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A B S T R A C T   

Background: Flowmotion is the rhythmical variations in measured skin blood flow that arise due to global and 
local regulation of the vessels and can be studied using frequency analysis of time-resolved blood flow signals. It 
has the potential to reveal clinically useful information about microvascular diseases, but the spatial heteroge-
neous nature of the microvasculature makes interpretation difficult. However, recent technological advances in 
multi-exposure laser speckle contrast imaging (MELSCI) enable new possibilities for simultaneously studying 
spatial and temporal variations in flowmotion. 
Aim: To develop a method for flowmotion analysis of MELSCI perfusion images. Furthermore, to investigate the 
spatial and temporal variations in flowmotion in forearm baseline skin perfusion. 
Method: In four healthy subjects, forearm skin perfusion was imaged at 15.6 fps for 10 min in baseline. The time- 
trace signal in each pixel was analyzed using the wavelet transform and summarized in five physiologically 
relevant frequency intervals, resulting in images of flowmotion. Furthermore, a method for reducing the effect of 
motion artifacts in the flowmotion analysis was developed. 
Results: The flowmotion images displayed patterns of high spatial heterogeneity that differed between the fre-
quency intervals. The spatial variations in flowmotion, quantified as the coefficient of variation, was between 11 
% and 31 % in four subjects. Furthermore, significant temporal variations in flowmotion were also observed, 
indicating the importance of a spatiotemporal analysis. 
Conclusion: The new imaging technique reveals significant spatial differences in flowmotion that cannot be ob-
tained with single-point measurements. The results indicate that global statistics of flowmotion, such as the mean 
value in a large region of interest, is more representative of the microcirculation than data measured only in a 
single point. Therefore, imaging techniques have potential to increase the clinical usefulness of flowmotion 
analysis.   

1. Introduction and aim 

A normal and healthy microcirculation is characterized by the ability 
to match tissue needs of adequate delivery of nutrients and oxygen, 
while enabling removal of waste products (Ellis et al., 2005). By changes 
in network conductance, affected by regulatory activity of myogenic, 
neurogenic, and endothelial mechanisms, tissue needs can be satisfied. 
The oscillatory pattern of changes in arteriolar diameter, observed by 

frequency analysis, is known as vasomotion, and the resulting oscilla-
tions in blood flow are called flowmotion (Rossi et al., 2006a). Obesity 
and insulin resistance (Clough et al., 2017), and peripheral arterial 
disease (Rossi et al., 2005), to name just a few examples, have been 
suggested to be potential areas where flowmotion analysis could reveal 
aspects of clinical importance. The endothelial dysfunction observed in 
sepsis, affecting vasoregulation, barrier function, and inflammation, is 
another potential area (Ince et al., 2016). However, previous studies 
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have so far not led to a consensus in the scientific community regarding 
the clinical usefulness of flowmotion analysis. This can partially be 
explained by the spatial and temporal variations in skin microcirculation 
(Wardell et al., 1994) in conjunction with the use of single-point mea-
surement techniques. 

So far, laser Doppler flowmetry (LDF) has been the method of choice 
for studies of flowmotion, although newly developed measurement 
techniques enable further physiological aspects to be explored. In a 
recent study, we used Periflux 6000 EPOS (Perimed AB, Järfälla, 
Stockholm, Sweden) to analyze flowmotion from speed-resolved perfu-
sion, as well as variations in red blood cell tissue fraction, oxygen 
saturation, and vessel diameter (Fredriksson et al., 2022). By applying 
magnitude scalograms and time-averaged wavelet spectra, recurring 
periods of intensified energy could be observed within each frequency 
interval, which highlights the potential of temporal variations. 

LDF is limited to single-point measurements, which might lead to 
large variations in the computed flowmotion depending on the probe 
placement. Laser speckle contrast imaging (LSCI) instead records blood 
flow images, which can reveal these spatial variations. Recently, it was 
demonstrated that the flowmotion temporal variations in regions-of- 
interest from LSCI perfusion images correlate well with LDF (Mizeva 
et al., 2020), indicating that analysis methods developed for LDF can be 
extended to LSCI. However, despite the spatial nature of LSCI, the au-
thors did not provide spatial maps of flowmotion activity, possibly due 
to the higher susceptibility to noise in LSCI compared to LDF (Fre-
driksson and Larsson, 2016). We have recently developed a new perfu-
sion imaging technique based on a combination of multi-exposure laser 
speckle contrast imaging (MELSCI) and a machine learning model that 
enables continuous imaging of skin perfusion at 15.6 fps with accuracy 
equal to LDF, as well as lower susceptibility to measurement noise than 
LSCI (Fredriksson et al., 2019; Hultman et al., 2020). Thus, by applying 
the flowmotion analysis methods previously developed for LDF, indi-
vidually in each pixel, the new MELSCI perfusion technique enables the 
observation of high-resolution spatial and temporal variations in skin 
flowmotion. 

