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Abstract

The aim of this thesis is to expand on parts of the work of Björn–Björn–
Shanmugalingam [2] and in particular on the construction and properties of
hyperbolic fillings of nonempty bounded metric spaces. In light of [2], we intro-
duce two new parameters λ and ξ to the construction while relaxing a specific
maximal-condition. With these modifications we obtain a slightly more flexible
model that generates a larger family of hyperbolic fillings. We then show that
every hyperbolic filling in this family possess the desired property of being Gro-
mov hyperbolic. Next, we uniformize an arbitrary hyperbolic filling of this type
and show that, under fairly weak conditions, the boundary of the uniformization
is snowflake-equivalent to the completion of the metric space it corresponds to.
Finally, we show that this unifomized hyperbolic filling is a uniform space.

In summary, our construction generates hyperbolic fillings which satisfy the
necessary conditions for it to serve its intended purpose of an analytical tool for
further studies in [2, Chapters 9-13] or similar. As such, it can be regarded as
an improvement to the reference model.
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Nomenclature

N The set of natural numbers {0, 1, 2, ...}

N∗ N\{0}

X Completion of the metric space X (not the closure)

log Refers to the natural logarithm

⊂ Subset, allows equality

⊊ Proper subset

α, τ, λ Parameters that the hyperbolic filling X depends on

ε Additional parameter that the uniformized hyperbolic filling Xε depends on
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Chapter 1

Introduction

As far as this thesis is concerned, a hyperbolic filling is a particular metric graph
with edges considered as unit intervals, constructed from a bounded metric space
of at least two points. While metric graphs are subject to independent studies
by their own merits, a hyperbolic filling of this kind has shown to be a helpful
analytical tool in the study of function spaces on general metric spaces.

There have been many successful attempts at constructing a hyperbolic fill-
ing with desirable properties (see e.g Buyalo–Schroeder [3] or Björn–Björn–
Shanmugalingam [2]). However, with different assumptions on the reference
space and constraints in the method, these models come in varying degree of
flexibility. Fewer assumptions on the reference space make the construction
more general and among the constructions we have seen, [2] appear to have the
least.

We are initially interested in modifying the construction from [2] which is
based on a bounded metric space of at least two points, denoted Z, and is
monitored by a set of parameters. This set of parameters includes – but is
not limited to – the parameters in [2, Chapter 3]. With new conditions unique
to this thesis, we can find a vertex set V from Z, and an edge set E, that
together define a graph (V,E). By recognizing the edges as unit intervals, the
set X := (V,E) equipped with the metric

dX(x, y) = inf
γ

ℓ(γ)

defines a metric space (X, dX), and in particular an infinite metric graph. This
metric graph is a hyperbolic filling and an arbitrary one of many – due to the
freedom in choosing V and E, and the flexibility offered by the parameters, the
construction generates a large family of them. From here, we are interested in
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2 Chapter 1. Introduction

what relevant properties these possess and how our results relate to [2, Chapters
3-5].

Having deduced some structural properties of (X, dX), we show the first of
three main results of this thesis. It is a nonlocal but global property shared with
spaces of constant negative curvature, forcing the sides of geodesic triangles in
(X, dX) to not bend too much outwards.

Theorem 4.6. X is Gromov hyperbolic.

We then uniformize X by equipping it with the uniformized metric

dε(x, y) = inf
γ

∫
γ

ρε ds,

where ρε(x) = e−εdX(x,v0), and ε > 0 is a parameter, which yields the metric
space (X, dε) =: Xε. This changes the structure of X and in particular we show
that diamXε ≤ 2

ε . Moreover, we arrive at the following result.

Proposition 5.4. Fix 0 < ε ≤ logα. Then Z and ∂εX are snowflake-equivalent.

Note that α is one of the parameters that govern the construction of X.
Specifically, it means that the two spaces are homeomorphic and that they are
in the same equivalence class by the equivalence relation ≃ on ∂εX.

Theorem 6.1. Fix 0 < ε ≤ logα. Then Xε is a uniform domain.

Finally, we show that Xε is uniform. In particular, there exists a uniformity
constant A ≥ 1 such that, for every two points x, y ∈ Xε, there is a curve in Xε

joining them with bounds on its length depending on A, d(x, y) and the distance
from the curve to the boundary of Xε.

The layout of the thesis is as follows. In Chapter 2, preliminaries that are
necessary for this thesis are introduced as definitions, remarks on notations and
relevant background results, along with a few examples to illustrate important
concepts. Chapter 3 is dedicated to the construction of the family of hyperbolic
fillings and concludes with a comparison of the method of construction to our
main reference [2]. In Chapter 4 we eventually show the Gromov hyperbolicity
of X. The uniformization of X takes place in Chapter 5, where we also show
that Z is snowflake-equivalent to the boundary of Xε. Chapter 6 is dedicated
to the uniformity of the unifomization of X and concludes with a discussion on
the constraint 0 < ε ≤ logα and why it is necessary for the results of Chapters
5 and 6.



Chapter 2

Preliminaries

In this chapter we outline the preliminaries required for this thesis. Definitions
and results of greater significance to later chapters or which are less known to
the intended audience are introduced with extra care. Note that there do appear
definitions in later chapters which are not included here.

2.1 Set Theory
In this thesis, the subset symbol ⊂ allows equality between sets while ⊊ denotes
the proper subset relation, which is notably different from ⊈. Additionally, we
let N be the set of natural numbers including 0, and N∗ := N\{0}.

Briefly on the relevant set theory, let M be a collection of sets and take A ∈
M. Then A is maximal if A ⊈ A′ for every A′ ∈ M with A ̸= A′. Furthermore,
with M in mind, a special case of Zorn’s lemma states the following:

Lemma 2.1 (Zorn’s Lemma). Consider the partial order ⊂ on M. If every
totally ordered subset of M has an upper bound in M, then there exists at least
one maximal element of M.

