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Abstract

This is a literature study, in linear algebra, about positive and nonnegative
matrices and their special properties. We say that a matrix or a vector is
positive/nonnegative if all of its entries are positive/nonnegative. First, we
study some generalities and become acquainted with two types of nonnegative
matrices; irreducible and reducible. After exploring their characteristics we
investigate and prove the two main theorems of this subject, namely Perron’s
and Perron-Frobenius’ theorem. In short Perron’s theorem from 1907 tells us
that the spectral radius of a positive matrix is a simple eigenvalue of the matrix
and that its eigenvector can be taken to be positive. In 1912, Georg Frobenius
generalized Perron’s results also to irreducible nonnegative matrices.

The two theorems have a wide range of applications in both pure mathe-
matics and practical matters. In real world scenarios, many measurements are
nonnegative (length, time, amount, etc.) and so their mathematical formula-
tions often relate to Perron-Frobenius theory. The theory’s importance to linear
dynamical systems, such as Markov chains, cannot be overstated; it determines
when, and to what, an iterative process will converge. This result is in turn the
underlying theory for the page-ranking algorithm developed by Google in 1998.
We will see examples of all these applications in chapters four and five where
we will be particularly interested in different types of Markov chains.

The theory in this thesis can be found in many books. Here, most of the ma-
terial is gathered from Horn-Johnson [5], Meyer [9] and Shapiro [10]. However,
all of the theorems and proofs are formulated in my own way and the examples
and illustrations are concocted by myself, unless otherwise noted.
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Sammanfattning

Det här är en litteraturstudie, inom linjär algebra, om positiva och icke-negativa
matriser och deras speciella egenskaper. Vi säger att en matris eller en vektor är
positiv/icke-negativ om alla dess element är positiva/icke-negativa. Inlednings-
vis går vi igenom några grundläggande begrepp och bekanta oss med två typer
av icke-negativa matriser; irreducibla och reducibla. Efter att vi utforskat de-
ras egenskaper så studerar vi och bevisar ämnets två huvudsatser; Perrons och
Perron-Frobenius sats. Kortfattat så säger Perrons sats, från 1907, att spektral-
radien för en positiv matris är ett simpelt egenvärde till matrisen och att dess
egenvektor kan tas positiv. År 1912 så generaliserade Georg Frobenius Perrons
resultat till att gälla också för irreducibla icke-negativa matriser.

De två satserna har både många teoretiska och praktiska tillämpningar.
Många verkliga scenarios har icke-negativa mått (längd, tid, mängd o.s.v) och
därför relaterar dess matematiska formulering till Perron-Frobenius teori. Teorin
är betydande även för linjära dynamiska system, såsom Markov-kedjor, eftersom
den avgör när, och till vad, en iterativ process konvergerar. Det resultatet är i
sin tur den underliggande teorin bakom algoritmen PageRank som utvecklades
av Google år 1998. Vi kommer se exempel på alla dessa tillämpningar i kapitel
fyra och fem, där vi speciellt intresserar oss för olika typer av Markov-kedjor.

Teorin i den här artikeln kan hittas i många böcker. Det mesta av materialet
som presenteras här har hämtats från Horn-Johnson [5], Meyer [9] och Shapiro
[10]. Däremot är alla satser och bevis formulerade på mitt eget sätt och alla
exempel, samt illustrationer, har jag skapat själv, om inget annat sägs.

Nyckelord:
Positiva matriser, icke-negativa matriser, Perron-Frobenius, linjära dyna-
miska system, Leslie matris, Markov-kedja, Google’s PageRank algoritm
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Nomenclature

For an n × n matrix A ∈ Mn(C), the following notation will be used, unless
otherwise stated:

σ(A) The spectrum of A: {λ ∈ C : λ is an eigenvalue of A}

ρ(A) The spectral radius: max{|λ| : λ ∈ σ(A)}

pA(λ) The secular polynomial: det(A− λI).

geomultA(λ) Geometric multiplicity: dim(N(A− λI))

algmultA(λ) Algebraic multiplicity: the multiplicity of λ in pA(λ)

We will consider vectors x ∈ Cn as n×1 column matrices, so xT is an 1×n row
matrix. The number n will consistently denote the dimension of the matrices
and m the counter of time and/or powers Am of a matrix A.
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Chapter 1

An Introductory Example

In the following chapter, we present an introductory example to Perron-Frobenius
theory. An extended version can be found in Horn-Johnson [5, Chapter 8].

Consider a population inhabiting two cities A and B. Each year, a fraction
α ∈ (0, 1) of the population in city A moves to city B and a fraction β ∈ (0, 1)
of the population in city B moves to city A. The yearly migration process is
illustrated in fig. 1.1. We want to investigate how the population distribution,
amongst the two cities, will change over time. In other words, we seek the
asymptotic behaviour of this movement.

A B

α

β

1− α 1− β

Figure 1.1: Two cities.

Towards finding an analytical solution to the problem, let xm and ym be the
number of people at year m ≥ 0 living in city A and B respectively. We can
model the process using the following two recursive equations, written in matrix
form:

xm+1 =

(
xm+1

ym+1

)
=

(
1− α β
α 1− β

)(
xm
ym

)
= Axm, m ≥ 0

with some initial conditions x0, y0 ≥ 0, where x0 + y0 is the total population.
Thus, we are interested in the matrix equation xm+1 = Axm, and if we succes-
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2 Chapter 1. An Introductory Example

sively use the equation to express xm in terms of the initial vector x0 we can
see that

xm = Axm−1 = A(Axm−2) = A2(Axm−3) = · · · = Amx0

and so the asymptotic behaviour of xm is given by the limit

lim
m→∞

xm = lim
m→∞

Amx0 (1.1)

if it exists. We find the eigenvalues of A, using its secular polynomial

pA(λ) = λ2 − λ(2− α− β) + 1− α− β = (λ− 1)(λ− (1− α− β))

to be λ1 = 1 and λ2 = 1 − α − β Since we know that α, β ̸= 0 then the two
eigenvalues are distinct, and so geomultA(λ1) = geomultA(λ2) = 1, because it
is always true that geomultA(λ) ≤ algmultA(λ) for all eigenvalues λ ∈ σ(A).
Therefore, we can diagonalize A via the transformation matrix T =

(
β −1
α 1

)
,

with inverse T−1 = 1
α+β

(
1 1

−α β

)
, a change to eigenbasis. Because both α, β < 1

we see that |λ2| < 1 and thus λm2 → 0 as m → ∞. Consequently, we get the
following limit:

lim
n→∞

Am = lim
m→∞

T

(
λm1 0
0 λm2

)
T−1 = T

(
1 0
0 0

)
T−1 =

1

α+ β

(
β β
α α

)
.

Substituting this back into (1.1) reveals that

lim
m→∞

xm = lim
m→∞

Amx0 =
x0 + y0
α+ β

(
β
α

)
Notice that this limit is proportional to the eigenvector

(
β
α

)
corresponding to

the eigenvalue λ1 = 1 which equals the spectral radius ρ(A). Further, it is clear
that the limit will always be proportional to this vector, independently of the
initial vector x0. These properties are true also for larger systems, even though
it is not possible to analyze them in the same direct way. Instead, Perron-
Frobenius theory serves as useful tool for this very thing, which we will explore
and exemplify in this thesis.

For an analysis of the cases α = β = 0 and α = β = 1 above, see Horn-
Johnson [5, Chapter 8].



Chapter 2

Preliminaries

In the following chapter we will do some preparation work for the main theory in
this thesis: Perron-Frobenius theory. We will need the concepts: positive, non-
negative, irreducible and primitive matrices. Most of this chapter is a summary
and a further explanation of the material found in Horn-Johnson [5], Meyer [9]
and Shapiro [10] but the information is rather elementary and can be found also
elsewhere.

2.1 Positive and Nonnegative Matrices
Definition 2.1. We say that a matrix A = (aij) is positive, denoted A > 0 if
all of its entries are positive, in other words if aij > 0 for all i and j. Similarly,
we say that A is nonnegative if aij ≥ 0 for all i and j.

With the definition above, we can write A > B or A ≥ B, for two matrices
of equal size, meaning that the matrix A − B is positive or nonnegative. We
use the same notation for vectors: x > 0 (x ≥ 0) if xi > 0 (xi ≥ 0) for all
i = 1, . . . , n. If x ̸= 0 is a nonnegative vector, which not the zero vector, and A
is a positive matrix, then the vector Ax will be stricly positive. This is because

Ax =

a11 . . . a1n
...

. . .
...

an1 . . . ann


x1...
xn

 =

a11x1 + · · ·+ a1nxn
...

an1x1 + · · ·+ annxn


and since x ̸= 0 there is at least some component xj > 0 which multiplied with
aij > 0 will yield a positive product aijxj in every component of the vector Ax.
If the situation is somewhat reversed: x > 0 and A ≥ 0 then it is of course true
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4 Chapter 2. Preliminaries

that Ax ≥ 0, however in this situation, it is not generally true that Ax > 0. A
counterexample is easily created by letting an entire row in A be zeros. Lastly,
if again x > 0, A ≥ 0 and it is also the case that Ax = 0 then A must be the
zero matrix, i.e. aij = 0 for all i, j = 1, . . . , n.

Note that positivity and nonnegativity is preserved with matrix powers, that
is if A > 0 then A2 > 0, A3 > 0, . . . (same for nonnegativity) since the entries in
each matrix power Am is the sum of products of positive (nonnegative) entries
of the previous matrix power Am−1 and A itself, for all m ≥ 1.

In terms of the spectral properties of a positive matrix, it is always the case
that the eigenvalue of largest modulus (absolute value) is real and positive. This
is a part of Perron’s theorem, which we will investigate later. For a nonnegative
matrix it is true, as for all A ∈ Mn(C), that ρ(A) ≥ 0, however ρ(A) need not to
be positive if A ≥ 0. An example of this is the matrix N =

(
0 1
0 0

)
≥ 0 which has

the secular polynomial pN (λ) =
∣∣−λ 1

0 −λ
∣∣ = λ2 − 0 = λ2, spectrum σ(N ) = {0}

and thus spectral radius ρ(N ) = 0, i.e. N is a nonnegative matrix, not the zero
matrix, with spectral radius equal to 0 ̸> 0. N is nilpotent since N 2 =

(
0 0
0 0

)
.

If we compare the spectral radii of two nonnegative matrices, we get the
following result in theorem 2.2. We can thus think about the spectral radius as
a sort of ’measure’ of the matrix.

Theorem 2.2. If 0 ≤ A ≤ B then ρ(A) ≤ ρ(B).

Proof. Suppose (towards a contradiction) that ρ(A) > ρ(B) ≥ 0. Then scaling
this inequality with some positive appropriate scalar γ > 0 we get that γρ(A) >
1 > γρ(B) ≥ 0 and so the matrix γA has a spectral radius > 1 and γB a spectral
radius < 1. Thus (γA)m diverges as m → ∞ whereas (γB)m → 0 as m → ∞.
The reason behind this is easiest seen if we bring γA and γB to Jordan canonical
form, where the diagonal elements will have > 1 or < 1 moduli, respectively.
On the other hand, we know that A ≤ B, therefore γA ≤ γB since γ > 0 and
so the fact that (γB)m → 0 forces (γA)m to converge to 0 as m → ∞, and we
have a contradiction.

2.2 Graphs and Matrices

Often, when studying positive or nonnegative matrices, graph theory can be
used as a visual representation of the matrix and a helping hand in proofs. In
this section, we present some connections between graphs and matrices.

Definition 2.3 (Directed graph). A directed graph is a graph D = (V, E), on
the vertex set V = {ν1, . . . , νn}, where the edge set E consists of ordered pairs
(νi, νj) with νi, νj ∈ V, called arcs or directed edges.
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Two vertices linked with an arc between them (in any direction) are called
adjacent. In our definition of a directed graph we allow arcs of the type (νi, νi),
called loops, and also multiple arcs between two pair of nodes. Sometimes,
graphs with these extensions are called multi- or general directed graphs. How-
ever in this thesis, we will make no such distinction. Now that we have estab-
lished the definition of a directed graph, we turn to matrices and construct the
graph of a matrix and then the matrix of a graph.

Definition 2.4. Let A ≥ 0 be a nonnegative matrix. D(A) = (V(A), E(A)) is
the (directed) graph of A if

(νi, νj) ∈ E(A) if and only if aij ̸= 0.

for all i, j = 1, . . . n. This is, we let the rows in A determine the out-going vertex
νi and the columns determine the in-going vertex νj of the arc (νi, νj) ∈ E(A).

Remark 2.5. In some literature the definition above is somewhat reversed,
columns determine out-going and rows in-going vertices, i.e. (νj , νi) ∈ E(A) if
and only if aij ̸= 0 for all i, j = 1, . . . n. Unless otherwise stated, we use the
above stated definition 2.4 for the graph of a matrix.

Definition 2.6. Let D = (V, E) be a directed graph. The nonnegative matrix
A = (aij) such that aij is the number of arcs (νi, νj) ∈ E from vertex νi to
vertex νj in D, for all i, j = 1, . . . , n, is called the adjacency matrix of D.

To illustrate the difference between the two definitions above, let

A =
(

0 1 1
0 1 1
1 0 0

)
, B =

(
0 1 2
0 3 4
5 0 0

)
and let D be the directed graph in fig. 2.1. Then A is the adjacency matrix of D,
because each entry aij in A is exactly the number of arcs between the vertices
νi and νj for all i, j = 1, 2, 3. B is not the adjacency matrix of D, for instance
because b31 = 5 and there is only one edge (ν3, ν1) ∈ E . Yet D = D(A) = D(B),
that is D is the graph of both matrices A and B.

ν1

ν2

ν3

Figure 2.1: D.

In a directed graph D we define a (directed) walk as an alternating sequence
of vertices and arcs, denoted ν1 → ν2 → · · · → νk+1, not necessarily all νi
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distinct, from an initial vertex ν1 to a terminal vertex νk+1. The arrows in the
scheme represents arcs (νi, νi+1) ∈ E , i = 1, ..., k. We say that the walk is closed
if ν1 = νk+1 and open otherwise. A cycle is a closed walk were all vertices are
distinct. The length of a walk, k ∈ Z+, is the number of arcs in the sequence.
We regard a single arc as a walk of length 1. For a directed graph D, define
D(k) = (V(k), E(k)) on the vertex set V(k) = V = {ν1, . . . , νn} in the following
way: there exists an arc (νi, νj) ∈ E(k) in D(k) if and only if there exists a walk
in D of length k between νi and νj , for i, j = 1, ..., n. Note that if there is a
loop (νi, νi), for some i, in D there exists a walk between νi to itself of any
length, and thus there is a loop (νi, νi) also in D(k) for all k. To relate this last
definition to matrices, we give the following theorem.

Theorem 2.7. If A ≥ 0 and D := D(A) is the graph of A, then D(Ak) = D(k),
as defined above, for all k ∈ Z+.

Proof. k = 1 is trivial, so consider the case k = 2. Let a(2)ij denote the entry at
position (i, j) in A2. Then

a
(2)
ij =

n∑
l=1

ailalj .

If a(2)ij ̸= 0, ((νi, νj) ∈ E(A2)) then there is at least one l such that the term
ailalj in the sum is nonzero. Then for such l, both ail ̸= 0 and alj ̸= 0, so both
(νi, νl) ∈ E and (νl, νj) ∈ E so there exists a walk νi → νl → νj of length 2 in D
and so, by the definition of D2, (νi, νj) ∈ E(2). On the other hand, if a(2)ij = 0
then all terms in the sum are zero and there is no walk of length 2 from νi to νj .
If k > 2, the same argument applies, but with a longer expression for a(k)ij .

The following definition of connectivity of a graph, also related to walks,
will be especially important in the next section when we consider irreducible
matrices.

Definition 2.8 (Strongly connected). A directed graph D = (V, E) is strongly
connected if there exists a directed path, of some length, between all pair of
vertices νi, νj ∈ V in D.

This is equivalent to (νi, νj) ∈ E(k), for some k ∈ Z+. In the extreme case
we have to visit all other vertices on the walk from νi to νj , which is a walk of
length n − 1. A longer walk than that is never needed in a strongly connected
directed graph, since such a walk would contain a loop, which can be removed
to form a new walk of length ≤ n−1. We conclude that for a strongly connected
directed graph, and for all i, j = 1, . . . , n, it is true that (νi, νj) ∈ E(k), for some
k = 1, . . . n− 1.
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For further readings about the connection between graphs and matrices see
Shapiro [10, Chapters 15-16].

2.3 Irreducible Matrices
We now introduce an important class of nonnegative matrices, the irreducible
matrices. Informally, we will think about these matrices as having zeros (if
there are any) in just the right place. Recall that a permutation matrix is a
square binary matrix, with exactly one entry of 1 in each row and column. If
we multiply a matrix A ∈ Mn(C) by a permutation matrix P to the left, the
resulting matrix PA is the same as A but with its rows permuted. Similarly,
multiplication by P to the right, corresponds to permuting the columns in A.

Definition 2.9 (Irreducibility). A nonnegative matrix A ≥ 0 is said to be
reducible if there exists a permutation matrix P such that:

PTAP =

(
X Y
0 Z

)
, (2.1)

where X and Z are square matrices and 0 is a rectangular zero block. If A is
not reducible, then it is called irreducible.

Remark 2.10. A positive matrix has no zeros and can thus never be brought
to the form (2.1). Therefore, all positive matrices are irreducible.

Note that the matrix P brings a reducible matrix to an upper block tri-
angular form via a simultaneous permutation of the rows and columns. If we
think of the matrix A as being a representation of a linear map between two
n-dimensional vector spaces, say Rn −→ Rn, we can view the action PT ∗ P as
a reordering of the basis in the vector space. As we will see, the graph of an
irreducible matrix has a very special property. This is due to the fact that the
directed graphs D(A) and D(PTAP ) are isomorphic (D(A) ≃ D(PTAP )), in
the sense that we can convert one to the other by simply relabeling the vertices.
Formally we say that there exists a bijective function f between the vertex
sets V(A) and V(PTAP ) which preserves adjacency, that is νi and νj in D(A)
are adjacent if and only if f(νi) and f(νj) in D(PTAP ) are adjacent, for all
i, j = 1, . . . , n. Now, let us use this to prove an equivalence theorem about
irreducibility.
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Theorem 2.11. For a matrix A ≥ 0 the following facts are equivalent:

(i) A is irreducible,

(ii) D(A) is strongly connected,

(iii) (A+ I)n−1 > 0.

Proof. (i) ⇒ (ii): Proof by contrapositive: ¬(ii) ⇒ ¬(i). Suppose D(A) is
not strongly connected, then there exists a pair of vertices νZ and νX for
which there is no directed walk νZ → · · · → νX . Let VX := {ν ∈ V(A) :
∃ walk from ν to νX} and let VZ := {ν ∈ V(A) : ∃ walk from νZ to ν}. Notice
that νX ∈ VX and νZ ∈ VZ because there is a directed walk of length 0 from
every vertex to itself in D(A), and so both VX ,VZ ̸= ∅. If a vertex ω ∈ VZ
then it is not adjacent to any of the vertices in VX , because otherwise we could
use this arc to create a walk from νZ to νX via ω. Now, permute the rows
and columns in A simultaneously, with the permutation matrix P , so that the
rows/columns corresponding to vertices in VX comes before the rows/columns
corresponding to vertices in VZ . The resulting matrix has the following block
structure: PTAP =

(
A11 A12

A21 A22

)
, but since there are no arcs from vertices in VZ

to vertices in VX the matrix A21 = 0. If we want, we could rename the blocks,
X := A11, Y := A12 and Z := A22, to get the exact same form as (2.1) in
definition 2.9. We conclude that A is reducible.

(ii) ⇒ (i): Proof by contrapositive: ¬(i) ⇒ ¬(ii). Suppose that A is reducible
and use a permutation matrix P to bring A to block upper triangular form, as
in definition 2.9. Call this new matrix B. Let the matrices X and Z have size
r × r and (n − r) × (n − r), respectively. Then bij = 0 for all i = r + 1, . . . , n
and j = 1, . . . , r, see below.

B =



b11 . . . b1r
...

. . .
... *

br1 . . . brr
0 . . . 0 b(r+1)(r+1) . . . b(r+1)n

...
. . .

...
...

. . .
...

0 . . . 0 bn(r+1) . . . bnn


Form D(B) and start a walk at vertex νn. The only way to reach vertex ν1 is
to at some point in the walk use an arc (νi, νj) where νi ∈ {νr+1, . . . , νn} and
νj ∈ {ν1, . . . , νr} , but since bij = 0 for such i and j, there is no such arc, and
thus there does not exists a walk between νn and ν1, so D(B) is not strongly
connected. Since D(B) ≃ D(A), D(A) cannot be strongly connected either.
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(ii) ⇒ (iii): Here we will use the fact that A and I commute (everything
commutes with the identity), that is AI = IA, to apply the binomial theorem
to (A+ I)n−1. We get the following sum:

(A+ I)n−1 = An−1 +

(
n

1

)
An−2 + · · ·+

(
n

n− 2

)
A2 +

(
n

n− 1

)
A+ I (2.2)

We know that D := D(A) is strongly connected, and in section 2.2 we reasoned
that for such a directed graph and for any pair of vertices it is true that (νi, νj) ∈
Ek for some k = 1, . . . , n− 1. If we let a(k)ij be the elements in Ak, theorem 2.7
ensures that for all i, j = 1, . . . , n it is true that a(k)ij > 0 for (at least) one
k = 1, . . . , n− 1. But this is precisely what is needed for the sum in (2.2) to be
a strictly positive matrix, so (A+ I)n−1 > 0.

(iii) ⇒ (ii): Choose indices i, j arbitrarily and expand (A + I)n−1 with the
binomial theorem, as in (2.2). Since (A + I)n−1 > 0 there is at least one
k = 1, . . . , n− 1 such that a(k)ij > 0 and so there exists an arc (νi, νj) ∈ E(k)(A)
and by theorem 2.7, there exists a walk (of length k) in D(A). Since i and j
were arbitrary, there exists a walk between any pair of nodes in D(A) and so
the directed graph D(A) is strongly connected.

