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Simple Summary: The use of combined estrus synchronization/superovulation (SS) treatments alters
ovarian and endometrial gene expression patterns, impairing follicle and oocyte growth, fertilization,
and embryo development. Since the impact of SS treatments on the transcriptome of the surviving
embryos remains unidentified, we examined gene expression changes in day 6 blastocysts that
survived a brief regimen of synchronization treatment combined with superovulation. Embryos were
surgically collected on day 6 after AI, and transcriptome analysis was performed on blastocyst-stage
embryos with good morphology to identify differentially expressed genes (DEGs) between groups
at p-value < 0.05 and </>1.5-fold change. Compared with the blastocysts from control (untreated)
sows, the blastocysts from SS-treated sows had moderate gene expression changes, with 7 pathways
disrupted and a total of 10 transcripts affected, including up-regulation of metabolic RDH10 and
SPTLC2 genes and down-regulation of oxidation-related GSTK1 and GSTO1 genes. These gene
expression alterations may suggest suboptimal embryo quality and could depress the embryos’
response to oxidative stress, thereby impairing subsequent embryo development. These and previous
findings call for the avoidance of SS treatments in embryo transfer programs.

Abstract: The combination of estrus synchronization and superovulation (SS) treatments causes alter-
ations in ovarian and endometrial gene expression patterns, resulting in abnormal follicle and oocyte
growth, fertilization, and embryo development. However, the impact of combined SS treatments on
the transcriptome of the surviving embryos remains unidentified. In this study, we examined gene
expression changes in day 6 blastocysts that survived a brief regimen of synchronization treatment
combined with superovulation. The sows were included in one of three groups: SS7 group (n = 6),
sows were administered Altrenogest (ALT) 7 days from the day of weaning and superovulated
with eCG 24 h after the end of ALT treatment and hCG at the onset of estrus; SO group (n = 6),
ALT nontreated sows were superovulated with eCG 24 h postweaning and hCG at the onset of
estrus; control group (n = 6), weaned sows displaying natural estrus. Six days after insemination,
the sows underwent a surgical intervention for embryo collection. Transcriptome analysis was per-
formed on blastocyst-stage embryos with good morphology. Differentially expressed genes (DEGs)
between groups were detected using one-way ANOVA with an un-adjusted p-value < 0.05 and a fold
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change </> 1.5. The effect of SO treatment on the number of altered pathways and DEGs within each
pathway was minimal. Only four pathways were disrupted comprising only a total of four altered
transcripts, which were not related to reproductive functions or embryonic development. On the
other hand, the surviving blastocysts subjected to SS7 treatments exhibited moderate gene expression
changes in terms of DEGs and fold changes, with seven pathways disrupted containing a total of
10 transcripts affected. In this case, the up-regulation of certain pathways, such as the metabolic
pathway, with two up-regulated genes associated with reproductive functions, namely RDH10 and
SPTLC2, may suggest suboptimal embryo quality, while the down-regulation of others, such as the
glutathione metabolism pathway, with down-regulated genes related to cellular detoxification of
reactive oxygen species, namely GSTK1 and GSTO1, could depress the embryos’ response to oxidative
stress, thereby impairing subsequent embryo development. The gene expression changes observed
in the present study in SS7 embryos, along with previous reports indicating SS7 can negatively affect
fertilization, embryo production, and reproductive tract gene expression, make its use in embryo
transfer programs unrecommendable.

Keywords: Altrenogest; superovulation; estrus synchronization; embryo transcriptome; blasto-
cyst; porcine

1. Introduction

Recent advancements made porcine nonsurgical embryo transfer (Ns-ET) with fresh
and vitrified embryos possible [1–7], enabling the wider use of this highly demanded
technology by the swine industry. However, one of the problems that still persists is the
high number of embryos (>25) required for each ET, which determines a donor:recipient
ratio greater than 2:1 [8] increasing the cost per ET. Superovulation with gonadotropins of
previously synchronized donor sows through weaning is effective in reducing this ratio.
Weaning is the most useful natural method for estrus synchronization allowing sows to be
grouped efficiently, which simplifies embryo collection. In weaned sows, superovulation
treatment provided excellent results by increasing the number of high-quality embryos,
without affecting fertilization rates [9] or post-Ns-ET fertility and prolificacy [9,10]. Despite
the effectiveness of this weaning–superovulation treatment, ET programs often need a
larger number of donors than a single weaning can offer, requiring several weanings to
provide enough donors for each ET batch.

