the framework’s documentation is adequate 5
Sponsorship That the framework has support from respected companies | 4

tant factors in the choice of framework in a more modern context to increase the relevance of
research in the field. The authors present a set of factors collected from survey answers by
49 developers. The survey consisted of only two open questions. Firstly, the respondent was
asked to describe why they chose to work with the framework they were using at the time
of the interview. Secondly, they were asked if they had any intentions to migrate to another
framework. The results show that the key factors developers consider when deciding what
framework to use were popularity and learnability [6]. The result in its entirety is summa-
rized in Table 3.2. In the table, each factor is presented together with an explanation and how
many times it was mentioned in the survey.

3.2 Data collection in software engineering research

Software engineering is performed by real people, in real environments. Because of this,
research in software engineering requires studies of the actual practitioners performing their
work [12]. Lethbridge et al. [12] state the difficulties as well as the importance of choosing the
data collection method most suitable for the research questions which the data is intended to
help answer. The authors present possible data collection methods in software engineering;:
in what situations they are appropriate to use, advantages and disadvantages of each method.

Lethbridge et al. [12] divide the methods into three groups: first-, second-, and third or-
der techniques. According to the authors’ division, first order techniques contain direct

3.2. Data collection in software engineering research

involvement from the studied engineers. Second order techniques instead contain indirect
involvement from the engineers, for example studying them as they work without any direct
interactions. Lastly, third order techniques are studies of the work artifacts of the software
engineers. First order techniques are the only option for collection of data to answer research
questions related to satisfaction with using a specific tool [12]. This implies that these data
collection techniques are most suitable to answer the research questions of this thesis project.

Interviews and surveys are both classified as first order techniques, as they directly involve
interaction with the software engineers. Both techniques are, according to Lethbridge et al.
[12], suitable to obtain general information and opinions on products and processes. When
using interviews and surveys as data collection methods, it is, according to the authors, criti-
cal that the representatives included in the research are appropriate to represent the intended
population. This is, however, much more important if the collected data is intended to be the
basis of statistical calculations and assumptions rather than identifying trends [12]. Software
engineers generally enjoy answering questions about their work. However, it is important
to consider possible biases in the results: the answers are often personal opinions from the
respondents.

3.2.1 Interviews

Lethbridge et al. [12] explain that during interviews, the researcher is able to clarify possible
misunderstandings in the questions and the interactivity is much higher than in a question-
naire. According to the authors, this generally results in a higher level of quality in obtained
answers. Runesson and Host [14] present three types of interviews with different level of
structure to them: unstructured-, semi-structured and fully structured interviews. According to
the authors, semi-structured interviews are common in case-studies. There is a prepared plan
for the questions to be asked, which prevents the risk of missing important information [14].
However, the questions do not need to be asked in a fixed order, which allows for improvisa-
tion and a better discussion between the involved parties [14]. Altogether, this suggests that
to get the greatest benefits in increased interactivity from using interviews as a data collection
method, semi-structured interviews should be used. Runesson and Host [14] further suggest
three important phases that the interview setup can follow:

1. Presentation: Study- and interview objectives and how the interview data will be used.
2. Introductory questions: Easy questions on the background of the interviewee.

3. Interview session: Includes asking the actual interview questions.

Runesson and Host [14] also recommend recording and transcription of interviews. The au-
thors mean that when transcribing the interviews, the researcher often reaches new insights
that contribute with important aspects to the analysis of the results. The number of study ob-
jects shall, according to the authors, be decided during the study with the breaking condition
that no more interviews are needed if no additional insights are added from interviewing
new objects. Clarke et al. [5] propose a range of 615 interviews for a medium size project
such as a master’s thesis.

3.2.2 Surveys

Surveys are a popular method for data collection in research [12]. It does not require a large
amount of time and resources, and it is easier to get a geographical spread of respondents
using a survey than, for example, interviews [12]. However, in order to produce valid results,
it is critical that the survey is designed and performed correctly.

3.2. Data collection in software engineering research

Re-reading of the data to get familiar with it.
If the data is vocally collected it needs to be transcribed.
Identification and collection of initial ideas while reading.

Familiarization

Systematic analysis of the data.
Identify aspects that potentially form a pattern.
For example, with highlighters or colored pens.

Initial coding

Sort codes and related data into potential themes.
Mind maps can be used to illustrate relationships and levels
between themes

Find themes

Two levels of reviewing:
Level 1: On theme-level. Do all related data form a pattern?
Level 2: Data set-level. Do the themes represent the data?

Review themes

A good thematic map of the data is defined.
Define and name your themes. What do each of them say?
) Identify what each theme is and is not about.)

Define themes

Present the produced themes from the analysis.
Select representative extracts of data to support your claims.
Relate back to the research questions the data intended to answer.)

Produce report

Figure 3.3: Step-by-step process for thematic analysis presented by Braun and Clarke [4]

Kitchenham and Pfleeger [11] highlight this issue and present, in a series of six articles, guide-
lines for how a proper survey should be designed, implemented and interpreted. The third
article in the series concerns the construction of questionnaires [11]. Before constructing the
survey, the authors suggest a literature search should be performed to learn from and im-
prove how previous researchers collected their data. Furthermore, Kitchenham and Pfleeger
[11] present a number of important considerations when choosing the questions for the sur-
vey. The number of questions must not be too large, and the included questions must be for-
mulated so that they are concrete, unambiguous and purposeful [11]. The question type can
either be open (free-text) or closed (categorical alternatives). Here, Kitchenham and Pfleeger
[11] highlight the importance of carefully considering the appropriate type of the questions
included in the survey. According to the authors, open questions imply a risk of misun-
derstandings, which could result in difficulties to analyze and code the results. Using closed
questions with categorical alternatives often makes the results easier to interpret and analyze,
according to Kitchenham and Pfleeger [11]. However, the authors highlight the importance
of including neutral options for closed questions such as "No preference" or "I do not know".
The authors also recommend that the questions are evaluated and improved before the sur-
vey is conducted. According to Clarke et al. [5], a range of 30-100 answers are appropriate
for a survey in a medium size project such as a master’s thesis.

3.2.3 Thematic analysis

Braun and Clarke [4] define a step-by-step process for thematic analysis. This is a structured
approach used to identify and analyze themes in data, for example from interviews and sur-
veys. The process presented by the authors follows six steps. In Figure 3.3, the process and
its steps are visualized and explained further.

3.3. Designing an evaluation model

3.3 Designing an evaluation model

As contemporary work on evaluation of front-end frameworks is deficient, it may be in-
teresting to start in a related area where research on evaluation and comparison models is
more common: software architecture. Bergner et al. [2] present the model DoSAM (Domain-
Specific Software Architecture Comparison Model) which allows for comparison of different
architectures within the same domain. The model proposed by Bergner et al. [2] follows four
steps:

1. Define and extract common views on the candidate architecture to answer the question:
What is evaluated?

2. Identify relevant so-called quality attributes, and how these are measured, to answer
the question: How is it evaluated?

3. Define the so-called quality computation weights for the attributes to answer the ques-
tion: What is important?

4. Evaluating and scoring the architectures by applying the framework developed in the
previous steps.

Ignacio et al. [9] presents a comparison model for agile web frameworks. The development
of the model followed the phases of Bergner et al.’s [2] DoOSAM model. Common views on
agile web frameworks were defined, and from these a set of qualities considered important
in the evaluation [9]. For each of the qualities, a set of guiding questions, so-called quality
attributes, were defined and assigned a weight to represent how important the issue is to
the assessment of the related quality. When evaluating the frameworks using the model,
Ignacio et al. [9] rated each attribute according to how well it aligned with the evaluated
framework by assigning a percentage from 0-100. These percentages were then combined
with the weight of the attribute and summed up with the other quality attributes to result in
a score for the entire quality [9]. The result for all qualities was then presented in a spider
chart, from which it was possible to see how the frameworks scored compared to the others
on all qualities [9]. Such a visualization of the result can be advantageously used for the
model developed in this thesis project as well. It can guide the decision maker in various
trade-offs to choose the framework that best suits the specific project needs.

Similar to the work by Ignacio et al. [9], this thesis project aims to develop a model for com-
paring and evaluating the usage of frameworks. The development of this evaluation model
will therefore also be inspired by the DoSAM model presented by Bergner et al. [2]. How-
ever, modifications will be made to adapt the developed model to the purpose and intended
application of it.

10

Method

Wohlin and Runeson [18] present three methodologies suitable for research in software engi-
neering carried out in close collaboration with industry: Design Science Methodology (DSM),
Action Research (AR) and Technology Transfer Research Model (TTRM). The authors then
compare the three methodologies and present guidelines for which one to use for certain
types of research projects. According to the results from Wohlin and Runeson’s [18] study,
DSM is a good choice for projects in which tangible artifacts are developed with the intention
for it to solve an identified problem and gain knowledge from it. AR is instead suitable for
projects intended to support change in the organization and TTRM for transferring research
results to the industry. Thus, the method in this thesis project followed the three main phases
of DSM [18]:

1. Identify and describe the challenge and current situation
2. Develop a solution by studying alternatives

3. Evaluate the solution

In this thesis project, the first phase is called Pre-study. This phase included two main steps:
a literature study of related and contemporary work and data collection from the industry to
gain further understanding in the studied challenge and the existing solutions. The second
phase is called Definition of evaluation model. Now, the results from the previous phase were
compiled into an evaluation model. Lastly, the third phase is called Evaluation. In this phase,
the proposed model was tested on the three most popular frameworks to evaluate whether it
can support decision makers in the choice of which framework to use in a project.