As we will see later, irreducible matrices posses some of the famous Perron-
properties, inherited by positive matrices. One thing that distinguishes irre-
ducible matrices from positive, apart from zero elements, is the number of
eigenvalues on the spectral circle. This is so important that the next class
of nonnegative matrices will be defined based on this distinction.

Example 2.12. As an example, consider these three nonnegative matrices:

A =

0 1 0
0 0 1
1 0 0

 , B =
1√
2

0 1 0
1 0 1
0 1 0

 , C =
1

3

1 1 1
1 1 1
1 1 1

 .

All three matrices are irreducible which is easiest seen using theorem 2.11 by
forming their strongly connected directed graphs, see fig. 2.2. For each matrix
we determine the spectrum and spectral radius in the usual way, which in this
case happen to be the same ρ = 1 for all three matrices. We find that A has
three eigenvalues {ei 2π3 k : k = 0, 1, 2}, B has two eigenvalues {±1} and C has
only one eigenvalue {1} on the spectral circle |z| = ρ = 1, see fig. 2.3.
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ν1

ν2

ν3 ν1

ν2

ν3 ν1

ν2

ν3

Figure 2.2: From left to right: D(A), D(B), D(C).

|z| = 1 |z| = 1 |z| = 1

Figure 2.3: From left to right: σ(A), σ(B), σ(C).

2.4 Primitive Matrices
In this section, we will be able to divide the three matrices from example 2.12
into two groups; the primitive matrix C and the imprimitive matrices A and B.

Definition 2.13 (Primitivity). A nonnegative irreducible matrix A ≥ 0 is called
primitive if it has only one eigenvalue of maximum modulus and imprimitive if
it has k > 1 eigenvalues of maximum modulus. In the latter case we call the
number k the index of imprimitivity.

Remark 2.14. The eigenvalues with maximum modulus all lie on the spectral
circle |z| = ρ(A) in the complex plane C. Also, the set of primitive matrices are
a (proper) subset of the irreducible ones.

Example 2.15 (Continuation of 2.12). We conclude, see fig. 2.3, that A and
B are imprimitive with index of imprimitivity k = 3 and k = 2 respectively and
that matrix C is primitive.

As for irreducible matrices, the graphs of primitive matrices have a special
property. We first define the concept of primitive graphs and then we show that
a graph of a primitive matrix is a primitive graph.

Definition 2.16. Let D = (V, E) be a strongly connected directed graph. De-
fine k as the greatest common divisor of the lengths of closed walks in D. If
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k = 1, D is primitive and otherwise D is imprimitive with index of imprimitivity
k > 1.

Note that if we want to prove that D is primitive it suffices to find two differ-
ent closed walks, say C1 and C2 such that gcd(|C1|,|C2|)=1 whereas imprimitivity
must be proved by showing that all possible cycles have a common divisor which
is greater than 1. The definition 2.16 is perhaps a bit hard to digest, so let us
consider an example.

Example 2.17. Let D1 and D2 be the directed graphs in fig. 2.4. One can
verify that in each, there is a walk between any pair of vertices, and so they are
strongly connected. We will show that D1 is primitive and D2 is imprimitive
with index k = 3.

ν0 ν1

ν2ν3

ν4

ν5 ν6

ν7ν8

ν9

Figure 2.4: D1 (left) and D2 (right).

Consider the closed walks C1 : ν1 → ν4 → ν2 → ν1 and C2 : ν0 → ν4 →
ν2 → ν3 → ν0 in D1. Since |C1| = 3 and |C2| = 4 we get that gcd(|C1|,
|C2|) = gcd(3, 4) = 1 and so D1 is a primitive graph. Because D2 is two 3-cycles
joined by a common vertex ν9 the only closed walks in the graphs are repeated
3-cycles. Thus the lengths of these can only be {0, 3, 6, 9, . . . }, i.e. multiples of
3. We conclude that the greatest common divisor of all closed walks in D2 is 3
and therefore D2 is imprimitive with index k = 3.

Worth adding before stating the much awaited connection between primi-
tivity of graphs and primitivity of matrices is the following facts: A ≥ 0 is a
primitive matrix if and only if Am > 0 for some power m ∈ Z+. Also: A ≥ 0 is
primitive matrix if and only if limm→∞( A

ρ(A) )
m exists. We will investigate both

these facts later when we present Perron-Frobenius theorem for irreducible,
primitive matrices.

Theorem 2.18. Let A ≥ 0 be an irreducible matrix and D(A) its graph. Then
A is a primitive matrix if and only if D(A) is a primitive graph. Additionally,
A is imprimitive with index k > 1 if and only if D(A) is imprimitive with the
same index k > 1.
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Proof. The proof can be found in Horn-Johnson [5, Theorem 8.5.3], Shapiro [10,
Theorems 17.25-17.26] or elsewhere. Both books uses the fact that Am > 0 for
some power m > 0.

Remark 2.19. As we will see later, a positive matrix A > 0 has only one
eigenvalue on its spectral circle, this is a result of Perron’s theorem, and so
positive matrices are also primitive. But in fact, this can be seen using only
what we have seen so far. In the graph D(A) of a positive matrix, every possible
arc between any pair of vertices exists and specifically there are loops at every
vertex. Loops are closed walk of length 1, so for any other closed walk C in
D(A) we have gcd(1, |C|) = 1 and thus, by theorem 2.18, A > 0 is primitive.

As indicated above, loops have a big impact of the primitivity of a graph.
Remember that a loop in a graph D(A) of a matrix A ≥ 0 correspond to a
positive diagonal element aii > 0, some i = 1, . . . , n in A. As a result, we see
the following theorem.

Theorem 2.20. Let A ≥ 0 be irreducible. If aii > 0 for some i = 1, . . . , n then
A is primitive.

Proof. aii > 0 for some i = 1, . . . , n implies that (νi, νi) ∈ E(A), i.e. D(A) has a
loop at vertex νi. D(A) is primitive by the same logic presented in remark 2.19
and so by theorem 2.18 A is primitive.

We will end this section by directing our attention to imprimitive matrices,
which are irreducible matrices having k > 1 eigenvalues on its spectral circle. In
the middle of 20th century, the German mathematician Hermut Wielandt dis-
covered a remarkable fact about the location of the eigenvalues on the spectral
circle of imprimitive matrices. This can then be used to show that the eigenval-
ues also inside of the spectral circle are located in a somewhat predictable way.
Here, we will present the general theorem and show complete proofs of its ap-
plications. The full proof of the following theorem, sometimes called Wielandt’s
Theorem, can be found in Meyer [9, pp. 675-676].

Theorem 2.21 (Wielandt’s Theorem). Assume A is an irreducible matrix and
B ∈ Mn(C). If |bij | ≤ aij for all i, j = 1, . . . , n then ρ(B) ≤ ρ(A). If equality
holds, i.e. there exists some µ = eiϕρ(A) ∈ σ(B) such that ρ(B) = |µ| =
|eiϕρ(A)| = ρ(A) for some angle ϕ ∈ R, then we have that

B = eiϕDAD−1 for some D =

e
iθ1

. . .
eiθn

 (2.3)

and conversely if B = eiϕDAD−1 then ρ(B) = ρ(A).
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Proof of 2nd part: equality holds, (⇐) direction. DAD−1 is a similarity trans-
formation. The spectrum of a matrix is invariant under similarity transforma-
tions because if λ ∈ ρ(A) then there exists a vector x ∈ Cn such that Ax = λx,
and if we let y := Dx = (eiθ1x1, . . . , e

iθ1xn)
T then

(DAD−1)y = DAD−1Dx = DAx = Dλx = λDx = λy

which shows that (λ,y) is an eigenpair of DAD−1 and thus λ ∈ σ(DAD−1).
So σ(A) = σ(DAD−1) and specifically ρ(A) = ρ(DAD−1). We are not quite
finished, because B = eiϕDAD−1. But since eiϕ is just a rotation (modulus 1)
of numbers in the complex plane, we can view the multiplication eiϕ(DAD−1)
as rotating all the entries in DAD−1 by the same angle, and thus also rotating
the spectrum with the angle ϕ. While B can have a different eigenvalue of
maximum modulus than A, it is only rotated around the origin, and not scaled.
Therefore ρ(B) = ρ(A).

We will especially be interested in the second part of the theorem, where
ρ(B) = ρ(A), because we want to apply Wielandt’s theorem with B = A in the
proof of the following theorem. This is the first part about the extraordinary
finds about imprimitive matrices.

Theorem 2.22 (kth roots of ρk). Let A be an imprimitive matrix with index
k > 1. Let ρ := ρ(A) and let S := {λ1, . . . , λk} be the set of eigenvalues on the
spectral circle |z| = ρ, z ∈ C. Then:

(1) algmultA(λi) = 1 for all i = 1, . . . , k

(2) S is the kth roots of ρk, i.e. S = {ρ, ξρ, ξ2ρ, . . . , ξk−1ρ} where ξ = e
2π
k i.

Remark 2.23. The theorem 2.22 ensures that S, as defined in the theorem, is
invariant under rotation by the angle 2π

k .

The proof of theorem 2.22 uses one of the main results from Perron-Frobenius
theorem, presented in the next chapter, namely that if A is irreducible then its
spectral radius ρ(A) is a simple eigenvalue, often called the Perron root, i.e.
r := ρ(A) ∈ σ(A) and geomultA(r) = algmultA(r) = 1. In many books, one
sees the concept of primitive matrices presented after Perron-Frobenius theorem
for irreducible matrices, but for the sake of fully investigating the primitive
matrices in the preliminaries we see this "reference to the future" here. The
proof also uses some results from abstract algebra regarding finite groups, the
details of which can be read in for example Svensson [12, p. 79, 131].

Proof. Part (1): We start by writing the set S in another way. First, let
r := ρ(A). By Perron-Frobenius theorem, see next chapter, r ∈ σ(A), so r ∈ S,



14 Chapter 2. Preliminaries

and r is simple. Now we want to relate all other eigenvalues in S to r. This can
be done by considering with what angle r needs to be rotated with to become
the considered eigenvalue. We get one angle for each element in S \ {r} and so
we write S = {r, eiθ1r, . . . , eiθk−1r}. This process is illustrated in fig. 2.5 (a).
Apply Wielandt’s theorem 2.21 with B = A and ρ(B) = |µ| = |eiθjr| = r for
some j ∈ {1, . . . , k − 1}, i.e. µ is some element in S \ {r}. Then there exists a
diagonal matrix Dj such that B = A = eiθjDjAD

−1
j and therefore A and eiθjA

are similar and thus they have the same spectrum. We know that r is a simple
eigenvalue for A and so eiθjr is also a simple eigenvalue. Applying the same
argument for all j = 1, . . . , k − 1 proves the first item.

(a)

θ1θ2

θ3

r

eiθ1r

eiθ2r

eiθ3r

(b)

θ1θ2

θ1 + θ2

r

eiθ1r

eiθ2r

eiθ3rei(θ1+θ2)r

(c)

ρ

iρ

−ρ

−iρ

Figure 2.5: (a) Rewriting S, (b) Sum of angles, (c) 4th roots of ρ4.

Part (2): Take another eiθsr ∈ S, by Wielandt’s theorem 2.21 we have A =
eiθsDsAD

−1
s for some diagonal matrix Ds. From Part (1), we get

A = eiθjDjAD
−1
j = eiθjDj(e

iθsDsAD
−1
s )D−1

j

= ei(θj+θs)DjDsAD
−1
s D−1

j = ei(θj+θs)(DjDs)A(DjDs)
−1,

where D′ := DjDs will be a diagonal matrix of the same form as D in (2.3). So
applying Wielandt’s theorem 2.21 (⇐) ensures that also µ = ei(θj+θs)s ∈ σ(A)
with modulus r, so µ ∈ S. We now realize that the picture in fig. 2.5 (a)
is wrong, since the blue point in figure (b) should also be an element in S.
If we let G = {1, eiθ1 , . . . , eiθk−1} we have just shown that G is closed under
multiplication. And since U = {z ∈ C : |z| = 1} is an abelian group and
G ⊂ U then G is an abelian (sub)group. A result from abstract algebra is that
go(G) = 1G for all g ∈ G where o(G) is the order of the group and 1G the neutral
element. For us, G has k elements, therefore o(G) = k and so we conclude that
(eiθj )k = 1 for all j = 1, . . . , k − 1 and so G is the kth roots of unity. Scaling G
by r yields that the set S is the kth roots of ρ(A)k, see the correct picture in
fig. 2.5 (c).
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It is not only S which is invariant under rotation by 2π
k , as the next theorem

tells us. This is the second and final part of the find about imprimitive matrices.

Theorem 2.24. Let A be an imprimitive matrix with index k > 1. Then the
whole spectrum σ(A) is invariant under rotation by 2π

k and no rotation less than
that can preserve σ(A).

Before we see the proof of this statement, let us stop and reflect upon what
it actually means. If A is imprimitive with index k > 1, we know that it has
k eigenvalues on its spectral circle and theorem 2.22 assures us that these are
the kth roots of ρ(A)k, so they are located in a very predictable way. So far
we know nothing how the rest of the spectrum (inside the circle) looks. But
with theorem 2.24 we get that these eigenvalues are located in such a way that
if we rotate the whole complex plane by 2π

k we get the same eigenvalues, how
remarkable! We will soon see an illustrative example of this, but before we do
let us prove theorem 2.24.

Proof. If (λ,x) is an eigenpair of A, then Ax = λx and so ei
2π
k Ax = ei

2π
k λx, i.e.

(ei
2π
k λ,x) is an eigenpair of ei

2π
k A. By Wielandt’s theorem 2.21 A and ei

2π
k A

are similar and so σ(A) = σ(ei
2π
k A). Hence, the spectrum σ(ei

2π
k A) is the same

as σ(A) but rotated around the origin with angle 2π
k . No rotation less than 2π

k
can preserve σ(A) since no rotation less than 2π

k can preserve the kth roots of
ρ(A)k.

Example 2.25. Consider the matrix

A =



0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0


.

It is irreducible because its graph D(A) contains the red dashed cycle in fig. 2.6
visiting all the vertices ν1, . . . , ν8 so D(A) is strongly connected. Furthermore
A is imprimitive with index of imprimitivity k = 2 because all closed paths in
D(A) have a greatest common divisor of 2.

If we calculate the spectrum of A we get the following: σ(A) = {0, 1+ i, 1−
i,−1 + i,−1− i, 2,−2}, where 0 has algebraic multiplicity two, from which we
can see that ρ(A) = 2 and that two eigenvalues (2 and -2) lie on the spectral
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ν1 ν2

ν3 ν4

ν5 ν6

ν7 ν8

|z| = 2

Figure 2.6: Left: D(A), right: σ(A)

circle, thus verifying that the index is indeed k = 2 and that they are exactly the
solutions to z2 = 4, i.e. the square roots of 4. We know that they are invariant
under rotation by π. Further, look at the eigenvalues inside of the circle. They
are also invariant under rotation by π, in this case even π

2 . In this way we have
verified the elegant theorems 2.22 and 2.24.



Chapter 3

Perron-Frobenius Theory

We have reached the main topic of this thesis; Perron-Frobenius theory. The
theory is composed of two main results; one by Perron and one by Frobenius.
In 1907 the German mathematician Oskar Perron (1880-1975) published his
theorem for positive matrices. Perron was at the time not mainly studying
matrices, but worked instead on Jacobi multidimensional continued fractions in
which the properties of positive matrices arose in a lemma. He later realized the
importance of this lemma and published it on its own. Perron’s original proof,
which uses induction on the size of A > 0, can be read, along with many other
proofs of the theorem, in MacCluer’s article on the subject [8]. In 1912, Georg
Frobenius (1849-1917), also German, generalized Perron’s finding to nonnegative
irreducible matrices, which he called ’unzerlegbar’ matrices. From Frobenius’
theorem it is possible to derive a theorem also for the primitive matrices.

The two theorems have a wide range of applications in both pure mathe-
matics and practical matters. In real world scenarios, many measurements are
nonnegative (length, time, amount, etc.) and so their mathematical formula-
tions, which often involve matrices therefore relate to Perron-Frobenius theory.
The theory’s importance to linear dynamic system, such as Markov chains, can-
not be overstated; it determines when, and to what, an iterative process like
xm+1 = Axm will converge. This result is in turn the underlying theory for the
page-ranking algorithm developed by Google in 1998.

The many proofs of Perron-Frobenius theory can broadly be divided into two
categories; those entirely based in linear algebra and those using results from
elsewhere (for example Brouwer’s fixed point theorem or from complex analysis).
In this chapter we will, in the first and second section, see the statement of the
theorems and in the third section we will go through and illustrate a proof of
Perron-Frobenius’ theorem.

Eriksson, 2023. 17



18 Chapter 3. Perron-Frobenius Theory

3.1 Perron’s Theorem

Perron’s theorem tells us about positive matrices. It is on positive matrices
that this theory is as most powerful. The following version can be found in
Horn-Johnson [5].

Theorem 3.1 (Perron’s theorem). Let A > 0 be a positive matrix. Let ρ(A)
and σ(A) denote the spectral radius and spectrum of A. Then

(i) ρ(A) > 0

(ii) ρ(A) ∈ σ(A) and ρ(A) is simple

(iii) there exists a unique (right) eigenvector p of A, which can be taken posi-
tive, such that Ap = ρ(A)p and ∥p∥1 = p1 + · · ·+ pn = 1

(iv) there exists a unique (left) eigenvector qT of A, which can be taken positive,
such that qTA = ρ(A)qT and qTp = p1q1 + · · ·+ pnqn = 1

(v) |λ| < ρ(A) for all other eigenvalues λ ∈ σ(A) \ {ρ(A)}

(vi) lim
m→∞

(
1

ρ(A)
A

)m
= pqT

Remark 3.2. Note that the vectors p and qT are the only eigenvectors of A
which can be taken positive.

Here are some explanations of the items above:
(i), (ii): Perron’s theorem says that the spectral radius of a positive matrix

is itself a positive eigenvalue. ρ(A) is usually called the Perron root. The
fact that ρ(A) is simple means that algmultA(ρ(A)) = geomultA(ρ(A)) = 1 or
equivalently that the corresponding block in the Jordan canonical form of A is
1× 1 block only containing ρ(A).

(iii): We can see that (ρ(A),p) is an eigenpair of A. This special unique
eigenvector, first taken positive and then normalized so that the sum of its
entries are 1 (so that p is a so called probability vector) also has a special name;
p is called the right Perron vector of A.

(iv): It might seem unusual to consider vector-matrix multiplication with
a vector, considered as a row-matrix, to the left. Yet, it is often used when
studying Markov chains. The vector q, called the left Perron vector, is the
positive eigenvector of the matrix AT , because if ATq = ρ(A)q, then transposing
both sides yields qTA = ρ(A)qT . Note that (of course) A > 0 implies AT > 0,
so Perron’s theorem holds for AT , and that σ(A) = σ(AT ).
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(v): The fact that all other eigenvalues of A have (strictly) smaller modulus
than ρ(A), means that the only eigenvalue on the spectral circle is ρ(A). Because
of this property, ρ(A) is sometimes called the dominant eigenvalue of A.

(vi): Below we give a proof of the last item of Perron’s theorem. Sometimes
one sees the matrix pqT , which is the outer product of the two vectors p and
qT , being referred to as the spectral projector associated with the eigenvalue
ρ(A). This is because if we consider pqT as a linear map, then for all vectors
x ∈ Rn \ {0}, the image of x is simply pqTx = p(qTx) = (qTx)p where
qTx ∈ R \ {0} is some scalar (real number) and so (qTx)p is a scalar multiple
of the right Perron vector. Equivalently, one can say that x gets projected onto
the eigenspace of the eigenvalue ρ(A).

Proof of (vi) in Perron’s theorem 3.1: We want to bring A to its Jordan canon-
ical form. Remember that all square matrices can be brought to Jordan form
via a similarity transformation A = TJT−1 where the columns of T are the
eigenvectors or generalized eigenvectors of A (the latter case if geomultA(λ) <
algmultA(λ) for the corresponding eigenvalue). The matrix J is a diagonal
block matrix with the eigenvalues of A as diagonal element, repeated according
to multiplicity. Each block correspond to distinct eigenvalues in σ(A). If the
eigenvalues of A are ordered according to modulus ρ(A) > |λ1| ≥ · · · ≥ |λk| > 0
for some 1 ≤ k < n, then since ρ(A) is simple, we have

J = ([ρ(A)]⊕B) =

(
ρ(A) 0
0 B

)
where the (n−1)×(n−1) matrix B contains the Jordan blocks of A correspond-
ing to λ1, . . . , λk. Since ρ(A) is the dominant eigenvalue of A, then ρ(A) > ρ(B)

and so ρ(B)
ρ(A) < 1 and thus the matrix 1

ρ(A)B has spectral radius less then 1, so
1

ρ(A)B = D +N where D is a diagonal matrix with entries di = λi

ρ(A) such that
|di| < 1 for all i = 1, . . . , n− 1 and N is nilpotent, i.e. some power of N is the
zero matrix. Thus ( 1

ρ(A)B)m → 0 as m → ∞. By theorem 3.3 below, we can
use p as the first column in T and qT as the first row in T−1. Thus

(
1

ρ(A)
A

)m
=

(
1

ρ(A)
TJT−1

)m
= T

(
1

ρ(A)
J

)m
T−1

=
(
p T1

)(1m 0
0 ( 1

ρ(A)B)m

)(
qT
Z1

)
→
(
p T1

)(1 0
0 0

)(
qT
Z1

)
=
(
p 0

)(qT
0

)
= pqT

as m→ ∞. Note that this is a rank one matrix.
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In the proof above we use p and qT as the first column and row in T and
T−1 respectively. The fact that we can do this is motivated by the following
theorem, which is a special case of the (⇒) direction of part (b) in Theorem
1.4.7 from Horn-Johnson [5, p. 78]. The proof uses some nice reasoning with
orthogonality. Here, we denote matrices by [ ], and linear span with span( ), to
separate the partitioned matrices from vectors, still denoted by parentheses.