There is evidence that postweaning estrus is retarded by the short-term (St) application
of the progestogen Altrenogest (ALT), which makes it possible to synchronize the onset
of the postweaning estrus from multiple weanings without adverse impact on ovulation
and embryonic development [11,12]. However, the situation becomes very different when
superovulation is induced after the St-ALT treatment. Recently, we have shown that St-
ALT administration before superovulation was efficient in delaying postweaning estrus
and increasing the ovulation rates in weaned sows, but the treatments decreased fertiliza-
tion, pregnancy, and embryo production rates compared to ALT-untreated, superovulated
sows [13,14]. The poor results achieved after the combined use of St-ALT and superovu-
lation treatments were mainly due to the increased proportions of immature oocytes and
degenerated embryos compared to those obtained in ALT-untreated, superovulated sows
and sows with natural estrus after weaning. It has recently been shown that the combina-
tion of these treatments alters the gene expression patterns in the ovary and endometrium,
mainly dysregulating key metabolic pathways, which could lead to inadequate follicle
and oocyte growth and preimplantation embryo developmental ability [14]. Although the
quality of the surviving blastocysts after St-ALT plus superovulation treatment, in terms of
total trophectoderm and inner cell mass cells, apoptosis rates, and cryotolerance [13], was
similar to that observed in ALT-untreated, superovulated sows and in natural postweaning
estrus sows, the treatment can influence not only oocyte maturation and fertilization but
also surviving embryos at the molecular level. The aim of the present investigation was
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to establish the extent to which St-ALT treatment in combination with a standard super-
ovulation protocol in weaned sows caused variations in the overall transcriptome of day
6 embryos.

2. Materials and Methods

The substances employed in the research were obtained from Sigma-Aldrich Química
S.A. (Madrid, Spain), unless specified otherwise.

2.1. Animals and Ethics

The study was performed on a farm located in Murcia, Spain (Agropor SL). Landrace×Large
White sows with lactation lengths of 24–28 days (mean ± SD: 24.9 ± 1.4 days) were
arbitrarily selected at weaning and individually placed in a barn with controlled humidity
and temperature. Average daily temperature and temperature–humidity index in the barn
ranged from 14.6 ◦C to 24.0 ◦C and from 58.2 to 67.83, respectively. Two mature boars
allocated in an artificial insemination (AI) center (AIM Iberica, Murcia, Spain) delivered
semen to prepare AI seminal doses. The sows and boars had water freely available and
were fed in concordance with their nutritional necessities [15,16]. The research was granted
approval by the Ethics Committee for Animal Experimentation of the University of Murcia
(date: 22 November 2018; code: 486/2018).

2.2. Experimental Design

After weaning, sows were selected based on their body condition score (>2.7 on a 5-
point scale), parity (ranging from 4 to 7), prior fertility (>80%), and prolificacy (>11.0 piglets),
with no differences among the groups.

Animals were included in one of three groups: SS7 group (n = 6), sows were adminis-
tered ALT (Regumate, Merck Sharp & Dohme Animal Health, S.L., Salamanca, Spain)
7 days from the day of the weaning and superovulated with eCG (Foligon, Intervet,
Boxmeer, the Netherlands) 24 h after the end of ALT treatment and hCG (Veterin Corion,
Divasa, Farmavic S.A., Barcelona, Spain) at the onset of estrus; SO group (n = 6), ALT
nontreated sows were superovulated with eCG 24 h postweaning and hCG at the onset of
estrus; control group (n = 6), weaned sows displaying natural estrus. In three replicates,
18 sows (6 sows per group) were inseminated with AI doses from the same boar. At day 6 of
the cycle (day 0 = onset of estrus), the sows underwent surgery for embryo collection.
Transcriptome analysis was performed on early and full blastocyst-stage embryos with
excellent or good morphology. These embryonic stages were equally distributed among
the three groups. Five blastocysts from each sow of each group were placed into a tube
containing 5 µL of PBS, snap-frozen in liquid nitrogen, and stored at −80 ◦C until further
analysis. We conducted 18 microarray analyses (6 for each group), and the outcomes
were authenticated via quantitative real-time polymerase chain reaction (RT-qPCR), which
involved three biological and three technical replicates for each gene.

2.3. Treatments, Detection of Estrus, and Insemination

To delay the postweaning estrus, sows were orally administered 20 mg/sow/day
of ALT. Superovulation was induced in the sows via intramuscular injection of 1000 IU
eCG and 750 IU hCG. Estrus detection was carried out by trained personnel once daily,
commencing on the day of the final ALT administration or on the day of weaning de-
pending on the groups. AI was conducted at 6 h and 24 h from the onset of estrus using
3 × 109 spermatozoa in a 90 mL BTS extender [17]. All AI doses exhibited more than 75%
sperm motility and less than 20% morphological sperm abnormalities at the time of AI.