The aim of this study is to present a method for calculating flow-
motion images based on MELSCI and LSCI perfusion. Furthermore, we 
study the spatial and temporal flowmotion variations in skin perfusion 
in baseline conditions. 

2. Method 

2.1. Measurement system 

The MELSCI system used in this study has been rigorously described 
in previous publications (Fredriksson et al., 2019; Hultman et al., 2020; 
Hultman et al., 2017). For this paper however, it is sufficient to under-
stand that the system acquires perfusion images at 15.6 frames per 
second (Hultman et al., 2020), where the perfusion is equivalent to 
perfusion obtained from LDF (Fredriksson et al., 2019). This is not the 
case in conventional single-exposure LSCI, where high perfusion is 
underestimated compared to LDF and by extension to true perfusion 
(Fredriksson and Larsson, 2016). The framerate is sufficiently high to 
capture the cardiac-related temporal variations in the blood flow signal. 

2.2. Measurement protocol 

Four healthy volunteers were acclimated in a temperature-controlled 
room for 20 min. Data was then collected on the volar forearm for 10 
min, at a distance of 25–30 cm. A vacuum pillow was used for arm 
support to minimize motion artifacts. Written informed consent was 
given by the participants before the experiment, and all data was 
pseudonymized. The study protocol was approved by the Swedish 
Ethical Review Authority, d.no. 2019–04713. 

2.3. Processing 

For each participant, the measurement resulted in 9375 images of 
256 × 320 pixels (10 min at 15.625 frames per second = 9375 time- 
points). Two different processing pipelines were used for analysis of 
images and regions-of-interest (ROIs), respectively. This is summarized 
in Fig. 1, and explained below. 

To reduce noise in the image analysis, a 5 × 5 spatial Gaussian low- 
pass filter with σ = 1 was applied individually to each image before 
further analysis. The 10-minute perfusion signal from each individual 
pixel was then corrected for motion artifacts, after which the magnitude 
scalogram was computed with the continuous wavelet transform (CWT). 

2.3.1. Motion artifact removal 
Motion artifacts in speckle imaging primarily present as spikes of 

abnormally high perfusion, usually lasting just one or a few samples. 
This adds high amounts of energy to the signal across the entire fre-
quency spectrum. When computing the CWT magnitude scalograms, the 
affected time interval increases for decreasing frequencies, thus creating 
the “widening cone” artifacts seen in Fig. 2c. To remove these artifacts, 
we applied a 20-second (313 samples) Hampel filter as an outlier de-
tector on the perfusion signal. Specifically, we defined outliers as sam-
ples more than 4 standard deviations from the local median in a moving 
20-second window, where the standard deviation was estimated using 
the scaled median absolute deviation (MAD): 

σ ≈ 1.48⋅|x − x|, (1)  

where x denotes the median. To increase the robustness of the detection, 
values within 4 samples (0.25 s) of outliers were additionally defined as 
outliers. Detected outliers were replaced by linear interpolation between 
the first valid preceding and succeeding sample. Note that the median 
filter was only used to detect outliers. The corrected signal was not 
filtered. Fig. 2 illustrates this algorithm using synthetic data. The signal 
in (a) was generated by a sum of five random amplitude sinusoidal 
signals at the center of the frequency bands corresponding to the car-
diac, respiratory, myogenic, neurogenic, and endothelial activity, fol-
lowed by the addition of Gaussian noise. Finally, motion artifacts with 
random amplitude and duration were added to the signal. In real data, 
negative motion artifacts are rare but possible, and we therefore 
demonstrate that the algorithm works equally well in this case. The 
zoomed-in plots in the figure show the signal before and after motion 
artifact removal, demonstrating that most of the signal is unaffected by 
the algorithm. The CWT magnitude scalogram for the original signal 
without motion artifacts is shown in (b), and with motion artifacts in (c). 
The CWT scalogram after correction for motion artifacts is shown in (d). 
While the original signal cannot be completely reconstructed, the impact 
on the CWT magnitude scalogram can be significantly reduced using this 
method, as summarized by the relative errors in the figure titles. 