Theorem 3.3. If A ≥ 0 and p, q > 0 where Ap = ρp and qTA = ρqT , where
ρ ∈ σ(A), and qTp = 1 then there exists a non-singular matrix T =

[
p T1

]
such that

T−1 =

[
qT
Z1

]
and

A = T

[
ρ 0
0 B

]
T−1, B ∈ Mn−1(R)

Proof. Choose the columns t1, . . . , tn−1 in T1 to be a basis for the orthogonal
complement to span(q), i.e. qT ti = 0 for all i = 1, . . . , n − 1, so qTT1 = 0T

Let z = (z1, ζ
T )T where ζ ∈ Rn−1 and suppose that Tz = 0, i.e. z ∈ N(T ). We

have

0 = qT0 = qTTz = qT
[
p T1

](z1
ζ

)
= qT (pz1 + T1ζ)

= z1 qTp︸︷︷︸
=1

+(qTT1)︸ ︷︷ ︸
=0T

ζ = z1 + 0T ζ = z1

so z1 = 0 and then 0 = Tz =
[
p T1

] (
0
ζ

)
= T1ζ implies that ζ = 0 since T1

has full column rank (the column span is the complement of a one dimensional
span). So only 0 ∈ N(T ) and so T is nonsingular. Now consider T−1 =

[
ηT

Z1

]
for some η ∈ Rn. We show ηT = qT by the following computation

I = T−1T =

[
ηT

Z1

] [
p T1

]
=

[
ηTp ηTT1
Z1p Z1T1

]
=

[
1 0
0 In−1

]
where ηTT1 = 0 implies that η is orthogonal to the orthogonal complement to
span(q), i.e. η = αq for some scalar α ∈ R \ {0}. Then ηTp = 1 implies that
αqTp = 1 so α = 1. Now, we get

T−1AT =

[
qT
Z1

]
A
[
p T1

]
=

[
qTAp qTAT1
Z1Ap Z1AT1

]
=

[
qT ρp ρqTT1
Z1ρp Z1AT1

]
=

[
ρ 0
0 Z1AT1

]
where B := Z1AT1 ∈ Mn−1(R), which was to be shown.
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How much is included in Perron’s theorem, and how much is left as corollaries
can vary in literature. In Meyer [9, p.667] we see that also Collatz-Wielandt
formula is included, which relates the Perron root to an optimization problem
in the following way: ρ(A) = maxx∈R f(x) where

f(x) = min
1≤i≤n
xi ̸=0

(Ax)i
xi

and R = {x ∈ Rn : x ≥ 0,x ̸= 0} (3.1)

Also, sometimes one sees that the left Perron vector qT is chosen such that
∥qT ∥1 = q1 + · · ·+ qn = 1, i.e. the same way we choose the right Perron vector.
This choice of normalization will impact the limit in (vi). Let (using the same
notation as in the proof above) p be the first column in T and 1

pTqqT the first
row in T−1, which is possible by theorem 3.3 since 1

pTqqTA = ρ(A) 1
pTqqT ,

where ρ(A) ∈ σ(A), and 1
pTqqTp = 1. Note that pTq = p1q1 + · · ·+ pnqn > 0

so 1
pTqqT is a positive scalar multiple of qT . We get the limit(

1

ρ(A)
A

)m
= · · · =

(
p T1

)(1m 0
0 ( 1

ρ(A)B)m

)( 1
pTqqT

Z1

)
→ pqT

pTq

as m→ ∞. Again, note that the limit is proportional to the one stated in (vi),
because pTq > 0 (the euclidean product between p and q) is a positive scalar.

Before moving on to nonnegative matrices, let us see Perron’s theorem in
action on a concrete example.

Example 3.4. Let A be the positive matrix below.

A =

1 1 2
1 2 1
2 1 1


The secular polynomial of A is pA(λ) = (4 − λ)(−1 − λ)(1 − λ) so σ(A) =
{−1, 1, 4}. We see that ρ(A) = |4| = 4 > 0 and also ρ(A) = 4 ∈ σ(A) which
is simple since λ = 4 is a simple root of pA(λ). We conclude that ρ(A) = 4 is
the Perron root of A and we have thus verified parts (i) and (ii) in Perron’s
theorem. Further, | ± 1| = 1 < 4 so ρ(A) = 4 is the dominant eigenvalue, in line
with (v). Let us now find the Perron vectors of A. Since the rowsum is 4 for all
rows, the vector

(
1 1 1

)T satisfies1 1 2
1 2 1
2 1 1

1
1
1

 =

4
4
4

 = 4

1
1
1
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so it is a positive right eigenvector corresponding to the eigenvalue 4. Normal-
izing in the ∥ ∗ ∥1-norm yields that

∴ p =

1/3
1/3
1/3

 is the right Perron vector.

Since also the column sum is 4 for all columns, the vector
(
1 1 1

)
is a left

eigenvector corresponding to the eigenvalue 4. The euclidean product between
this vector and p is 1, so we conclude that

∴ qT =
(
1 1 1

)
is the left Perron vector.

Alternatively, we could normalize the vector in the ∥ ∗ ∥1-norm and get qT =
1
3

(
1 1 1

)
as the left Perron vector. The other eigenvectors of A are (1,−2, 1)T

corresponding to the eigenvalue λ = 1, and (−1, 0, 1)T corresponding to the
eigenvalue λ = −1, which shows that p and qT are the only eigenvectors of
A which can be taken positive. Hence, we have verified parts (iii) and (iv) in
Perron’s theorem. What is left is to verify that ( 14A)

m has the correct limit
when m→ ∞. If we write A in Jordan form, we get the following:

(
1

4
A

)m
= T

(
1

4
J

)m
T−1 = T

1m

(1/4)m

(−1/4)m

T−1

→

1 1 −1
1 −2 0
1 0 1

1
0

0

 1/3 1/3 1/3
1/6 −1/3 1/6
−1/2 0 1/2


=

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 =

1/3
1/3
1/3

(1 1 1
)
= pqT

as m→ ∞, i.e. the (rank one) matrix we expect from (vi).

We have not yet seen proofs for (i)-(v) of Perron’s Theorem. As we will see,
these all apply also to irreducible matrices, but with ρ(A) ≥ |λ| for all λ ∈ ρ(A).
We will go through a proof for the statements on irreducible matrices, which does
not depend on Perron’s theorem, and since positive matrices are irreducible, the
statements in this section can be derived from that proof. For proof of Perron’s
theorem using linear algebra, see Bergqvist [1, lecture notes], Horn-Johnson [5,
chapter 8.2], Meyer [9, chapter 8.2] or Shapiro [10, chapter 17.3].
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3.2 Perron-Frobenius’ Theorem
We now wonder how much of Perron’s theorem 3.1 is true for a general non-
negative matrix. We have already seen that there are nonnegative, not zero,
matrices which have spectral radius 0. The example considered in section 2.1
was the matrix N =

(
0 1
0 0

)
. Notice that N is reducible, it is already in reducible

form (2.1). Nonetheless 0 = ρ(N ) ∈ σ(N ) and the vector u =
(
1
0

)
is a nonnega-

tive eigenvector, not zero, which satisfies Nu =
(
0 1
0 0

)(
1
0

)
=
(
0
0

)
= 0
(
1
0

)
. These

observations are true also for general nonnegative matrices, as shown below.

Theorem 3.5. Let A ≥ 0. Then ρ(A) ∈ σ(A) and there exists a nonnegative
vector u ≥ 0, such that u ̸= 0 and Au = ρ(A)u

To understand the proof of theorem 3.5, we first need to show that proba-
bility vectors are bounded in the ∥ ∗ ∥2-norm.

Lemma 3.6. If p is a probability vector, then ∥p∥2 ≤ 1.

Proof. p is a probability vector implies that pi ∈ [0, 1] for all i = 1, . . . , n and
that ∥p∥1 = |p1|+ · · ·+ |pn| = p1 + · · ·+ pn = 1. If some pi = 1 then all other
pj = 0, j ̸= i. In this case we have

∥p∥22 =

n∑
j=1

|pj |2 =

n∑
j=1

p2j =
∑
j ̸=i

p2j + 12 = 0 + 1 = 1

Assume that no pi = 1, that is pi ∈ [0, 1), then p2i < pi for all i = 1, . . . , n and

∥p∥22 = |p1|2 + · · ·+ |pn|2 < p1 + · · ·+ pn = 1

We conclude that ∥p∥2 ≤ 1.

By Perron’s theorem 3.1, the right Perron vector p of a positive matrix
is a probability vector, since ∥p∥1 = 1. Now we are ready for the proof of
theorem 3.5, which uses some nice techniques from calculus in Rn.

Proof of theorem 3.5. Consider the sequence of matrices {Ak = A + 1
kE}∞k=1

where E is a matrix of all ones. Clearly Ak → A as k → ∞. Also, Ak > 0
for all k = 1, 2, . . . , and so by Perron’s theorem 0 < ρ(Ak) ∈ σ(Ak) and there
exists right Perron vectors pk > 0 for all k = 1, 2, . . . . By lemma 3.6 we know
that ∥pk∥2 ≤ 1 for all k = 1, 2, . . . and so the sequence {pk}∞k=1 is entirely
contained in the unit sphere {x : ∥x∥2 ≤ 1} ⊆ Rn and therefore bounded.
Then Bolzano-Weierstrass theorem assures that {pk}∞k=1 has a convergent sub-
sequence {pki}

∞
i=1 converging to some vector u ∈ Rn such that u ≥ 0, since all
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pki > 0, and u ̸= 0, since all ∥pki∥1 = 1 in the subsequence. Looking at the
matrices in the sequence {Ak}∞k=1 it is clear that A1 > A2 > · · · > A ≥ 0
and so by theorem 2.2 we have ρ(A1) ≥ ρ(A2) ≥ · · · ≥ ρ(A) which tells
us that the sequence {ρ(Ak)}∞k=1 is a decreasing sequence bounded below by
ρ(A) ≥ 0. By the monotone convergence theorem, the sequence {ρ(Ak)}∞k=1

converges to some limit ρ∗ ≥ 0 such that ρ∗ ≥ ρ(A). Because subsequences
of a convergent sequence converges to the same limit as the sequence, we also
have ρ(Aki) → ρ∗ ≥ ρ(A) as i → ∞, where Aki is the positive matrix with the
associated Perron vector pki above, for all i = 1, 2, . . . . For the same reason,
we also have Aki → A as i→ ∞. So all together we have

Au =
(
lim
i→∞

Aki

)(
lim
i→∞

pki
)
= lim
i→∞

Akipki

= lim
i→∞

ρ(Aki)pki =
(
lim
i→∞

ρ(Aki)
)(

lim
i→∞

pki
)
= ρ∗u

where we use that the limit of a product is the same as the product of limits,
which is true because all our limits exist finitely. We conclude that ρ∗ ∈ σ(A),
so ρ∗ ≤ ρ(A). From before we know ρ∗ ≥ ρ(A) and so they must be equal. We
have proved that ρ∗ = ρ(A) ∈ σ(A) and that there exists some 0 ̸= u ≥ 0 such
that Au = ρ(A)u, which was to be shown.

If we instead consider AT ≥ 0, theorem 3.5 states that there exists some
w ≥ 0 such that w ̸= 0 and ATw = ρ(AT )w. Transposing both sides and
using the fact that ρ(A) = ρ(AT ) we get wTA = ρ(A)wT which shows that
wT is a left eigenvector of A with the properties of the theorem. Further, the
Collatz-Wielandt formula, see (3.1), also hold for all nonnegative matrices. For
a proof of this, see Meyer [9, p. 670] or Shapiro [10, Corollary 17.7], which uses
the same technique, with the sequence {Ak}∞k=1, as above.

The theorem 3.5 and Collatz-Wielandt is as far as we can generalize the
properties from Perron’s theorem to all nonnegative matrices. Sadly, we have
lost many of the desired properties, such as ρ(A) > 0 and ρ(A) being a simple
eigenvalue. However, there is no reason to lose hope in Perron-Frobenius theory,
because if we restrict ourselves to irreducible matrices we will see that some of
the Perron-properties are restored. This is the result from Frobenius’ work on
the matter. We now present the version of what is called Perron-Frobenius’
theorem or sometimes only Frobenius’ theorem as it can be found in Horn-
Johnson [5].
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Theorem 3.7 (Perron-Frobenius’ theorem). Let A ≥ 0 be an irreducible matrix.
Then

(i) ρ(A) > 0

(ii) ρ(A) ∈ σ(A) and ρ(A) is simple

(iii) there exists a unique (right) eigenvector p of A, which can be taken posi-
tive, such that Ap = ρ(A)p and ∥p∥1 = p1 + · · ·+ pn = 1

(iv) there exists a unique (left) eigenvector qT of A, which can be taken positive,
such that qTA = ρ(A)qT and qTp = p1q1 + · · ·+ pnqn = 1

Comparing Perron-Frobenius’ to Perron’s theorem 3.1 we can see that the
only things missing are items (v) and (vi) of Perron’s, which states that ρ(A)
is the only eigenvalue with maximum modulus, and that ( 1

ρ(A)A)
m → pqT as

m → ∞. We have already seen examples of the first statement not being true
for irreducible matrices, see matrices A and B in example 2.12 or matrix A in
example 2.25. To illustrate that (vi) need not to be true for irreducible matrices,
we consider the following example.

Example 3.8. Let a12, a23, a34, a41 > 0 and A ≥ 0 be the following matrix

A =


0 a12 0 0
0 0 a23 0
0 0 0 a34
a41 0 0 0


which has the graph D(A), see fig. 3.1, which is a 4-cycle. We can see that D(A)
is strongly connected, thus A is irreducible. Further, since all closed walks in
D(A) is simply just the 4-cycle or repeated walks around the cycle, the greatest
common divisor of the lengths of all closed walks in D(A) is 4, and so A is an
imprimtive matrix with index k = 4. From theorem 2.22 we get that A has

ν1 ν2

ν3ν4

|z| = ρ

Figure 3.1: Left: D(A), right: σ(A)
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four eigenvalues on its spectral circle and that these are exactly the 4th roots
of ρ(A)4. Because A is a 4 × 4 matrix it has only four eigenvalues (counted
with multiplicities), and so all eigenvalues of A lie on the spectral circle, see
fig. 3.1. Let ρ := ρ(A). By Perron-Frobenius’s theorem 0 < ρ ∈ σ(A) and we
can conclude that σ(A) = {ρ, iρ,−ρ,−iρ}. Since all eigenvalues are distinct
they are all simple, and so if we bring A to its Jordan canonical form, we get

(
1

ρ
A

)m
= T

(
1

ρ
J

)m
T−1 = T


1

im

(−1)m

(−i)m

T−1

which has no limit as m→ ∞ since im and (−1)m does not converge to anything
asm→ ∞. Hence, (vi) in Perron’s theorem is not true for the irreducible matrix
A and the imprimitivity of A is, as suspected, the reason behind this.

By definition 2.13, primitive matrices have only one eigenvalue of maximum
modulus, and so item (v) of Perron’s Theorem is automatically satisfied. To
prove that also (vi) is fulfilled, one does the same proof as for positive matrices;
bringing the primitive matrix A ≥ 0 to its Jordan canonical form will do the
trick. We summarize in the following theorem, which is also by Frobenius.

Theorem 3.9 (Perron-Frobenius’ theorem for primitive matrices). Let A ≥ 0
be a primitive matrix. Then

(i) ρ(A) > 0

(ii) ρ(A) ∈ σ(A) and ρ(A) is simple

(iii) there exists a unique (right) eigenvector p of A, which can be taken posi-
tive, such that Ap = ρ(A)p and ∥p∥1 = p1 + · · ·+ pn = 1

(iv) there exists a unique (left) eigenvector qT of A, which can be taken positive,
such that qTA = ρ(A)qT and qTp = p1q1 + · · ·+ pnqn = 1

(v) |λ| < ρ(A) for all other eigenvalues λ ∈ σ(A) \ {ρ(A)}

(vi) lim
m→∞

(
1

ρ(A)
A

)m
= pqT > 0

Note that the items are exactly the same as in Perron’s theorem 3.1 and so in
a "Perron-Frobenius sense" positive matrices and primitive matrices are equally
well-behaved. Furthermore, as we noted already in section 2.4, the power of
a primitive matrix will eventually become positive. The following theorem is
sometimes, for example in Meyer [9], called ’Frobenius test for primitivity’.
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Theorem 3.10. A ≥ 0 is primitive if and only if Am > 0 for some m > 0

Proof. (⇒): limm→∞( 1
ρ(A)A)

m > 0 so there exists some m > 0 such that
( 1
ρ(A)A)

m > 0 which implies Am > 0 since ρ(A) > 0 by Perron-Frobenius’ 3.9.
(⇐): A cannot be reducible since(

X Y
0 Z

)m
=

(
Xm ∗
0 Zm

)m
̸> 0

for all m > 0 and so A is irreducible. By Perron’s theorem 3.1 for positive
matrices ρ(Am) is a simple eigenvalue of Am > 0 which is the only eigen-
value on the spectral circle. Equivalently, the only Jordan block correspond-
ing to eigenvalue ρ(Am) is a 1 × 1, containing only ρ(Am), in the Jordan
form of Am. Now, suppose the eigenvalues of A with maximum modulus are
ρ(A), λ1, . . . , λk for k ≥ 1, where the spectral radius is one of them because
of Perron-Frobenius’ theorem 3.7. Because σ(Am) = {λm : λ ∈ σ(A)} then
the numbers ρ(A)m, λm1 . . . . , λmk must be the eigenvalues of the matrix Am with
modulus ρ(Am). But we know that the only eigenvalue of Am with this property
is ρ(Am) = ρ(A)m itself. Thus ρ(A)m = λm1 = · · · = λmk and so in the Jordan
form of Am we must have 1 + k ≥ 2 blocks corresponding to the eigenvalue
ρ(A)m, which is a contradiction. Hence, only ρ(A) is an eigenvalue of A with
maximum modulus, so A is primitive.

Remark 3.11. One might wonder how large this m must be for the matrix
Am to become positive. As can be seen in Horn-Johnson [5, Chapter 8.5], the
smallest such m, call it γ(A) can be bounded above by the number (n−1)2+1,
so A(n−1)2+1 > 0. This is the best upper bound we can find if some aii = 0. If,
however exactly d diagonal elements in A are positive, then this upper bound
on γ(A) can be brought further down to 2n− d− 1.

As an example of theorem 3.9, let us consider a primitive iterative system,
which (among other things) we will study in depth in the following chapters.
It illustrates how little one must know about the matrix of a system to ap-
ply Perron-Frobenius and thereof know very much about a systems asymptotic
properties. The example is heavily inspired by Example 8.3.7 in Meyer [9, pp.
683-684].

Example 3.12. Let ν1, . . . , ν6 be ponds of water and wk be the number of liters
of water in pond νk for all k = 1, . . . , 6. Suppose that each day m ≥ 0 water
flows between the ponds according to the graph fig. 3.2, where vertices represent
ponds and the arcs between distinct pair of vertices represent flow of water. The
loops at vertices means that the water in the pond is somehow added to that
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pond the next day. We can imagine a human measuring the water volume in
that pond and then adding this the next day, perhaps with an appropriately
large water hose.

ν3ν1

ν2 ν4 ν5

ν6

Figure 3.2: Six ponds.

The matrix of the graph is

A =


1 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 1 0 0 0


which has two positive diagonal elements (a11 = a44 = 1 > 0). We see in fig. 3.2
that D(A) is strongly connected, thus A is irreducible, and so by theorem 2.20
A is a primitive matrix. If we let wm = (w1,m, . . . , w6,m) be the vector with
elements equal to the volume of water at each pond at the day m ≥ 0, then
wm+1 is determined via wm+1 = Awm. We can assume that w0 ̸= 0, i.e. there
is water in at least one pond when we start our study. Furthermore, define

Wk,m :=
wk,m

w1,m + · · ·+ w6,m
=

wk,m
∥wm∥1

for k = 1, . . . , 6 as the proportion of the total volume of water at day m in pond
νk. Gathering all the Wk,m together we get that the vector

Wm := (W1,m, . . . ,W6,m)T =
1

∥wm∥1
(w1,m, . . . , w6,m)T =

wm

∥wm∥1

represents the water distribution at day m. We wish to calculate limm→∞ Wm

(if it exists), i.e. the long-run water distribution in the system. Note that water
gets added to the system daily, so the volume of water in each pond wk,m might
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increase unbounded as time goes on. Therefore we are not interested in the
asymptotic number of liters in each pond (which is limm→∞ wm), because this
could be infinite, but instead the proportions of the total number of liters of
water Wk,m at each pond, which we will be finite, as we will see.

Now, since wm+1 = Awm for m ≥ 0 we have, as usual, that limm→∞ wm =
Amw0 for some initial conditions w0 at day 0. Since A is a primitive matrix we
can apply Perron-Frobenius’ theorem 3.9 to get that

lim
m→∞

1

ρ(A)m
wm = lim

m→∞

(
1

ρ(A)
A

)m
w0 = (pqT )w0

where p > 0 and qT > 0 are the right and left Perron vectors of A. Moreover, we
need to calculate the limit of ∥wm∥1/ρ(A) to know the limit of Wm as m→ ∞.
This is done in the following way

lim
m→∞

1

ρ(A)m
∥wm∥1 = lim

m→∞

1

ρ(A)m
∥Amw0∥1 = lim

m→∞
∥
(

1

ρ(A)
A

)m
w0∥1

= ∥(pqT )w0∥1 = ∥p(qTw0)∥1 = ∥p∥1|qTw0| =
= qTw0 > 0

which is a positive number since qT > 0 and w0 ̸= 0. Notice that ∥p∥1 = 1
so that term disappears. Now that we have everything we need and so we are
ready to answer our question.

lim
m→∞

Wm = lim
m→∞

wm

∥wm∥1
= lim
m→∞

wm/ρ(A)
m

∥wm∥1/ρ(A)m

=

lim
m→∞

wm

ρ(A)m

lim
m→∞

∥wm∥1
ρ(A)m

=
(pqT )w0

qTw0
=

p(qTw0)

qTw0
= p

which is the Perron vector! Now, the only computation we need to do on the
actual matrix A is find its positive right Perron vector, which turns out to be

p =
φ

4φ+ 3


φ
1
φ
1

1/φ
1

 where φ =

√
5 + 1

2
is the golden ratio.