4.1 Pre-study

The pre-study was the first phase of the project. It consisted of two main activities: a literature
study and a data collection process. The first part intended to create an understanding of
what was previously identified as important qualities in a front-end framework. The result
then formed a basis for the questions in the interviews and survey conducted in the second
part, the data collection process.

11

4.1. Pre-study

4.1.1 Literature study

The main purpose of the study was to identify the most important qualities in a framework,
according to previous literature. The intention was that the results would be used as a basis
partly for the interview and survey questions and partly for the actual evaluation model. In
addition, two other important aspects of the project were explored: correct methodology for
interviews and surveys and possible approaches to designing an evaluation model.

To find previous research relevant to this thesis project, a few important keywords were iden-
tified and used in different combinations to search for papers and publications in Unisearch !,
the database for Linkdping University Library. Examples of such keywords are “JavaScript”,
"front-end”, "framework”, “evaluation”, "compare” and "model” among others. Furthermore,
the search was deepened as more relevant articles could be identified in the reference lists
to already used articles in several stages. This way, a number of relevant articles could be
collected, which together contributed to a good basis for the continued work with the thesis.
Important information and data from these articles were summarized and presented in the
report. An analysis was then carried out where related data were categorized into a set of
qualities that were considered important in a framework.

4.1.2 Data collection

After gaining an understanding of existing literature on the topic, the next step in the pre-
study was to collect data from which new, or confirmatory to already existing, insights could
be generated. As presented in Section 3.2, the most appropriate data collection approach
for the research questions in this thesis is, according to Lethbridge et al. [12], first order
techniques. Therefore, interviews with front-end web developers at the case company were
held. Also, the interviews were complemented with a natural survey aimed at front-end
web developers not working at the case company. The purpose was to broaden the response
group, partly to get a fairer representation of the intended target group, and partly to increase
the number of responses to enable for more substantiated conclusions.

Interviews

To create conditions for a good dialogue and opportunities for some improvisation, what
Runesson and Host [14] calls a semi-structured approach was used for the interviews. The
interviews followed the three steps presented in Section 3.2.1 and defined by Runesson and
Host [14]. They began with an introduction to the thesis project and how the data from the
interviews were supposed to contribute to the project’s results. The interviewees then had to
answer a few simple questions about themselves and their background. Lastly, this was fol-
lowed by the interview session, where the actual questions related to the research questions
of the study were asked. As in the studies conducted by Pano et al. [13] and Ferreira et al. [6],
the questions were formulated to ask what the interviewee values in a framework rather than
on actual evaluation factors. The interview session ended with the interviewee having to
choose three of the qualities identified in the literature that they considered most important
in a framework. The questions were developed in two iterations, in between which feedback
from both the internal and external supervisor was given. The resulting interview structure
and questions are presented in Appendix A.

Before the interview, all study objects were asked for approval to record the conversation.
This way, the recordings could then be transcribed to facilitate the upcoming analysis of the
results. In accordance with the recommendations from Runesson and Host [14], the number
of study objects were decided during the study: when the interviews no longer generated

1h’ttps: / /liu.se/en/library

12

4.1. Pre-study

new insights, no additional ones were held. This resulted in a total of 11 interviews, which
falls in the range recommended by Clarke et al. [5].

Thematic analysis

To identify themes in the data collected from the interviews, thematic analysis was applied
according to the process defined by Braun and Clarke [4] and presented in Section 3.2.3.
First, all interviews were transcribed to get to know the data and facilitate the upcoming
analysis. Then, the transcribed data was reviewed systematically: related data extracts that
potentially formed a pattern were highlighted in the same color, resulting in an initial coding.
The codes were then sorted into potential themes which were subsequently reviewed, defined
and named. The resulting themes were then used, together with the qualities identified in the
literature study, as response options in the subsequent survey study.

Survey

As a complement to the interviews with developers at Tietoevry, a survey was performed. It
was conducted using Google Forms 2. With the intention of reaching as wide an audience
as possible and to get many answers, the survey was distributed through several different
channels. It was posted on Tietoevry’s intranet to reach colleagues from other cities and
countries. Furthermore, it was sent directly to a few additional companies with front-end
web developers or to front-end web developers directly. Moreover, the survey was also
posted in the open source community through a meetup group targeted at JavaScript de-
velopers 3. Finally, it was also posted on the project supervisor’s Twitter account 4, which
is focused on data content. Therefore, it was likely that people in the intended target group
could be reached through it. Together, it resulted in 63 responses in total. However, 17 of
the respondents had indicated more than four options on the last question and had to be
removed before analysis. Thus, the number of responses that could be used in the analysis
was 46, which falls within the range recommended by Clarke et al. [5].

According to Kitchenham and Pfleeger [11], it is important not to include too many questions
in a survey. Since this survey was to be sent to developers who would voluntarily choose to
answer it, it was kept short and with very few questions with the intention to get more re-
sponses. As described in Section 3.2.1, Lethbridge et al. [12] explain how interviews brings an
opportunity to clear up possible misunderstandings. With a survey, there is no interactivity
between the parties and thereby no chance to, for example, ask clarifying questions. Because
of this, it was decided that the survey would be built up from closed questions. According to
Kitchenham and Pfleeger [11], this implies a reduced risk of misunderstanding. In the survey,
the respondents had to describe their level of experience in front-end web development and
which frameworks they were experienced in. Then, they had to pick at most four qualities
they considered important when evaluating a framework. The given options were derived
from studying related work and from the qualities identified in the interviews held with de-
velopers at Tietoevry. The respondents were also given a possibility to leave a neutral answer:
I do not know. Also, it was possible to add a quality, if it was not included as an option. The
questionnaire included a description of the thesis project and how the resulting data from the
survey were to be used. The survey in its entirety is presented in Appendix B.

Zhttps:/ /www.google.com/forms/about/
Shttps:/ /www.meetup.com/uppsalajs/
4https: / /twitter.com/olafhartig

13

4.2. Definition of evaluation model

4.2 Definition of evaluation model

When defining the evaluation model, the phases of the DoOSAM model presented by Bergner
et al. [2] were followed. Also, inspiration was taken from the evaluation model for agile web
frameworks developed by Ignacio et al. [9]. Firstly, common views on what is important
in a JavaScript front-end framework were identified. Thereafter, the most important qualities
were chosen as evaluation criteria in the model. Lastly, a set of quality attributes were defined
and weighted for each of the chosen evaluation qualities.

4.2.1 Identification of common views

The first phase was to identify common views on important qualities in a front-end JavaScript
framework. This was done during the pre-study phase of the project: in the literature study
(Section 4.1.1) and the data collection process (Section 4.1.2). During these activities, data
were collected on important qualities of front-end frameworks, partly from contemporary,
related research and partly from practitioners.

4.2.2 Choice of evaluation qualities

In the second phase, the qualities to be included in the model were chosen. The choice was
based on how important the qualities seemed to be according to the collected data. A summa-
tion of the number of times each quality was mentioned as important in literature, interviews
or the survey was made. Based on it, it could be determined which qualities were more
important than others, and these were thus included in the model.

4.2.3 Definition of quality attributes

Once the most important qualities were decided, the third phase was to define the quality
attributes that could guide the evaluation of each quality. The decision on the attributes
that would define each quality was primarily based on explanations and definitions from
the interviews, but also on the author’s own knowledge in the area with guidance from the
external supervisor. First, it was decided for each quality whether it should be measured
quantitatively or qualitatively. The goal was that as many of the qualities as possible would
be assessed based on quantitative measures. For each quality, a number of attributes were
then determined, and each attribute was assigned a weight to represent how important its
assessment was to the final score of the related quality. The weighing was mostly based
on the number of times the attribute was mentioned in relation to the quality during the
interviews. However, for some attributes such data was not available, and the weighing was
instead based on the author’s own knowledge. The result is a model developed according
to Bergner et al.’s [2] DoSAM model and inspired by the model presented by Ignacio et al.
[9] For the qualitative attributes, a definition was given for each one and the assessor had to
set a score between 1-4 representing how well the statement fit the assessed framework. The
following scale were defined to help the assessor score each qualitative attribute:

1. Does not apply
2. Partly apply

3. Largely apply
4. Fully apply

For the attributes of the quantitative qualities, the scoring scale could instead be based on the
numerical value that the framework received for the attributes in relation to some predeter-
mined limit values. A preliminary investigation was carried out on a number of frameworks

14

4.3. Evaluation

and how they ranked on the different quantitative attributes. The result was then used to
help set reasonable limit values for the scoring scale. Below is an example of what the scale
for the quantitative attributes could look like when a greater value scores higher. X, Y and Z
represent the limit values, helping to guide the assessor when scoring the attribute.