2.2 Metric Spaces
Consider a set X. By first defining what a metric is, we will soon explore what
it means for X to be a metric space and what properties (of interest to this
thesis) it can possess.
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4 Chapter 2. Preliminaries

Definition 2.2 (Metric). A function d : X ×X −→ [0,∞) is a metric on X if

(i) d(x, y) = 0 if and only if x = y,

(ii) (Symmetry) d(x, y) = d(y, x),

(iii) (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y),

for all x, y, z ∈ X.

Definition 2.3 (Metric Space). Let d be a metric on X, then the ordered pair
(X, d) is a metric space.

By definition, two distinct metrics defined on the same set generate two
different metric spaces. Depending on the specifics of the metrics, these spaces
may not share certain properties when the properties rely on the metric.

For the remainder of this chapter we let (X, d) be a metric space with respect
to the metric d, and we let E be a subset of X. Denoting a metric space by the
set it is generated from is customary whenever the metric is unambiguous, so
we will refer to (X, d) as X.

We denote the open ball in X centred at x ∈ X and with radius r by
B(x, r). It can be scaled by some a ∈ R to obtain a radius of ar, in which case
we let aB(x, r) denote the scaled ball B(x, ar). We use the notation BX in later
chapters to specify the space to consider the ball in, so for instance

BX(x, r) = {y ∈ X : d(y, x) < r}.

E◦ denotes the interior of E and is the set of all inner points of the set, where
x ∈ E is an inner point of E if there exists an r > 0 such that B(x, r) ⊂ E. The
closure of E with respect to X is the union of itself and all its limit points in
X, where x ∈ X is a limit point to E if for every B(x, r), r > 0, the intersection
B(x, r) ∩ E contains some point other than x. E is open in X if and only if
E = E◦, and is closed in X if and only if E is equal to its closure. However, E
is both open and closed in itself since on the basis of itself we do not consider
points that are not in E. This is the general perspective on metric spaces, so
X is both open and closed and as such, the closure of X is itself.

X is disconnected if there are two nonempty (relatively) open subsets A and
A′ of X such that A ∪ A′ = X while A ∩ A′ = ∅. X is connected if it is not
disconnected. Continuing on with open and closed sets, X is connected if and
only if the empty set and X itself are the only two subsets of X that both are
open and closed in X. We discuss connectedness further below.

The diameter of X, denoted diamX, is given by supx,y∈X d(x, y). X is
bounded if diamX is finite, otherwise it is unbounded. X is totally bounded if
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for every r > 0, there exists a finite collection of open balls

{B(xi, r) : xi ∈ X, i = 1, 2, . . . N}

so that X =
⋃N

i=1 B(xi, r). Clearly X is bounded whenever it is totally bounded.
A sequence {xn}n∈N in X is a Cauchy sequence if for every ε > 0 there exists

an N ∈ N such that d(xm, xn) < ε whenever m,n ≥ N . Since the constant
sequence {xn}n∈N with xn = x ∈ X for all n ∈ N is a Cauchy sequence, there
is at least one Cauchy sequence in X converging to x for each x ∈ X. The
converse is not necessarily true.

Example 2.4. Suppose X is the set of rationals, denoted Q, and consider the
Cauchy sequence {xn}n∈N where

xn =

(
1 +

1

n

)n

.

Then xn is rational for all n ∈ N so the sequence is in X, but xn → e which is
irrational so the sequence does not converge in X = Q.

If every Cauchy sequence in X converges in X then the space is complete.
If X is not complete, we can construct a complete set X ⊃ X such that X is a
dense subset of X. Then X is called the completion of X and ∂X := X\X is
the boundary of X in its completion. The subset E is dense in X if the closure
of E with respect to X is X.

Note that while this notation for completeness is otherwise common for de-
noting the closure, we will only use it for completeness in this thesis. Comparing
the two, we see that the closure of Q with respect to itself is still Q while the
completion is not, evident from Example 2.4. In fact, Q = R.

In the following we construct the completion of a metric space.

Example 2.5. Consider the metric space X = (X, d) and take any two Cauchy
sequences {xj}j∈N and {yj}j∈N in X with limits x and y respectively, not nec-
essarily in X. Set d(x, y) := limj→∞ d(xj , yj) and let {xj}n∈N ∼ {yj}n∈N when-
ever d(x, y) = 0. Then ∼ defines an equivalence relation (a reflexive, symmetric
and transitive relation). Now let C be the set of all equivalence classes induced
by this equivalence relation on Cauchy sequences in X. We identify x ∈ X with
the equivalence class {xn}n∈N, where xn = x for all n ∈ N. It follows that C is
complete and that C ⊃ X. Moreover, by the construction of C, every x ∈ C is a
limit point of X with respect to C so the closure of X is C. Thus X is dense in
C and as such, we have managed to construct the completion of X with X = C.

In the example we do not make any assumptions on the completeness of
X. In fact, if X is already complete then X = X by the construction of X.
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Furthermore, the metric d on X is induced by the metric d on X and is the
restriction of d to X.

X is a compact space if for every collection of open sets {Oµ : µ ∈ Γ} with
X ⊂

⋃
µ∈Γ Oµ there exists a finite index set Γ2 ⊂ Γ such that X ⊂

⋃
µ∈Γ2

Oµ.
The collection {Oµ : µ ∈ Γ} is an open cover of X and the subcollection {Oµ :
µ ∈ Γ2} is a finite subcover of the open cover. It follows that X is totally
bounded whenever it is compact. In the case of subsets of Rn, the Heine–Borel
theorem serves as an excellent analytical tool on the topic of compactness:

Theorem 2.6 (Heine–Borel theorem). Let X ⊂ Rn, then X is compact if and
only if X is closed and bounded.

For general metric spaces it is still the case that a compact metric space is
closed and bounded, but the converse does not hold. A generalization of the
Heine-Borel Theorem states that a metric space is compact if and only if it
is complete and totally bounded. X is locally compact if every x ∈ X has a
compact neighbourhood.