2.3.2. Wavelet analysis 
Several analysis methods have been proposed for flowmotion, using 

either the Fourier spectrum or wavelet spectrum of the blood flow 
signal. In addition to studying the full spectrum, the data is commonly 
further summarized as the sum of energy in the five frequency bands of 
interest. First proposed by Stefanovska et al. (Stefanovska et al., 1999), 
these bands reflects cardiac (1.6–0.4 Hz), respiratory (0.4–0.15 Hz), 
myogenic (0.15–0.06 Hz), neurogenic (0.06–0.02 Hz), and endothelial 
(0.02–0.0095 Hz) activity. 

The motion artifact-corrected perfusion signal in each pixel in the 
data-cube was normalized according to 

Pnorm =
P

〈P〉t
− 1, (2)  

where 〈⋅〉t denotes the time average. The normalization removed the 
dependence on perfusion magnitude and minimized spectral leakage 
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from the DC-component of the signal (Fredriksson et al., 2022). This also 
resulted in the unit of the wavelet scalogram being dimensionless. 
However, we choose to use the term “Energy” to be consistent with 
nomenclature in previous publications. 

The normalized signal was then transformed into a magnitude 
scalogram using the CWT with a Morlet wavelet using the Wavelet 
Toolbox in Matlab 2021b (MathWorks Inc.). The Morlet wavelet was 
chosen since it provides the best trade-of between time and frequency 
localization (Bračič and Stefanovska, 1998; Kvandal et al., 2006). The 
energy content in the five frequency bands were summed over the fre-
quency dimension and averaged over the time dimension as described in 
Eq. (3). The result was five energy values, each representing the average 
energy of the five physiological processes over the 10-minute mea-
surement. Data in the magnitude scalogram where edge effects were 
present due to the width of the wavelet kernel were excluded from the 
time average, as indicated by the gray shaded areas in the scalograms 
figures. The five energy values were given by 

EfH
fL =

∑fH

f=fL

(
1

Fs(t2 − t1)

∑t2

t=t1

|CWT{Pnorm}(f , t) |

)

(3)  

where t1 and t2 are the lower and upper bound of the valid time-window 
where edge effects in the CWT are negligible. Given the 600-second 
signal and Morlet wavelet, these are t1 = 3

̅̅
2

√

πf and t2 = 600 − 3
̅̅
2

√

πf sec-
onds (Torrence and Compo, 1998) (using the default parameters for a 
Morlet wavelet in the Matlab 2021b Wavelet Toolbox), where f is the 
frequency in Hz. Fs is the sample rate, and fL and fH are the lower and 
upper frequencies of each frequency band. By applying this algorithm 
individually to all pixels, five flowmotion images were obtained, 
showing the spatial variations in the energy of the corresponding 
frequencies. 

2.3.3. Region-of-interest analysis 
In addition to the pixel-wise analysis, the scalograms were also 

computed in regions-of-interest (ROI). This was done using the same 
processing pipeline, except the spatial low-pass filter was omitted since 

MELSCI
perfusion images

Mo�on ar�fact 
removal

For each pixel

CWT
scalogram

Spa�al low-
pass filter

Sum energy in 
frequency bands

Average in ROIs Mo�on ar�fact 
removal

CWT
scalogram

Image

ROI

Fig. 1. Schematic overview of the processing pipeline. MELSCI = Multi-exposure laser speckle contrast imaging. CWT = Continuous wavelet transform, ROI =
Region-of-interest. 
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Fig. 2. Demonstration of motion artifact removal using a Hampel filter. (a) Synthetic signal with motion artifacts. Zoomed-in plots show the effect of the motion 
artifact correction (red graph). Note that most of the signal is unaffected by the filtering process. Zoomed-in plots span 12 s. (b) Magnitude scalogram of the original 
signal (no motion artifact). (c) Magnitude scalogram of the signal in (a) with motion artifacts. (d) Magnitude scalogram of the signal after motion artifact removal. 
The errors in (c) and (d) are the mean absolute percentage deviation in scalogram energies from the original (b). 