1. Less than X
2. X-Y
3.Y-Z

4. More than Z

4.3 Evaluation

The evaluation, or actual application, of the model corresponds to the fourth phase of Bergner
et al.’s [2] DoSAM model. Now, the developed model was tested by being applied to the
three most popular JavaScript front-end frameworks at the time of the study. The model was
applied to one framework at a time, and each evaluation consisted of two parts: development
of a smaller application and application of the model.

4.3.1 Development of application

A smaller application was developed in all frameworks, as there was no or limited previous
experience with the frameworks and their documentations. To ensure that all three frame-
works were evaluated similarly and on the same visual basis, a static prototype was produced
before development began. Since the prototype was created only to demonstrate visual parts
of the application, it did not need to be interactive. Therefore, the simple prototype was cre-
ated as two slides in a presentation in the design tool Canva °. The three applications were
then developed with the aim of resembling the prototype as much as possible. During devel-
opment, notes were taken regarding the attributes that would later be evaluated in the model.
That is, how easy it was to get started and understand the framework, the quality and degree
of coverage of the documentation, and the degree to which the framework contributed to the
structure of the application.

4.3.2 Applying the model

After the development phase was completed, the frameworks were evaluated according to
the model and all attributes were assigned a score according to the given instructions and
scoring scales. Using the attributes’ scores, a total quality score could then be calculated for
the seven qualities. The results for the three frameworks were then presented in a spider
chart, similar to Ignacio et al.’s [9] study. The chart was then studied to be draw conclusions
about whether the model could be helpful in a decision on which framework to use in a
project.

5 https:/ /www.canva.com/

15

Results

This chapter presents the results obtained during the thesis project. Firstly, the results from
the pre-study are presented. Thereafter, the evaluation model developed from the pre-study
results is presented. Lastly, the results from testing the evaluation model on the three most
popular JavaScript front-end frameworks are presented.

5.1 Pre-study

During the pre-study phase, data has been collected through two different activities: the
literature study and the data collection process. Section 5.1.1 presents the results from the
first and Section 5.1.2 the latter. These activities correspond to the first phase of the DoSAM
model presented by Bergner et al. [2]: identification of common views.

5.1.1 Literature study

In the literature study, four different articles with studies of important parameters for eval-
uation of JavaScript frontend frameworks were presented: Gizas et al. [7], Graziotin and
Abrahamsson [8], Pano et al. [13], and Ferreira et al. [6]. In Section 3.1, the results from
these studies are presented. The results were analyzed and categorized into a set of qualities
considered relevant for this study. In Table 5.1 the resulting qualities are presented as well
as a count representing how many of the four studied articles that considered the quality
important.

5.1.2 Data collection

This section presents the result from the data collection phase of the pre-study. Firstly, Sec-
tion 5.1.2 presents important qualities in a JavaScript front-end framework identified in the
interviews. Secondly, in Section 5.1.2 the result from the survey is presented.

Interviews

During the interviews held at the case company, two types of important data were collected.
Firstly, important qualities in a framework from the questions of discursive nature. Secondly,
ranking information when the interviewee had to prioritize the three most important of

16

5.1. Pre-study

Table 5.1: Important qualities in a JavaScript framework derived from the literature study

Quality Explanation ‘ Count ‘
Ease of use Easy to learn. Writing and maintaining code is easy. 4
Performance Applications built using the framework have good performance. 4
Size of code Contributes to a small amount of code. 4
Updated Continuously maintained and updated. 4
Good architecture Contributes to good architecture and to the "code-less-do-more" factor. | 3
Community Popular and with a large and active community. 3
Documentation The quality and availability of documentation is high. 2
Previous experience | You and/or your colleagues have experience from the framework. 2
Suitability Is suitable for the project, all necessary libraries etc. are available. 1

Table 5.2: Ranking of qualities derived from the literature study according to the interviews

Quality Explanation ‘ Count ‘
Ease of use Easy to learn. Writing and maintaining code is easy. 6
Good architecture Contributes to good architecture and to the "code-less-do-more" factor. | 6
Updated Continuously maintained and updated. 5
Community Popular and with a large and active community. 5
Suitability Is suitable for the project, all necessary libraries etc. are available. 4
Documentation The quality and availability of documentation is high. 3
Previous experience | You and/or your colleagues have experience from the framework. 3
Performance Applications built using the framework have good performance. 1
Size of code Contributes to a small amount of code. 0

the qualities identified in the literature study. Table 5.2 presents the results from the latter,
the ranking information from when the interviewees had to pick the three most important
qualities derived from the literature study. The count represents the number of interviewees
(out of 11 in total) that included the quality as one of the three most important.

For the questions of discursive nature, a thematic analysis was performed to identify impor-
tant themes, or qualities, mentioned in the interviews and relevant to the research questions.
The resulting qualities are presented in Table 5.3. For each quality, a description is provided,
as well as a count representing the number of interviewees (out of 11 in total) that mentioned
the quality in their interview. Colored in green are the qualities that were not previously
identified in the literature. The former quality "Good Architecture” from Table 5.1 is con-
sidered to coincide with the new "Structuring” and the former quality "Performance” is now
included in the new "Lightweight". Thus, these two are not considered completely new from
the interviews and thereby not colored in green.

Survey

In the survey, the respondents were asked to pick at most four of the proposed qualities that
they considered most important in a JavaScript framework. Since all the qualities from the
literature study also appeared during the interviews (or are considered to be part of a quality
identified in them), it was the interview qualities that were presented as answer options in
the questionnaire. Respondents also had the option of adding their own option, or answering
neutrally and choosing the option "I don’t know”. The survey collected a total of 63 responses.
However, only 46 of these could be used in the analysis. In the remaining 17, the respondent
had chosen more than four options when the (at most) four most important qualities were
requested. In order to obtain a fair and accurate analysis, these responses were therefore
excluded from the summarized data before the analysis.

17

5.2. Definition of evaluation model

Table 5.3: Important qualities in a JavaScript framework derived from the interviews

Quality Explanation Count ‘

Ease of use Learning and getting started is easy. Make code maintenance easier and cod- | 8
ing more efficient.

Updated Continuous maintenance, development and updates. Now and in the future. | 8

Structuring Lots of code conventions and set ways of doing things. Contributes to good | 8
and recognizable architecture.

Light weight The initial output size is not too big, affecting performance and load times. | 8
Installation does not require downloading a large amount of packages.

Previous experience Team members have knowledge and enjoy coding in it. Syntaxes match team | 6
member preferences.

Freedom Few rules and conventions, allowing own solutions and choices. Possible to | 6
study the source code to deep dive in advanced functionality.

Community Popular and widely used. Support is available from a stable, large and active | 4
community.

Maturity Established and with a certain level of maturity. Stable updates, few breaking | 4
changes. Not too many bugs.

Size of code Require less boilerplate code. 3

Documentation The documentation is good, explanatory and sufficient. 3

Suitability Adapted to the problem to be solved. Corresponds to needs, functional- and | 3
non-functional requirements.

Browser compatibility | Offer compatibility with all major browser vendors. 2

Security Not too many third-party dependencies that pose an extended risk for supply | 1
chain attacks.

Figure 5.1 shows the distribution of answers from the 46 respondents when asked to assess
their experience in front-end web development. The assessment was based on a scale from
1-5 where one represented No experience and five Very experienced. As presented, none of the
respondents said to not have any experience in the area, and the majority of them assessed
their experience as two or three out of five. In Table 5.4, the result from the question related
to important qualities in a front-end JavaScript framework is presented. The count represents
the number of survey respondents (out of 46 in total) that included the quality as one of the
four most important. Colored in green are the qualities that were added by a respondent and
not previously included as an answer option.

5.2 Definition of evaluation model

This section presents the results from the activities corresponding to the second- and third
phase of the DOSAM model presented by Bergner et al. [2]: choice of evaluation qualities and
definition of quality attributes.

5.2.1 Choice of evaluation qualities

The results from the literature study, interviews and survey were summarized to find the
most important qualities in a JavaScript front-end framework. In total, a quality could have
been mentioned 61 times (four scientific articles, 11 interviews and 46 survey answers). Fig-
ure 5.2 presents the total number of times a quality was mentioned and also how many of
these that occurred in literature, interviews or survey answers. The qualities that were men-
tioned in more than 30% of all possible cases were considered most important and thus in-
cluded in the evaluation model. The resulting criteria to be included and evaluated using the
model is presented in Figure 5.3.

18

5.2. Definition of evaluation model

Experience in front-end web development

1 - No experience

5 - Very experienced

19
16
4
2 3 4

Figure 5.1: Distribution of survey respondents’ experience in front-end web development.

Table 5.4: Most important qualities in a JavaScript framework according to the survey

Quality Explanation Count ‘

Documentation The documentation is good, explanatory and sufficient. 32

Ease of use Learning and getting started is easy. Make code maintenance easier and cod- | 20
ing more efficient.

Maturity Established and with a certain level of maturity. Stable updates, few breaking | 18
changes. Not too many bugs.

Community Popular and widely used. Support is available from a stable, large and active | 17
community.