The interested reader is primarily directed to Erickson-Andersson–Wiman
[4, Chapters 2-4] but also Abbott [1, Chapters 3.2-3.5, 8.2] for more material on
the topic of metric spaces as well as proofs of the claims and theorems above.

2.3 Curves In a Metric Space X

A curve γ in X is a continuous mapping from an interval J ⊂ R into X. In
this thesis we almost exclusively work with J = [a, b] where a, b ∈ R, with the
exception of geodesic rays (see below). Thus assuming J = [a, b], the length of
γ is given by

ℓ(γ) := sup
P

n∑
j=1

d
(
γ(xj), γ(xj−1)

)
where the supremum is taken over all partitions

P = {xj : j = 0, 1, 2, . . . n, a ≤ xj ≤ b},

with a = x0 < x1 < · · · < xn = b, of [a, b]. In later chapters when multiple
metrics have been defined, we will index the length of a curve with the metric
space where the metric that the length is with respect to resides – e.g ℓX(γ).
If ℓ(γ) is finite then γ is rectifiable, in which case it can be parameterized by
arc length ds so that J = [0, ℓ(γ)] and ℓ(γ|[s,t]) = t − s for any two s, t ∈ J
with t ≥ s. Given a function f on X and an arc length parameterized curve
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γ : [a, b] → X we define ∫
γ

f ds =

∫ b

a

f
(
γ(t)

)
dt

as the curve integral of f along γ. Note that if f is continuous then so is f
(
γ(t)

)
.

Since most results in this thesis involves curves and rely on them being arc
length parameterized, we will from here on always assume that a given curve
is arc length parameterized. Färm [5, Chapter 3] expands much further and in
more detail on curves and their arc length parameterization. To some extent so
does Haefliger–Bridson [6, Part 1, pp. 12-14].

A geodesic γ : [0, ℓ(γ)] → X in X = (X, d) from x to y is a length minimizing
curve with γ(0) = x and γ(ℓ(γ)) = y such that d(γ(t), γ(t′)) = |t − t′| for all
t, t′ ∈ J . In particular, d(x, y) = ℓ(γ). Hence, if there does not exist a curve γ
in X with endpoints x and y such that ℓ(γ) = d(x, y) then there is no geodesic
in X joining the points. A geodesic ray is a curve γ : [0,∞) −→ X with infinite
length such that the restriction γ|[0,t] of γ to [0, t] is a geodesic for each t > 0.

If the metric d(x, y) := infγ ℓ(γ), where the infimum is taken over all rectifi-
able curves γ with endpoints x and y, then d is a length metric and the metric
space is a length space. Moreover, X itself is geodesic if for every x, y ∈ X,
there is a curve γ with endpoints x and y such that ℓ(γ) = d(x, y). Thus, X is
geodesic if and only if there is at least one geodesic between every pair of points
in X. Furthermore, X is a length space whenever it is geodesic, and conversely
the Hopf-Rinow theorem states that a length space X is geodesic whenever it is
complete and locally compact. Geodesics and geodesic metric spaces are treated
in-depth in [6, Part 1, pp. 2-12, 32-39].

X is pathconnected if there is a curve in X, not necessarily rectifiable, be-
tween any two points in X. It can be shown that this implies connectedness,
but the converse is not true – see e.g [4, Example 6.14] for a counterexample.

When speaking of distance between a point x ∈ X and a set E ⊂ X the
ordinary metric is insufficient alone, so we introduce the distance function

dist(x,E) := inf
y∈E

d(x, y)

which gives the distance in X between x and the point in E closest to x (which
exists whenever E is compact). For instance, suppose that E is the image of a
curve γ : J → X. Then E = {γ(t) : t ∈ J } so dist(x, γ) := dist(x,E) gives the
distance in X from x to the point on the curve closest to x. By y ∈ γ we mean
that there is some t ∈ J such that γ(t) = y, thus e.g. dist(x, γ) = infy∈γ d(x, y).

Definition 2.7 (Roughly Starlike). An unbounded metric space X is roughly
starlike if there are x0 ∈ X and M > 0 such that, for any x ∈ X, there is a
geodesic ray γ in X starting from x0 with dist(x, γ) ≤ M .
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Example 2.8. Consider an equilateral triangle in R2 with unit intervals as sides
and one of its corners positioned at the origin, denoted x0. We now take one
of the edges that are attached to x0 and extend it indefinitely in the direction
away from the point, see Figure 2.1. Let X be the set given by this altered
triangle and equip it with the metric

d(x, y) := inf
γ

ℓ(γ),

where the infimum is taken over all rectifiable curves γ in X joining x, y ∈ X.
Then X = (X, d) defines a geodesic metric space which contains a single geodesic
ray (the extended edge). Take the corner which does not lie on the extended
edge and call it x1. Clearly supx∈X dist(x, γ) = dist(x1, γ) = 1 so for any x ∈ X,
dist(x, γ) ≤ 1. As such, X is roughly starlike with constant M = 1.

x0

x1

Figure 2.1: Equilateral triangle with extended side.

2.4 Hyperbolic Geometry

Definition 2.9 (Geodesic Triangle). A geodesic triangle ∆(x, y, z) is a tri-
angle in a metric space X with points x, y, z ∈ X as vertices and geodesics
[x, y], [y, z] and [z, x] joining the points as sides.

x

y z

(a)

x

y z

(b)

Figure 2.2: Examples of geodesic triangles.
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Definition 2.10 (Slim Triangles). A geodesic triangle ∆(x, y, z) in a metric
space, with E1 := [x, y], E2 := [y, z] and E3 := [z, x], is δ-slim if there exists a
δ ≥ 0 such that for every i, j = 1, 2, 3 with i ̸= j,

dist(w,Ei ∪ Ej) ≤ δ for each w ∈ Ek with k ̸= i, j.