M. Hultman et al.                                                                                                                                                                                                                               



Microvascular Research 146 (2023) 104456

4

the spatial noise-reduction was instead performed in the ROI averaging. 
After computing the magnitude scalogram of the ROI signal, we also 
computed the frequency spectrum (time average of the scalogram) and 
the time-dependent variations (sum of energy in the respective fre-
quency band for each time point) in the myogenic, neurogenic, and 
endothelial frequency bands. 

2.3.4. Single-exposure LSCI 
In addition to the results obtained from MELSCI-based perfusion, we 

also present results from a perfusion estimate by single-exposure LSCI as 
calculated in the commonly used PeriCam PSI (Perimed AB) except a 
slightly different exposure time: 

PSE =
1

K(8 ms)
− 1, (4)  

where K is the speckle contrast as described in Refs (Hultman et al., 
2020; Hultman et al., 2017). 

3. Results 

The results of the pixel-wise wavelet analysis summarized for each 
frequency band is shown in Fig. 3. These flowmotion images describe the 
energy content in the perfusion associated with the five physiological 
processes described above. The time-averaged perfusion image is also 
shown for comparison. 

The locations of two local ROIs are marked in the images, where A 
and B were manually placed on locations with respective high and low 
activity in the three lowest frequency bands, to further highlight the 
spatial heterogeneity. The ROIs are circles with radius 5 pixels, thus 
including 81 pixels. The CWT magnitude scalograms of the ROIs are 
shown in Fig. 4. The frequency spectra on the right are given by the time- 
average of the scalograms, and the time-varying signals below the sca-
lograms are given by the sum of energy in the respective frequency 
bands for each time-point. 

The same type of result figures for the other three measurement 
subjects is given in the Supplementary material. 

3.1. Single-exposure LSCI 

In Figs. 5 and 6 we present the same analysis as in Figs. 3 and 4, but 
using perfusion estimated by single-exposure LSCI (Eq. (4)). Unlike the 
previous method, this perfusion estimate is not linear with respect to 
LDF perfusion (Fredriksson and Larsson, 2016; Fredriksson et al., 2019), 
but flowmotion analysis of the three lowest frequency bands yield 
visibly comparable results to MELSCI-based analysis. The remaining 
results after this section will only be presented for the MELSCI-based 
flowmotion analysis. 

3.2. Statistical analysis of spatial variations 

To understand how the spatial variations in flowmotion energy seen 
in Fig. 3 might impact single-point measurements such as when using 
LDF, we summarize the data by the histograms in Fig. 7. These show the 
distribution in energy in each frequency band, and illustrate the po-
tential differences seen by different selection of measurement points. 
Pixels outside the large, dashed ROI in Fig. 3 were excluded to minimize 
the influence of edge effects from the curvature of the arm. 

The spatial variations were further quantified by the coefficient of 
variation (CV) in the same large ROI. This was done individually for the 
five frequency bands and was repeated for the four subjects (Results +
Supplementary). The CVs are presented in Table 1. 

While these results show the variation within each frequency band, it 
gives no information about the variation in time-averaged spectra. Fig. 8 
highlights these variations by examining the spectrum shapes in all 
pixels in the large ROI. Fig. 8a shows the variation in time-averaged 
spectra, and Fig. 8b the relative deviation from the mean spectrum. 
The shaded area shows the 2.5th to 97.5th percentile for each frequency, 
and the dashed lines show the average positive and negative deviation. 
The mean absolute deviation (MAD) in each frequency interval is also 
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Fig. 3. Spatial variations in mean energy content in five frequency bands associated with different physiological mechanisms, as well as the mean perfusion image 
(top left). Image data are mean values over 600 s. The color scales were selected individually for each image to better highlight structural differences rather than the 
magnitude of the energy. Two regions of interest A and B are placed on areas with high respective low energy levels in the three slowest processes (myogenic, 
neurogenic, and endothelial). These are used for further analysis of the spatial heterogeneity (see Fig. 4). The large ROI indicated by the dotted line in the perfusion 
image is used for the statistical analysis of spatial variations. 
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shown. This result demonstrates that it is on average expected to see 
relative differences in spectrum energies as large as 19 % compared to 
the mean, with 95 % confidence intervals being significantly larger. 