2.4. Collection of Embryos

The surgical collection of embryos was conducted in accordance with the previously
described protocol [18]. In brief, after administering sedation (azaperone; Stresnil, Landeg-
ger Strasse, Austria), the sows were anesthetized with sodium thiopental (B. Braun VetCare
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SA, Barcelona, Spain) and then maintained under isoflurane (IsoFlo, Madrid, Spain). Dur-
ing laparotomy, the ovaries were inspected to count the number of corpora lutea in each sow,
and the embryos were retrieved from the uterus using 30 mL of TL-HEPES medium [7,19]
at 38 ◦C.

2.5. Embryo Quality Evaluation

The quality and stage of embryo development were determined by stereomicroscopy.
Structures with a single cell were considered oocytes. Embryos insufficiently developed or
with inadequate morphology were classified as degenerate. Embryos with proper develop-
mental stage and adequate morphology according to IETS criteria [20] were classified as
viable and transferable.

2.6. Total RNA Extraction

The RNeasy Micro Kit (Qiagen Iberica, Madrid, Spain) was used for the extraction
of total RNA from blastocysts following the manufacturer’s manual. The concentration
and quality of the extracted RNA were determined with the 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA). The RNA integrity Number (RIN) of each sample was greater
than 8.5.

2.7. Microarray Processing

Gene expression differences among groups were determined with the GeneChip Porcine
Gene 1.1 ST Array Strip (901798, Affymetrix, Thermo Fisher Scientific, Waltham, MA, USA),
which contains 394,850 probes for the identification of 19,212 genes and covers the tran-
scriptome of Sus scrofa. ss-cDNA was produced from 800 pg or total RNA of each sam-
ple using the GeneChip WT Pico Reagent Kit (P/N 902623; Thermo Fisher Scientific,
Waltham, MA, USA) following the recommendations of the manufacturer. The amount
and quality of cDNA were checked by Nanodrop and Bioanalyzer. ss-cDNA targets were
cleaned up and after fragmentation and terminal labeling, and 3.75 µg of fragmented
and biotinylated ss-cDNA were included in the hybridization mix, using the GeneAtlas
Hybridization, Wash and Stain kit for WT Array Strips (Affymetrix, P/N 901667) according
to recommendations of the manufacturer. The resulting preparations were hybridized to
the array strip (Porcine Gene 1.1 ST Array Strip) for 20 h at 48 ◦C. After incubation, arrays
were washed, stained, and scanned using GeneAtlas System (Affymetrix, Thermo Fisher
Scientific, Waltham, MA, USA). The data were then analyzed using Affymetrix’s Expression
Command Console, and all samples passed the quality criteria.

2.8. Analysis of the Microarray Data

The data underwent normalization using the Robust Multichip Average (RMA) method [21],
with background correction followed by quantile normalization to generate a value for
each probeset. Statistical and functional interpretation of data was conducted using
the software of the Partek Genomics Suite and Partek Pathways (Partek Incorporated,
St. Louis, MO, USA). Principal component analysis (PCA) was utilized as an exploratory
tool to examine transcriptome variations among the samples. Differentially expressed
genes (DEGs) between groups were detected using one-way ANOVA with an un-adjusted
p-value < 0.05 and a fold change </> 1.5. The identification of overrepresented gene
sets (Gene Ontology and pathway categories) in the DEG list was based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database [22] using Fisher’s exact test.

2.9. Real-Time, Reverse Transcription Quantitative PCR (RT-qPCR) Assay

A total of 7 DEGs, 5 up-regulated (CHSY1, CSGALNACT2, CTPS1, RDH10, SPTLC2)
and 2 down-regulated (GSTK1, ATG4C) were examined by RT-qPCR to confirm the mi-
croarray results using the same RNA extracted for the analysis of microarrays. cDNA was
generated using the Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific, Waltham, MA, USA) with successive incubations of 10 min, 15 min, and 5 min at
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25 ◦C, 50 ◦C, and 85 ◦C, respectively. The Primer Express software v3.0.1 (Applied Biosys-
tems, Foster City, CA, USA) was used to design the primers, which were commercially
synthesized (Table 1). The assay of RT-qPCR was carried out with iTaq Universal SYBR
Green Supermix (Applied Biosystems, Foster City, CA, USA) in 10 µL (including 2 µL
cDNA and 500 nM of each primer). A QuantStudio 5 Real-Time PCR System (Applied
Biosystems) was used for the reactions. Cycles consisted of 2 min at 50 ◦C for Uracil-DNA
glycosylase activation, 10 min at 95 ◦C for initial denaturation, and 40 cycles of 15 s at 95 ◦C
and 1 min at 60 ◦C.

Table 1. Primer sequences for RT-qPCR and amplicon sizes.