Updated Continuous maintenance, development and updates. Now and in the future. | 15

Suitability Adapted to the problem to be solved. Corresponds to needs, functional- and | 13
non-functional requirements.

Browser compatibility | Offer compatibility with all major browser vendors. 12

Structuring Lots of code conventions and set ways of doing things. Contributes to good | 10
and recognizable architecture.

Previous experience Team members have knowledge and enjoy coding in it. Syntaxes match team | 9
member preferences.

Light weight The initial output size is not too big, affecting performance and load times. | 9
Installation does not require downloading a large amount of packages.

Size of code Require less boilerplate code. 6

Freedom Few rules and conventions, allowing own solutions and choices. Possible to | 5
study the source code to deep dive in advanced functionality.

Security Not too many third-party dependencies that pose an extended risk for supply | 5
chain attacks.

Typing Typescript 1

Not use them The best quality of front-end JavaScript frameworks is when we don’t use | 1

them.

19

5.2. Definition of evaluation model

Summary of important qualities

B Litterature Interviews [l Survey

40

= L
. =-m

Figure 5.2: Summary of important qualities from literature search, interviews and survey.

Documentation

S
L

Figure 5.3: Chosen qualities for evaluation model.

20

5.3. Evaluation

Testapplikation - Cambios APler

Himta likemedelslista

Figure 5.4: Start view in prototype for applications.

5.2.2 Definition of quality attributes and resulting evaluation model

For each quality in the model, a number of attributes were defined based on information col-
lected in literature and interviews, as well as the author’s own knowledge. Each attribute
was also assigned a weight to represent how important it was to the assessment of the related
quality. Furthermore, a scoring scale was defined for each attribute to help the assessor as-
sign a score to them. The resulting evaluation model: a detailed presentation of the defined
attributes with associated evaluation instructions and scoring scales as well as a model on
how to calculate the total quality scores are found in Appendix C.

5.3 Evaluation

Before the model could be applied to the three frameworks, a prototype was designed based
on which the applications were developed. The applications consisted of two views: a start
view presented in Figure 5.4 and a view where a patient’s medication list could be retrieved
and displayed from Cambio’s APIs. The latter is presented in Figure 5.5.

5.3.1 Vue.js

Table 5.5 presents the scores for all attributes in the evaluation of the framework Vue.js. For
each attribute, the scoring is justified by a short motivation.

5.3.2 React.js

Table 5.6 presents the scores for all attributes in the evaluation of the framework React.js. For
each attribute, the scoring is justified by a short motivation.

5.3.3 Angular

Table 5.7 presents the scores for all attributes in the evaluation of the framework Angular. For
each attribute, the scoring is justified by a short motivation.

21

5.3. Evaluation

Table 5.5: Scoring of quality attributes for Vue js.

Quality attribute Motivation

C1 4 3937 290 downloads

C2 3 34 contributors

C3 2 6366 questions

C4 3 43,5 %

Community 3.05

El 4 Vue js is considered easy to use and get into. A contributing factor is their so-
called Single-File Components. For these components all code is written in one
file with three different blocks: script, template and style. Because of that, it is
intuitive, fast and easy to build an interactive app.

E2 4 Functions in the framework were perceived as easy to understand and use. For
example, there were easy ways to render over lists and bind variables to input
fields. It also did not require a lot of code, which also contributes to higher un-
derstandability. Thus, the attribute is therefore considered to fully apply.

E3 3 Vue,js includes many features that help accelerate development, compared to
using no framework at all. Time is saved by not having to write functionality for
basic tasks such as model binding. However, there are factors that can possibly
slow down development. For example, a Single-File Component that becomes
very large and has many lines of code can be more difficult to maintain and work
with. Altogether, the attribute is assessed to largely apply.

Ease of use 3.7

D1 4 The documentation is well written and easy to follow. When possible alterna-
tive routes exist, both cases are described in detail and in an easy-to-understand
manner. The attribute is considered to fully apply.

D2 3 When developing the application, the experience was that all the necessary docu-
mentation was available. However, there were some parts that were found only
in the documentation for the old version, Vue2, but not yet in the Vue3 docu-
mentation. Because of this, it was sometimes less efficient to find the desired
information. Thus, the attribute is assessed to largely apply.

Documentation 3.7

U1 3 16 releases

U2 3 50.3 %

Updated 3

M1 3 9 years

M2 3 131 reported bug-issues

Maturity 3

S1 3 Vue.js emphasizes in its documentation that Single-File Components are recom-
mended for most applications. Thus, a clear component structure is provided
for applications written in the framework. However, there are no direct guide-
lines for the file structure, where the freedom is greater for the developer to con-
trol themselves. Together, the resulting assessment is therefore that the attribute
largely apply.

52 2 Although the component structure, as a result of the Single-File Components
recommendation, looks the same for most Vue.js applications, the file structure
of the projects can differ greatly. This is due to the freedom, since the file structure
depends a lot on the personal preferences of the person who sets it up. Thus, the
attribute is considered to partly apply.

Structuring 2.7

L1 110 MB

L2 0.76 MB

Light weight

22

5.3. Evaluation

Table 5.6: Scoring of quality attributes for React.js.

Quality attribute ‘ Score ‘ Motivation

C1 4 19 873 624 downloads

c2 3 23 contributors

c3 3 38 535 questions

C4 3 41 %

Community 3.3

El 4 The great structural freedom that React offers, combined with the fact that both
the component’s JavaScript and HTML code can be written in the same file,
makes it very easy to get an interactive app up and running. The attribute is
therefore considered to fully apply.

E2 3 Overall, the functionality that React provides is considered easy to understand
and use. The hooks facilitate development and are relatively easy to apply to
your own case using on the examples in the documentation. A disadvantage,
however, can appear if something does not work as expected in your own case.
Then it can be difficult to understand what is wrong because of the complicated
functionality behind, for example, a hook. Thus, the attribute is assessed to
largely apply.

E3 3 React includes many features that help accelerate development, compared to us-
ing no framework at all. Time is saved by not having to write code for basic
functionality, such as state handling. However, lack of two-way data binding
means that many local small functions need to be written to handle updates of
state, which slows down the development a little bit. Moreover, the great level of
freedom that comes with React imply that differences in file structure and code
structure exists amongst and within projects. That could also impact the speed
of the development. Altogether, the attribute is considered to largely apply.

Ease of use 3.2

D1 4 There are two documentations from React, the reader is directed to use the new
one as the old one is no longer updated. The documentation has a clear design
with code examples that make it easy to follow. There is also a Quick Start guide
which is very helpful for getting a basic application up and running. Altogether,
the attribute is considered to fully apply.

D2 3 The documentation served as a good guide during the development of the ap-
plication. Functionality and hooks in React are included, and most of what is
needed for development is easy to find. However, in this case, a proxy was
needed to make calls to external APIs during development. For that function,
documentation from React itself was missing, but could be found elsewhere in
the community. Thus, the assessment is that the attribute largely apply.

Documentation 3.7

U1 1 3 releases

U2 3 69 %

Updated 2.6

M1 3 10 years

M2 3 139 reported bug-issues

Maturity 3

S1 2 The Ul elements are made up of components. A large component can also consist
of several smaller components. There are no clear requirements or guidelines for
how these should be structured. Nor are there any regulations for the file struc-
ture in general. However, there are recommendations both in the documentation
and in the community. In conclusion, a particularly clear structure is not consid-
ered to be provided, and thus attribute is considered to partly apply.

S2 1 The lack of a clearly presented structure means that applications written in React
can look very different, as the developers themselves are given the freedom to
shape the project. Also, it is still possible to use class components, even though
the new way is functional components. As a result, the actual code structure of
React can also vary, between applications, and even within the same application
if the developers involved have done it in different ways.

Structuring 1.7

L1 2 237 MB

L2 3 0.56 MB

Light weight 2.8

23

5.3. Evaluation

Quality attribute
C1

Table 5.7: Scoring of quality attributes for Angular

‘ Score ‘ Motivation ‘

4

3 349 685 downloads

Cc2

3

38 contributors

c3

2

10 372 questions

C4

2

38.8 %

Community

2.8

El

2

Although the documentation is very good, there are factors that contribute to
Angular being difficult to learn and get into. For example, that each component
consists of three files. This interaction and structure can be difficult to under-
stand at first. In addition, TypeScript is default in Angular. Thus, the developer’s
freedom is reduced and this makes it more difficult to quickly write a code that
works.

E2

In the application, Angular’s router was used for routing. Moreover, ngModel
was used to bind an input field to a variable. The experience of using these
features from Angular was good. It felt easy to understand and use. However,
the high level of structuring in the framework makes this attribute a little more
difficult. The three-file structure of the components affects the understanding
of the functionality, at least initially. The attribute is therefore judged to partly

apply.

E3

Angular includes many features that help accelerate development compared to
using no framework at all. Time is saved by not having to write code for basic
functionality, such as routing. However, the high level of structuring can have
a negative impact on this attribute. Some things take longer to understand due
to the three-file structure of the components. Furthermore, this can cause the
project to quickly grow into a very large number of files. This can also contribute
to reduced understanding and efficiency. In conclusion, the attribute is deemed

to largely apply.