We conclude that in the long run, the distribution of water amongst the six
ponds will be about 0.276, 0.171, 0.276, 0.106, 0.171 respectively. Worth men-
tioning is that the calculation of the eigenvector p can of course in itself be
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cumbersome. However, the point here is that, by Perron-Frobenius’, this is the
only thing we need to calculate to answer our question, since we know the limit
of the matrix beforehand. We can compare this to the procedure in the first
example of chapter 1. Back then we had to calculate the entire spectrum of
A and all of its eigenvectors to be able to calculate the limit. The fact that
Perron-Frobenius’ theorem reduces the computations to one single eigenvector
is perhaps one of the most elegant results of the theory and also why it is so
useful in linear dynamical systems.

3.3 Proof of Perron-Frobenius’ Theorem

In this section we will go through and understand the proof of Perron-Frobenius’
theorem for irreducible matrices from the article A Geometric Proof of the
Perron-Frobenius Theorem by Borobia and Trías [2]. For the sake of complete-
ness we restate the theorem, as it can be found in the article.

Theorem 3.13 (Perron-Frobenius’ theorem). Let A ≥ 0 be an irreducible ma-
trix. Then there exists a simple positive eigenvalue λ > 0 of A which has an
associated positive eigenvector and which has the highest modulus of any other
eigenvalue of A.

In the article, we find that a slightly different definition of irreducibility is
being used. For us, the form of a reducible matrix, after simultaneous per-
mutation of rows and columns, is

(
X Y
0 Z

)
see (2.1), whereas Borobia and Trías

uses the form
(
Z 0
Y X

)
. Notice however that we can convert one to the other

using yet another simultaneous permutation matrix, namely
(

0 I
I 0
)
, where the

two I are appropriately large identity matrices, because
(

0 I
I 0
)(

X Y
0 Z

)(
0 I
I 0
)
=(

0 I
I 0
)(

Y X
Z 0

)
=
(
Z 0
Y X

)
and vice versa.

As we will see, the proof uses a result from topology called Brouwer’s fixed
point theorem, perhaps most often presented in functional analysis courses. For
a function f : X → X, a fixed point is a point x ∈ X such that f(x) = x. We
do not need the most general version of Brouwer’s theorem (on Banach spaces),
but only its applications to certain subsets of Rn and continuous functions. The
following version of the theorem can be found in [7].

Theorem 3.14 (Brouwer’s fixed point theorem). Every continuous mapping
f : X → X of a compact convex subset X ⊆ Rn has a fixed point in X.

Note that the theorem says nothing about the uniqueness of such fixed point.
For example, if we let f to be the identity mapping on X then, of course, it is
continuous and every x ∈ X is a fixed point. Recall that a subset X ⊆ Rn
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is compact if it is both closed (∂X ⊆ X) and bounded. Furthermore, X is
convex if for all x,y ∈ X and for all α ∈ (0, 1) the line segment, called the
convex combination, αx + (1 − α)y ∈ is also an element in the set X. Finally,
a continuous mapping is in this context usually defined to be the property that
if U ⊆ X is open then f−1(U) ⊆ X is also open. Linear transformations, which
actions can be described in matrix form, are continuous mappings (perhaps one
of the most simplest cases of such).

Let us warm up by understanding the following definition.

Definition 3.15 (Ray). A ray in the direction v ̸= 0 is the set r := r[v] =
{αv ∈ Rn : α > 0}

A ray can be seen as ’half’ of the linear span [v] = {αv : α ∈ R} for
when α > 0. Below, left in fig. 3.3 we see an example in R2 where the vector
v = (1, 1)T . The ray r is illustrated with the blue dashed line emanating from
the origin stretching out towards infinity and the rest of the linear span [v] is
the thin gray dashed line, which is not included in r. We can represent a ray r
by its direction v, as we now have seen, but it is likewise possible to represent
r by its intersection with the unit hypersphere Sn−1 := {x ∈ Rn : ∥x∥2 = 1}.
All rays will have an intersection with the hypersphere, because v ̸= 0 for all
rays and this intersection will be unique, because the line [v] ⊆ Rn intersects
Sn−1 at two points, one of which will have the position vector αv for some
α > 0. Returning to our example in R2 above, the intersection r ∩ S1 is the
point ( 1√

2
, 1√

2
), as seen in the middle of fig. 3.3. We can use this point on S1

to identify the ray r.

v

r

rS1

( 1√
2
, 1√

2
)

r1r2 L

S1

( 1√
2
, 1√

2
)(− 1√

2
, 1√

2
)

Figure 3.3: Left: r[(1, 1)T ], middle: r ∩ S1, right: L.

Consequently, the set of all rays which lie in between two rays r1 and r2
can be represented as the corresponding set of intersection-points on Sn−1. For
example, if we let r1[(1, 1)T ] and r2[(−1, 1)T ] we get that all rays in between
r1 and r2 can be identified by L := {(cosβ, sinβ) : β ∈ [π4 ,

3π
4 ]} ⊆ S1. Notice

that L is equal to {(cos(tπ4 + (1 − t) 3π4 ), sin(tπ4 + (1 − t) 3π4 ) : t ∈ [0, 1]} which
is the spherical convex hull of the two points r1 ∩ S1, r2 ∩ S1 on the circle S1,
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as can be seen to the right in fig. 3.3. Moreover, the set L ⊆ S1 is compact
on the circle since its boundary ∂L, the two points r1,2 ∩ S1, lie in L and it
is bounded. The same argument can be applied in higher dimensions and give
rise to the following conclusion: the set of all rays which lie in between two
rays can be identified with a compact convex set L ⊆ Sn−1. This conclusion
is crucial because we need compactness and convexity to apply Brouwer’s fixed
point theorem.

We can let a matrix A act on a ray r, which we will denote by A(r), by
defining A(r) := A(r)[Av] = {αAv ∈ Rn : α > 0}, i.e. the image of r under
A is the ray with direction Av. Note that A(r) = r does not necessarily mean
that Av = v since for example r[v] = r[2v] and so if Av = 2v then we also have
A(r) = r. Instead we see that A(r) = r if and only if Av = λv for some λ > 0.

Now we are finally ready to begin the proof Perron-Frobenius’ theorem 3.13.
We will many times return to examples in R2 to help our understanding.

Proof of Perron-Frobenius’ theorem 3.13. Part 1: First, we want to prove that
there exists a positive eigenvalue λ > 0 of A and a corresponding positive
eigenvector v > 0.

Let R+ := {r[v] : v ≥ 0} be all rays with a nonnegative direction vector
v ≥ 0. In R2 these are the rays which lie in the first quadrant (including the
axes), in R3 those in the first octant and so on.

We claim that A(r) ̸= 0 for all r ∈ R+. Suppose that v ≥ 0 with one
nonzero element (we know v ̸= 0). If Av = 0, then A must have (at least) one
column of zeros, since A ≥ 0. The following scheme motivates it further:

0 ∗ . . . ∗
0 ∗ . . . ∗
...

...
. . .

...
0 ∗ . . . ∗



∗
0
...
0

 =


0
0
...
0


If v has more than one nonzero element, then that forces more columns of A to
be zeros. But this is impossible since if A had any column of zeros at all, say
aij = 0 for all i = 1, . . . , n then (νi, νj) /∈ E(A) for all i = 1, . . . , n and there are
no in-going arcs to vertex νj in D(A), i.e. it cannot be reached from any other
vertex. So D(A) is not strongly connected, and thus A is reducible, which is a
contradiction. We know from before that if A ≥ 0 and v ≥ 0 then Av ≥ 0 and
so together with our new finding Av ̸= 0 allows us to conclude that A(r) ∈ R+

for all r ∈ R+, that is
A(R+) ⊆ R+ (3.2)
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Furthermore, we claim that

A(r) ̸= r for all r ∈ ∂R+ (3.3)

That is, no ray in ∂R+ is invariant under A. In R2 this means that nei-
ther r[(x1, 0)

T ] nor r[(0, x2)
T ] is invariant and in R3 neither r[(x1, x2, 0)

T ],
r[(x1, 0, x3)

T ], r[(0, x2, x3)T ], r[(x1, 0, 0)T ], r[(0, x2, 0)T ] nor r[(0, 0, x3)T ] is in-
variant under A, where we assume that x1, x2, x3 > 0. In general, r[v] ∈ ∂R+

if vi = 0 for at least one i = 1, . . . , n. Suppose that A(r) = r for such a ray
r ∈ ∂R+ and that v has exactly 0 < k < n zero components. Then after
a reordering of the basis in Rn, if necessary, we can assume that the first k
components are zero. Remember that a reordering of the basis correspond to
simultaneous permutation of the rows and columns of the matrix. The fact that
Av = λv for λ > 0 implies that also the k first components in the vector Av are
zero. But then A has reducible form

(
Z 0
Y X

)
where Z is a k × k matrix, which

is a contradiction. The following scheme motivates it further:

z11 . . . z1k 0 . . . 0
...

. . .
...

...
. . .

...
zk1 . . . zkk 0 . . . 0

Y X





0
...
0

vk+1

...
vn


=



0
...
0

(Av)k+1

...
(Av)n


Note that while no ray in ∂R+ is invariant under A it is possible for the whole
set ∂R+ to be invariant. Consider the example where A =

(
0 1
1 0

)
, which has a

2−cycle as its graph. A is irreducible and A
(
1
0

)
=
(
0
1

)
and A

(
0
1

)
=
(
1
0

)
where

the two vectors
(
1
0

)
,
(
0
1

)
are directions of the rays on the boundary of R+ in

R2. Here, the two rays are not invariant but the set ∂R+ is.
To finalize part one, we now show that

A(r) = r for some r ∈ R+ \ ∂R+ (3.4)

That is, there is some positive ray r which is held invariant under A. Let
L := R+∩Sn−1 and identify every ray in R+ with its corresponding intersection
point with Sn−1, see figure 3.4 for an illustration in R2.

Let f be the mapping defined such that f(γ) = r[Av] ∩ Sn−1 for all γ =
r[v] ∩ Sn−1 ∈ L where v ≥ 0. Since A is a linear map, then f is a continuous
mapping, and from (3.2) we get that f(L) ⊆ L because A(R+) ⊆ R+ and so
f is really a mapping f : L → L. The set L is not convex in Rn but its image
ψ(L) under a stereographic projection ψ : Rn → Rn from the hypersphere Sn−1
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A(r) = r

L

Figure 3.4: L and A(r) = r.

to a hyperplane En−1 is. Furthermore, L ⊆ Sn−1 and Sn−1 is compact so L
is compact and thus ψ(L) can be taken compact as well, by necessary rotation
of Sn−1 if needed. Figure 3.5 illustrated the projection where n = 3 and the
purple part of S2, rotated to the bottom right, is L. In the figure we see that
the blue set ψ(L) is convex and compact in Rn.

Figure 3.5: Stereographic projection of L

We know that ψ is a homeomorphism, i.e. it is bijective, continuous and
has a continuous inverse ψ−1, so the composition ψ ◦ f ◦ ψ−1 : ψ(L) → ψ(L) is
a continuous mapping on a compact convex subset of Rn. By Brouwer’s fixed
point theorem 3.14 there exists a β := ψ(γ) ∈ ψ(L), for some γ ∈ L, such that

ψ ◦ f ◦ ψ−1(β) = ψ(f(ψ−1(β))) = β

Taking the inverse of ψ on both sides and expressing β as ψ(γ) yields

f(ψ−1(ψ(γ))) = ψ−1(ψ(γ)) ⇔ f(γ) = γ

Hence there exists a γ = r[v] ∈ L such that f(γ) = γ, that is r[Av] ∩ Sn−1 =
r[v] ∩ Sn−1 and so A(r) = r where r = r[v] thanks to the one-to-one corre-
spondence of rays in R+ with the intersection points in L and projected points
in ψ(L). Because of (3.3), this invariant ray r cannot lie in ∂R+, and so it
must be strictly positive. The positive direction vector v > 0 of r is hence an
eigenvector of A corresponding to some positive eigenvalue λ > 0.
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Part 2: Secondly, we want to prove that λ > 0 is simple, that is

geomultA(λ) = 1 and algmultA(λ) = 1

Suppose that geomultA(λ) > 1, then there exists another eigenvector u ∈
Rn \ {0} of λ which is linearly independent to v > 0. Consider the plane
Π := [v,u] spanned by the two vectors. We claim that there exists w ∈ Π such
that r[w] ∈ ∂R+. We construct this vector in the following way: let w := tv−u
for some sufficiently large t > 0 such that w > 0. Now, w is a linear combination
of u and v, therefore w ∈ Π for all t ∈ R. Start to decrease t until (at least)
one of the components in w becomes 0 and the remaining components are still
positive. For this new value of t, w is a nonnegative vector with (at least) one
zero component, thus r[w] ∈ ∂R+. Additionally, w is an eigenvector of λ > 0,
because Aw = A(tv−u) = tλv−λu = λw, so A(r[w]) = r[w] which contradicts
(3.3). We conclude that geomultA(λ) = 1.

Now, suppose that algmultA(λ) > 1. Because geomultA(λ) = 1 we know
that there must exist at least one generalized eigenvector u of A corresponding
to λ which together with v (and potentially other generalized eigenvectors of
λ) form a string basis. We can assume, after reordering if needed, that u is
the first generalized eigenvector and so the Jordan form of A has the following
structure:

A = TJT−1 =

 | |
v u . . .
| |


λ 1 . . .
0 λ . . .
...

...
. . .


 | |

v u . . .
| |

−1

Remember that in such a string basis, we have · · · N−→ u N−→ v N−→ 0 with
N = A − λI and so we can scale the vector u such that (A − λI)u = v.
Rearranging this gives Au = λu + v. Let w be defined as above, such that
w ≥ 0 and some wk = 0 for at least one k = 1, . . . , n. Then

Aw = A(tv − u) = tAv −Au = tλv − (λu + v) = λ(tv − u)− v = λw − v

but this is a contradiction because A ≥ 0 and w ≥ 0 so Aw ≥ 0 whereas wk = 0
and vk > 0 so (λw−v)k < 0 so λw−v ̸≥ 0. We conclude that algmultA(λ) = 1.

Part 3: In the last part of the proof we will show that λ ≥ |µ| for all
eigenvalues µ ∈ σ(A). Suppose (towards a contradiction) that there exists some
eigenvalue µ such that |µ| > λ and let u be the corresponding eigenvector. Note
that µ ̸= 0 since λ > 0. Let r = r[v] be the positive invariant ray corresponding
to λ > 0. We get two cases, depending on if µ ∈ R or µ ∈ C \ R. We deal with
the first case in two sub-cases.
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(Case 1: µ > 0) Since µ is real, we know that u ∈ Rn. First, suppose that
both r[u] ̸∈ R+, and r[−u] ̸∈ R+, that is both u and −u are not nonnegative.
Since µ is the dominant eigenvalue, all vectors will become gradually more
parallel to u by repeated application of A. We see this because if xm = Axm−1

for some x0 then xm ≈ cµmu, for c ∈ R constant, when m is sufficiently large.
Note that µm > 0 so the sign of c, which is determined by the initial vector x0,
decides if xm becomes parallel (with equal sign) to u or −u. Now if we take
x0 ̸= v such that r[x0] ∈ R+ then r[xm] ≈ r[u] or r[xm] ≈ r[−u] for some m.
Thus, Am(r[x0]) must eventually leave R+ for large m, which contradicts (3.2).
In the figure 3.6 we see an illustration in R2 where the black line represent a
choice of r[x0].

r

r[u]

r[−u] r[x0]

Figure 3.6: (Case 1: µ > 0) and r[±u] ̸∈ R+.

Now assume, on the other hand, that r[u] lies in R+, then r[−u] ̸∈ R+ (if
instead r[−u] ∈ R+ then simply substitute u for −u below). We consider again
xm = Axm−1 which we know will have the general formula

xm = c1µ
mu + c2λ

mv +
∑
i

ciη
m
i yi where |ηi| < |µ|

This time we will start with x0 in the plane [u,v] such that x0 = αu + βv ≥ 0
for some well chosen α < 0 and β > 0. Plugging m = 0 into the closed form
solution we get that c1 = α, c2 = β and all other ci = 0, so xm = αµmu+βλmv.
Since µ is the dominant eigenvalue we have xm ≈ αµmu for largem, but because
α < 0 and µ > 0 this means that r[xm] ≈ r[−u] ̸∈ R+ for such m, which again
contradicts (3.2) since r[x0] ∈ R+. The figure 3.7 illustrates this in R3.

(Case 1: µ < 0) If µ < 0 then the asymptotic behaviour of xm = Axm−1 will
be the following: xm ≈ c(−1)m(−µ)mu so the ray r[xm] will jump between r[u]
and r[−u] when m → ∞. To avoid this behaviour, and to be able to conclude
that all non-invariant rays are attracted to one unique ray, we consider the action
of A2. Note that (µ2,u) will be an eigenpair of A2, for A2u = A(A(u)) =
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r[u]

R+

r

r[x0]r[−u]

Figure 3.7: (Case 1: µ > 0) and r[u] ∈ R+.

A(µu) = µ2u and since µ < 0 we get that µ2 > 0. Thus, we consider the
system xm = A2xm−1 where xm ≈ cµ2mu, for large m, which will drag some
r[x0] ∈ R+ towards either one of r[u] or r[−u] (which one is determined by the
sign of the constant c, which in turn is determined by x0) in the same way as
the two instances of (Case 1: µ > 0). The contradiction will be the same since
A2m(r[x0]) ∈ R+ for such r[x0] which is true again because of (3.2).

(Case 2: µ complex) If µ ∈ C \ R we write µ := |µ|eiφ where φ ∈ R \ {0}.
Since A is a matrix with real entries, it has a secular polynomial pA with real
coefficients so then also the complex conjugate of µ will be a zero in pA. We
conclude that µ̄ = |µ|e−iφ ∈ σ(A) which has the same modulus as µ. The
corresponding eigenvectors, call them u and ū, will be complex vectors, which
can be decomposed into a real and an imaginary part. We write u = ℜ(u) +
iℑ(u) =: w+ iy and ū = w− iy where these vectors w,y ∈ Rn. Just as before
we set up the system xm = Axm−1 for some x0 and note that if the initial vector
x0 ∈ Rn then Amx0 ∈ Rn for all m, since A is a real matrix. In other words,
by choosing a real initial vector we are guaranteed to get a real solution to the
system. The vector xm will become more and more parallel to c0µmu + c1µ̄ū,
c0, c1 ∈ C constants, because both µ and µ̄ are dominant eigenvalues. We do
the following computation

c0µ
mu + c1µ̄

mū = c0(|µ|eiφ)mu + c1(|µ|e−iφ)mū = |µ|m(c0e
iφmu + c1e

−iφmū)
= |µ|m[c0(cosφm+ i sinφm)(w + iy) + c1(cosφm− i sinφm)(w − iy)]
= |µ|m[(c0 + c1)︸ ︷︷ ︸

=:K1

(w cosφm− y sinφm) + i(c0 − c1)︸ ︷︷ ︸
=:K2

(w sinφm+ y cosφm)]

(3.5)

where the two constants K1,2 will be real if x0 is a real vector. And in that
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case the whole expression is real and it lies in the plane spanned by the two
(real) vectors w and y. Call this plane P := [w,y]. We now claim that P
does not contain any rays in R+. Suppose that it did, then, similarly to what
we have seen before, these rays lying in the plane P ⊆ R2 can be identified
with their intersection with S1. These intersection-points is an arc L of S1, as
illustrated in 3.8. Because of the trigonometric functions in (3.5) we see that

P

L
R+

Figure 3.8: S1 ⊆ P intersecting R+.

the action of A for rays already lying in P is some rotation (scaling with |µ| > 0
does not change a ray). In particular, A rotates the circle S1 lying in P with
some angle (depending on the value of φ). Thus the image of the set of rays
with intersection-points in L under A cannot lie entirely in R+ anymore, since
they have been rotated out of R+. This contradicts (3.2) which states that
A(R+) ⊆ R+. Thus P does not contain any rays in R+.

Finally we will deduce a contradiction similar to the one in (Case 1) by
using the fact that rays get attracted towards P (outside of R+) after repeated
applications of A. First, consider the 3-dimensional space E3 := P ⊕ [v] where
v > 0 is the direction of r. Then choose some x0 ∈ E3 such that r[x0] ∈ R+

and x0 = v + w for some (perhaps arbitrarily small vector) w ∈ P \ {0}. Note
that we must choose w ̸≥ 0 such that v + w is still a positive vector. Then

Am
(

x
|µ|m

)
=

→0︷ ︸︸ ︷
λm

|µ|m
v +

∈P︷ ︸︸ ︷
1

|µ|m
Am(w)

when m→ ∞. Note that the second term above is in P, because by (3.5) vectors
in P stay in P under application of A. So we can make Am(r[x0]) as close to
P (which is not in R+) as we want and thus every positive ray leaves R+ after
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a number of applications of A, which again contradicts (3.2). In fig. 3.9 we see
how r[x0] gets repulsed out of R+.

Figure 3.9: r[x0] gets retracted to P (outside of R+).

To summarize; in part one we proved that there exists a positive eigenvalue
λ > 0, which has a corresponding positive eigenvector v > 0. In part two we
showed that λ is simple and finally, in part three, that λ ≥ |µ| for all µ ∈ σ(A).
Hence, we have proved everything in theorem 3.13.

Remark 3.16. The conventional way of proving Perron-Frobenius’ in most
literature on linear algebra is to first prove Perron’s theorem and then finding
some clever ways of applying Perron’s in the proof of Perron-Frobenius’, like
we did in the proof of theorem 3.5 with the set {Ak}∞k=1. These proofs are not
necessarily shorter than the one we have presented, since they are often divided
into many lemmas which are proved over whole chapters, but often they are a
bit more comprehensible. Still, this proof uses some pretty geometry and is a
good exercise in proof-techniques.