Definition 2.11 (Gromov Hyperbolicity). A complete unbounded geodesic
metric space X is Gromov hyperbolic if there is a constant δ ≥ 0 for which
every geodesic triangle is δ-slim.

Gromov hyperbolicity of a metric space is a global property reliant on the
metric and does not prevent local positive curvature, whereas general hyperbolic
metric spaces have constant negative curvature as they are spaces of hyperbolic
geometry. The hyperbolic plane is a common example of a space of hyperbolic
geometry and it has curvature −1. The Poincaré disc is a model of the hyper-
bolic plane, representing it as a unit disc where hyperbolic straight lines appear
as arcs on the disc orthogonal to the boundary at the points of intersection, or
as diameters of the disc. If the Euclidean distance from a point to the origin is
r then the hyperbolic distance on the Poincaré model is 2arctanh r.

Figure 2.3: The Poincaré disc model.

Due to the negative curvature, the angle sum of triangles in hyperbolic spaces
is less than π radians. Since triangle (a) in Figure 2.2 clearly has an angle sum
of less than π radians we can imagine it on the Poincaré disc corresponding to
a triangle in the hyperbolic plane. Triangle (b) however does not correspond
to a triangle of such a space, but it is still possible for it to be contained in
a Gromov hyperbolic space assuming the triangle is small enough. Cederberg
[7, Chapters 2.4-2.8] provides a gentle introduction to non-Euclidean geometry
and in particular hyperbolic geometry. Haefliger–Bridson [6, Part 1, Chapters
2 and 6; Part 2; Part 3] takes a more rigorous approach to hyperbolic spaces
and treats the notion of negative curvature and metric spaces of such, before
introducing and exploring Gromov hyperbolicity of metric spaces.
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There are several different but equivalent ways of defining Gromov hyper-
bolicity of a metric space. Another relevant definition makes use of the Gromov
product as follows.

Definition 2.12 (Gromov Product). Let X be a metric space and consider
three points p, q, s ∈ X. Then

(p|q)s =
1

2
[dX(s, p) + dX(s, q)− dX(p, q)]

is the Gromov product of p and r with respect to s.

Definition 2.13 ((δ′)-hyperbolicity). Let δ′ > 0. A metric space X is (δ′)-
hyperbolic if

(p|r)s ≥ min{(p|q)s, (q|r)s} − δ′

for all p, q, r, s ∈ X.

Note that the constants from each of the definitions of hyperbolicity are not
necessarily equal to one another.

The equivalence between the definitions is elaborated on in Theorem 4.5. In
the same chapter yet another equivalent definition is mentioned. The reason
we recognize all these different definitions instead of deciding on one is due to
the unique advantages each of them possess – the first is intuitive and easy to
illustrate while the two latter are evidently more suitable analytically.

2.5 Topology and Uniformity
Definition 2.14 (Homeomorphism). Let Y1 and Y2 be two metric spaces. A
function Ψ : Y1 −→ Y2 is a homeomorphism if

(i) Ψ is a bijection,

(ii) Ψ is continuous,

(iii) The inverse function Ψ−1 is continuous.

Whenever a homeomorphism Ψ : Y1 −→ Y2 exists, Y1 and Y2 are homeomor-
phic, in which case they share the same topological properties; connectedness and
compactness are such properties, while boundedness and completeness are not.
To confirm the validity of the last claim, consider the function h : (0, 1] → [1,∞)
given by h(x) = 1

x . It is continuous, is a bijection and has a continuous inverse,
so it is a homeomorphism. However, (0, 1] is bounded and incomplete while
[1,∞) is unbounded and complete.
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Definition 2.15 (Comparable). Two functions f : F1 → F2 and g : G1 → G2

are comparable, denoted f ≃ g, if there are comparison constants C,D > 0 such
that

f(x) ≤ Cg(y) and g(y) ≤ Df(x),

for all x ∈ F1 and y ∈ G1, where C and D are independent of x and y.

We will use this relation many times throughout the thesis and whenever
two comparison constants are mentioned without explicit reference to any in-
equalities, we let the order that they are mentioned determine which one of C
and D they correspond to (first to C, second to D).

Definition 2.16 (Snowflake-equivalence). Two metric spaces X and Z are
snowflake-equivalent if there is a homeomorphism Ψ : Z −→ X such that for
every z, y ∈ Z,

dX(Ψ(z),Ψ(y)) ≃ dZ(z, y)
σ with σ > 0

and d(z, y) := dZ(z, y)
σ defines a metric.

Note that d(z, y) := dZ(z, y)
σ always defines a metric whenever σ ≤ 1 but

not necessarily otherwise.

Definition 2.17 (biLipschitz equivalent). Two metric spaces X and Z are
biLipschitz equivalent if there is a bijection Ψ : Z −→ X such that for every
z, y ∈ Z,

dX(Ψ(z),Ψ(y)) ≃ dZ(z, y)

with the same comparison constants both ways.

Definition 2.18 (Uniform Domain). A nonempty open subset Ω ⊊ X of a
metric space is an A-uniform domain, with A ≥ 1, if for every pair x, y ∈ Ω
there is a rectifiable arc length parameterized curve γ : [0, ℓ(γ)] −→ Ω with
γ(0) = x and γ(ℓ(γ)) = y such that

(i) (Quasiconvex) ℓ(γ) ≤ Ad(x, y),

(ii) (Twisted cone)

dist(γ(t), X\Ω) ≥ 1

A
min{t, ℓ(γ)− t} for 0 ≤ t ≤ ℓ(γ).

The curve γ is an A-uniform curve and a noncomplete metric space (Ω, d) is
A-uniform if it is an A-uniform domain in its completion Ω, in which case we
may simply call it uniform as well.