3.3. Temporal variations in flowmotion energy 

In addition to the spatial variations, we observe that flowmotion 
activity also changes with time, indicating increases and decreases in the 
activity of the various vasoregulatory mechanisms during the 10-minute 
measurement. These temporal variations can be significant, as shown by 

the flowmotion images presented at three time points in Fig. 9. The time 
points were selected manually to illustrate the large variations in each 
frequency band over time and, furthermore, that these variations are not 
synchronous between the different frequency intervals. At t = 200 s, the 
respiratory and myogenic energies are high, while neurogenic and 
endothelial energies are low. At t = 400 s, the respiratory energy is 
instead low (note also that the large vessels are no longer visible), while 
the myogenic, neurogenic, and endothelial energies are high. At t = 500 
s, all four of these intervals display low energy, with some moderate 
activity in the myogenic interval. For cardiac energy, only slight 
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Fig. 4. Continuous wavelet transform magnitude scalograms for the two ROIs marked in Fig. 3. The rightmost plot shows the spectrogram for both ROIs averaged 
over the 10-minute experiment. The two lower plots show the total energy in the myogenic, neurogenic, and endothelial frequency bands as a function of time (the 
cardiac and respiratory frequency bands are omitted to increase visibility). The dotted line-ends in the lower plots indicate where edge effects from the CWT are 
significant (corresponding to the shaded area in the scalograms), and the signals should be interpreted with caution. 
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variations are visible in the selected time points. Other time points could 
have been chosen to illustrate larger variations, as shown in Fig. 4. 
However, it should be noted that the frequency of these temporal vari-
ations naturally depend of the wavelet scale at each frequency, thus 
cardiac variations occur rapidly. 

4. Discussion 

The main purpose of this paper was to develop a method for flow-
motion imaging analysis from perfusion videos to reveal the magnitude 
of spatial and temporal variations. Our results indicate that different 
measurement locations can result in large variations in computed 
flowmotion, increasing the difficulty of finding clinical applications. As 
presented in Table 1, the coefficient of variation of energy in the 

different frequency intervals, computed in the large ROI, varied between 
11 % and 31 % in the four subjects. Similarly, as presented in Fig. 8, 
analyzing the variations in the full spectra yields an average deviation of 
19 % from the mean spectrum. Thus, to detect pathology-induced 
changes in the flowmotion signal, they must exceed these un-
certainties to be sufficiently reliable for clinical applications. Using the 
image data to get the spatial information has the potential to reduce 
these uncertainties. It is reasonable to assume that global statistics of 
flowmotion, such as the mean in the large ROI, are more representative 
of the overall state of the microcirculation than data measured only in a 
single point. 

Spatial variations in the wavelet spectra in a small (8 × 8 mm) tissue 
area have been studied previously using LSCI, specifically to investigate 
the respiratory variations in the blood flow signal (Mizeva et al., 2021). 
The most interesting comparison with our results is in the spectral 
variations, analogous to Fig. 8. Their analysis yielded a significantly 
smaller confidence interval for the spectra compared to our results in 
this work. This indicates that spatial variations on the small scale differs 
from those on the large scale seen in our images, further demonstrating 
the importance of measuring flowmotion in a large area to allow the use 
of representative measures. 

Motion artifacts are one of the main weaknesses of speckle-based 
measurement techniques. Due to the high energy content in the arti-
fact, it is necessary to compensate for this before applying the frequency 
transform. When only analyzing the perfusion signal in the time domain, 
it is possible to simply remove the affected samples, and methods to find 
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Table 1 
Coefficient of variation [%] quantifying the spatial variation in energy over a 
large area of the skin (dashed ROI in Fig. 3) in four subjects. Subject 1 is pre-
sented in this main results section, subjects 2–4 are presented in the Supple-
mentary material.   