Gene Accession Number Primers (5′-3′) Size (pb) Efficiency (%) R2

CHSY1 NM_001244442.2 F: GAGATGCGTGCGAAGGTT
R: GTAGGGTGGGTTCTTGTTGG 166 83.9 0.997

CSGALNACT2 XM_001926417 F: CTGCCATTGTTTATGCCAAT
R: ATTCCAAAGCCAAAATCTCG 100 110.5 0.998

CTPS1 XM_003128105.4 F: GGAACATTCTCTCCCTATGAGC
R: GTCGGATGTCAAGGAAACG 103 101.9 1.000

RDH10 XM_021089230.1 F: ACATCAACACGCAGAGCAAC
R: CTCTCTTTCCCACATCACAGG 168 93.0 0.993

SPTLC2 XM_005656439.2 F: ATCTGCGGACACATTCTCAC
R: CCTGGTGTTTTCGGCTAACT 152 102.6 0.999

GSTK1 NM_001315574.1 F: GCAGGAGAAAGGGAACGAT
R: TGCAGGTTGACATTCCAGAT 183 116.5 0.996

ATG4C NM_001190284.1
F: GTCGAAATGTTCAGGACTTCA
R: GACAAACTCTTCTGTGC-
TAAATCTG

206 99.1 0.995

ACTB XM_003357928 F: CTCGATCATGAAGTGCGACGT
R: TGATCTCCTTCTGCATCCTGTC 114 101.8 0.998

Each RT-qPCR’s specificity was assessed by performing a melt curve analysis, which
was incorporated into each PCR reaction. The expression levels of each gene were quan-
tified as previously reported [23] and normalized to the housekeeping reference genes
ACTB (Actin Beta) and MRPL46 (Mitochondrial Ribosomal Protein L46). The RT-qPCR
data analysis was carried out using IBM SPSS Statistics package version 28.0.1.1 (IBM,
Chicago, IL, USA), with statistical significance considered at a p-value less than 0.05 and
evaluated using Student’s t-test.

3. Results

Data on embryo recovery, fertilization, and embryo viability in animals from SS7,
SO, and control groups have been previously reported [14]. The interval from weaning
to estrus for the SO and control sows was 4.2 ± 0.4 and 4.3 ± 0.5 days, respectively, and
the interval from ALT withdrawal to estrus was 4.8 ± 0.4 days, with no differences among
groups. The number of embryos collected from each sow in the three groups and the
embryo developmental stage and quality are shown in Table 2. These embryos, at the
blastocyst stage, were used for transcriptome analysis.

3.1. Gene Expression Profiles of Embryos

Analysis of the transcriptome changes of embryos after SS7 and SO treatments showed
172 and 97 transcripts being differentially expressed in embryos from SS7 and SO groups
relative to control embryos. Among these, 85 (48 and 37 up- and down-regulated, respectively)
and 36 (8 and 28 up- and down-regulated, respectively) transcripts were annotated as known
genes in the SS7 embryos (Supplementary Table S1) and SO embryos (Supplementary Table S2),
respectively. More than 50% of transcripts were not annotated.
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Table 2. Effects of the combined treatment for estrus synchronization and superovulation in weaned
sows on developmental stage and quality of the collected day 6 embryos.

Group Sows (n) Viable Embryos
(n, Mean ± SD)

Oocytes/Degenerated Embryos
(n, Mean ± SD) Embryo Stage * Embryo Quality **

(n, %)

SS7 6 132 (22.0 ± 3.9) a 55
(9.2 ± 4.3) a 2.4 ± 0.4 115 (87.1)

SO 6 174 (29.0 ± 1.8) b 12
(2.0 ± 2.4) b 2.5 ± 0.4 162 (93.1)

Control 6 105 (17.5 ± 4.7) a 9
(1.5 ± 1.4) b 2.5 ± 0.2 99 (94.3)

* The developmental stage was scored according to the following classes: 1: morulae; 2: early blastocysts;
3: blastocysts; 4: expanded blastocysts. ** Embryos with quality grade 1 or 2 (excellent or good morphology).
Different superscripts in the same column indicate differences (p < 0.05) (ANOVA followed by Bonferroni post
hoc test).

PCA over all genes split SS7 and SO from control samples. The first three PCA axes
accounted for 51.6% (SS7 vs. control) and 50.1% (SO vs. control) of data variance, with
the first axis accounting for 24.3% and 25.3%, respectively. The DEGs detected in SS7 and
SO blastocysts relative to the control blastocysts are shown in a volcano plot (Figure 1A).
Based on hierarchical clustering, the DEGs between SS7 embryos and control embryos were
strikingly segregated into two groups, but this segregation was not evident for the DEGs
between SO embryos and control embryos (Figure 1B).
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Figure 1. Volcano plots (A) and heat maps (B) comparing differentially expressed genes between
synchronized–superovulated (SS7) and control embryos and between superovulated (SO) and control
embryos. The colors denote different levels of gene expression levels (red, up-regulation; green,
down-regulation).