Chapter 3

Constructing a Hyperbolic
Filling

In this chapter we are constructing a hyperbolic filling of a bounded metric
space Z = (Z, d) containing at least two points. First fix parameters α > 1,
ξ > 0, λ ≥ 1, τ ≥ 1 and ζ = max{λ, τ} > 1. By scaling with some factor k > 0
so that 0 < k diamZ < 1 we can assume 0 < diamZ < 1. Now, take z0 ∈ Z
and set A0 = {z0}. For each n ∈ N∗, choose a set An ⊃ An−1 such that

BZ(x, ξα
−n) ∩BZ(y, ξα

−n) = ∅ (3.1)

for any two points x, y ∈ An with x ̸= y, and

Z =
⋃

x∈An

BZ(x, α
−n). (3.2)

Thus if Z is connected then for every n ∈ N∗, 2ξα−n ≤ dZ(x, y) ≤ diamZ for all
x, y ∈ An with x ̸= y. If Z is disconnected then there can be exceptions where
two points in An for one or multiple n ∈ N∗ are separated by less than 2ξα−n.
In either case, x and y are always separated by at least ξα−n. Furthermore,
depending on Z, it can be possible to choose An uniquely for each n ∈ N∗, or it
may be necessary to have An = A1 for all n ∈ N∗.

Example 3.1. Consider the sets Z1 = (0, 1) and Z2 = {0, 1
2} equipped with

the metric d(x, y) = |x − y|. For the metric space Z1 there are many ways of
choosing An for each n ∈ N∗, but with Z2 we either have A0 = {0} or A0 = { 1

2},
and then necessarily An = Z for all n ∈ N∗.

Fagrell, 2023. 13
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While we allow ξ > 0 it is possible that there is a specific set of parameters
with ξ > 1

2 for which we cannot choose An for some n ∈ N∗ such that both (3.1)
and (3.2) are satisfied. On the contrary, for any set of parameters with ξ ≤ 1

2
we can always find such a subset of Z for each n ∈ N∗. We discuss this further
in Examples 3.2 and 3.3 below.

Next we define the vertex set V =
⋃∞

n=0 Vn, where Vn = {(x, n) : x ∈ An}. If
m ≥ n then x ∈ Am whenever x ∈ An so if x /∈ Aj , j = 0, 1, ..., n−1, but x ∈ An

then it is the first coordinate for points (x,m) ∈ Vm ⊂ V for every m ≥ n and
not for any other point in V . We let two distinct vertices (x, n), (y,m) ∈ V be
neighbours if and only if they satisfy the neighbour conditions

(i) |n−m| ≤ 1

(ii)

τBZ(x, α
−n) ∩ τBZ(y, α

−m) ̸=∅ if m = n, (3.3)

λBZ(x, α
−n) ∩ λBZ(y, α

−m) ̸=∅ if m = n± 1, (3.4)

in which case we denote their relation by (x, n) ∼ (y,m). Along with the
vertex set we introduce an accompanying edge set E, which contains edges
that correspond to the neighbour relations satisfying the above conditions. We
consider these edges to be unit intervals. Finally we let the graph X := (V,E)
be a hyperbolic filling of Z and recognize it as a metric space equipped with
the metric dX(x, y) = infγ ℓ(γ), where the infimum is taken over all rectifiable
curves γ in X between x, y ∈ X. As such, X is a metric graph. We call a
rectifiable curve in X with vertices as endpoints, or a geodesic ray starting from
a vertex, a path. Due to the similarities between curves and paths the two terms
are used somewhat interchangeably throughout the thesis but with the subtle
difference that the term path emphasizes the structure of the curve from the
perspective of a graph – a connected set of vertices and edges.

A vertex (x, n) ∈ V is a parent of (y,m) ∈ V if (x, n) ∼ (y,m) and n = m−1,
in which case (y,m) is a child of (x, n). Every vertex has at least one child since
(x, n) ∼ (x, n+1) for any (x, n) ∈ V as per (3.4). We call (z0, 0) the root of the
graph as it is the only vertex with no parent. An edge that is connecting a child
and parent is said to be vertical, otherwise horizontal. As we may already take
note of, greater values of τ and λ result in more neighbour relations following
the larger radii of the balls in (3.3) and (3.4). In particular, for a fixed τ we get
more vertical edges by increasing λ, while the converse yields more horizontal
edges.

The construction of a hyperbolic filling of Z is now complete and we conclude
this chapter with a comparison of the method and parameters to our main
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reference Björn–Björn–Shanmugalingam [2]. The construction of An, n ∈ N,
in [2] is the special case of the somewhat more flexible construction treated in
this thesis, where ξ = 1

2 and requirement (3.2) is substituted for a maximal-
condition:

Given some n ∈ N∗, assume the set An−1 is defined and consider the collec-
tion Mn of α−n-separated subsets (d(x, y) ≥ α−n for every point x and y in the
set with x ̸= y) of Z, each of which contains An−1. (Mn,⊂) is a partially ordered
set. Let S be a totally ordered subset of Mn, then the union of the elements in
S is an upper bound to S contained in Z. By Zorn’s lemma, there is at least
one maximal element An ∈ Mn. Thus, we can recursively choose a maximal
α−n-separated set An for each n ∈ N such that An ⊂ Am whenever m ≥ n ≥ 0.
Since An is maximal, there is no z ∈ Z satisfying z /∈ BZ(x, α

−n)∩BZ(y, α
−n)

for any x, y ∈ An, so by construction Z =
⋃

x∈Z BZ(x, α
−n). Notice that the

maximal condition reduces the possible choices of An for each n ∈ N with re-
spect to A0 = {z0}. No such condition is forced on our construction and so we
allow a wider range of hyperbolic fillings of Z for every set of fixed parameters
and root.

Comparing the neighbour conditions, [2, Equation (3.2), (3.3)] treats the
special case of (3.3) and (3.4) where λ = 1 and τ > 1. As [2, Example 8.8]
has shown, it is possible by their construction to find a “hyperbolic” filling that
is not Gromov hyperbolic when λ = τ = 1, but as is evident from Chapter
4 and in particular Lemma 4.3 with Theorem 4.6, this issue does not concern
our construction as it takes the necessary precaution of forcing λ > 1 through
ζ = max{λ, τ} > 1. However, in the case that λ = 1, we require τ > 1.