Ease of use

D1

Angular’s documentation felt easy to follow. It was a reasonably detailed level,
and the given example applications worked well as a supplement to see certain
functionalities in the right context. However, the process of understanding were
sometimes slowed down by the fact that functionality is often related to both the
HTML and the TypeScript file. The documentation therefore shows code in both
files. To understand what happens where and how these interact with each other
can make the documentation a little complicated at times.

D2

During the development of the Angular application, the documentation alone
was enough to guide the entire process. Along with the provided example appli-
cations, it covered all the necessary parts of the framework. Thus, the attribute is
considered to fully apply.

Documentation

[

U1

56 releases

U2

53 %

Updated

N

M1

13 years

M2

79 reported bug-issues

Maturity

S1

IS N IS EFI RS N ES

All components consist of three parts: a component-class, an HTML-template
and component specific styles. The documentation suggests for these to be put
in their own files. This way, each component will have these three files, mak-
ing it easy to recognize and find the desired code in a project. With regard to
that, Angular is deemed as very structuring. Moreover, using TypeScript instead
of JavaScript is default in Angular. Typing the code and adding rules also con-
tributes to increased structure. Thus, the attribute is considered to fully apply.

S2

The given three-file structure for the components contributes to large similarities
in all Angular applications. However, there can still be differences in the file-
structure. For example, I choose to create a folder for each component, while
some of the example applications did not. How the services are structured can
also differ in Angular applications since it is not as clearly stated in the docs.
Altogether, this attribute is deemed to largely apply.

Structuring

L1

298 MB

L2

0.17 MB

Light weight

24

5.3. Evaluation

Hamta lakemedeslista

Patientens personnummer: ‘ YYYYMMDDXXXX Hamta

Patientinformation:

Namn: Johan Johansson ‘

Personnummer: 191212121212

Lakemedelslista::

Morfin Abcur

Injektionsvétska, dsning

1-5 ml (1 mg-5 mg) vid beho tills vidare, hégst 15 ml per dygn, minsta tid
mellan doserna : 6 timmar

Morfin Abcur

Injektionsvatska, [6sning

1-5 ml (1 mg-5 mg) vid behov tills vidare, hégst 15 ml per dygn, minsta tid
mellan doserna : 6 timmar

Morfin Abcur

Injektionsvatska, 16sning

1-5 ml (1 mg-5 mg) vid behov tills vidare, hégst 15 ml per dygn, minsta tid
mellan doserna : 6 timmar

Morfin Abcur

Injektionsvatska, 16sning

1-5 ml (1 mg-5 mg) vid behov tills vidare, hégst 15 ml per dygn, minsta tid
mellan doserna : 6 timmar

Figure 5.5: Medication view in prototype for applications.

5.3.4 Spider chart

Figure 5.6 presents the compiled result from the scoring in a spider chart. This way, the
evaluated frameworks can easily be compared on the different qualities.

25

5.3. Evaluation

Compiled scoring results

Documentation
4

Light weight Ease of use

Structuring Updated

Maturity Community

== Vue == React == Angular

Figure 5.6: The compiled scoring result presented in a spider chart.

26

Discussion

In the following section, this thesis project is discussed from different aspects. Firstly, in Sec-
tion 6.1, interesting findings from the results are discussed. Thereafter, Section 6.2 discusses
and critiques the method and its limitations. Finally, the work is discussed in a wider context
in Section 6.3.

6.1 Results

In the following section, the results of the project are discussed. The first part concerns the
pre-study’s identification of important qualities of a framework. This is followed by a discus-
sion on the evaluation model developed in the thesis project and the testing of it.

6.1.1 Important qualities

All the qualities identified in the literature study were also mentioned at some point in the
interviews, which confirms the results from the related work and indicates that it still has
relevance for the field and its practitioners. However, two of the qualities from the literature
were named differently in the interviews but were judged to have a similar meaning. For
these qualities, it was chosen to combine them for the overall analysis. Thus, Good Architec-
ture was included in Structuring and Performance in Light Weight.

When the interviewees were asked at the end of the interview to choose the three most
important qualities from the literature, a few interesting differences could be identified.
Performance and Size of Code were both highly ranked according to the literature study,
but ended up at the bottom based on the interviewees” ranking. Only one person thought
Performance was one of the three most important, and no one chose Size of Code. How-
ever, Performance was later merged with Light Weight, a quality by mentioned 8 out of 11
interviewees and ranked at the top of the list in the interview results. The results from the
interviews thus indicate that if Performance had instead been called Light Weight in the
literature, it is likely that more interviewees would have chosen the quality as one of the
three most important.

27

6.1. Results

The interviews identified four new qualities not previously mentioned in the studied lit-
erature. Of these, Freedom and Maturity were mentioned enough times to be considered
relevant. Freedom was often mentioned in connection to Structure. It was, according to these
persons, desirable that the framework contributed to Structure but did not limit Freedom too
much. This indicates that the proposed presentation method, a spider chart, can be helpful
when such a quality comes into play. Structure and Freedom are to some extent a trade-off.
Thus, one can study how the framework places itself on that axis in a decision related to that
trade-off.

In the survey, only two people chose to add a quality themselves. This indicates that lit-
erature and interviews had covered the most important ones. An interesting observation is
that Documentation by far was classified as most important according to survey respondents.
However, that quality did not end up at the top according to the interviews or literature. The
newly identified quality Maturity was ranked highly according to the survey, which further
confirms its importance. Freedom was rated lower according to the survey than in the inter-
views. This might be a consequence of all the interviewees working in the same company
and department. Thus, it could mean that it is a quality considered important at this specific
company, while others do not prioritize it as highly.

6.1.2 The evaluation model

During the evaluation phase, the developed model was tested by applying it to the three
most popular frameworks at the time. The test made it clear that the chosen quality attributes
combined with their weights had a decisive role in the result. Unlike the identified qualities,
which were based on data from the three parts of the pre-study, the attributes and weighing
were not as well substantiated. These were instead defined based on information in the
interviews together with the author’s own knowledge in the area, with advice from the
external supervisor. As a result, another researcher, with other interviewees, could possibly
get a different result in terms of quality attributes and weights. Thus, the defining of them
can be said to have a negative impact on the validity and reliability of the study.

However, based on the selected attributes, the testing of the model resulted in some inter-
esting insights. As shown in the spider chart in Figure 5.6, Reactjs and Vue.js are closely
followed in the graph and perform similarly for many of the qualities. The two frameworks
received higher scores for the attributes Documentation, Ease of use and Community com-
pared to the third framework, Angular. Instead, Angular is the high performer for the qual-
ities Light weight, Structuring and Maturity. The framework also ranks highest in the last
quality, Updated, but the differences are marginal. According to the result from the pre-study
(Figure 5.2) the four most important qualities in a front-end JavaScript framework are:

1. Documentation
2. Ease of use

3. Updated

4. Community

Thus, the result indicates that Vue.js and React.js outperforms Angular on three of the four
most important qualities. However, for the qualities where Angular is the highest performer,
the difference between that framework and the other two is often very large. Thus, Angular
is significantly better with regard to those qualities, even if they are not considered to be the
most important ones according to the results from the preliminary study.

28

6.2. Method

During the interviews, Angular was mentioned several times as a heavy and "bloated"
framework. The result, however, showed the opposite. When tested, it appeared that the size
after a release build, which was considered to be of the most importance for the decision, was
the smallest in Angular, as the compression was better than in the other two. This further
confirms the need for a structured way of evaluating frameworks before adopting one in a
project. Angular feels more "bloated" when downloading and starting a project, but in the
most important context, release, it actually performs best out of the three for the Light weight
quality.

As expected, the results show that all frameworks are good from different aspects (qualities).
There is at least one quality for each framework where it is the highest performing. Further-
more, the differences are small between two or all frameworks on many of the qualities. This
indicates that the model can guide a decision on the choice of framework, but that the de-
cision maker themselves need to prioritize which of the qualities are most important for the
specific project. Thereafter, the model’s results, the spider chart, can be studied to identify
which framework performs best for the most prioritized quality and which trade-offs that
may entail for other qualities.

6.2 Method

This thesis project followed a three-phase method. In Chapter 4, a detailed description of the
method is found. To achieve a high degree of replicability, the method description has been
written with the intention to be descriptive and easy to follow. However, there are limitations
in the method and execution of the project that may have had consequences for the outcome.
In the following section, the method is discussed and criticized based on the most important
limitations for each phase of the project and how these limitations may have affected the
replicability of the project and the validity and reliability of its results. This is followed by a
critical discussion of the sources used in the project.

6.2.1 Pre-study

The data collection during this phase took place in two parts: interviews at the case company
and a survey aimed at developers outside the company. Runesson and Host [14] highlights
the importance of using more than one source of data in a study to avoid the results being
biased from using one single data source. Furthermore, the authors state that the validity of a
study is increased when the same conclusion can be drawn from different sources of informa-
tion. Supplementing the interviews with a survey aimed at a wider target group was done
with the intention of increasing the credibility of the study in the way that Runesson and
Host [14] describe. Although the survey was an improving factor, the validity of the inter-
view results can be further discussed. It was only through the interviews that new important
qualities were identified. All interviews were held with developers at the case company and
the department with the project was carried out in collaboration with. In order to achieve
what Runesson and Host [14] call triangulation, and thereby increase the study’s credibility,
the same interview procedure would need to be conducted with developers at other com-
panies to confirm the results. It would also increase the likelihood that another researcher
would achieve the same results if the study were repeated, but with a different group of
interviewees. Thus, the reliability of the study would be improved as well.