3.2. GO and Pathway Enrichment of DEGs

According to the KEGG database, the DEGs fit into three main GO categories: bio-
logical processes, cellular components, and molecular functions. While the majority of the
DEGs in the SS7 embryos were associated with biological processes such as cell growth,
detoxification, and proliferation of cell populations (Figure 2A), DEGs from SO embryos
were related to localization, cellular component organization, and multicellular organismal
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process (Figure 3A). Cell anatomical entity was the most highly represented category within
cellular components for both SS7 and SO embryos (Figures 2A and 3A, respectively). Genes
involved in molecular functions such as catabolic activity, antioxidant activity, and binding
(SS7 embryos) or binding and transporter activity (SO embryos) were the most abundant
(Figures 2A and 3A). Generally, more up-regulated and down-regulated genes were detected
in SS7 and SO embryos, respectively, in each biological function (Figures 2B and 3B).
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Figure 2. Functional enrichment analysis. (A) Gene Ontology analysis (KEGG database) of the
differentially expressed genes between embryos collected from synchronized–superovulated (SS7)
and control (untreated) sows. (B) Number of up- and down-regulated genes in each GO category; the
enrichment score is shown in parentheses.

To identify significant KEGG pathways, dataset lists including all DEGs (ALL), up-
regulated DEGs (UP), and down-regulated DEGs (DOWN) were considered. In the SS7
treatment, we found six, two, and five pathways enriched in the ALL, UP, and DOWN lists,
respectively, resulting in eight pathways that were specifically affected by the treatment
(Table 3). In the SO treatment, only two, one, and three pathways were enriched in the
ALL, UP, and DOWN lists, respectively, with a total of four pathways influenced by the
treatment (Table 4).

KEGG pathway analysis in the UP list of SS7 vs. control embryos showed enrich-
ment of pathways associated with glycan biosynthesis (glycosaminoglycan biosynthesis—
chondroitin sulfate/dermatan sulfate) and metabolic pathways, and these pathways com-
prised genes (CHSY1, CSGALNACT2, CTPS1, RDH10, and SPTLC2) that affect main repro-
ductive processes (Table 4). Six pathways, metabolism of xenobiotics by cytochrome P450,
drug metabolism—cytochrome P450, glutathione metabolism, chemical carcinogenesis,
lysosome, and terpenoid backbone biosynthesis, were enriched in the DOWN list of SS7 vs.
control embryos and contained genes (GSTK1, GSTO1, ASAH1, SUMF1, and FDPS) with
key roles in cell functions (Table 5).
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Table 3. Enrichment analysis of KEGG pathways in synchronized–superovulated (SS7) embryos
compared to control embryos.

Pathway ID Pathway Name
Enrichment p-Value *

All Up Down

ssc00532
Glycosaminoglycan
biosynthesis—chondroitin
sulfate/dermatan sulfate

0.002 0.001 -

ssc01100 Metabolic pathways 0.002 0.007 0.078

ssc00980 Metabolism of xenobiotics by
cytochrome P450 0.007 - 0.003

ssc00982 Drug metabolism—cytochrome P450 0.007 - 0.003
ssc00480 Glutathione metabolism 0.009 - 0.003
ssc00600 Sphingolipid metabolism 0.009 0.053 0.088
ssc04142 Lysosome 0.055 - 0.026
ssc00900 Terpenoid backbone biosynthesis 0.066 - 0.042

* Enriched pathways with significant values in each gene list are shown in bold.

Table 4. Enrichment analysis of KEGG pathways in superovulated (SO) embryos compared to
control embryos.

Pathway ID Pathway Name
Enrichment p-Value *

All Up Down

ssc04966 Collecting duct acid secretion 0.028 - 0.024
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Table 4. Cont.

Pathway ID Pathway Name
Enrichment p-Value *

All Up Down

ssc04136 Autophagy—other 0.034 - 0.030
ssc00510 N-Glycan biosynthesis 0.051 - 0.045
ssc04650 Natural killer cell-mediated cytotoxicity 0.102 0.013 -

* Enriched pathways with significant values in each gene list are shown in bold.

Table 5. Enriched (p < 0.05) KEGG pathways in embryos from synchronized–superovulated (SS7)
sows compared with the control embryos.