Regarding α it has the same purpose here as in [2] with the constraint α > 1
being obvious. As for the constraint (or lack thereof) set on ξ in this thesis, the
following two examples illustrate the comparative freedom we have in choosing
ξ depending on the connectedness of Z.

Example 3.2. Let Z = { x
10

: x = 0, 1, . . . , 5} where diamZ = 1
2 and set

A0 = {0} and An = Z for all n ∈ N∗. Then clearly (3.2) is satisfied for any
α > 1, and An contains An−1 for each n ∈ N∗. Set α = 10, then ξα−n < 1

10
for every n ∈ N∗ and any ξ < 1, thus satisfying (3.1) whenever ξ < 1 since
infx,y∈Z d(x, y) = 1

10 whenever x ̸= y. As such, the set {An}n∈N can generate a
well-posed hyperbolic filling (by our standards) for choices of ξ greater than 1

2 .
In fact, we can allow any ξ < 10k, k ∈ N, by setting α = 10k+1.

Since ξ is fixed to 1
2 in [2] it follows by the similarities of our constructions

that any set of parameters with ξ ≤ 1
2 yields a satisfactory hyperbolic filling.

With Example 3.2 we have seen cases where much greater choices of ξ are
allowed, but the following shows that this is an exception.
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Example 3.3. Let Z be a connected metric space and suppose A0 has been
chosen. For A1 ⊃ A0 to satisfy (3.1) it is necessary that we choose A1 so that
dZ(x, y) ≥ ξ 1

α for any two x, y ∈ A1 with x ̸= y. By (3.2) it is also necessary
that dZ(x, y) < 2

α whenever x and y are adjacent in A1. As such, we need
ξ 1
α ≤ dZ(x, y) < 2

α for adjacent x and y in A1, but this can only happen if
ξ < 2.

A greater value of ξ yields larger radii of the balls in (3.1), which results in
fewer points in An for each n ∈ N and therefore fewer vertices in X.



Chapter 4

Properties of The Hyperbolic
Filling

For the remainder of this thesis we let Z be a metric space such that 0 <
diamZ < 1 and X be an arbitrary hyperbolic filling of Z with fixed parame-
ters and root z0 in accordance with the construction in Chapter 3. Recall that
the metric we equipped X with is dX(x, y) = infγ ℓ(γ).

In this chapter we take a closer look at the properties of X by ultimately showing
that it is Gromov hyperbolic. To begin with, consider the mapping π : V −→ N
defined by π((x, n)) = n and set v0 := (z0, 0) as the root of the metric graph X.

Lemma 4.1. For every v ∈ V there exists a geodesic γ between v and v0
corresponding to a path of only vertical edges such that dX(v, v0) = ℓ(γ) = π(v).
Moreover, X is connected.

Proof. We begin by proving the first claim. If v = v0 then dX(v, v0) =
dX(v0, v0) = 0 and π(v0) = π(z0, 0) = 0, so suppose v = (x, n) ∈ V with
x ∈ An, n ∈ N, such that v ̸= v0. By construction,

⋃
z∈Aj

BZ(z, α
−j) covers

Z for each j ∈ N, so there exists a sequence {xj}n−1
j=0 with xj ∈ Aj such that

x ∈ BZ(xj , α
−j) for j = 0, 1, . . . , n− 1. Hence for each such j ̸= 0,

x ∈ BZ(xj−1, α
−(j−1)) ∩BZ(xj , α

−j)

and therefore

λBZ(xj−1, α
−(j−1)) ∩ λBZ(xj , α

−j) ̸= ∅.

Fagrell, 2023. 17
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Set vj = (xj , j) ∈ V . By the neighbour condition (3.4) it follows that
v0 ∼ v1 ∼ · · · ∼ vn−1, which defines a path of vertical edges from v0 to vn−1 of
length n− 1. But

x ∈ BZ(xn−1, α
−(n−1)) ∩BZ(x, α

−n)

so there is a vertical edge from vn−1 to v as well. Thus, dX(v, v0) ≤ n. As all
edges in this path from v0 to v are vertical and necessary to reach v, it is the
shortest possible path and thus defines a geodesic in X. By definition of dX we
arrive at dX(v, v0) = infγ ℓ(γ) = n. Since π(v) = π((x, n)) = n we finally get
dX(v, v0) = π(v).

It now follows from the above that, since there is a geodesic from v0 to
any v ∈ V , there is a path between any two vertices in V passing through
v0. Therefore, V is connected as a graph and X is pathconnected and thus
connected as a metric space.

While the following corollary is interesting in itself as it tells us more about
the structure of the hyperbolic filling, it is also relevant for further studies on
X in the upcoming chapters.

Corollary 4.2.

(a) X is a geodesic space.

(b) For every v ∈ V , there is a geodesic ray starting at v0 and containing v.

(c) Every geodesic ray starting at v0 consists only of vertical edges.

(d) Any geodesic from any x ∈ X to the root v0 contains at most a half of a
horizontal edge.

(e) X is roughly starlike with M = 1
2 .

Proof.

(a) Take x, y ∈ X with x ̸= y, we want to show that there exists a shortest
curve γ in X so that ℓ(γ) = dX(x, y). Since edges in X are unit intervals
it is clear that there exists a shortest curve from any point on an edge
to any of its vertices, so it will suffice to show the existence of a shortest
curve joining x and y whenever they are vertices. Let D be the set of the
lengths of every curve in X with endpoints x and y. By Lemma 4.1 we
know that D is nonempty and since dX(x, y) ∈ N∗ whenever x, y ∈ V it
follows that D ⊂ N∗. But then there is a minimal element of D, so there
is a shortest curve in X joining x and y.
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(b) Let v ∈ V be fixed. From Lemma 4.1 we know there is a geodesic γ from
v0 to v, so by construction of X a curve from v0 to any w ∈ γ along γ
is also a geodesic. Since every vertex in V has at least one child we can
easily extend γ indefinitely so that the curve along γ from v to any w ∈ γ
that is further away from v0 than v is a geodesic. Thus, γ is a geodesic
ray.