6.2.2 Definition of evaluation model

The definition of the evaluation model followed the DOSAM model presented by Bergner et
al. [2] and further explained in Section 3.3. The fact that the definition follows an already
established process contributes to the project’s replicability. The choice of qualities to include

29

6.2. Method

in the model was based on data from the three stages of the previous pre-study. However,
as discussed in Section 6.1.2, the definition of the related quality attributes and weights was
not as well substantiated. Finding literature to define the attributes that would measure the
framework’s performance on the various qualities was difficult. Instead, the choice was pri-
marily based on information from the interviewees. In cases where such information was
not available, the author’s own experience in the field was used with guidance from the ex-
ternal supervisor. This could have had consequences both for the validity and reliability of
the project. Since the metrics used to measure the performance of the frameworks are not
based on data from a structured data collection, we cannot say for sure that they actually
measure what we want. Furthermore, it is likely that in a repeat of the project one would not
get exactly the same statements in the interviews and thus perhaps not the same attributes
either. Runesson and Host [14] suggests that the resulting analyses could be sent back to the
interviewees to increase the validity of a study. In this case, it could have been allowing the
interviewees to review the quality attributes that were defined to measure the performance
of the qualities.

6.2.3 Evaluation

During the evaluation, the model was tested by applying it to three different JavaScript
frameworks. For the qualitative qualities, the scoring is based on the assessor’s own ex-
perience of the frameworks. Either through experience from the past or through a smaller
application being developed in the framework to gain experience and an idea of what it is
like to use the framework. For these attributes, it is possible that the assessment could be
biased by the assessor’s level of experience with the frameworks. Developing a small appli-
cation is not the same as having worked with a framework in a real project before. This could
have affected the reliability of the evaluation results. With a different person as assessor, the
result could have been different. An alternative, to reduce the impact on validity, could have
been to introduce an additional step in the evaluation model in which an application always
is developed in the framework according to a prepared specification. This would mean that
the assessor has an equivalent experience for all frameworks to base the assessment on. On
the other hand, it would be an unnecessary step in the evaluation of frameworks where ex-
perience already exists. For a consulting company, as in the case company’s situation, it is
a waste of time and money. In addition, the smaller application developed for the evalua-
tion can be adapted to the project for which the evaluation is carried out and include parts
relevant to the specific project.

6.2.4 Source criticism

This master’s thesis has been based on contemporary research published in connection with
conferences within software engineering. The intention has been to use articles in the area
of software engineering to the greatest extent possible. However, for certain method-related
parts, articles aimed at a larger scientific area have been used.

In the literature study, four peer-reviewed articles on important parameters in front-end
frameworks have been studied. All have been published in connection with good confer-
ences and can be considered reliable sources in that respect. However, as pointed out by
Graziotin and Abrahamsson [8], Pano et al. [13] and Ferreira et al. [6], there is not much
peer-reviewed research in the area and because of that some relatively aged sources have had
to be used. This may have affected the relevance that these articles’ results have for a con-
temporary research project such as this. Furthermore, the sources used refer to, and build on,
each other’s research. The positive is that each article has aimed to improve the results of the
previous ones. However, it can be argued that this also imply a less nuanced picture of the
studied area, since all the sources have been influenced by each other.

30

6.3. The work in a wider context

6.3 The work in a wider context

The Swedish Scientific Council [16] present and discuss ethics and morality in the field of
research. The council states that when people are involved in research, for example through
interaction or observation, they must always be informed about the study to which their
participation is intended to contribute. In this thesis project, it is relevant to carefully ensure
that participating persons are informed about the purpose of the interviews and the survey.
For the interviews, this was fulfilled partly through an information email that went out
with the invitation to the interview and partly with a repetition of it at the beginning of the
interview itself. Regarding the survey, it was clearly stated how the results would be used in
the questionnaire’s informational text.

During the development of the evaluation model and the identification of important quali-
ties, the focus was solely on the needs of the practitioners. This might be counterproductive
from a sustainability perspective. For example, from that perspective, the highest possible
performance is perhaps desirable. However, a higher performance often also means a greater
energy consumption, which is not desirable from a sustainability perspective.

An evaluation model that contributes to the correct selection of front-end frameworks can
also be beneficial from an economic perspective. For a consulting firm, being able to, at an
initial stage, choose the framework that best suits a specific project and its requirements can
contribute to the ability to cost-effectively meet customer requirements. In the short term, it
can make the project more profitable, and in the long term, increased customer satisfaction
will benefit the consultant company’s business.

31

Conclusion

This master’s thesis aimed to gain a deeper understanding of what is important when eval-
uating a front-end framework for a software project. Thereafter, based on that, develop a
structured model that can guide decision makers when approaching the question of which
framework to use. To fulfill the aim, this thesis intended to answer the following research
questions:

* RQ1: What s, according to contemporary research projects, important to consider when
deciding which web front-end framework to adopt in a project?

* RQ2: What is, according to professional web front-end developers, important to con-
sider when deciding which framework to adopt in a project?

¢ RQ3: How can a structured method to evaluate a front-end framework and how well it
fits a project look like based on the parameters identified in RQ1 and RQ2?

The project’s pre-study began with a literature study of four related works to identify, ac-
cording to the literature, important qualities of a front-end JavaScript framework. Thereafter,
interviews were carried out with front-end web developers at the case company, Tietoevry
Care. The interviews fulfilled two purposes: further identification of important qualities and
prioritization of those already identified. The pre-study was then concluded with a survey
that was sent out via several channels to reach front-end web developers outside the case
company and thus increase the validity of the results. Altogether, the three activities helped
answer RQ1 and RQ2 by identifying and then prioritizing the most important qualities of a
front-end JavaScript framework. The result, presented in Figure 5.2, was then used as a basis
to develop an evaluation model and thus answer RQ3.

The validity of the process used to select and weight the attributes used to score the qualities
in the model can be questioned. However, the testing still shows that the model and its de-
sign presents an example of what a structured method for evaluating JavaScript frameworks
for a software project can look like. The result shows that all three frameworks perform
best on at least one of the qualities. Thus, no framework is always the best choice. This
confirms the need for a structured model, such as this one, to guide decision makers in
selecting the framework that suits the needs and requirements for a specific project. The

32

7.1. Future work

result is presented in a spider diagram. This makes it easy for the assessor to identify which
framework performs best on the most prioritized qualities, and the trade-offs it entails for
the other qualities. Thereby, the model provides the decision maker with the information
needed to make a well-founded decision, and thus constitutes an answer to RQ3.

The result of this thesis project is a modern investigation of important qualities of a front-end
JavaScript framework. From a research perspective, the result contributes by filling the gap
in a previously rather unexploited area. Practically, the result can be used by web developers
and companies to choose the right framework for a project. The research has consistently
focused on JavaScript frameworks. Thus, the model can mainly be applied to such. However,
it is likely, but not confirmed, that the same qualities would be considered important also for
other types of software frameworks. That would make the evaluation model useful in a
broader context as well.

7.1 Future work

Recommendations for future work are based on the limitations discussed in Section 6.2. The
first is to conduct similar interview surveys at more companies. This could confirm impor-
tant qualities identified in this study through different sources of information. That way, what
Runesson and Host [14] refer to as triangulation could be achieved. Such research would in-
crease the validity and credibility of the results obtained in this thesis project. The second
recommendation is to further develop the model with more well-substantiated quality at-
tributes. Suggestively, it can be done by having practitioners review the model presented in
this project and reconstruct attributes and weights according to their feedback. Alternatively,
a data collection can be carried out where interviewees are asked to describe how they be-
lieve that the performance for the identified qualities can be measured. Based on that data,
the model can then be reconstructed to improve its validity.

33

(1]

Bibliography

Steve “ardalis” Smith. Architecting Modern Web Applications with ASP.NET Core and Mi-
crosoft Azure. Redmond, Washington: Microsoft Developer Division, .NET, and Visual
Studio product teams, 2022.

Klaus Bergner, Andreas Rausch, Marc Sihling, and Thomas Ternité. “Dosam—-domain-
specific software architecture comparison model”. In: Quality of Software Architectures
and Software Quality: First International Conference on the Quality of Software Architectures,
QoSA 2005, and Second International Workshop on Software Quality, SOQUA 2005, Erfurt,
Germany, September 20-22, 2005. Proceedings. Springer. 2005, pp. 4-20. DOI: 10.1007 /
11558569_3.

Daniela Borissova, Zornitsa Dimitrova, Vasil Dimitrov, Radoslav Yoshinov, Magdalena
Garvanova, and Ivan Garvanov. “Multi-Attribute Decision-Making Model for Ranking
of Web Development Frameworks”. In: 2021 25th International Conference on Circuits,
Systems, Communications and Computers (CSCC). IEEE. 2021, pp. 3-8. DOI: 10.1109/
CSCC53858.2021.000009.