Pathway ID Pathway Name Pathway Alteration ES * Altered Genes (%) Gene List

ssc00532
Glycosaminoglycan

biosynthesis—chondroitin
sulfate/dermatan sulfate

Up-regulation 8.1 13.3 CHSY1,
CSGALNACT2

ssc01100 Metabolic pathways Up-regulation 4.9 0.6

CHSY1,
CSGALNACT2,
CTPS1, RDH10,

SPTLC2

ssc00980 Metabolism of xenobiotics by
cytochrome P450 Down-regulation 5.9 7.7 GSTK1, GSTO1

ssc00982 Drug metabolism—cytochrome P450 Down-regulation 5.8 7.4 GSTK1, GSTO1
ssc00480 Glutathione metabolism Down-regulation 5.7 6.9 GSTK1, GSTO1
ssc04142 Lysosome Down-regulation 3.6 2.4 ASAH1, SUMF1
ssc00900 Terpenoid backbone biosynthesis Down-regulation 3.2 7.1 FDPS

* ES: enrichment score.

Comparison between SO embryos and control embryos provided only one (natural
killer cell-mediated cytotoxicity) and three (collecting duct acid secretion, autophagy, and
N-glycan biosynthesis) enriched pathways in the UP and DOWN lists, respectively, and
these pathways contained genes (HCST, ATP6V1B1, ATG4C, and MAN1A2) seemingly
unrelated to reproduction (Table 6).

Table 6. Enriched (p < 0.05) KEGG pathways in embryos from superovulated (SO) sows compared
with the control embryos.

Pathway ID Pathway Name Pathway Alteration ES * Altered Genes (%) Gene List

ssc04650 Natural killer cell-mediated cytotoxicity Up-regulation 4.3 1.0 HCST
ssc04966 Collecting duct acid secretion Down-regulation 3.7 3.8 ATP6V1B1
ssc04136 Autophagy—other Down-regulation 3.5 3.1 ATG4C
ssc00510 N-Glycan biosynthesis Down-regulation 3.1 2.0 MAN1A2

* ES: enrichment score.

3.3. Microarray Validation

We selected seven genes to validate the microarray results using RT-qPCR. Three
up-regulated and two down-regulated genes showed comparable significant results with
the PCR method. The other two genes presented the same pattern with both methods
but without significant differences between groups when analyzed by RT-qPCR (Figure 4).
These results support the reliability of the microarray results.



Animals 2023, 13, 1568 10 of 15

Animals 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 
Figure 4. Comparison of microarray and real-time quantitative PCR (RT-qPCR) data of seven dif-
ferentially expressed genes determined by microarray analysis. Data are expressed as fold change 
of gene expression of embryos derived from synchronized–superovulated or superovulated groups 
and control groups. * Differences (p < 0.05) among experimental and control groups as determined 
by RT-qPCR. 

4. Discussion 
To the best of our knowledge, this is the first study investigating the effects of a com-

bined treatment of synchronization and superovulation (SS7) on gene expression of por-
cine day 6 embryos. Our findings suggest that the impact of the treatment on the number 
and fold changes of DEGs in blastocysts was moderate compared to control embryos ob-
tained from weaned sows with natural estrus. 

The gene expression patterns of SO embryos were comparable to those of the control 
embryos with only 36 DEGs between both groups and only 5 of them with a fold change 
greater than 2. The impact of that treatment on the number of altered pathways and the 
proportion of DEGs in each pathway was negligible. Moreover, these DEGs were not as-
sociated with embryonic development or other reproductive processes. These results were 
not unexpected, since several studies have shown that the superovulation treatment uti-
lized in this investigation increased the number of transferable day 6 blastocysts without 
any impact on the reproductive performance of the recipients following the nonsurgical 
ET of those superovulated embryos [9,13]. Therefore, we can assume that superovulation 
of weaned sows is a productive approach to increase the number of transferable embryos, 
without altering their in vivo developmental ability, in the ET programs. 

In contrast, when this superovulation treatment is combined with a previous estrus 
synchronization short treatment, the percentage of day 6 viable embryos is dramatically 
decreased as a result of the substantial rise in the percentages of both immature oocytes 
ovulated and degenerated embryos [13,14]. However, our results suggest that the em-
bryos surviving this combined hormonal treatment present moderate changes in gene ex-
pression when compared to the controls. We identified 85 DEGs, from which only 14 
DEGs had a fold change greater than 2. Nevertheless, this number of DEGs, although low, 
may be related to gross embryological changes. Two facts support this observation. First, 
morphologically degenerative embryos only presented 47 DEGs compared with normal 
embryos [24]; second, although vitrification adversely affects pig embryo quality [25,26] 
and decreases subsequent in vivo embryonic development after ET [27], minor gene ex-
pression changes between vitrified and fresh embryos have been reported [28,29]. 