Cardiac Respiratory Myogenic Neurogenic Endothelial 

Subject 1  23  18  22  22  30 
Subject 2  18  17  15  19  18 
Subject 3  16  12  13  18  27 
Subject 4  11  18  15  23  31  
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the affected images have been suggested (Lertsakdadet et al., 2018). 
However, in order to allow the use of frequency transforms, these 
samples must instead be replaced with synthetic data. The algorithm 
presented here for removing motion artifacts was designed based on 
empirical observations of the data, and further optimized using a large 
number of randomly generated synthetic perfusion signals. As seen in 
the example in Fig. 2, the energy from the motion artifact is drastically 
reduced, which allowed further analysis of the data. The choice to lin-
early interpolate the samples removed in the motion artifact detection 
was made to reduce the amount of false energy added by the synthetic 
data. Replacing the outliers with zeros would create discontinuities in 
the perfusion signal that, like the original motion artifacts, would 
contain high energy across the frequency spectrum. While there might 
be other interpolation methods that would further decrease the impact 
of the added synthetic data, the chosen linear interpolation was deemed 
the most robust based on our empirical tests. The suggested method 
works well for movement artifacts that are short in time. Artifacts that 
are longer than the period of the flowmotion waves, i.e. the inverse of 
the frequency, will drastically affect the calculated flowmotion energy. 
Measurements containing such long movement artifacts should thus be 
excluded. 

The data analyzed in this paper was obtained by our MELSCI-based 
perfusion method described in previous papers (Fredriksson et al., 
2019; Hultman et al., 2020). As already mentioned, this method is more 
accurate (linear) with respect to true perfusion and less noisy than 
current single-exposure LSCI methods. However, LSCI is currently the 
more common technique. We therefore also presented the results 
analyzed by single-exposure LSCI, to gauge viability of the proposed 
method in this case. To clarify, this analysis was made using the same 
data as the MELSCI-based results, by selecting a single exposure-time 
from the already acquired multi-exposure data. As such, we cannot 

say how currently available LSCI systems would perform in terms of 
noise levels, we can only evaluate the perfusion model used in some of 
these systems (Eq. (4)). Regardless, it is clear from Figs. 5 and 6 that LSCI 
is significantly less sensitive to cardiac activity. This can be seen both in 
the flowmotion image of cardiac activity (compare Figs. 3 and 5), as well 
as in the frequency spectrum of the two ROIs (compare Figs. 4 and 6). In 
the cardiac image in Fig. 3 (MELSCI-based), and to a lesser extent in the 
respiratory image in the same figure, a pattern of large vessels is visible. 
This pattern is entirely missing from the same images in Fig. 5 (LSCI- 
based). The cardiac peak in the frequency spectrum is also significantly 
lower in Fig. 6 (LSCI-based) compared to Fig. 4 (MELSCI-based). This is 
not unexpected given that LSCI underestimates high perfusion (Fre-
driksson and Larsson, 2016; Fredriksson et al., 2019; Tew et al., 2011; 
Binzoni et al., 2013; Humeau-Heurtier et al., 2013), and thus should be 
less sensitive to the flow in large vessels. More importantly however, the 
energies in the three lowest frequency bands – corresponding to the 
myogenic, neurogenic, and endothelial variations – are more compara-
ble between MELSCI and LSCI. Although flowmotion has not yet reached 
clinical practice, all three of these frequency bands have shown potential 
importance to several pathological conditions (Rossi et al., 2008a) such 
as microvascular complications of type 2 diabetes (Reynès et al., 2021a; 
Los-Stegienta et al., 2021), rheumatological diseases (Mizeva et al., 
2017), peripheral arterial disease (Rossi et al., 2005), critical ischemia 
(Anvar et al., 2000), and arterial hypertension (Rossi et al., 2006b; 
Bruning et al., 2015). This indicates clinical potential in both MELSCI- 
based and LSCI-based flowmotion analysis, despite the shortcomings 
of the latter. The clinical benefits of spatial analysis of flowmotion are 
still not clear but could potentially be a tool for assessment of skin 
function in applications such as burn injuries, skin infections, and free 
flaps, where the important information would be located in the transi-
tion from healthy to affected skin. Another potential area of interest is in 
sepsis, which is characterized by a heterogeneous degradation in 
endothelial microcirculatory function (Ince et al., 2016; Goldman et al., 
2006), thus flowmotion imaging might present a direct method for 
monitoring the progression of the inflammation. 

The wavelet transform provides time-localized information about the 
frequency content of the signal. As presented in Fig. 4 (CWT scalograms) 
and Fig. 9 (time-varying flowmotion images), this reveals another dy-
namic aspect of the data. The temporal variations in flowmotion might 
be indicative of the ability of the microvasculature to change how it 
regulates blood flow depending on tissue needs. In particular, the tem-
poral peaks of the flowmotion signal might be of interest as an indicator 
of maximum activation capacity. Future studies should consider inves-
tigating the temporal peaks in flowmotion as a potential source of in-
formation in addition to the average energy. 