Chapter 4

Linear Dynamical Systems

In this chapter we will take a closer look at the world of linear dynamical sys-
tems. In the first section we will introduce, or perhaps remind the reader about,
some key concepts and in the second section we consider a bigger example, the
Leslie model. We will then bring with us the theory on dynamical systems to
the proceeding chapter, where we narrow it down to one specific type, namely
the Markov chains.

4.1 Introduction

The state of a linear dynamical system with constant coefficients at any given
time can be represented by a vector in Rn called the state vector. We consider
here both discrete time and continuous time systems.

We model a discrete time system as xm+1 = Axm+b where xm is the state
vector at time m ≥ 0 and A ∈ Mn(R), b ∈ Rn are both constant. Sometimes,
one refers to the model also as an iterative system or a recursive sequence in
Rn. If we restrict ourselves to integer states Zn we recognize this model as a
system of difference equations with a constant right hand side. Let us look at
this famous example of a discrete time linear dynamical system.

Example 4.1 (Fibonacci numbers). Consider the famous Fibonacci numbers

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

named after the Italian mathematician Leonardo Bonacci who introduced this
sequence in 1200. Let fm be the mth Fibonacci number, then fm+1 = fm+fm−1

for m ≥ 1 where we let f0 = 0 and f1 = 1. We define a state vector in the

Eriksson, 2023. 41
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following way xm := (fm, fm+1)
T and use the recursive definition on fm+1 to

express xm+1 in terms of xm as such

xm+1 =

(
fm+1

fm+2

)
=

(
fm+1

fm + fm+1

)
=

(
0 1
1 1

)(
fm
fm+1

)
=

(
0 1
1 1

)
xm

and we see that this has the form b =
(
0
0

)
and A =

(
0 1
1 1

)
.

Generally, we can convert any nth order homogeneous difference equation
with constant coefficients

fm+n = an−1fm+n−1 + · · ·+ a1fm+1 + a0fm (4.1)

into matrix form by defining the state vector to be xm := (fm, . . . , fm+n−1)
T ,

because then

xm+1 =


fm+1

fm+2

...
fm+n

 =


fm+1

fm+2

...
a0fm + · · ·+ an−1fm+n−1



=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

a0 a1 a2 . . . an−1




fm
fm+1

...
fm+n−1

 = Axm + 0. (4.2)

As we know, a homogeneous difference equation can be solved by finding the
roots of the characteristic polynomial λn − an−1λ

n−1 − · · · − a1λ − a0. This
polynomial is the same as the secular polynomial for A, which can be seen by
expanding det(A − λI) along the last row. The solution fm to the difference
equation (4.1), if all roots λk are distinct and nonzero, is fm =

∑n
k=1 ckλ

m
k ,

which can be seen in the solution xm =
∑n
k=1 ckλ

m
k vk to xm+1 = Axm where λk

are the eigenvalues of A and vk their eigenvectors. This corresponds to A being
diagonalizable and writingA = TDT−1 for a diagonal matrixD with eigenvalues
as elements and a change to eigenbasis via T . If some algmultA(λ) > 1, then
we instead bring A to its Jordan form and in this case polynomials of m will
appear in the solution. For a full walk-through of solving difference equations
in Zn, see for example Izquierdo [6].

Example 4.2 (Continuation of Fibonacci numbers 4.1). The characteristic
polynomial for the Fibonacci sequence is λ2 − λ − 1 which has the irrational
roots λ1 = 1+

√
5

2 and λ2 = 1−
√
5

2 ; the golden ratio φ and its negative inverse
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(conjugate) −φ−1 =: ψ. We find the solution to be fm = c1φ
m + c2ψ

m which
together with f0 = 0, f1 = 1 gives us the beautiful formula

fm =
φm − ψm√

5

for computing the mth Fibonacci number. Notice that fm → ∞ as m→ ∞ and
also that the spectral radius of the matrix is φ > 1.

Remember that the asymptotic behaviour of the discrete time system is
determined by limm→∞ xm = limm→∞Amx0. The Jordan form of A reveals
whether this limit exists or not. A formal proof of the following theorem can be
found in Meyer [9, p.629-630]

Theorem 4.3. Let A ∈ Mn(C), then limm→∞Am exists if and only if either

∗ ρ(A) < 1, or else

∗ ρ(A) = 1 ∈ σ(A) is the only eigenvalue on |z| = 1 and algmultA(1) =
geomultA(1), that is ρ(A) is semisimple.

If ρ(A) > 1, then Am grows without bound, as for the Fibonacci sequence in
example 4.2. Also, if there are more than one eigenvalue lying on |z| = 1, in the
case ρ(A) = 1, then the limit of Am when m → ∞ does not exist, however the
limit of I+A+A2+···+Am

m when m → ∞ exists finitely. This is called the Cesáro
limit, which we will return to when we look at imprimitive Markov chains.

In continuous time, we use the following model x′(t) = Ax(t) where we treat
each component xi(t), i = 1, . . . , n as a differentiable function of the variable
t ∈ R. We recognize this as a system of differential equations. Just as for
difference equations, every nth order homogeneous differential equation with
constant coefficients can be written in matrix form by the following procedure.
If

f (n)(t) = an−1f
(n−1)(t) + · · ·+ a1f

′(t) + a0f(t) (4.3)

where f ∈ Cn is a function of t ∈ R and all ai ∈ R are constants, then by letting
xk(t) = f (k)(t), for all k = 1, . . . , n, be the components in the state vector x(t)
we can see that{

x′k(t) = (f (k)(t))′ = f (k+1)(t) = x′k+1(t), k = 1, . . . , n− 1

x′n(t) = (fn(t))′ = an−1f
(n−1)(t) + · · ·+ a0f(t)

and so if we let A to be the same as in (4.2) we get that x′(t) = Ax(t). Similarly
to the discrete case, if all eigenvalues of A are distinct and nonzero we have the
solution function f(t) =

∑n
k=1 cke

λkt to the differential equation (4.3).
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Example 4.4 (Fibonacci Functions). Consider the second order differential
equation f ′′(t) = f ′(t) + f(t) with initial conditions f(0) = 0 and f ′(0) = 1
and note that this function f(t) has the same property as Fibonacci numbers,
but in terms of its derivatives. By letting x(t) = (f(t), f ′(t))T we can write
the equation as x′(t) =

(
0 1
1 1

)
x(t). The matrix is the same as for the Fibonacci

sequence and so with eigenvalues φ and ψ we get f(t) = c0e
φt + c1e

ψ which
together with initial conditions yields

f(t) =
eφt − eψt√

5
, t ∈ R

Notice the similarity between f(t) and the Fibonacci numbers. It is easy to
find f :s derivatives: f (m)(t) = (φmeφt−ψmeψt)/

√
5 and by plugging t = 0 into

fm(t) we find that

f (m)(0) =
φm − ψm√

5
= fm

the Fibonacci numbers! For further connections between the two, and also to
Lucas numbers, see Elmore [3].

4.2 Leslie Population Model

Now we consider a bigger example of a discrete time linear dynamical system,
inspired by Chapters 19.2-19.6 in Shapiro [10].

Assume that we have a population P with a finite lifespan L. Divide the
population into n groups ν1, . . . , νn, each with an age span of L

n . For example,
if we are dealing with a human population, we could take L = 120 and n =
12 and thus consider the twelve age groups 0-9, 10-19 ,. . . , 110-119. We let
the variable m ∈ N count how many time periods L

n have passed. In our
example, m = 1 means that twelve years has passed since we began our study.
Now, let xi,m ∈ [0, |P|] be the number of individuals in the group νi at time
m. Note that the surviving individuals in age groups νi at time m will be
in group νi+1 at time m + 1. Also, the individuals in the first group ν1 are
simply those who where born during the time period m. We assume that an
individual in age group νn at time m will not survive until the next time period
m + 1. To model the survival of the population, let αi ∈ [0, 1] denote the
proportion of age group νi that survive to reach age group νi+1. Note that
αn = 0 and that it is reasonable to assume that survival rates for younger
age groups are higher than the survival rates for older age groups. We get the
following relationship: xi+1,m+1 = αixi,m for all i = 1, . . . , n − 1 and m =
0, 1, 2, . . . . To go one step further, we can model the reproduction in P by
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introducing another parameter βi ≥ 0, which is equal to the average number of
offspring produced per individual in age group νi during one single time period.
These offspring will, in the following time period belong to age group ν1. Thus
we get the following relation: x1,m+1 =

∑n
i=1 βixi,m for all m = 0, 1, 2, . . . .

We will assume that these numbers α1, . . . , αn, β1, . . . , βn are the same for all
time periods m. Define a state vector to be xm = (x1,m, . . . , xn,m)T , then the
relations above give

xm+1 =


x1,m+1

x2,m+1

...
xn,m+1

 =


∑n
i=1 βixi,m
α1x1,m

...
αn−1xn−1,m



=


β1 β2 . . . βn−1 βn
α1 0 . . . 0 0
0 α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αn−1 0


︸ ︷︷ ︸

=:A


x1,m
x2,m
x3,m

...
xn,m

 = Axm

and so we see that this is a discrete time linear dynamical system. This is called
the Leslie population model, named after the British ecologist Patrick Holt Leslie
who developed the model for a population of rodents in 1945. The nonnegative
matrix A is called a Leslie matrix. We will start by assuming that the system
is homogeneous, that is we have no term b and thus no migration in and out
of P. We will later introduce this term to get xm+1 = Axm + b and see how it
changes the behaviour of the system. First, let us practice using the model in a
somewhat degenerated case.

Example 4.5. Assume αi > 0 for all i = 1, . . . , n − 1, i.e. there are at least
one individual who survives in each age group at each time period. Assume also
and that βi = 0 for all i = 1, . . . , n, i.e. no reproduction is taking place in the
population. We expect P to be completely extinct after L years. We verify this
using the model. We see

xn =


0 0 . . . 0 0
α1 0 . . . 0 0
0 α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αn−1 0


︸ ︷︷ ︸

=:N

xn−1 = Nnx0 = 0
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because N is a nilpotent matrix such that Nn = 0. Thus, each age group will
contain no individuals after exactly nLn = L years.

We call the example 4.5 degenerate, for it is not really a population without
any reproduction. Similarly, the case where at least one αi = 0 for i < n can
also be consider as non-realistic, for in that case no one in age group νi survives
to νi+1 at time m+1, but then age group νi has the maximum lifespan L

n i < L.
Henceforth, we may therefore assume that αi > 0 for all i = 1, . . . , n.

ν1 ν2 ν3 · · · νn−1 νn
α1 α2 α3 αn−1 αn

β2
β3

βi
βn−1

βn

β1

Figure 4.1: The graph of a Leslie matrix

In fig. 4.1 we see the graph D(A) of a Leslie matrix A.

Remark 4.6. Observe that for D(A) to make intuitive sense, where we interpret
arcs as individuals aging over time, we let columns determine the out-going
vertices and rows in-going vertices of the arcs. This is the reversed way of
defining the graph of a matrix, see remark 2.5.

By using properties of D(A) we can determine for which values of αi and βi
A is irreducible or even primitive. Since αi > 0 for all i we get that D(A) is
strongly connected if and only if βn > 0, because in that case (νn, ν1) ∈ E(A)
and the n−cycle in D(A) creates paths between any pair of vertices. Recall that
the number n determines the partition of P. If we are using a very fine model
(large n), then βn = 0 is probable because the oldest individuals of a species
tend not to reproduce as much. At the same time, we do not want to choose an
n too small because then we might miss out on important generational traits.
In applications, one might even take βn to be some small positive number δ > 0
just to make A irreducible and inherit the coveted Perron-Frobenius-properties
in 3.7. We go one step further and determine when A is a primitive Leslie
matrix. All closed paths in D(A) contain the first node ν1. It is not reasonable to
assume β1 > 0 (which would automatically make A primitive by theorem 2.20)
as the first group should represent the individuals early life. However, it is
realistic to think that if some age group νi has a fertile cohort, then the groups
νi+1 (and/or perhaps νi−1) might also contribute to reproduction. In this case
ν1 → · · · → νi → ν1 and ν1 → · · · → νi+1 → ν1 are two closed paths of lengths i
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and i+1. Since gcd(i, i+1) = 1 then D(A) is primitive and thus A is primitive
too. As such, it suffices that two consecutive βi, βi+1 are positive forA to become
primitive. By Perron-Frobenius’ theorem 3.9 we have limm→∞( 1

ρ(A)A)
m = pqT

where p and qT are the Perron vectors of the primitive Leslie matrix A. If ρ(A)
happens to equal 1, then in the long run, the number of individuals in each age
group will be proportional to the left Perron vector p. If ρ(A) > 1 the number
of individuals in each age group will tend towards infinity by theorem 4.3 and so
the population will grow unbounded. However the result of Perron-Frobenius’ is
still interesting for when we consider the matrix 1

ρ(A)A instead of A in the system
it means that we can look for the long-term distribution of individuals amongst
the age groups, which again will be proportional to p. We have seen a similar
example of this, see example 3.12 with the six ponds, where the litres of water
tends towards infinity but not the distribution. Observe however that A in that
example is not a Leslie matrix. Lastly, if ρ(A) < 1 then Am will tend towards
0 which means that the population will become extinct. One could continue
on and consider the meaning, reason and consequences also for reducible and
imprimitive Leslie models, but we will save these type of discussions for the next
chapter when we look at Markov chains.

Now we are ready to introduce migration in or out of the population. Assume
that during each time period, bi individuals will migrate (on average) out of age
group νi, if bi < 0, or into age group νi, if bi > 0 for all i = 1, . . . n. Let
b = (b1, . . . , bn) and note that if b = 0 then we have the homogeneous model
that we are already familiar with. It is not immediately clear how some nonzero
b changes the dynamics of the system. Here, we will explain the results in terms
of the Leslie model because it is a nice tool for explanation, but the results can
be applied to other discrete time nonnegative linear dynamical systems as well.
First, we make a computation to show how the model propagates.

x1 = Ax0 + b

x2 = Ax1 + b = A2x0 +Ab + b

x3 = Ax2 + b = A3x0 +A2b +Ab + b
...

xm = Axm−1 + b = Amx0 + (Am−1 + · · ·+A2 +A+ I)b
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Then, since the following sum is telescoping

(A− I)(Am−1 + · · ·+A+ I)

= Am +Am−1 · · ·+A2 +A−Am−1 − · · · −A2 −A− I

= Am + (Am−1 −Am−1) + · · ·+ (A2 −A2) + (A−A)− I

= Am − I

we can conclude that whenever A− I is nonsingular we have

xm = Amx0 + (A− I)−1(Am − I)b (4.4)

Now, the population P does not need to become extinct if ρ(A) < 1 anymore
since if b ≥ 0 is sufficiently large, this will make up for Am → 0 as m → ∞.
We want to know what the second term (A− I)−1(Am − I)b in (4.4) will tend
towards when m→ ∞. Notice that this term is independent of the initial vector
x0. To find out, we first consider an alternative approach of finding a formula
for xm+1 = Axm + b; first solving the homogeneous system xm+1 = Axm and
then adding a particular solution, which is in some ways specialized just for the
vector b. The particular solution will be an equilibrium, as defined below.

Definition 4.7 (Equilibrium point). x∗ ∈ Rn is an equilibrium point or fixed
point of the system xm+1 = Axm + b if x∗ = Ax∗ + b

If the system is homogeneous, b = 0, then an equilibrium point is vector
such that x∗ = Ax∗, i.e. an eigenvector of A with the eigenvalue 1. For now
we will allow the equilibrium point to be in Rn, so not necessarily nonnegative.
Whenever A− I is nonsingular, then

x∗ = (I −A)−1b = −(A− I)−1b

and in this case x∗ is very easy to find given A and b. If A − I is singular
there are either infinitely many equilibrium points or none. Note that A− I is
singular if 0 ∈ σ(A − I) and since σ(A − I) = σ(A) − 1 this is equivalent to
1 ∈ σ(A). We can think of nonnegative equilibrium points of a Leslie model as
some initial sizes of each age group which are optimally suited for the particular
model. As time passes, the number of individuals in each age group will neither
decrease nor increase in size, they remain invariant. Now suppose that every
initial state x0 of P become more and more equal to the equilibrium point x∗

as time goes one, then such x∗ is called asymptotically stable. In this case the
Leslie model forces all initial age group sizes to become that of x∗ in the long
run. Note that, if it exists, such x∗ must be unique. The following definition
describes this exact situation.
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Definition 4.8. The equilibrium point x∗ is called asymptotically stable if
limm→∞ xm = x∗ for all choices of the initial vector x0.

In the general case xm+1 = Axm + b, the solution to the homogeneous
system xm+1 = Axm is xm = Amx0 and so adding the particular solution x∗

yields xm = Amx0 + x∗. If we instead substitute x∗ = −(A− I)−1b into (4.4)
we get xm = Amx0 − (Am − I)x∗ since the matrices Am − I and (A − I)−1

commute. We see that for x∗ to be an asymptotically stable equilibrium point
for the model, we need Am → 0 as m → ∞ in both expressions, which is
equivalent to ρ(A) < 1. Conversely, if ρ(A) < 1 then in particular 1 ̸∈ σ(A) and
so A− I is invertible which together with Am → 0 as m→ ∞ in (4.4) yield

xm → 0x0 + (A− I)−1(0 − I)b = −(A− I)−1b

as m→ ∞ for all x0. Because −(A− I)−1b is an equilibrium point, it must be
asymptotically stable. We have thus proved the following theorem.

Theorem 4.9. xm+1 = Axm + b has an (unique) asymptotically stable equilib-
rium point if and only if ρ(A) < 1

To tie up the loose ends, let us see when a Leslie model, which is a nonneg-
ative model, has an asymptotically stable nonnegative equilibrium point. It is
almost the same as theorem 4.9 but with one extra condition. The proof uses
the fact that

∑∞
m=0A

m = (I − A)−1 if ρ(A) < 1, i.e. the matrix-version of the
geometric series formula, often called the Neumann series for matrices. For a
proof of this fact, see for example Meyer [9, p. 618, Chapter 7]

Theorem 4.10. xm+1 = Axm + b, where A ≥ 0 and b > 0, has an (unique)
asymptotically stable equilibrium point if and only if ρ(A) < 1

Proof. (⇒) : Suppose x∗ = Ax∗ + b ≥ 0. A ≥ 0 so theorem 3.5 implies that
0 ≤ ρ(A) ∈ σ(A) and there exists a left eigenvector 0 ̸= vT ≥ 0. Thus

vTx∗ = vT (Ax∗ + b) = vTAx∗ + vTb = ρ(A)vTx∗ + vTb

which we rearrange to be (1 − ρ(A))vTx∗ = vTb So 1 − ρ(A) > 0, because
vTx∗ ≥ 0 and vTb > 0 since b > 0. Therefore ρ(A) < 1.

(⇐) : Suppose ρ(A) < 1, then by theorem 4.9 x∗ = (I − A)−1b exists. We
show x∗ ≥ 0 by writing (I − A)−1 =

∑∞
m=0A

m so x∗ =
∑∞
m=0A

mb and since
A ≥ 0 and b > 0 we have x∗ ≥ 0.

We finish this section with an example.
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Example 4.11. Consider the following Leslie population model.

xm+1 =


0 0 0.5 1 0.5 0
1 0 0 0 0 0
0 0.75 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.25 0 0
0 0 0 0 0.125 0


︸ ︷︷ ︸

=:A

xm +


1
1
1
1
1
1


︸ ︷︷ ︸
=:b

We determine x∗ easily be solving the equation (I − A)x∗ = b. The resulting
equilibrium point is approximately

x∗ =
(
22.0769 23.0769 18.3077 10.1538 3.5385 1.8846

)T ≥ 0

To see if x∗ is an asymptotically stable equilibrium we calculate the spectral
radius, which turns out to be approximately ρ(A) = 0.94 < 1. By theorem 4.10
all initial vectors x0 in the Leslie model will therefore become x∗ in the long
run. We can empirically verify this by setting x0 =

(
0 0 0 1 0 0

)T , i.e.
only one individual in age group ν4, and seeing what happens. Over m = 100
time periods we get

x1 = Ax0 + b =
(
2 1 1 1 1.25 1

)T
x2 = Ax1 + b =

(
3.125 3 1.75 1.5 1.25 1.3125

)T
...

x100 = Ax99 + b =
(
22.0375 23.0349 18.2741 10.1360 3.5337 1.8833

)T
where x100 is quite close to the equilibrium since ∥x∗ − x100∥2 = 0.0692. After
yet another 100 time periods, the distance between x200 and x∗ is basically zero,
thus verifying that xm comes closer and closer to x∗.

As an ending note on equilibrium points; it is possible to derive similar
theorems as 4.9 and 4.10 also for continuous time systems, see Shapiro [10].
Worth mentioning there is that the requirements on A and b for preservation
of nonnegativity in continuous time differs from those in the discrete time case,
where if b ≥ 0 and x0 ≥ 0 then all entries in A must be nonnegative for xm
to be nonnegative for all m. However in continuous time it suffices that only
off-diagonal elements in A are nonnegative, that is aij ≥ 0 if i ̸= j. These types
of matrices are called Metzler matrices and the reason for the looser requirement
ties into the fact that the matrix eA is nonnegative for Metzler matrices.



Chapter 5

Markov Chains

For the remaining part of this thesis we will investigate Markov chains, which is
one of the best example of an application of Perron-Frobenius theory. We will
denote the matrices of Markov chains consistently by P, as in Probability, and
other matrices by A. In the case that we have to use also permutation matrices,
they will be denoted by Q. The matrix properties we have looked at previously
(irreducible, reducible, primitive, imprimitive) in chapter two, will now be used
to also categorize the different Markov chains. The following presentation of
the subject is inspired by Chapter 8.4 in Meyer [9]

5.1 Definition
A Markov chain, named after the Russian mathematician Andrey Markov (1856-
1922), is a stochastic model which describes sequences of moves, called steps, be-
tween different states. We will assume that the state space S := {ν1, ν2, . . . , νn}
is of finite dimension n and that the steps occur in discrete time. Let the ran-
dom variable Xm be the state of the process at time step m ∈ N, so all Xm ∈ S.
Then, the special thing that distinguishes Markov chains from other stochastic
processes is the Markov property, also called memorylessness, as defined below.
Remember that P (E|F) is the conditional probability of the event E happening,
given that the event F has already happened.