(c) We will show the contrapositive of the statement. Take a ray γ in X
and suppose it contains a horizontal edge between vertices v := (x, n) and
w := (y, n). Then ℓ(γ|[0,t]) ≥ n for t such that γ(t) = v, so ℓ(γ|[0,t+1]) ≥
n+ 1 where γ(t+ 1) = w. By Lemma 4.1 we have dX(v0, w) = π(w) = n
and so γ|[0,w] is not geodesic and thus γ is not a geodesic ray.

(d) If x ∈ V then there are no horizontal edges in any geodesic from x to v0
according to (b) and (c). Similarly, if x is on a vertical edge (recall that
we consider edges to be unit intervals) then any geodesic from x to v0 is
the extension of a geodesic from v0 to the upper vertex of the vertical edge
that x in on, together with the part of the edge that is between x and the
vertex. There are no horizontal edges in such a geodesic. Suppose instead
that x is on a horizontal edge, then x is between two vertices which are
on equal distance from v0. Therefore, any geodesic from x to v0 is the
extension of a geodesic from v0 to the vertex closest to x together with
the part of the horizontal edge that is between x and the vertex. Thus, for
any x ∈ X, any geodesic from x to v0 contains at most half a horizontal
edge.

(e) It follows from (b), (c) and (d) that, for any x ∈ X, there is a geodesic
ray γ in X starting from the root v0 with dist(x, γ) ≤ 1

2 . By definition,
X is roughly starlike with M = 1

2 .

Lemma 4.3. Let v = (z, n) and w = (y,m) be two vertices in X. Then

α−(v|w)v0 ≃ dZ(z, y) + α−n + α−m

with comparison constants αl+2 and 4ζα
α−1 , where l is the smallest nonnegative

integer such that α−l ≤ ζ − 1.

Proof. Without loss of generality, assume n ≤ m. If z = y then there are m−n
vertical edges between v and w so dX(v, w) = infγ ℓ(γ) = m−n, which yields the
Gromov product (v|w)v0 = 1

2 (π2(v)+π2(w)−(m−n)) = 1
2 (n+m−(m−n)) = n.

Moreover, dZ(z, y) = 0 and α−m ≤ α−n. Thus,

α−(v|w)v0 = α−n ≤ dZ(z, y) + α−n + α−m
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and

dZ(z, y) + α−n + α−m ≤ α−n + α−n = 2α−(v|w)v0

so α−(v|w)v0 ≃ dZ(z, y) + α−n + α−m with comparison constants 1 and 2, re-
spectively.

Now suppose that z ̸= y and let w0 ∼ w1 ∼ · · · ∼ wk with wi = (yi, ni), i =
0, 1, . . . , k, be a geodesic in X between v = w0 and w = wk. Then dX(v, w) = k,
so

(v|w)v0 =
1

2
(dX(v, v0) + dX(w, v0)− dX(v, w)) =

1

2
(n+m− k).

Recall that ζ = max{λ, τ}. It follows from the neighbour conditions that

ζBZ(yi, α
−ni) ∩ ζBZ(yi+1, α

−ni+1) ̸= ∅ i = 0, 1, . . . , k − 1,

so
dZ(yi, yi+1) < ζ(α−ni + α−ni+1)

and thus by the triangle inequality

dZ(z, y) = dZ(y0, yk) ≤
k−1∑
i=0

dZ(yi, yi+1) <

k−1∑
i=0

ζ(α−ni + α−ni+1). (4.1)

Since n = n0 and m = nk, and therefore α−n < ζα−n0 and α−m < ζα−nk ,
we then get

dZ(z, y) + α−n + α−m < α−n + α−m +

k−1∑
i=0

ζ(α−ni + α−ni+1)

= α−m +

k−1∑
i=0

ζα−ni + α−n +

k∑
i=1

ζα−ni

< 2ζ

k∑
i=0

α−ni

= 2ζ

N−1∑
i=0

α−ni +

k∑
j=N

α−nj



for every N = 0, 1, . . . , k, k + 1 with
∑N−1

i=0 α−ni and
∑k

j=N α−nj empty when
N = 0 and N = k + 1 respectively. We have that
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k∑
j=N

α−nj = α−nN + α−nN+1 + · · ·+ α−nk−1 + α−nk =

k−N∑
j=0

α−nk−j

so with ni ≥ n0 − i = n− i and nk−j ≥ nk − j = m− j it follows that

2ζ

N−1∑
i=0

α−ni +

k∑
j=N

α−nj

 ≤ 2ζ

N−1∑
i=0

α−nαi +

k−N∑
j=0

α−mαj


= 2ζ

(
α−nα

N − 1

α− 1
+ α−mαk−N+1 − 1

α− 1

)

<
2ζ

α− 1

(
αN−n + αk−N−m+1

)
≤ 2ζ

α− 1

(
α

1
2 (k−m+n)+1−n + αk− 1

2 (k−m+n)−m+1
)

=
2ζ

α− 1

(
α

1
2 (k−m−n)+1 + α

1
2 (k−m−n)+1

)
=

4ζα

α− 1
α−(v|w)v0

whenever 1
2 (k−m+n) ≤ N ≤ 1

2 (k−m+n)+1, which shows that dZ(z, y)+α−n+

α−m ≲ α−(v|w)v0 with comparison constant 4ζα
α−1 . The estimations 1

2 (k−m+n) ≤
k + 1 and 1

2 (k − m + n) + 1 ≥ 0 shows that we can indeed choose such an N
with N ∈ {0, 1, . . . , k, k + 1}.