Virginia Braun and Victoria Clarke. “Using thematic analysis in psychology”.
In: Qualitative research in psychology 3.2 (2006), pp. 77-101. DOI: 10 . 1191 /
1478088706gp0630a.

Victoria Clarke, Virginia Braun, and Nikki Hayfield. “Thematic analysis”. In: Qualitative
psychology: A practical guide to research methods 222.2015 (2015), p. 248.

Fabio Ferreira, Hudson Silva Borges, and Marco Tulio Valente. “On the (un-) adoption
of JavaScript front-end frameworks”. In: Software: Practice and Experience 52.4 (2022),
pp- 947-966. DOI: 10.1002/spe.3044.

Andreas Gizas, Sotiris Christodoulou, and Theodore Papatheodorou. “Comparative
evaluation of javascript frameworks”. In: Proceedings of the 21st International Conference
on World Wide Web. 2012, pp- 513-514.DOI1: 10.1145/2187980.2188103.

Daniel Graziotin and Pekka Abrahamsson. “Making sense out of a jungle of JavaScript
frameworks”. In: International Conference on Product Focused Software Process Improve-
ment. Springer. 2013, pp. 334-337. DOI: 10.1007/978-3-642-39259-7_28.

34

https://doi.org/10.1007/11558569_3
https://doi.org/10.1007/11558569_3
https://doi.org/10.1109/CSCC53858.2021.00009
https://doi.org/10.1109/CSCC53858.2021.00009
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1002/spe.3044
https://doi.org/10.1145/2187980.2188103
https://doi.org/10.1007/978-3-642-39259-7_28

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

José Ignacio Fernandez-Villamor, Laura Diaz-Casillas, and Carlos A Iglesias. “A com-
parison model for agile web frameworks”. In: Proceedings of the 2008 Euro American Con-
ference on Telematics and Information Systems. 2008, pp. 1-8. DOI: 10.1145/1621087.
1621101.

Slavina Ivanova and Georgi Georgiev. “Using modern web frameworks when de-
veloping an education application: a practical approach”. In: 2019 42nd International
Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE. 2019, pp. 1485-1491. DOI: 10.23919/MIPRO.2019.8756914.

Barbara A Kitchenham and Shari Lawrence Pfleeger. “Principles of survey research:
part 3: constructing a survey instrument”. In: ACM SIGSOFT Software Engineering Notes
27.2 (2002), pp. 20-24. DOI: 10.1145/511152.511155.

Timothy C Lethbridge, Susan Elliott Sim, and Janice Singer. “Studying software engi-
neers: Data collection techniques for software field studies”. In: Empirical software engi-
neering 10.3 (2005), pp. 311-341. DO1: 10.1007/5s10664-005-1290-x.

Amantia Pano, Daniel Graziotin, and Pekka Abrahamsson. “Factors and actors lead-
ing to the adoption of a JavaScript framework”. In: Empirical Software Engineering 23.6
(2018), pPp- 3503-3534. DOI1: 10.1007/s10664-018-9613-x.

Per Runeson and Martin Host. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical software engineering 14.2 (2009), pp. 131-
164. DOI1: 10.1007/s10664-008-9102-8.

npm trends. @angular/core vs ember-source vs next vs nuxt vs preact vs react vs svelte vs vue.
2022. URL: https://npmtrends . com/@angular/core—-vs—ember - source -

vs—-next -vs—nuxt-vs-preact-vs—-react-vs—-svelte-vs—vue (visited on
11/14/2022).

Vetenskapsradet. God forskningsed. 2017. URL: https : / /www . vr . se / analys /
rapporter/vara-rapporter/2017-08-29-god-forskningssed.html.

W3Techs. Usage statistics of client-side programming languages for websites. 2022. URL:

https://w3techs.com/technologies/overview/client_side_language
(visited on 01/30/2023).

Claes Wohlin and Per Runeson. “Guiding the selection of research methodology in
industry—academia collaboration in software engineering”. In: Information and Software
Technology 140 (2021), p. 106678. DOI: 10.1016/j.infsof.2021.106678.

35

https://doi.org/10.1145/1621087.1621101
https://doi.org/10.1145/1621087.1621101
https://doi.org/10.23919/MIPRO.2019.8756914
https://doi.org/10.1145/511152.511155
https://doi.org/10.1007/s10664-005-1290-x
https://doi.org/10.1007/s10664-018-9613-x
https://doi.org/10.1007/s10664-008-9102-8
https://npmtrends.com/@angular/core-vs-ember-source-vs-next-vs-nuxt-vs-preact-vs-react-vs-svelte-vs-vue
https://npmtrends.com/@angular/core-vs-ember-source-vs-next-vs-nuxt-vs-preact-vs-react-vs-svelte-vs-vue
https://www.vr.se/analys/rapporter/vara-rapporter/2017-08-29-god-forskningssed.html
https://www.vr.se/analys/rapporter/vara-rapporter/2017-08-29-god-forskningssed.html
https://w3techs.com/technologies/overview/client_side_language
https://doi.org/10.1016/j.infsof.2021.106678

Interview Structure

A.1 Introduktion och presentation av studien

* Hilsa personen vilkommen och tacka for deltagande i studien.
* Presentation av studien och hur intervjun ska ga till.

- Jag genomfor mitt examensarbete hir hos er under viaren. Malet med min studie
ar att ta fram en utvarderingsmodell for att utvardera och jamfora olika front-end
ramverk for applikationer skriva i JavaScript.

— Med denna intervju vill jag forstd vilka egenskaper och kvalitéer du som utveck-
lare tycker &r viktiga hos ett ramverk.

- Intervjun kommer inledas med nagra enkla bakgrundsfragor om dig. Dérefter
kommer vi gé in pé fragor om ramverk och viktiga egenskaper hos dessa. Fra-
gorna kommer vara Oppna och av diskuterande karaktir med intentionen att
skapa ett samtal.

* Presentation av hur data fran intervjuer kommer att anvindas.

— Det ar bara jag som kommer att ta del av intervjun. Svaren kommer att analy-
seras och slas ihop med 6vriga svar for att kunna kategorisera vad front-end web-
butvecklare hos er pa Tietoevry prioriterar i valet av ramverk.

— Godkédnner du att delar dina svar citeras anonymiserat i rapporten for att ge
beskrivningar av parametrar som namnts som viktiga? (Ja/Nej)

A.2 Inledande fragor

* Beritta lite mer om din erfarenhet av utveckling. Vilken typ av projekt sitter du i nu
och vilka tekniker anvénds i det projektet?

¢ Vilken erfarenhet har du av att jobba med front-end webbutveckling och JavaScript?
* Vilken erfarenhet har du av att anvdnda ramverk for att utveckla i JavaScript?

- Om tidigare erfarenhet: Vilka ramverk har du utvecklat i?

36

A.3. Intervjusession

A3

Intervjusession

Det finns manga typer av ramverk, inte bara for att utveckla i JavaScript. Till exempel
ar .NET ett ramverk som ni anviander er av vildigt mycket. I generella drag, vilka
kvalitéer prioriterar och forvantar du dig nédr du anvander ett ramverk?

Finns det nagra egenskaper hos de ramverk du har erfarenhet av som du anser vara
irriterande eller daliga?

Ar samma kvalitéer viktiga nér vi pratar om JavaScript ramverk specifikt? Ar det nagra
som tillkommer, faller bort eller blir mer eller mindre viktiga?

Slutligen har ett antal kvalitéer identifierats som viktiga enligt litteraturen. Jag kommer
att visa dessa for dig och vill da att du véljer ut tre stycken som du anser vara viktigast
hos ett ramverk:

Previous experience - You and/or your colleagues have experience from the framework
Performance - Applications built using the framework have good performance

Good architecture - Contributes to good architecture and to the "code-less-do-more" factor
Community - Popular and with a large and active community

Size of code - Contributes to a small amount of code

Documentation - The quality and availability of documentation is high

Updated - Continuously maintained and updated

Ease of use - Easy to learn. Writing and maintaining code is easy

Suitability - Is suitable for the project, all necessary libraries etc. are available

I don't know

00000000000

Other:

37

Survey Structure

This appendix presents the survey that was sent to front-end web developers during the data
collection phase of the project. Section B.1 includes the text that was sent out to developers,
together with the link to the survey. The actual survey is then presented in Section B.2.

B.1 Information text

In English

My name is Sara, and I am currently writing my master’s thesis at Linkdping University
within Computer Science and Engineering. As part of my thesis, I am interested in what
qualities professional web front-end developers value in a JavaScript front-end framework.
By completing this survey, you will help me a lot in answering that question.

Answering it takes only two minutes, and I will be forever grateful!

Thank you in advance, and have a nice day!
Kind regards,
Sara

In Swedish

Mitt namn &r Sara, och jag skriver just nu mitt examensarbete vid Linkopings Tekniska
Hogskola inom datateknik. Som en del i mitt arbete dr jag intresserad av vilka kvalitéer pro-
fessionella front-end webbutvecklare varderar hos ett JavaScript front-end ramverk. Genom
att svara pa den har enkéten hjalper du mig jattemycket i att besvara den fragan.