The KEGG pathway enrichment analysis of DEGs in SS7 embryos revealed that the 
treatment had a moderate impact in terms of the number of pathways that were altered 
and the proportion of DEGs within each pathway. Two pathways, the glycosaminoglycan 

Figure 4. Comparison of microarray and real-time quantitative PCR (RT-qPCR) data of seven
differentially expressed genes determined by microarray analysis. Data are expressed as fold change
of gene expression of embryos derived from synchronized–superovulated or superovulated groups
and control groups. * Differences (p < 0.05) among experimental and control groups as determined
by RT-qPCR.

4. Discussion

To the best of our knowledge, this is the first study investigating the effects of a
combined treatment of synchronization and superovulation (SS7) on gene expression of
porcine day 6 embryos. Our findings suggest that the impact of the treatment on the
number and fold changes of DEGs in blastocysts was moderate compared to control
embryos obtained from weaned sows with natural estrus.

The gene expression patterns of SO embryos were comparable to those of the control
embryos with only 36 DEGs between both groups and only 5 of them with a fold change
greater than 2. The impact of that treatment on the number of altered pathways and the
proportion of DEGs in each pathway was negligible. Moreover, these DEGs were not
associated with embryonic development or other reproductive processes. These results
were not unexpected, since several studies have shown that the superovulation treatment
utilized in this investigation increased the number of transferable day 6 blastocysts without
any impact on the reproductive performance of the recipients following the nonsurgical
ET of those superovulated embryos [9,13]. Therefore, we can assume that superovulation
of weaned sows is a productive approach to increase the number of transferable embryos,
without altering their in vivo developmental ability, in the ET programs.

In contrast, when this superovulation treatment is combined with a previous estrus
synchronization short treatment, the percentage of day 6 viable embryos is dramatically
decreased as a result of the substantial rise in the percentages of both immature oocytes
ovulated and degenerated embryos [13,14]. However, our results suggest that the embryos
surviving this combined hormonal treatment present moderate changes in gene expression
when compared to the controls. We identified 85 DEGs, from which only 14 DEGs had
a fold change greater than 2. Nevertheless, this number of DEGs, although low, may
be related to gross embryological changes. Two facts support this observation. First,
morphologically degenerative embryos only presented 47 DEGs compared with normal
embryos [24]; second, although vitrification adversely affects pig embryo quality [25,26] and
decreases subsequent in vivo embryonic development after ET [27], minor gene expression
changes between vitrified and fresh embryos have been reported [28,29].

The KEGG pathway enrichment analysis of DEGs in SS7 embryos revealed that the
treatment had a moderate impact in terms of the number of pathways that were altered
and the proportion of DEGs within each pathway. Two pathways, the glycosaminoglycan
biosynthesis—chondroitin sulfate/dermatan sulfate pathway and the metabolic pathway,
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were up-regulated. Chondroitin/dermatan sulfate (CS/DS) is a group of glycosaminogly-
cans (GAGs) that are present on the surfaces of almost all cells and within extracellular
matrices. They have a crucial function in multiple biological processes, such as interacting
with diverse growth factors, regulating cell proliferation and differentiation, facilitating cell
adhesion, and contributing to tissue morphogenesis [30,31]. Moreover, early embryonic
cell division in mammals relies on the presence of CS, which is produced through the
activity of glucuronyltransferase-I (GT-I). Knock-out mice lacking this enzyme resulted in
a significant decrease in CS synthesis ultimately causing embryonic lethality before the
eight-cell stage [32].

Interestingly, the levels of GAGs in the extracellular matrix of the endometrium and
myometrium of rabbits and rats are influenced by hormonal balance, increasing under
progestogen administration [33,34]. Considering this information, we hypothesize that the
short progestogen treatment used in our study could be responsible for the enrichment of
the GAG biosynthesis pathway in the SS7 embryos. Two transcripts showed an increase
in activity in that pathway, CHSY1 and CSGALNACT2. Both transcripts, which encode
glycosyltransferases that participate in the biosynthesis of CS, are recognized as significant
regulators in different biological processes. Specifically, CHSY1 is associated with bone
development and digit patterning, while CSGALNACT2 plays a role in pulmonary and
skeletal development during embryogenesis [31,35]. The specific importance of the up-
regulation of these transcripts in the developmental ability of SS7 embryos is uncertain,
but it could be exclusively related to the response of these embryos to the hormonal stress
caused by the synchronization–superovulation treatment. The enrichment of the metabolic
pathway may indicate poor embryo quality. If the “quiet embryo” theory is considered,
which suggests that preimplantation embryo survival is linked to a relatively subdued
metabolism, the up-regulation of this pathway might negatively affect the development and
implantation of SS7 embryos [36]. Gene expression analysis showed that SS7 embryos had
higher levels of metabolism, which, considering previous studies [37], should be associated
with lower embryo survival. Among the up-regulated genes in that pathway, RDH10 and
SPTLC2 have been linked to various reproductive processes. RDH10 is a crucial gene for
the production of retinoic acid (RA) during embryogenesis, which is involved in numerous
biological functions, such as embryo development [38]. Studies in rodents have revealed
that severe abnormalities and lethality at mid-pregnancy can occur when the metabolism
of RA is restricted or interrupted during development [39,40]. However, excessive levels
of RA during crucial developmental stages can lead to malformations or lethality in the
embryo. [41]. Thus, the control of the appropriate quantity of RA available to the embryo
at particular times and in specific tissue locations is crucial [38]. We observed an increase
in RDH10 gene expression in SS7 embryos, which might indicate a reduction in RA levels,
as RDH10 plays a vital role as a control point for providing feedback regulation of RA
synthesis [42].