Definition 5.1 (Markov property). The set of random variables {Xm}∞m=0

satisfies the Markov property if

P (Xm+1 = νim+1 |Xm = νim , . . . , X0 = νi0) = P (Xm+1 = νim+1 |Xm = νim)
(5.1)

Eriksson, 2023. 51
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for all m = 0, 1, 2, . . . where νim+1
, νim , . . . , νi0 ∈ S. In other words, the prob-

ability of the chain being in state νim+1
at the time m + 1 is only determined

by which state the chain was in at the previous time step m and not the ones
before that.

We see that a Markov chain only ’remembers’ the most previous state, thus
having the memory of a goldfish, hence the term memorylessness. Furthermore,
we will assume that the probability of the chain stepping from νi to νj is the
same at all times m. These types of Markov chains are called stationary or
homogeneous. For those we can define what is called the transition probability
as being pij = P (Xm+1 = νj |Xm = νi) which is a number between 0 and 1
such that

∑
j pij = 1 for all i since the sum of all outcomes must equal 1. The

matrix P = (pij) is called the transition matrix of the Markov chain and it is a
stochastic matrix, as defined below.

Definition 5.2 (Stochastic matrix). A ≥ 0 is a (row) stochastic matrix, or
sometimes a probability matrix, if

n∑
j=1

aij = 1 for all i = 1, . . . , n

that is Ae = e where e = (1, . . . , 1)T . If instead all columns sum to 1, that is
eTA = eT , then A is called column stochastic and if A is both row and column
stochastic then A is doubly stochastic.

All Markov chains define a stochastic matrix and we can read every stochastic
matrix as a transition matrix by associating each row with a state. Now, define
the state vector of the Markov chain, in this case called mth step probability
distribution vector, to be pm = (p1,m, . . . , pn,m)T where pj,m = P (Xm = νj) for
all j = 1, . . . , n. In other words pj,m is the probability that the chain will be in
state νj after m time steps. The vector p0 is the initial probability distribution
vector and it tells us how likely it is that the chain will start in the different
states. For example, if p0 = (1/2, 0, 1/2)T then there is a 50-50 chance for the
chain to start in the states ν1 and ν3 and if, two time steps later, p2 = (1, 0, 0)T

then this tells us that the probability of the chain now being in ν1 is equal to
1, i.e. we know for certain that the chain is in state ν1 after two time steps.

We suspect that a Markov chain can be modeled by a matrix multiplication
between the matrix P and the vector p. We show that this is the case by
using the definition and the memorylessness of this system. Recall that P (E ∨
F) = P (E) + P (F) if E and F are two disjoint events, where ∨ is ’or’. Also
P (E ∧ F) = P (F)P (E|F) where ∧ is ’and’. Suppose p0 is known, then the jth
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component in p1 is

pj,1 = P (X1 = νi) = P (X1 = νi ∧ (X0 = ν1 ∨ · · · ∨X0 = νn))

= P ((X1 = νj ∧X0 = ν1) ∨ · · · ∨ (X1 = νj ∧X0 = νn))

=
∑n
i=1 P (X1 = νj ∧X0 = νi)

=
∑n
i=1 P (X0 = νi)P (X1 = νj |X0 = νi)

=
∑n
i=1 pi,0pij

for all j = 1, . . . , n, so pT1 = pT0 P. Because of the Markov property the same
arguments also apply from time step 1 to 2 and 2 to 3 etc. If we want we could
show this by letting p′

0 = p1 and then the conclusion would be as above. We
have just proved the following theorem on the definition of a Markov chain.

Theorem 5.3. An n-state Markov chain can be modelled as pTm+1 = pTmP where
pTm is the mth step probability distribution vector and P the transition matrix.
The closed form solution of an Markov chain is consequently pTm = pT0 Pm where
pT0 is the initial probability distribution vector.

Remark 5.4. If we let pT0 = eTi where eTi is the ith base vector in the standard
basis of Rn we get that the jth component in pTm is the (i, j)th element in Pm

for all m. Thus the element p(m)
ij in Pm is the probability of the chain moving

from state νi to νj in exactly m time steps.

Before we use the definitions in an examples we note that, just as for all
nonnegative matrices, we can form the graph D(P) of a transition matrix P
in which the states ν1, . . . , νn are the vertices V(P) and there exists an arc
(νi, νj) ∈ V(P) if and only if pij = P (Xm+1 = νj |Xm = νi) > 0. One often
sees the positive probabilities pij as labels on each arc, making D(P) a weighted
directed graph. Now, we take on this classical example below.

Example 5.5 (A weather forecast). We wonder what the probability is that
the day after tomorrow will be a sunny day if we have the following estimate:
a sunny day is followed by another sunny day nine out of ten times and a rainy
day is followed by yet another rainy day half of the times. We assume that there
are no other weather conditions and that today is a rainy day.

The situation can be modeled as a Markov chain. Let ν1 and ν2 be the states
sunny and rainy and let the random variable Xm be the weather condition at
day m ≥ 0. If today is day m = 0, then the initial probability distribution
vector pT0 =

(
0 1

)
because we know (100% probability) that X0 = ν2. The

given estimate can be translated into a transition matrix with the following
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values:

p11 = P (Xm+1 = ν1|Xm = ν1) = 0.9 ⇒ p12 = 1− p11 = 0.1

p22 = P (Xm+1 = ν2|Xm = ν2) = 0.5 ⇒ p21 = 1− p22 = 0.5

where we make use of the fact that a transition matrix is stochastic. Thus
P =

(
0.9 0.1
0.5 0.5

)
and by theorem 5.3, pT2 is given by

pT2 = pT0 P2 =
(
0 1

)(0.86 0.14
0.7 0.3

)
=
(
0.7 0.3

)
Since p1,2 = P (X2 = ν1) = 0.7 there is 70% chance of sunny weather the
day after tomorrow. In figure 5.1 we see the graph D(P) where the number
0.7 can also be calculated using the multiplication and addition principle by
considering the two ways of walking from ν2 to ν1 using exactly two arcs (either
ν2 → ν2 → ν1 or ν2 → ν1 → ν1). The computation is 0.5 · 0.5 + 0.5 · 0.9 = 0.7.

ν1 ν2

0.1

0.5

0.9 0.5

Figure 5.1: D(P)

Let us precede the theory a little bit by also considering the weather in the
long run. That is, given that it rains today and that P has the values above,
how many days will be sunny in the long run. As usual, we are interested in
limm→∞ pTm = limm→∞ pT0 Pm and without using any Perron-Frobenius-tricks
this time, we can find the limit the ’old way’ by diagonalizing P and calculating
Dm as m→ ∞.

lim
m→∞

pT0 Pm = lim
m→∞

pT0 TD
mT−1 = lim

m→∞
pT0 T

(
1m 0
0 (2/5)m

)
T−1

=
(
0 1

)(1 1
1 −5

)(
1 0
0 0

)
1

6

(
5 1
1 −1

)
=
(
5/6 1/6

)
So in the long run, five days out of six will be sunny. Two noteworthy facts
from this example: (1): ρ(A) = 1 ∈ σ(A) with (1, 1)T as its eigenvector. (2):
P is primitive and

(
5/6 1/6

)
P =

(
5/6 1/6

)
.

5.2 Properties
In this section we prove some useful results regarding Markov chains and their
transition matrices P. As we will see, Perron-Frobenius theory is in some ways
Markov chains best friend.
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For starters, the elements in any stochastic matrix A are nonnegative so
|aij | = aij ≥ 0 and thus

∥A∥∞ = max
i

∑
j

|aij | = max
i

∑
j

aij = 1

Moreover, for all valid matrix norms and all matrices A ∈ Mn(C) it is true that
ρ(A) ≤ ∥A∥ because if Ax = λx where |λ| = ρ(A) and we let M be a matrix
with x in every column, then we get

ρ(A)∥M∥ = |λ|∥M∥ (∗)
= ∥λM∥ = ∥

 | |
λx · · · λx
| |

 ∥

= ∥

 | |
Ax · · · Ax
| |

 ∥ = ∥AM∥
(∗∗)
≤ ∥A∥∥M∥

where (∗) is true for all norms and (∗∗) is an extra requirement for matrix norms
specifically, see for example Meyer [9, p. 280]. If A is stochastic, this argument
implies that ρ(A) ≤ ∥A∥∞ = 1. At the same time, we know from definition 5.2
that (1, e) is an eigenpair of A, where e = (1, . . . , 1)T and since 1 ∈ σ(A) we have
1 ≤ ρ(A) so we conclude that ρ(A) = 1. Hence we have proved the following
theorem. The corollary follows immediately because all transition matrices are
stochastic.

Theorem 5.6. If A ≥ 0 is stochastic then ρ(A) = 1.

Corollary 5.7. All transition matrices P have a spectral radius of 1.

Remark 5.8. Note that this does not imply that we can call the vector 1
ne the

right Perron vector, because (at least in this thesis) we use this term exclusively
for irreducible matrices. As an example we could take

(
0 1
0 1

)
which is stochastic,

has spectral radius 1 and even has eigenvector 1
2 (

1
1 ) but is not irreducible.

However, whenever A is irreducible, then 1
ne will of course be the positive right

Perron vector.

We devote the remainder of this section to the following two questions:

∗ When does limm→∞ pm exists and, when it does, what is its value?

∗ If limm→∞ pm does not exists, can we say anything, and if so what, about
the long term behaviour of the system?

First, we divide the set of transition matrices into four categories, as shown
below in 5.2. Note that reducible matrices for which limm→∞ Pm ∃ or ̸ ∃ have
no special name, so we will simply refer to these as case (3) and (4).
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P

IRR

(1) PRIM
∃ lim
m→∞

Pm

(2) IMPRIM
̸ ∃ lim
m→∞

Pm

RED

(3)
∃ lim
m→∞

Pm

(4)
̸ ∃ lim
m→∞

Pm

Figure 5.2: The four types of transition matrices.

5.2.1 Primitive Markov Chains

Perron-Frobenius’ theorem for primitive matrices 3.9 tells us that there exists a
right Perron vector, which we know is 1

ne by 5.8, and a left Perron vector, call
it πT > 0. If we want πT to be a probability vector (i.e.

∑
j πj = 1), which

we do want it to be, then it is most natural to choose πT be normalized in the
∥ ∗ ∥1-norm and not so that 1

nπ
Te = 1, see section 3.1. The only difference this

will have on the limit is whether the factor 1
n appears in the result or not. In

the case 1
nπ

Te = 1 we get that πT itself is not a probability vector, but 1
nπ

T

is. Henceforth, assume ∥πT ∥1 = 1. We get

lim
m→∞

pTm = lim
m→∞

pT0 Pm = pT0
(e/n)πT

πT (e/n)
= pT0

eπT

πTe
(∗)
= pT0 eπT

(∗∗)
= πT (5.2)

where we in (∗) and (∗∗) use the fact that pTe = p1 + · · ·+ pn = 1 for all prob-
ability vectors p. Notice how the limit is independent on the initial probability
distribution vector, indicating that πT could in fact be an asymptotically stable
equilibrium point, defined in 4.8. To confirm that this is the truth, we show
that πT = πTP by

eπT = lim
m→∞

Pm+1 = ( lim
m→∞

Pm)P = (eπT )P

where

eπT =

1
...
1

(π1 . . . πn
)
=

π1 . . . πn
...

. . .
...

π1 . . . πn

 =

— πT —
...

— πT —
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so

(eπT )P =

— πTP —
...

— πTP —

 ⇒ πT = πTP

We summarize what we have found in a theorem.

Theorem 5.9 (Properties of primitive Markov chains). If P is a primitive
transition matrix then

lim
m→∞

Pm = eπT , so lim
m→∞

pTm = πT

where πT is an asymptotically stable equilibrium point given by πT = πTP.

The vector πT is therefore often called the steady state of a Markov chain.
The example on a weather forecast 5.5 is a primitive Markov chain, and the
ending two notes verifies this theorem. Let us see another example, which is a
modified version of the ’Ehrenfest’s chain’, see [11, Chapter 15.8].

Example 5.10 (Six molecules in a box: the primitive version). Let there be
six molecules in a box which is partitioned into two halves: A, B. Let Xm be
the number of molecules in A after time step m, so Xm ∈ {0, 1, . . . , 6} = S. At
every time step we first choose a molecule from the box, and then we choose
which half-box this molecule gets moved to. The choices are made at random.
For example, if five molecules are in A after some time step m, then after time
step m+1 we either have two molecules in B and four left in A or five molecules
still in A. In fig. 5.3, we see an illustration of the first case. We wonder how
many molecules will eventually, on average, be in A.

A B
m

Xm = 5

−→

A B
m+ 1

Xm+1 = 4

Figure 5.3: Six molecules in a box: the primitive version

At each time step, we have transition probabilities:

∗ pii = P (Xm+1 = i|Xm = i) = 1
2 because this is the probability that

the number of molecules in A does not change from m to m + 1, which



58 Chapter 5. Markov Chains

happens if either a molecule in A stays in A (with i
6 · 1

2 chance), or if a
molecule in B stays in B (with 6−i

6 · 1
2 chance). The addition principle

yields 1
2 (

i
6 + 6−i

6 ) = 1
2 .

∗ pi(i+1) = P (Xm+1 = i + 1|Xm = i) = 6−i
12 , this is the probability of A

gaining one molecule at time step m + 1 which happens if we choose a
molecule from B and choose A as its new half-box (with 6−i

6 · 1
2 chance).

∗ pi(i−1) = P (Xm+1 = i − 1|Xm = i) = i
12 , this is A loosing one molecule

which happens if we choose a molecule from A and move it to B ( with
i
6 · 1

2 chance).

Thus, the transition matrix (of dimension 7× 7) for this Markov chain is

P :=
1

12



6 6 0 0 0 0 0
1 6 5 0 0 0 0
0 2 6 4 0 0 0
0 0 3 6 3 0 0
0 0 0 4 6 2 0
0 0 0 0 5 6 1
0 0 0 0 0 6 6


where we number the rows and columns as 0, 1, . . . , 6. Below, fig. 5.4, we see
that the graph of P is strongly connected, so P is irreducible. Because pii > 0
for all i = 0, . . . , 6 then P is also primitive by theorem 2.20.

0 1 2 3 4 5 6
6/12 5/12 4/12 3/12 2/12 1/12

6/125/124/123/122/121/12

1/2 1/2 1/2 1/2

1/2 1/2 1/2

Figure 5.4: D(P) of the primitive Ehrenfest’s chain

By theorem 5.9 we know that πT is the steady-state vector which can be
calculated as the solution to πT = πTP, i.e. 0T = πT (P− I). For convenience
purposes, we could transpose both sides and write (P− I)Tπ = 0 and find that
the solution-space is πT = t

(
1 6 15 20 15 6 1

)
, t ∈ R, which if t = 1

we recognise as the binomial coefficients for (x + y)6. Normalizing the vector
with t = 1

26 yields

πj =

(
6

j

)(
1

2

)6

, for j = 0, . . . , 6
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This is the probability mass function for the binomial distribution of six inde-
pendent Bernoulli experiments with a success rate of 1/2. We know that this
has the mean 6 · 1/2 = 3 and so we conclude that in the long run there will be,
on average, three molecules in half-box A, i.e. half of the molecules will be in
A and half in B as perhaps expected.

5.2.2 Imprimitive Markov Chains

We now move on to category (2) in fig. 5.2 in which P is an imprimitive matrix.
Remember from theorem 2.22 that an imprimitive matrix P with index k has the
kth roots of ρ(P)k, which in this case is ρ(P) = 1, as eigenvalues on the spectral
circle, each of which is simple. Then, by theorem 4.3 we see that limm→∞ Pm

cannot exist. Here we will reason how, despite of this, the limit of I+P+···+Pm

m
as m→ ∞ can exist and interpret it in a nice way for the chain.

First, if {αm}∞m=1 is a convergent sequence of scalars in R, then its so called
Cesáro sum or Cesáro mean (named after the Italian mathematician Ernesto
Cesáro (1859-1906)) which is the sequence {βm}∞m=1 where βm = α1+···+αm

m ,
will converge to the same limit. We refer the reader elsewhere for a proof of
this. The same is true for matrices: if Am is convergent when m → ∞ then
its Cesáro sum I+A+A2+···+Am

m will converge to the same limit. Returning to
scalars, it turns out that the sequence {βm}∞m=1 can converge even if the original
sequence {αm}∞m=1 does not. As an example, consider αm = (−1)m, which lack
a limit as m → ∞. Then β1 = −1, β2 = −1+1

2 = 0, β3 = −1+1−1
3 = −1

3 , . . . so
in general βm = −1

m if m is odd and βm = 0 if m is even. We conclude that the
sequence {βm}∞m=1 converges to zero.

Now we will explain how an imprimitive transition matrix can be Cesáro
summable. We will do this in the case that k = 2, that is P has the eigenvalues
1 and −1 of maximum modulus. For a full walk-through of Cesáro summability,
see Meyer [9, pp. 630-633]. We start by bringing P to its Jordan form which after
reordering of the eigenvalues, if necessary, will have the following appearance

P = TJT−1 = T

1 0 0
0 −1 0
0 0 B

T−1

where B is the Jordan blocks for all eigenvalues with modulus less than 1, and
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0 are zero matrices. We get

I + P + P2 · · ·+ Pm

m
=
TT−1 + TJT−1 + TJ2T−1 · · ·+ TJmT−1

m

= T

(
I + J + J2 · · ·+ Jm

m

)
T−1

= T

 1+1+12+···+1m

m 0 0
0 1+(−1)+(−1)2+···+(−1)m

m 0
0 0 I+B+B2+···+Bm

m

T−1

→ T

1 0 0
0 0 0
0 0 0

T−1, when m→ ∞

because

1 + 1 + 12 + · · ·+ 1m

m
=
m

m
= 1 −→ 1

1− 1 + 1− · · ·+ (−1)m

m
= βm =

{
0, m even
−1
m , m odd

−→ 0

as m → ∞. And since ρ(B) < ρ(P) = 1 then limm→∞Bm → 0 and because
Cesáro sums converge to the same limit as the matrix powers, when it exists,
we get that I+B+B2+···+Bm

m → 0 when m → ∞ as well. Furthermore, we can
take 1

ne as the first column in T and πT

πT (e/n) as the first row in T−1 because of
theorem 3.3 and so the Cesáro limit of P has the value

lim
m→∞

I + P + P2 · · ·+ Pm

m
=
(
e/n T1

)(1 0
0 0

)(
πT

πT (e/n)
Z1

)
= eπT

If we also consider the Cesáro limit of the probability distribution vector we get

lim
m→∞

pT0 + pT1 + pT2 · · ·+ pTm
m

= lim
m→∞

pT0 + pT0 P + pT0 P2 · · ·+ pT0 Pm

m

= pT0

(
lim
m→∞

I + P + P2 · · ·+ Pm

m

)
= pT0 eπT = πT

i.e. the same limit as limm→∞ pm for primitive matrices. This time, however,
we interpret this vector πT a bit differently.
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Fix a state νj ∈ S and define a sequence of random variables {Ym}∞m=0

where we let Ym be 1 if the Markov chain is in state νj after the mth step and 0
otherwise. Y0 = 1 if the chain starts in state νj and the sum Y0 + Y1 + · · ·+ Ym
is the number of times that the chain is in state νj before time step m + 1.
Thus, Y0+Y1+···+Ym

m is the fraction of the total time steps that the chain spends
in state νj . We calculate that

E(Ym) = 1 · P (Ym = 1) + 0 · P (Ym = 0) = P (Ym = 1) = P (Xm = νj) = pj,m

where E is the expected value, Xm the state of the chain at time step m and
pj,m is the jth component of pm and so

lim
m→∞

E

(
Y0 + Y1 + · · ·+ Ym

m

)
= lim
m→∞

E(Y0) + E(Y1) + · · ·+ E(Ym)

m

= lim
m→∞

pj,0 + pj,1 + · · ·+ pj,m
m

= lim
m→∞

(
pT0 + pT1 + · · ·+ pTm

m

)
j

= πj

Thus, we interpret the components in πT as the long term expected fraction of
time steps that the chain spends in the states in S. We summarize our findings
in the following theorem.

Theorem 5.11 (Properties of imprimitive Markov chains). If P is an imprim-
itive transition matrix then

lim
m→∞

I +P+ · · ·+Pm

m
= eπT , so lim

m→∞

p0 + p1 + · · ·+ pm
m

= πT

which components πj are interpreted as the long term expected proportion of
time steps that the Markov chains spends in state νj for all j = 1, . . . , n.

Remark 5.12. (i): πT is still calculated as the ∥ ∗ ∥1-normalized vector to the
equation πT = πTP because it is the left Perron vector of P, however it cannot
be considered as a steady-state vector/asymptotically stable equilibrium point
since we need Pm to be convergent as m→ ∞ for this.

(ii): If we consider the Cesáro limit of pm for a primitive Markov chain, this
will also be equal to πT and have the same interpretation. Thus, theorem 5.11
is more of a generalization than it is a specialization to imprimitive matrices.

Now, let us consider what is sometimes known as the ’basic Ehrenfest’s
chain’ for it is the imprimitive version of example 5.10 which is constructed by
dropping one of the events at each time step.
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Example 5.13 (Six molecules in a box: the imprimitive version). As before,
let there be six molecules in a box partitioned into two halves A and B and let
Xm be the number of molecules in A after time step m. At every time step we
now only choose a molecule at random in the box and then we have to move
it to the other half-box. For example, if the situation is as in fig. 5.5 and if we
choose a molecule in B, then we have to move it to A. We want to know how
much of the time we have the same number of molecules in A as in B, in the
long run.

A B
m

Xm = 3

−→

A B
m+ 1

Xm = 4

Figure 5.5: Six molecules in a box: the imprimitive version

We have the following transition probabilities:

∗ p01 = P (Xm+1 = 1|Xm = 0) = 1 because if there are no molecules in A,
we must choose one from B which will be moved to A.