Att svara tar endast tvd minuter, och jag kommer att vara evigt tacksam!
Tack pa forhand, och ha en fin dag!

Vénliga hilsningar,
Sara

38

B.2. Survey

B.2 Survey

What do you value in a JavaScript front-end framework?

My experience in front-end web development

No experience O O O O O Very experienced

I have experience with the following front-end JavaScript frameworks

Angular
React
Vue
Ember

Svelte

000000

Other:

39

B.2. Survey

I value these qualities the most in a JavaScript framework (pick at most 4 options)

Previous experience - Team members have knowledge and enjoy coding in it. Syntaxes

0

match team member preferences.

Suitability - Adapted to the problem to be solved. Corresponds to needs, functional- and non-
functional requirements.

Light weight - The initial output size is not too big, affecting performance and load times.
Installation does not require downloading a large amount of packages.

Browser compatibility - Offer compatibility with all major browser vendors

Structuring - Lots of code conventions and set ways of doing things. Contributes to good and
recognizable architecture.

Community - Popular and widely used. Support is available from a stable, large and active

community.
Size of code - Require less boilerplate code.
Documentation - The documentation is good, explanatory and sufficient.

Security - Not too many third-party dependencies that pose an extended risk for supply chain
attacks.

Updated - Continuous maintenance, development and updates. Now and in the future.

Ease of use - Learning and getting started is easy. Make code maintenance easier and coding

more efficient.

Freedom - Few rules and conventions, allowing own solutions and choices. Possible to study

the source code to deep dive in advanced functionality

Maturity - Established and with a certain level of maturity. Stable updates, few breaking
changes. Not too many bugs.

I don't know

Other:

o0 0 0 oo0ooLbooou ooo o

40

Evaluation model

The following model is used to evaluate JavaScript front-end frameworks based on the pa-
rameters identified as most important in such a framework. To assign a total score to the
seven important qualities for a framework, start by following the instructions in Section C.1
and assign a score to each quality attribute. Then calculate the total score for each quality
according to the model in Section C.2 and Figure C.1. The result is then presented in a
spider diagram. Partly to facilitate comparisons between different frameworks, and partly to
visualize trade-offs between different qualities. In this way, decision makers can easily find
the framework that best matches a project’s needs.

Note: If no previous experience with the framework exists, the evaluator needs to familiarize
themselves with the framework first in order to then be able to set a score, especially for the
three qualitative qualities: Ease of use, Documentation and Structuring. This is done by devel-
oping a smaller application in the framework using the documentation that the framework
provides. For an example of what such an application might look like, see the prototype
images for the applications developed in this study presented in Section 5.3. The gained
experience is then the basis for the assessment on the four-element scale.

C.1 Scoring of quality attributes

Follow the table’s instructions to give the framework a score for each quality attribute. Use
the given scoring guidelines for help and guidance in the assessment. For the qualitative at-
tributes, you need to make an assessment of how well the attribute matches the characteristics
of the framework based on your own opinion.

41

Attribute

Instruction

Scoring scale

1p Lessthan 500 000
Find downloads statistics for the 5 i
C1: Downloads during the past framework, for example on: p 500000 -1 000000
year 30%
https:/npmtrends.com/(@angular/core-vs 3p 1.000 001 -2 000 000
-ember-source-vs-next-vs-nuxt-vs-preact-
ys-react-vs-svelte-vs-vue 4p More than 2 000 000
1p Lessthan 10
C2: Contributors in GitHub Go to the framework’s GitHub repository 2p 10 -20
repository during the past year — Insights — Contributors and mark one 20%
year back in the graph. 3p 21-50
4p More than 50
Go to Stack Overflow and search for
questions tagged with the framework. Ip Lessthan 5000
Use filtering to get the number of
C3: Questions with accepted questions without any accepted answers. 2p 10 000 - 20 000
answers on Stack Overflow Find the number of questions in total 25%
during the past year during the past year, and subtract with 3p 20 001 - 50 000
the number without accepted answers
from the last year. 4p More than 5 000
1p Lessthan 20%
C4: Ratio of questions with Divide the number from C3 by the total 2p 20%-40%
accepted answers on Stack number of questions from the past year. 25%
Overflow during the past year 3p 41%-70%
4p More than 70%
1p Does not apply
E1: Understanding how, and Select the level of attribute fulfillment 2p Partly apply
getting an interactive application according to the scoring scale. 20%
up and running, is quick and easy 3p Largely apply
4p Fully apply

1p Does not apply
2p Partly apply
E2: Understanding and using Select the level of attribute fulfillment 50%
framework functions is easy according to the scoring scale. 3p Largely apply
4p Fully apply
1p Does not apply
E3: Using the framework Select the level of attribute fulfillment 2p Partly apply
accelerates development according to the scoring scale. 30%
3p Largely apply
4p Fully apply
1p Does not apply
D1: The documentation is easy to | Select the level of attribute fulfillment 2p Partly apply
follow and understand according to the scoring scale. 70%
3p Largely apply
4p Fully apply
1p Does not apply
D2: The documentation covers all | Select the level of attribute fulfillment 2p Partly apply
functionality in the framework according to the scoring scale. 30%
3p Largely apply
4p Fully apply
1p Lessthan6
Go to the framework’s GitHub repository 2p 6-12
Ul: Releases during the past year | — Releases and count the number of 20%
releases in the past year (not including 3p 13-24
pre-releases)
4p More than 24
Go to the framework’s GitHub repository .
— Issues. Use the filtering input field to Ip Less than 20%
filter on creation date, starting a year
U2: Ratio of closed bug issues on | back, and bug label(s). 2p 20% - 50%
GitHub during the past year. 80%
Count open issues and closed issues. 3p 51% - 80%
Divide the number of closed issues by
the total number of issues (open and 4p More than 80%

closed) to get the ratio.

1p Lessthan2
M1: Years the framework has Search on Google for the first release of 2p 2-5
existed the framework. 30%
3p 6-10
4p Morethan 10
Go to the framework’s GitHub repository Ip More than 400
— Issues. Use the filtering input field to
M2: Reported bug issues on filter on dates starting a year back and 2p 201-400
GitHub during the past year bug label(s). 70%
3p 100 - 200
Count both open and closed issues.
4p Lessthan 100
1p Does notapply
S1: The framework presents a Select the level of attribute fulfillment 2p Partly apply
clear way to structure according to the scoring scale. 70%
applications 3p Largely apply
4p Fully apply
1p Does not apply
S2: All applications built in the Select the level of attribute fulfillment 2p Partly apply
framework look the same according to the scoring scale. 30%
3p Largely apply
4p Fully apply
L1: Initial output size before
build [MB]
Create an initial project in the Ip More than 300
framework. Run a command to install all
packages and dependencies. 2p 201 - 300
20%
Get the resulting size of the project 3p 100 - 200
folder.
4p Less than 100
Create an initial project in the
framework. Run a command to install all Ip More than 3
packages and dependencies. Then run a
L2: Initial output size after build | command to build a release version of 2p 1-3
[MB] the project. 80%
3p 0.5-1

Get the resulting size of the project build
folder.

4p

Less than 0.5

C.2. Calculation of total quality scores

Documentation

0,7 xD1
Light weight 0.3 x D2 Ease of use

0,2 x L1 0,2 x E1

0,8 x L2 0,5 x E2

0,3 xE3

Structuring
Updated
0,7 x S1

0,3 xS2 0,8 xU1

0,2 x U2

Maturity Community

0,3 x M1 0,3 xC1
0,7 x M2 0,2 x C2
0,25 x C3
0,25 x C4

Figure C.1: Evaluation model qualities with related quality attributes and weights.

C.2 Calculation of total quality scores

Once all attributes have been assigned a score, the next step is to calculate the total score for
all qualities. This is done by summing the product of each quality-related attribute and its
weight, as illustrated in Figure C.1.

C.3 Presentation of results

The suggested way to present the results is in a spider diagram. There are several advantages
to that presentation method. First, it is an easy way to visualize and identify trade-offs among
the qualities: it is clearly visible which qualities suffer because a high score on another quality
is prioritized. Furthermore, if the results of several frameworks are included in the same
diagram, it is easy to compare them against each other on different qualities.

45

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations

	Background
	Single-page applications
	JavaScript frameworks
	Tietoevry Care
	Cambio Open Services API

	Related Work
	Evaluation of JavaScript front-end frameworks
	Data collection in software engineering research
	Designing an evaluation model

	Method
	Pre-study
	Definition of evaluation model
	Evaluation

	Results
	Pre-study
	Definition of evaluation model
	Evaluation

	Discussion
	Results
	Method
	The work in a wider context

	Conclusion
	Future work

	Bibliography
	Interview Structure
	Introduktion och presentation av studien
	Inledande frågor
	Intervjusession

	Survey Structure
	Information text
	Survey

	Evaluation model
	Scoring of quality attributes
	Calculation of total quality scores
	Presentation of results