Recording time is a central aspect when performing frequency 
analysis. The accuracy of the energy estimation of a certain frequency is 
related to the number of periods that fits into the recording. In this 
study, a recording time of 10 min was used. Thus, only about six periods 
of the lowest frequency band (0.0095–0.02 Hz) fits into the recording, 
while it has been suggested that the recording time should allow for at 
least 10 oscillations of the lowest analyzed frequency (Stefanovska, 
1999). However, when applying spatial averaging of flowmotion videos 
it might not be necessary to extend the recording time for a sufficient 
accuracy. Our results indicate that there is a substantial spatial differ-
ence in the flowmotion activity. It appears that the flowmotion activity 
over time differs between tissue areas in an uncorrelated way (see Fig. 9 
where image series for the various frequency bands are presented). 
Consequently, taking a spatial average will result in taking an average 
over multiple uncorrelated realizations of the same vasomotion process. 
It is likely that this will have at least a similar effect as averaging over a 
longer time-period. This should be investigated in future studies to 
possibly reduce the required recording time. 

It has been proposed to analyze an even lower frequency band, 
0.005–0.0095 Hz, that correlates to NO-independent endothelial activ-
ity (Kvandal et al., 2006; Bandrivskyy et al., 2004; Bagno and Martini, 
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Fig. 8. Spatial variations in time-averaged wavelet spectrum in the large, 
dashed region of interest (ROI) (Fig. 3). (a) Time-averaged spectra in the ROI. 
The shaded area marks the 2.5th to the 97.5th percentile range, and the thick 
black line shows the mean of all spectra in the large ROI (N = 36,775). (b) 
Relative deviation from mean line in (a). The shaded area marks the 2.5th to the 
97.5th percentile range and the dashed lines shows the mean deviation. The 
mean absolute deviation (MAD) in each frequency interval is also shown. 
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2015; Reynès et al., 2021b). Due to the recording time of 10 min, which 
only allows for three oscillations with 0.005 Hz, we have chosen not to 
specifically analyze that frequency band in this study, although it would 
be feasible with the technique as such. In future studies, the recording 
time is an important aspect to consider, where a longer recording time 
enable analysis of this NO-independent endothelial interval and general 
higher accuracy of the acquired energies. However, that should be 
balanced against other practical aspects such as increased risk of severe 
motion artifacts. 

Since flowmotion analysis obtains information related to the regu-
latory mechanisms of the vasculature from baseline measurements, this 
implies that provocations might not be required to obtain clinically 
useful data. A few clinical studies have indeed found that certain path-
ological conditions cause basally reduced activity in one or more fre-
quency bands, such as in patients with obesity (de Jongh et al., 2008), 
chronic renal failure (Stewart et al., 2004), or critical ischemia (Anvar 
et al., 2000). However, other studies have found that provocations are 
needed to elicit a difference in the measured flowmotion between the 
diseased and control groups. Examples of such provocations are arterial 
occlusion-release (Rossi et al., 2005; Rossi et al., 2007; Rossi et al., 
2008b), iontophoresis of acetylcholine and sodium nitroprusside (Rossi 
et al., 2008c; Rossi et al., 2009; Schmiedel et al., 2007), local heating 
(Stewart et al., 2004; Rossi et al., 2009), and local pressure (Humeau 

et al., 2004). From a clinical perspective, provocation-free measurement 
protocols have many advantages. It is possible that the addition of 
spatial information gained by flowmotion imaging could lead to more 
applications in which basal changes are statistically significant, thus 
improving the clinical ease of use. Furthermore, the above clinical 
studies have only investigated the statistical differences between groups, 
not individuals. While there is value in understanding the differences 
between healthy and diseased groups, enabling individual diagnosis 
should be the ultimate goal of the technique. Because of the high het-
erogeneity in the microcirculation, this will likely only be possible using 
flowmotion imaging where the spatial variations can be accounted for. 

5. Conclusion 

In this paper we present a method for flowmotion imaging and show 
that the spatial variation in the microcirculation can lead to large un-
certainties when using single-point measurement techniques. Future 
work should therefore strive to use imaging techniques to improve the 
ability to differentiate natural skin spatial variations from underlying 
pathological changes. We also observed interesting spatiotemporal 
patterns in the flowmotion, with yet unknown etiology, that could 
facilitate further clinical conclusions. 
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