∗ p65 = P (Xm+1 = 5|Xm = 6) = 1 for the same reason as above but for B
instead of A.

∗ pi(i+1) = P (Xm+1 = i+1|Xm = i) = 1− i
6 , this is A gaining one molecule

given that it has 0 < i < 6 molecules, which happens if we choose a
molecule from B with 6−i

6 chance.

∗ pi(i−1) = P (Xm+1 = i − 1|Xm = i) = i
6 , this is A loosing one molecule,

which happens if we choose a molecule from A with i
6 chance.

Thus, we get the following transition matrix

P :=
1

6



0 6 0 0 0 0 0
1 0 5 0 0 0 0
0 2 0 4 0 0 0
0 0 3 0 3 0 0
0 0 0 4 0 2 0
0 0 0 0 5 0 1
0 0 0 0 0 6 0





5.2. Properties 63

which is irreducible because its graph is strongly connected, see fig. 5.6. Also, we
see that all closed walks in D(P) have even length, so the index of imprimitivity
is k = 2. By theorem 5.11 we need to find the Cesáro limit of the probability
distribution vector, which will is equal to the left Perron vector. This is calcu-
lated as the solution to (P− I)Tπ = 0 normalized such that ∥πT ∥1 = 1, which
we find to be

πj =

(
6

j

)(
1

2

)6

, for j = 0, . . . , 6

where π3 =
(
6
3

) (
1
2

)6
= 0.3125, so roughly three out of ten time steps will be

spent in the chain with equal number of molecules in A and B in the long run.
Notice how the formula for πT is exactly the same as in example 5.10 but the
interpretation is different.

0 1 2 3 4 5 6
1 5/6 4/6 3/6 2/6 1/6

15/64/63/62/61/6

Figure 5.6: D(P) of the imprimitive Ehrenfest’s chain

5.2.3 Reducible Markov Chains

Let us examine the reducible Markov chains, i.e. categories (3) and (4) in fig. 5.2.
This is where things get a bit complicated. Remember that the theorem 3.5 is as
far as we can generalize Perron-Frobenius’ theorem, thus we have not so much
to work with. Yet, we can draw many conclusions by dividing a reducible chain
into smaller, irreducible, ones. We begin by a simple example.

Example 5.14 (Throwing a ball, part one). Suppose two people ν1, ν2 are
throwing a ball back and forth and a third person ν3 stands in the middle of
the two, trying to catch the ball mid air, see fig. 5.7. Suppose there is a 70%
chance of ν3 catching the ball from either ν1 or ν2 and that the game ends if ν3
catches the ball. We want to know the expected number of throws per game.

Let Xm be the position of the ball before throw m+1, so Xm ∈ {ν1, ν2, ν3}.
Then P (Xm+1 = ν3|Xm = νk) = 0.7 for k = 1, 2 and we let let P (Xm+1 =
ν3|Xm = ν3) = 1 for if ν3 catches it, the ball ’never leaves’ the middles persons
hand, i.e. the game is over. It is clear that {Xm}∞m=0 satisfies the Markov
property since the position of the ball after each throw is only determined by
the probabilities of the thrower itself.
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ν1 ν2ν3

Figure 5.7: Throwing a ball

Thus, we get the following transition matrix

P =

 0 0.3 0.7
0.3 0 0.7
0 0 1


which is reducible because it has reducible form (2.1) with X = ( 0 0.3

0.3 0 ), Y =
( 0.70.7 ) and Z = (1). Remember that the jth entry in the mth step probability
distribution vector pTm is P (Xm = νj) which in this case is the probability that
person νj has the ball after the mth throw for j = 1, 2, 3. We find the general
formula for pTm = pT0 Pm by finding the eigenvalues and eigenvectors of PT .
Suppose that p0 = (1, 0, 0)T , i.e. ν1 starts to throw the ball. Then

pTm = 1m

0
0
1

+

→0︷ ︸︸ ︷
1
2

(
3
10

)m 1
1
−2

−

→0︷ ︸︸ ︷
1
2

(
− 3

10

)m−1
1
0

→

0
0
1


as m→ ∞, so all games will eventually end with ν3 catching the ball. Now we
calculate the expected number of time steps before this happens. Let Y be a
random variable equal to the number of throws in the game.

P (Y = 1) = P (X1 = ν3) = 0.7

P (Y = 2) = P (X2 = ν3) = 0.3 · 0.7
P (Y = 3) = P (X2 = ν3) = 0.32 · 0.7
...
P (Y = m) = P (Xm = ν3) = 0.3m · 0.7

so generally, the probability of the game-length being m is equal to P (Xm =
ν3) which in turn is the probability that ν1 and ν2 throws the ball amongst
themselves m−1 times, until finally ν3 catches it, i.e. 0.3m−1 ·0.7. The expected
value of Y is

E(Y ) =

∞∑
m=1

m · P (Y = m) =

∞∑
m=1

m · 0.3m−1 · 0.7 = 0.7

∞∑
m=1

m · 0.3m−1
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which we can calculate using the fact that

∞∑
m=1

mxm−1 =

∞∑
m=1

d

dx
xm =

d

dx

∞∑
m=0

xm+1 =
d

dx

x

1− x
=

1

(1− x)2

if |x| < 1 and then plugging x = 0.3 into the expression.

E(Y ) = 0.7
1

(1− 0.3)2
= 0.7

1

0.72
=

1

0.7
=

10

7
≈ 1.428

So the expected game-length is almost one and a half throw. The fact that we
could calculate this, using some neat calculus, says more about the properties
of this particular example than it does for reducible Markov chains in general.
It is easy to imagine scenarios where the expected value will not be this easy
to calculate and we might then wonder if there some other general method for
this. Luckily, there is one! The method, which we will see down below, works
for all reducible Markov chains we could possibly imagine.

Since P is reducible, there exists a permutation matrix Q such that QTPQ =
(X Y

0 Z ). If either X or Z themselves are reducible, then there exist a permutation
matrix Q′ such that

Q′(QPQT )Q′T =

R S T
0 U V
0 0 W

 (5.3)

and because the product of two permutation matrices is still a permutation ma-
trix, then (5.3) is a just another simultaneous permutation of P. For convenience
purposes, write P ∼ P′ if P′ can be obtained from P via repeated simultaneous
permutations. Repeat the process of bringing the reducible square matrices to
reducible form, until we arrive at the following upper triangular block matrix

P ∼


P11 P12 . . . P1k

0 P22 . . . P2k

...
...

. . .
...

0 0 . . . Pkk

 (5.4)

where each diagonal block Pii, i = 1, . . . , k is either irreducible or a zero block.
Finally, permute potential rows with positive elements only in the diagonal block
Pii down to the bottom. The resulting form is the so called canonical form for
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reducible matrices, as seen below.

P ∼



P11 P12 . . . P1r P1,r+1 P1,r+2 . . . P1,s

0 P22 . . . P2r P2,r+1 P2,r+2 . . . P2,s

...
...

. . .
...

...
...

. . .
...

0 0 . . . Prr Pr,r+1 Pr,r+2 . . . Pr,s
0 0 . . . 0 Pr+1,r+1 0 . . . 0
0 0 . . . 0 0 Pr+2,r+2 . . . 0
...

... . . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . Pss


(5.5)

where P11, . . . , Prr are irreducible or zero blocks and Pr+1,r+1, . . . , Pss are irre-
ducible (they cannot be zero because the row-sums are equal to 1 for all rows).
Now we find out what the canonical form means for the chain by studying
subgraphs of D(P).

We first consider the states corresponding to the rows in a block Pii for i =
1, . . . , r which lies somewhere in the upper left quadrant. Call the corresponding
states νi1 , . . . , νik . In the induced subgraph D(Pii) by the vertices {νi1 , . . . , νik}
there are either no arcs, if Pii = 0, or D(Pii) is strongly connected, if Pii is
irreducible. In the latter case, since Pi+1,i = 0, i.e. the block below is zero,
this means that if the chain moves from some states in D(Pii) and moves to
some other state ω ̸∈ {νi1 , . . . , νik} then the chain will never enter D(Pii) again.
Because of this fleeting behaviour, each state νi1 , . . . , νik is called transient and
the set {νi1 , . . . , νik} is called the ith transient class which we will denote by Ti
for i = 1, . . . , r. Note that it is of course possible for a chain to move from the
ith transient class to any other state in the chain, if there are arcs to allow it.
We can get out of, but not return to Ti.

Onto to the blocks in the bottom right quadrant: Pr+j,r+j where 1 ≤ j ≤
s − r. The induced subgraph D(Pr+j,r+j) is strongly connected since Pr+j,r+j
is irreducible, and since there are zero blocks both to the right and left side
of the block Pr+j,r+j in P, then if the chain enters D(Pr+j,r+j) it can never
leave the states in D(Pr+j,r+j), i.e. its trapped inside the smaller irreducible
Markov chain, corresponding to D(Pr+j,r+j), forever. We say that a state in
D(Pr+j,r+j) are absorbing or ergodic and the set of the states, V(Pr+j,r+j), is
called the jth absorbing/ergodic class which we denote by Ej for j = 1, . . . , r
(not to be confused with the edge-set of a graph E).

Before we go any further, we see the form (5.5) in two examples.
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Example 5.15 (Throwing a ball, part two). The matrix P is already in canon-
ical form, since

P =

 0 0.3 0.7
0.3 0 0.7
0 0 1

 =

(
P11 P12

0 P22

)

where both P11 = ( 0 0.3
0.3 0 ) and P22 = (1) are irreducible matrices. We classify

the states T1 = {ν1, ν2} and E1 = {ν3} as the first and only transient and ergodic
class, respectively. We recognize the behaviour of the ergodic state from the
game-definition: once ν3 catches the ball, then the ball (of this particular game)
will never leave ν3. We can see the partition also in D(P), fig. 5.8.

ν1 ν2

ν3

0.3

0.3

0.7 0.7

1

T1

E1

Figure 5.8: Transient states inside orange ellipse, ergodic inside blue

Example 5.16. In this example we will write a transition matrix P in canonical
form, by considering different subgraphs in D(P). Suppose we have the matrix

P =



0 0 1/2 1/2 0 0 0
1/2 0 1/2 0 0 0 0
0 0 1/2 1/2 0 0 0
0 1 0 0 0 0 0
0 0 0 1/3 0 1/3 1/3
0 0 0 0 0 1 0
0 0 0 0 0 1 0


We find the graph of P to be the following, 5.9. For convenience purposes we
do not label the arcs in this example.

D(P) is not strongly connected and in particular that there is only one arc
between the set of vertices {ν5, ν6, ν7} and {ν1, ν2, ν3, ν4}. Relabel the vertices
such that νi′ = ν8−i, see the red labelling in fig. 5.9 and the rows and columns
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ν1 ν2

ν3 ν4 ν5

ν6

ν7 ν1

ν2

ν3ν4

ν5

ν6ν7

Figure 5.9: D(P)

in P accordingly. The resulting matrix has the reducible form (2.1)

P ∼



0 1 0 0 0 0 0
0 1 0 0 0 0 0
1/3 1/3 0 1/3 0 0 0
0 0 0 0 0 1 0
0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 0 1/2
0 0 0 1/2 1/2 0 0


Now, for the relabelled vertices in D(P) we look at the subgraphs D1 induced
by {ν1, ν2, ν3} and D2 by {ν4, ν5, ν6, ν7} respectively, see fig. 5.10. We see that
D2 is strongly connected since it contains a 4−cycle, so the corresponding bot-
tom right block in P is irreducible. The subgraph D1 is however not strongly

ν7 ν6

ν5 ν4 ν3

ν2

ν1 ν2

ν3

ν1

Figure 5.10: Subgraphs D1 (right) and D2 (left).

connected, and by permuting the indices according to
(
1 2 3

)
and keeping

the rest invariant, see the red labelling in fig. 5.10, and also permuting the rows
and columns in P accordingly we get that
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P ∼



0 1/3 1/3 1/3 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 0 1/2
0 0 0 1/2 1/2 0 0


=


P11 P12 P13 P14

0 P22 P23 P24

0 0 P33 0
0 0 0 P44



in which P11, P22 are zero and P33, P44 are irreducible. Thus, P has been
brought to its canonical form and we can conclude that the chain has two
transit states and two ergodic classes, one of which is a single absorbing state
and the other one contains four ergodic states.

From now on we will assume that all transition matrices P have been brought
to canonical form. Now, remember the wonderful theorem 2.22 which for an
irreducible transition matrix with index of imprimitivity k > 0 implies that
the eigenvalues of modulus 1 are precisely the kth unit roots and that each
such eigenvalue is simple. Below, we prove a generalization of this also to
reducible transition matrices. Remember that an eigenvalue λ is semisimple if
algmultA(λ) = geomultA(λ).

Theorem 5.17. Let P be a reducible transition matrix. Then all λ ∈ σ(P)
such that |λ| = 1 are semisimple.

Proof. The Jordan form of P is obtained from the Jordan forms of all diagonal
irreducible (or zero) blocks Pkk, k = 1, . . . , r, r + 1, . . . , s in the canonical form.

Suppose that Pkk corresponds to a transient class, that is k = 1, . . . , r. Then
there is at least one arc from this class to some other transient or ergodic class
because otherwise Pkk corresponds to an ergodic class. Thus, there must be
other nonzero elements, than those elements in Pkk, in the rows corresponding
to the block Pkk. We conclude that eTPkk ⪇ eT , i.e. eT (Pkk−I) ⪇ 0. If it were
the case that ρ(Pkk) = 1, then by Perron-Frobenius’ theorem 3.7, we would get
that Pkkp = p with the right Perron vector p > 0. But then

eT (Pkk − I)︸ ︷︷ ︸
⪇0

p < 0

contradicts that (Pkk−I)p = 0. Thus, ρ(Pkk) < 1 and so the blocks of transient
classes do not contribute with any eigenvalue of modulus 1.

Suppose instead that Pkk corresponds to an ergodic class, that is k = r +
1, . . . , s. Then ρ(Pkk) = 1 and by theorem 2.22 we know that all eigenvalues of
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Pkk with modulus 1 are simple. So all the blocks of ergodic classes contribute
with simple eigenvalues of modulus 1. The values themselves can be the same
for different blocks and thus be repeated in the Jordan form of P. Nevertheless,
the eigenvalues λ such that |λ| = 1 will have a Jordan block with no 1:s above
the diagonal in the Jordan form of P, i.e. λ is semisimple.

Just as we did for imprimitive transition matrices, in section 5.2.2, one could
prove that also reducible transition matrices are Cesáro summable, using theo-
rem 5.17 and a similar argument as we saw back then. Therefore, all stochastic
matrices are Cesáro summable. To find out the value of the Cesáro limit, we
will do some (tedious) calculations.

We let P =
(
T11 T12

0 E22

)
be the canonical form of P where T11 is the upper left,

T12 the upper right and E22 the bottom right quadrant in (5.5). The classes
corresponding to blocks in T11 and E22 are transient and ergodic, respectively.
The Cesáro limit of P equals

lim
m→∞

I + P + · · ·+ Pm

m
= lim
m→∞

(
I+T11+···+Tm

11

m
I+T12+···+Tm

12

m

0 I+E22+···+Em
22

m

)
=

(
0 T
0 E

)

where I+T11+···+Tm
11

m −→ 0 as m → ∞ because ρ(T11) < 1 so Tm11 → 0 and the
Cesáro limit is equal to the power limit if it exists. Furthermore, we calculate
T and E accordingly

E = lim
m→∞

I + E22 + · · ·+ Em22
m

= lim
m→∞


I+Pr+1,r+1+···+Pm

r+1,r+1

m
. . .

I+Pss+···+Pm
ss

m


=

eπTr+1

. . .
eπTs


by theorem 5.11 since each Pr+j is irreducible. Here, πTr+j is the left Perron
vector of Pr+j for j = 1, . . . , s − r. To find the matrix T we first calculate the
Cesáro limit in another way. As we have seen many times, after renumbering if
necessary, we can assume that the first k ≥ 1 diagonal elements in the Jordan
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form of P are 1:s.

lim
m→∞

I + P + · · ·+ Pm

m
= T

(
lim
m→∞

I + J + · · ·+ Jm

m

)
T−1

=

 | |
v1 . . . vk T1
| |



1

. . .
1

0




— wT
1 —
...

— wT
k —

Z1



=

 | |
v1 . . . vk 0
| |




— wT
1 —
...

— wT
k —

0

 =

= v1wT
1 + · · ·+ vkwT

k := G

and G is the spectral projector onto the eigenspace of 1 because for all u ∈ Rn

Gu = v1

=:β1∈R︷ ︸︸ ︷
wT

1 u + · · ·+ vk

=:βk∈R︷ ︸︸ ︷
wT
k u = β1v1 + · · ·+ βkvk ∈ [v1, . . . ,vk]

This is almost the same as we have seen earlier, in the comment about (vi) below
Perron’s theorem 3.1, but this time the eigenspace is k-dimensional instead of
one-dimensional. We know that the eigenspace is the same as the nullspace of
the matrix P− I, i.e. Gu ∈ N(P− I) for all u ∈ Rn and so (P− I)Gu = 0 for
all u ∈ Rn and the only matrix which has the entire Rn as its nullspace is the
zero matrix, hence (P− I)G = 0. At the same time, we know from above that
G =

(
0 T
0 E
)

so

(P − I)G =

(
T11 − I T12

0 E22 − I

)(
0 T
0 E

)
=

(
0 (T11 − I)T + T12E
0 (E22 − I)E

)
= 0

and thus

(T11 − I)T = −T12E ⇔ T = (I − T11)
−1T12E

where the inverse exists because ρ(T11) < 1 so 1 ̸∈ σ(T11) and 0 ̸∈ σ(T11 − I).
We have completed the task of calculating the Cesáro limit of P and summarize
what we have found in a theorem.
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Theorem 5.18 (Properties of reducible Markov chains). Let P =
(
T11 T12

0 E22

)
be

a reducible transition matrix brought to canonical form (5.5). Then

lim
m→∞

I +P+ · · ·+Pm

m
=

(
0 (I − T11)

−1T12E
0 E

)
= G (5.6)

where

E =

eπTr+1

. . .
eπTs


and πr+j is the left Perron vector of the irreducible block matrix Pr+j in E22

for all j = 1, . . . , s − r. Furthermore, limm→∞ Pm exists if and only if each
Pr+j, j = 1, . . . , s − r is primitive, in which case the value of the limit is the
same as (5.6).

The furthermore part of the theorem above is again a consequence of Cesáro
sums converging to the same limit as matrix powers, provided it exists.

The theorem above is of little use if we do not know how to interpret the
limit. Every reducible Markov chain will eventually be absorbed into one of its
ergodic classes Ej , corresponding to an irreducible matrix Pr+j and subgraph
D(Pr+j), where j = 1, . . . , s − r. Once the chain has entered Ej it will either
settle down into a steady state vector inside of the class, if Pr+j is primitive, or
oscillate between different distribution vectors inside of the class, if Pr+j is an
imprimitive matrix. The next step is to answer these two interesting questions:

(i): Which ergodic class Ej will the reducible Markov chain eventually get
absorbed into?

(ii): How long is it expected to take before the Markov chain gets absorbed
into any of the ergodic classes?

The answers to both of these questions will, unlike for irreducible chains, depend
on the initial probability distribution vector pT0 .

(i): Let Ti and Ej be the ith transient and jth ergodic class, respectively.
Since we only want to know which ergodic class will absorb the chain and not
what happens after absorption, we can convert every ergodic state into a trap
by letting ptt = 1 for all ergodic states νt. Thus Pr+j = I for j = 1, . . . , s − r.
The modified matrix is P̃ =

(
T11 T22

0 I

)
and theorem 5.18 yields

lim
m→∞

P̃ =

(
0 (I − T11)

−1T22
0 I

)
=


L11 . . . L1s

0 ...
. . .

...
Lr1 . . . Lrs

0 I
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The (p, q)th element in the block matrix Lij (of size |Ti| × |Ej |) in the bigger
matrix (I − T11)

−1T22 is the limiting probability that the chain will be in the
qth state of Ej given that it starts in the pth state of Ti. If the chain is in the
qth state of Ej it has been absorbed by Ej so

lim
m→∞

P (Xm ∈ Ej |X0 = νp ∈ Ti) =
∑

q : νq∈Ej

(Lij)pq = (Lije)p

lim
m→∞

P (Xm ∈ Ej |pT0,i) = pT0,iLije

where the second one is the limiting probability that the chain gets absorbed
by the ergodic class Ej given that the probability of starting somewhere in Ti is
given by p0,i (a vector of length |Ti|).

(ii): Next we want to find out how long the chain is in transient states before
absorption. If we find the expected number of time steps that the chains spends
in any transient state if it starts in any other transient state, this value will be
equal to the expected time steps before absorption into any ergodic state. Let
νi and νk be two transient states (not necessarily in the same transient class)
and assume that X0 = νi. Define the random variable

Y0 =

{
1 if X0 = νi = νk

0 otherwise
, Ym =

{
1 if Xm = νk

0 otherwise

The sequence {Ym}∞m=0 records the times that the chain is in νk given that it
starts in νi. The expected value of this variable is

E(Ym) = 1 · P (Ym = 1) + 0 · P (Ym = 0) = P (Ym = 1)

= P (Xm = νk) = (Tm11)ik

since (Tm11)ik is the probability that the chain will be in state νk given that it
starts in state νi after exactly m time steps. Remember that P =

(
T11 T12

0 E22

)
so T11 contains probabilities of moving between transient states. Using the
Neumann series

∑∞
m=0 T

m
11 = (I − T11)

−1 (where ρ(T11) < 1) we can calculate
the expected value of

∑∞
m=0 Ym, the limiting number of times that the chain is

in state νk given that it starts in state νi, as done below.

E

( ∞∑
m=0

Ym

)
=

∞∑
m=0

E(Ym) =

∞∑
m=0

(Tm11)ik = ((I − T11)
−1)ik

Finally if we sum this number over all transient states νk in the chain we get
the expected number of times that the chain is in any transient state (before
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getting absorbed into an ergodic state) given that it starts in state νi:∑
k

((I − T11)
−1)ik = ((I − T11)

−1e)i

so the vector (I − T11)
−1e tells us how long it will take for the chain to get

absorbed into any ergodic state given that it starts in different transient states
in the chain. We summarize our answers to question (i) and (ii) in the following
theorem.