The gene SPTLC2 is a subunit of the serine palmitoyltransferase (SPT) holoenzyme,
which is essential in sphingolipid metabolism [43]. In mice, the absence of this subunit
leads to the cessation of enzymatic activity of the SPT, which is necessary for normal
embryonic progress [44] because sphingolipids play a vital role as signaling molecules that
govern numerous cellular processes [45,46]. Moreover, it appears that de novo synthesis of
sphingolipids is necessary for successful mouse implantation, as indicated by the increased
expression levels of SPTLC2 at implantation sites [47]. Our study suggests that the up-
regulation of the SPTLC2 transcript in SS7 embryos might be a result of progestogen
treatment used for estrus synchronization, given that progesterone has been shown to
stimulate the expression of SPTLC2 in the mouse uterus [47].

The analysis of KEGG pathways based on down-regulated DEGs in SS7 embryos
indicated that three pathways, the metabolism of xenobiotics by cytochrome P450, drug
metabolism—cytochrome P450, and glutathione metabolism, exhibited reduced expression
levels. Only two genes, GSTK1 and GSTO1, were found to be altered in these pathways.
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The other two down-regulated pathways, the lysosome and terpenoid backbone
biosynthesis pathways, had only three altered genes, ASAH1, SUMF1, and FDPS.

The GSTK1 and GSTO1 genes encode glutathione S-transferase (GST) proteins with im-
portant functions in cellular detoxification. The encoded proteins catalyze the conjugation
of glutathione to hydrophobic substrates, thereby contributing to the elimination of these
compounds from cells and protecting them from oxidative stress [48,49]. Down-regulation
of these genes may impair metabolism, allowing a maladaptive response to oxidative
stress and other toxic stimuli, and negatively impact subsequent embryo development, as
suggested in studies on cryopreserved mouse embryos [50,51].

The lysosome and terpenoid backbone biosynthesis pathways were altered by the
down-regulation of ASAH1, SUMF1, and FDPS genes. The ASAH1 gene encodes acid
ceramidase (AC), an important enzyme implicated in ceramide metabolism. Under normal
circumstances, the levels of ceramide are low. However, in response to various stimuli, its
production at the cell surface increases quickly, causing a reorganization of the membrane
that ultimately leads to apoptosis. AC induces the hydrolysis of ceramide and the produc-
tion of sphingosine-1-phosphate [52], and it is considered fundamental for embryo survival
because it inhibits the default apoptosis pathway [53]. The remaining two genes were not
associated with either embryonic development or implantation.

5. Conclusions

Together, our results show that the number of altered pathways and the number
of DEGs within each pathway in day 6 blastocysts were minimally affected by the SO
treatment. A total of four pathways were disrupted, with just four altered transcripts,
which were not associated with embryo development or other reproductive processes.
These results corroborate that the superovulation of weaned sows is an efficient technique
to enhance the number of transferable embryos in ET programs. After SS7 treatment, the
surviving blastocysts showed moderate gene expression changes in terms of DEGs and fold
changes. A total of seven pathways were disrupted by SS7 treatment, comprising 10 altered
transcripts. Up-regulation of certain pathways, such as the metabolic pathway, may indicate
suboptimal embryo quality, while the down-regulation of the glutathione metabolism
pathway could reduce the response of the embryos to oxidative stress, which would impair
subsequent embryo development. Based on these and earlier results demonstrating a
negative impact of SS7 on fertilization, embryo production, and ovarian and uterine gene
expression, the utilization of SS7 in ET programs is discouraged. These findings are of
great significance for the swine ET industry since they prevent the combined use of two
hormonal treatments (synchronization and superovulation) that function effectively when
applied separately. This, consequently, avoids a reduction in the reproductive potential of
embryo donor sows.
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