Theorem 5.19. Assume that P =
(
T11 T12

0 E22

)
is a reducible transition matrix

which has been brought to canonical form (5.5).
(i): The probability that the reducible Markov chain gets absorbed into the

particular ergodic class Ej, j = 1, . . . , s−r given that the chain starts somewhere
in the transient class Ti, i = 1, . . . , r is determined by

pT0,iLije

where pT0,i (of length |Ti|) is the part of pT0 which indices correspond to states in
Ti and Lij is the (i, j)th block (of size |Ti| × |Ej |) in the matrix (I − T11)

−1T12.
(ii): The expected number of time steps before the chain gets absorbed into

any ergodic class, given that the chain starts in the transient state νi is deter-
mined by the number

((I − T11)
−1e)i

All of the values above can be calculated quite easily once we know the
canonical form of P. Now we verify the answer in example 5.14 using the
general method in the theorem above.

Example 5.20 (Throwing a ball, part three). Remember the transition matrix,
in canonical form:

P =

 0 0.3 0.7
0.3 0 0.7
0 0 1

 =

(
P11 P12

0 P22

)
=

(
T11 T12
0 E22

)
Here we have one transient class T1 containing the two states ν1, ν2 and one
ergodic class E1 containing the state ν3. We already know that eventually the
state of the ball will be ν3. Still, it is nice to see that our theory is consistent
with the previous calculation. We let pT0 =

(
1 0 0

)
and thus pT0,1 =

(
1 0

)
which we multiply to the left of the (1, 1)th block of size 2× 1 in the matrix

(I − T11)
−1T22 =

(
1 −0.3

−0.3 1

)−1(
0.7
0.7

)
=

1

91

(
100 30
30 100

)(
0.7
0.7

)
=

(
1
1

)
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i.e. the whole matrix itself, together with e = (1, 1)T to the right, giving the
product

pT0,1L12e =
(
1 0

)(1
1

)(
1
1

)
=

(
1
1

)
So the probability of this Markov chain getting absorbed by E1 (state ν3) both if
we start in ν1 or ν2. Let us also calculate the estimated time before absorption,
which equals the expected game-length, using theorem 5.19. Suppose that ν1
(the first transient state) starts throwing the ball. By

((I − T11)
−1e)1 =

(
1

91

(
100 30
30 100

)(
1
1

))
1

=

(
10/7
10/7

)
1

=
10

7
≈ 1.428

we see that the expected game length is almost one and a half throw, which is
the same answer we got before.

Now let us take this example one step further and generalize it to arbitrary
size. Intuitively it should not make any difference if there are two or n − 1
people throwing the ball back and forth, if the probability of the middle person
catching it is the same for every thrower, since every throw in the game can be
seen as an interaction between three agents; the thrower, the catcher and the
middle person. Thus we suspect the expected number of throws per game to
still equal 10

7 . Once again, we can show that this is the case using theorem 5.19.

Example 5.21 (Throwing a ball, generalized version). Assume that there are
n ≥ 3 people throwing a ball, one of which in middle trying to catch it mid-air.
Suppose that at every throw there is chance φ ∈ (0, 1) of the middle person
catching the ball and with that ending the game. Let Xm ∈ {ν1, . . . , νn} be
the position of the ball after the mth throw and suppose that the middle person
is state νn. Then we get the following matrix, already in canonical form, and
graph below, see fig. 5.11.

P =


0 1−φ

n−2
1−φ
n−2 . . . 1−φ

n−2 φ
1−φ
n−2 0 1−φ

n−2 . . . 1−φ
n−2 φ

...
...

...
. . .

...
1−φ
n−2

1−φ
n−2

1−φ
n−2 . . . 0 φ

0 0 0 . . . 0 1

 =

(
P11 P12

0 P22

)
=

(
T11 T12
0 E22

)

There is only one transient class T1 containing the states ν1, . . . , νn−1, which
corresponds to the irreducible matrix T11. The only ergodic class E1 is person
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ν6

. . .

ν1

ν2

ν3

ν4

ν5

νn

φ

Figure 5.11: Throwing a ball, generalized version

νn, a single absorbing state. For convenience purpose let ϕ := 1−φ
n−2 . The matrix

I − T11 and its inverse will be

I − T11 =


1 −ϕ . . . −ϕ
−ϕ 1 . . . −ϕ
...

...
. . .

...

−ϕ −ϕ
... 1



(I − T11)
−1 = 1

(n−2)ϕ2+(n−3)ϕ−1


(n−3)ϕ−1 −ϕ ... −ϕ

−ϕ (n−3)ϕ−1 ... −ϕ
...

...
. . .

...

−ϕ −ϕ
... (n−3)ϕ−1

 (5.7)

Note that both matrices are of dimension (n − 1) × (n − 1). For example, the
result of multiplying the first row in I−T11 with the first column in (I−T11)−1

is

(n− 3)ϕ− 1 +

(n−2) many︷ ︸︸ ︷
ϕ2 + · · ·+ ϕ2

(n− 2)ϕ2 + (n− 3)ϕ− 1
=

(n− 3)ϕ− 1 + (n− 2)ϕ2

(n− 2)ϕ2 + (n− 3)ϕ− 1
= 1

and multiplication of the first row in I−T11 and the second column in (I−T11)−1

yields

−ϕ− (n− 3)ϕ2 + ϕ+

(n−3) many︷ ︸︸ ︷
ϕ2 + · · ·+ ϕ2

(n− 2)ϕ2 + (n− 3)ϕ− 1
=

−(n− 3)ϕ2 + (n− 3)ϕ2

(n− 2)ϕ2 + (n− 3)ϕ− 1
= 0
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which is hopefully enough to convince the reader that (5.7) is in fact the inverse.
Every component of (I − T11)

−1e is the row sum of the inverse, which is equal
to

(n− 3)ϕ− 1 +

(n−2) many︷ ︸︸ ︷
−ϕ− · · · − ϕ

(n− 2)ϕ2 + (n− 3)ϕ− 1
=

(n− 3)ϕ− 1− (n− 2)ϕ

(n− 2)ϕ2 + (n− 3)ϕ− 1

=
−ϕ− 1

(n− 2)ϕ2 + (n− 3)ϕ− 1
=

1

φ
(5.8)

if we substitute in ϕ := 1−φ
n−2 , so the number 1

φ is the expected game-length no
matter how many people there are in the game. Just as we thought! If we
have a probability of φ = 0.7 we get the answer 1

0.7 = 10
7 ≈ 1.428, the same

as before. While this example is a nice exercise in the properties of reducible
Markov chains, the answer could be calculated just using example 5.14 and the
logic before this example. Suppose however that the probability of νn catching
the ball was different for each thrower ν1, . . . , νn−1 or that there were to be
more than one middle person, then the expected game-length would probably
be difficult to find using other methods than the one in theorem 5.19.

Example 5.22 (5.16, continued). To finish of this section, let us return to
the second reducible Markov chain that we have seen. Here, we will illustrate
that the results in theorem 5.19 can be different depending on what the initial
probability distribution vector is. We found that, after a couple of simultaneous
permutations we could write

P =



0 1/3 1/3 1/3 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1/2 1/2 0 0
0 0 0 0 1/2 0 1/2
0 0 0 1/2 1/2 0 0


=


P11 P12 P13 P14

0 P22 P23 P24

0 0 P33 0
0 0 0 P44



which is equal to P =
(
T11 T12

0 E22

)
where T11 =

(
P11 P12

0 P22

)
, T12 =

(
P13 P14

P23 P24

)
and

E22 =
(
P33 0
0 P44

)
.There are two transient classes T1, T2, with one state in each,

and two ergodic classes E1 and E2 containing one and four states respectively,
see fig. 5.12. First, suppose that the chain starts in the transient state ν1 so
p0,1 = (1). We show that it is two times more likely that the chain will be
absorbed into the ergodic class E1 than class E2, which can also be seen in



78 Chapter 5. Markov Chains

ν7 ν6

ν5 ν4 ν1

ν3

ν2 T2
T1

E1

E2

Figure 5.12: Transient classes in orange, ergodic classes in blue.

fig. 5.12 since there are two paths from ν1 to E1, one via ν2, and only one to E2.

(I − T11)
−1T12 =

(
1 −1/3
0 1

)−1(
1/3 1/3 0 0 0
1 0 0 0 0

)
=

(
2/3 1/3 0 0 0
1 0 0 0 0

)
=

(
L11 L12

L21 L22

)
and

pT0,1L11e = 1(2/3)1 = 2/3

pT0,1L12e = 1
(
1/3 0 0 0

)( 1
1
1
1

)
= 1/3

where 2
3 = 21

3 which was to be shown. Now, suppose instead that the chain
starts in the transient state ν2. In the graph we see that the class E2 cannot be
reached from ν2. This is verified by the probabilities below

pT0,2L21e = 1(1)1 = 1

pT0,2L22e = 1
(
0 0 0 0

)( 1
1
1
1

)
= 0

the first one being the probability of absorption into E1. We might wonder
how long it will take for the chain to be absorbed into either E1 or E2. This is
calculated below.

(I − T11)
−1e =

(
1 −1/3
0 1

)−1(
1
1

)
=

(
4/3
1

)
The expected number of time steps before absorption is therefore 4/3 if we start
in ν1 and 1 if we start in ν2 (of course, since there are nowhere else to go).
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Finally, if the chain starts in ν1 and happen to get absorbed by E2, it would
be nice to know what happens to the chain inside of the ergodic class. Because
the chain will stay in E2, we can ignore all of the other states and consider the
4-state irreducible Markov chain defined by the matrix

P44 =


0 0 1 0
1/2 1/2 0 0
0 1/2 0 1/2
1/2 1/2 0 0


which has the graph in fig. 5.13. This smaller Markov chain is also primitive

ν4 ν3

ν2 ν1

Figure 5.13: D(P44)

since the second diagonal element in P44 is positive, so we know by theorem 5.9
that the chain will eventually settle down into a steady-state determined by the
left Perron vector πT4 . We find this vector to be

πT4 =
1

8

(
2 3 2 1

)
with the interpretation that in the long-run we will most likely find the chain
in state ν2 in fig. 5.13 and least likely in ν4 given that the chain has sometime
entered class E2.

5.3 Google’s PageRank Algorithm
We have reached the final section of this thesis where we present one of the
most, if not the most, famous modern application of Perron-Frobenius theory:
the PageRank algorithm. The material below is a summary of that in the article
"Google’s secret and Linear Algebra" [4] along with one concrete example.

In the late 1900s, there was a need for structure in the early days of search
engines on the internet and specifically for an efficient way of ranking suitable
webpages to display for the surfer given some search terms. Two computer
science doctorates at Stanford, Sergei Brin and Lawrence Page, developed an
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algorithm for this very thing in 1998. Their algorithm, called PageRank, was
implemented (and is perhaps used to this day) in the Google search engine.

The basic idea is this: suppose a surfer wants to find a good recipe for
lasagna. Then he/she might put in the words ’recipe for lasagne’ in a search box.
The algorithms job is to determine in which order the websites are displayed to
the surfer, it ranks the pages from most to least relevant. The way we might
accomplish this is to assign some value or significance, call it xi to each of
the pages i = 1, . . . , n on the web (or a subset of them). We assume that the
webpages form a network, in which each page is connected to other pages via
internet links, see fig. 5.14. We draw an arrow (i, j) if there is an internet link
on page i leading to page j and we see that this network is a directed graph D
with the pages as vertices V and links as arcs E . A first attempt at defining the
significance xi is to let it be proportional to the number of in-going arcs to each
vertex, like so: xi = 1

λ |{(j, i) ∈ E}| where λ is some constant.

1 2 3

456

7 8 9

Figure 5.14: Network (graph) of webpages

This might seem like a reasonable definition, but is however not the way to
go, since it could lead to some trouble. Namely, this definition grants websites
which are linked to from many other websites high significance, no matter which
these other websites are. Consider the search for the best lasagna recipe again.
One might have set up a website about pizza, i.e. completely irrelevant to our
search, along with many other websites about lasagna, each of which containing
one or several links to the pizza-page. The pizza-page would consequently have
many in-going arcs in the graph and thus be granted a high significance. This
does not seem reasonable. Somehow we need to account for, not only how many
but also, which websites link to page i. We want to assign a high significance to
a page which are linked to from other pages with high significance. Let therefore
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xi be proportional to the sum of all values of the pages linking to i, as such

xi =
1

λ

 ∑
j:(j,i)∈E

xj


where λ ̸= 0 again is some constant. We have a system of n linear equations
where if we let x be the vector of the significances we have

1

λ
Ax = x ⇔ Ax = λx

in which the binary matrix A is the adjacency matrix of D, as defined in 2.6.
We recognize this as an eigenvalue problem for the matrix A. But we do not
just want to solve this for any eigenvalue and eigenvector, we demand two extra
requirements for the algorithm to make sense: x must be nonnegative, since the
significance xi ≥ 0 for all pages i and x must be unique, for if we have more
than one ranking, which one would we choose?

Google’s approach of solving this problem is to modify A so that we can
model the algorithm as a Markov chain. First, suppose each page has a total
importance of 1 and that this is importance is uniformly distributed as weights
amongst all outgoing arcs from the page. If the page has no outgoing arcs the
we draw a loop at the page. Notice that this also counteracts the potential
problem with empty websites just linking to many other pages for these will no
longer contribute as much to the linked pages significances.

1 2 3

456

7 8 9

1/5
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1/51/5 1/3
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1/5
1/2

1/2

1

1/2

1/2

1

1/2

1/2

Figure 5.15: Weighted graph of webpages

Label each arc in the graph D with these weights, see fig. 5.15 and let P be
the corresponding matrix. The matrix P will be row stochastic and therefore we
can interpret it as a transition matrix for a Markov chain. We letXm be the page
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at the time m and let the chain move randomly between all websites through the
links with the corresponding probabilities. We let, as usual, pi,m = P (Xm = i)
and pTm = (p1,m, . . . , pn,m) be the mth probability distribution vector. Each
time we move from one page to another we update the vector according to
pTm+1 = pTmP. We want to find the limiting probability distribution vector of
this chain, for this tells us how likely a random surfer is to visit the pages in
our network. We assign the significance xi according to

xi = lim
m→∞

pi,m for all i = 1, . . . , n

By Perron-Frobenius’ theory, if this limit exists then is given by the left Perron
vector πT , which is nonnegative and unique (if normalized in the ∥ ∗ ∥1-norm)
thus satisfying our demands.

Remark 5.23. In practice, one makes sure that P will be positive by introduc-
ing something called a damping factor, which we will discuss below. However, it
is entirely possible that the chain is imprimitive or even reducible in which case
the limit of powers does not exist. From a mathematical point of view it might
be interesting to consider the properties of those rankings either way with the
help of the results in the sections above (5.11 and 5.18) but in applications it
is easier to adjust the matrix and interpret the modification as a random factor
which models a humans impulsive behaviour in some way. For now, we will
assume that the matrix P is primitive.

We know that the vector πT is an asymptotically stable equilibrium point,
so by mere repeated application of P, on any initial probability distribution, will
get us closer and closer to the correct ranking values. Since this is a particularly
important point in this algorithm, we remind the reader about why this is the
case by the following

pTm = pT0 Pm ⇒ pTm = c1π
T +

→0︷ ︸︸ ︷∑
k

ckλkwT
k −→ c1π

T

as m → ∞ since all λk ∈ σ(P) \ {1} has a modulus smaller than 1. This
way of finding the limit, sometimes called the power method, is often way to
compute πT in practice because the matrix P is so big (there are roughly a
billion webpages out there) so either spectral analysis or inverse computations
would take to long, or be impossible.

This algorithm is dependent, as brought up in the remark, of P being at least
primitive. Now, suppose P is imprimitive, or even reducible. The workaround
that Google did is to take a convex combination of P and a matrix with certain
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probabilities for the pages. The constant parameter c ∈ (0, 1) is sometimes
called a damping factor, taken to be 0.85 by Google (at least back in 1998), and
the process makes the new matrix P′ = cP + (1− c)peT strictly positive. The
probabilities in p = (p1, . . . , pn)

T is interpreted as giving the random surfer the
ability to jump to any webpage, which is not necessarily linked to, from page
i (with the probability 1 − c) obeying a certain probability distribution. For
example, one could let pi = 1

n for all i, i.e. uniform distribution. Since P′ > 0,
it will have all of the desired properties in Perron’s theorem 3.1, one of which
being that the limit of powers exists. We end this section, and thus the entire
thesis by finding the ranking values for the webpages in fig. 5.15.

Example 5.24. We let pij be the probabilities in the figure and get the following
matrix.

P =



0 1/5 1/5 1/5 0 0 1/5 1/5 0
1/5 0 0 1/5 1/5 0 1/5 1/5 0
0 0 0 1/3 0 1/3 0 0 1/3
1/5 0 0 0 1/5 1/5 0 1/5 1/5
0 0 0 1/2 0 0 1/2 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1/2 0 1/2 0 0


It is reducible, since there are no out-going arcs from page 8, so we do like
Google does and form the new matrix: P′ = 0.85P + 0.15peT where p =
(1/9, 1/9, . . . , 1/9)T follows uniform distribution. Note that if we would have
calculated the left eigenvector corresponding to 1 of the matrix P alone, this
would give us (0, 0, 0, 0, 0, 0, 0, 1, 0)T , and the result based of this vector would
be that only page 8 shows up. Perhaps is for the best that we modify the matrix,
in this case, after all. We find πT to be(
0.0738 0.0292 0.0292 0.0985 0.0561 0.0417 0.0757 0.5540 0.0417

)
and assigning the values xi accordingly gives us the following ranking, from
highest to lowest score: 8, 4, 7, 1, 5, 6, 9, 2, 3.





Chapter 6

Conclusion and Discussion

In this thesis we have shown many general properties of positive and nonnegative
matrices. For the latter type, we have considered irreducible matrices, which
have strongly connected associated graphs, and reducible matrices, which do not
have such graphs. We have also considered primitive and imprimitive matrices,
subclasses of irreducible matrices, and we have seen that primitive matrices
have only one eigenvalue of maximum modulus and that this eigenvalue is the
spectral radius. In chapter three we saw the two main theorems of the theory,
namely Perron’s and Perron-Frobenius’ theorem. We have shown that positive
and primitive matrices possess the complete set of Perron-properties, labeled
(i)-(vi) in this thesis, imprimitive matrices possesses fewer ones and that not
much of the properties hold for reducible matrices. We have also seen many
applications of Perron-Frobenius’ theory, most of which in the world of Markov
chains. These chains can model many different stochastic processes and we have
just looked at few of the many interesting examples.

In conclusion, the two, more than a hundred year old, theorems by Oskar
Perron and Georg Frobenius are to this day used in a variety of mathematical
subjects. It plays an important role in determining the long-term behaviour of
nonnegative systems, which is unprecedented by any other theory.

Now we discuss the material in the thesis and present some areas of interest
for future studies. There is much more that can be said about the different types
of matrices. Here we consider three examples. First, an imprimitive matrix
A can be written brought, via a simultaneous permutation, to the following
canonical form, sometimes called Frobenius form:
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0 A12 0 . . . 0 0
0 0 A23 . . . 0 0
...

...
. . . . . .

...
0 0 0 . . . 0 Ak−1,k

Ak,1 0 0 . . . 0 0


where these zero block matrices on the diagonal are square and the number k
is the index of imprimitivity. This form indicates that imprimitive matrices are
somehow ’block-similar’ to a k−cycle graph.

Secondly, there are nice proofs, which can be read for example in Horn-
Johnson [5, Chapter 8.5], on the upper bound for the number γ(A) which is the
smallest exponent t such that At > 0 if A is primitive. These proofs are quite
interesting since they rely on finding some property in the graph, relating to
some partition of A, which can be used to show positivity. In the remark 3.11,
we saw that A(n−1)2+1 > 0 but it can even be proved that A(m−1)2+1 > 0 where
m is the degree of the minimal polynomial of A, which often times will be a
smaller number than n, see Horn-Johnson [5, p. 545, Further Reading ]

Thirdly, as we have shown, the spectrum of an imprimitive matrix is invariant
under a rotation by 2π

k , where k is the index. This means that for a primitive
matrix, the spectrum is only invariant under a full 2π rotation. We could use
to construct interesting patterns by disturbing say a primitive matrix into an
imprimitive one and tracing the eigenvalues in C during the transformation. In
fig. 6.1 we see an example of this where the transformation from the primitive
matrix (when δ = 0) to the imprimitive matrix (when δ = 1) happens by letting
δ : 0 → 1. I bet that it is possible to create many such interesting and beautiful
curves by applying this principle between two different types of matrices.

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

−


δ −4δ δ δ δ
δ δ −4δ δ δ
δ δ δ −5δ δ
δ δ δ δ −4δ

−4δ δ δ δ δ


There is also further connection between Markov chains and Perron-Frobenius

theory, namely Perron complementation. A full walk-through of this topic can
be found in Meyer [9, Chapter 8.5], but the general idea is to obtain the Perron
vector of an irreducible transition matrix by gluing together Perron vectors of
smaller components in a partition of the matrix. This corresponds to consid-
ering certain subsets of vertices in the graph of the matrix and recording the
visits to only these states by the chain. These smaller Markov chains, that sit
inside the larger one, are called Censored Markov chains. This could perhaps
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|z| = 5

−→

|z| = 5

Figure 6.1: δ : 0 → 1

be used as a modification of the PageRank-algorithm, where one could consider
certain subsets of the webpages, in which they are easily ranked, and then glue
these ranking vectors together using the so called Coupling theorem.

Another application of Perron-Frobenius theory, which we have not talked
about, is in economic modelling. For example, the 1973 Nobel prize laureate
Wassily Leontief used Perron-Frobenius theory in his demand and supply model.

The interested reader is referred to the following literature for further theo-
rems in and applications of Perron-Frobenius’ theory: Horn-Johnson [5], Mac-
Cluer [8], Meyer [9] and Shapiro [10].
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