Next we show α−(v|w)v0 ≲ dZ(z, y) + α−n + α−m. By Lemma 4.1 there are
geodesics

v0 ∼ v1 ∼ · · · ∼ vn and w0 ∼ w1 ∼ · · · ∼ wm (4.2)

in X from the root v0 = w0 to vn = (z, n) and wm = (y,m) respectively, where
vj := (zj , j) and wi := (yi, i). By construction,

dZ(z, zj) < α−j and dZ(y, yi) < α−i

for each j = 0, 1 . . . , n and i = 0, 1 . . . ,m respectively. Note that since (z, n) ∼
(z, n+ 1) ∼ . . . there exist zj ∈ Aj with dX(z, zj) < α−j (e.g zj = z) such that
(zj , j) ∼ (zj+1, j + 1) for j ≥ n as well. The same applies to the other path.

Let k be the smallest nonnegative integer such that and α−k−1 < dZ(z, y).
Set k0 := min{k − l, n}, where l is the smallest nonnegative integer such that
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α−l ≤ ζ − 1, and suppose that k0 ≥ 0 to begin with. Then αk0−k ≤ α−l ≤ ζ − 1
from which it follows that

dZ(z, yk0
) ≤ dZ(z, y) + dZ(y, yk0

)

<α−k + α−k0 = α−k0

(
αk0−k + 1

)
≤ ζα−k0 ,

so
dZ(z, yk0

) < ζα−k0 . (4.3)

If ζ = τ then dZ(z, yk0
) < τα−k0 so z ∈ τBZ(yk0

, α−k0). Moreover, z ∈
τBZ(zk0

, α−k0) since dZ(z, zk0
) < α−k0 < τα−k0 . Thus

τBZ(zk0 , α
−k0) ∩ τBZ(yk0 , α

−k0) ̸= ∅

and therefore (zk0 , k0) ∼ (yk0 , k0) which with (4.2) yields

(z, n) ∼ (zn−1, n− 1) ∼ · · · ∼ (zk0
, k0) ∼ (yk0

, k0) ∼
∼ · · · ∼ (ym−1,m− 1) ∼ (ym,m),

(4.4)

where (zk0
, k0) ∼ (yk0

, k0) collapses into a single vertex if zk0
= yk0

. It follows
that dX(v, w) ≤ (n− k0) + (m− k0) + 1 = n+m+ 1− 2k0 and as such,

(v|w)v0 =
1

2
(n+m− dX(v, w)) ≥ k0 −

1

2
.

If ζ = λ then by (4.3) we have dZ(z, yk0) < λα−k0 so z ∈ λBZ(yk0 , α
−k0).

Moreover, z ∈ λBZ(zk0+1, α
−(k0+1)) since dZ(z, zk0+1) < α−(k0+1) < λα−(k0+1).

Thus
λBZ(zk0+1, α

−(k0+1)) ∩ λBZ(yk0 , α
−k0) ̸= ∅

and therefore (zk0+1, k0 + 1) ∼ (yk0 , k0) which with (4.2) yields

(z, n) ∼ (zn−1, n− 1) ∼ · · · ∼ (zk0+1, k0 + 1) ∼ (yk0
, k0) ∼

∼ · · · ∼ (ym−1,m− 1) ∼ (ym,m).
(4.5)

In the special case where k0 = n this gives us the path

(z, n) ∼ (zn+1, n+ 1) ∼ (yk0
, k0) ∼ ∼ · · · ∼ (ym−1,m− 1) ∼ (ym,m).

When k0 ̸= n, (4.5) yields dX(v, w) ≤ (n−(k0+1))+(m−k0)+1 = n+m−2k0,
whereas the special case results in dX(v, w) ≤ 2+(m−k0). Either way we arrive
at

(v|w)v0 =
1

2
(n+m− dX(v, w)) ≥ k0 − 1.
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In summary, (v|w)v0 ≥ k0 − 1 whenever k0 = min{k − l, n} ≥ 0. If l > k so
that k0 < 0 then (v|w)v0 ≥ 0 > k0 − 1, where the first inequality follows from
the fact that dX(v, w) ≤ m+ n for any two v, w ∈ V . In both cases we get

α−(v|w)v0 ≤ α−(k0−1) = αα−k0

<α
(
α−(k−l) + α−n

)
= αl+1

(
α−k + α−n−l

)
≤ αl+1

(
αdZ(z, y) + α−n−l

)
= αl+2

(
dZ(z, y) + α−n−l−1

)
≤ αl+2

(
dZ(z, y) + α−n + α−m

)
,

which finally shows that α−(v|w)v0 ≲ dZ(z, y) + α−n + α−m with comparison
constant αl+2, where l only depends on α and ζ.

The following corollary designs a specific path in X between two vertices
corresponding to two points in Z and it is an immediate result of the method
for reaching (4.4) and (4.5) from Lemma 4.1. The length of the path is the least
of the length of each case, which are estimated analogously to the lengths of
(4.4) and (4.5).

Corollary 4.4. Take two vertices (z, n) and (y,m) in X. Let k be the greatest
nonnegative integer such that dZ(z, y) ≤ α−k and let l be the smallest nonnega-
tive integer such that α−l ≤ ζ − 1. Then, whenever m,n ≥ h := max{k − l, 0},
there exists a curve γ corresponding to the path{

(zn, n) ∼ · · · ∼ (zh, h) ∼ (yh, h) ∼ · · · ∼ (ym,m), if ζ = τ,

(zn, n) ∼ · · · ∼ (zh+1, h+ 1) ∼ (yh, h) ∼ · · · ∼ (ym,m), if ζ = λ,
(4.6)

where z = zn and y = ym, and where (zh, h) ∼ (yh, h) collapses into a single
vertex if zh = yh. Moreover, the length of γ with respect to dX satisfies

dX((zn, n), (ym,m)) ≤ ℓ(γ) ≤ n+m+ 2− 2h.

As mentioned in Chapter 2 there are several different but equivalent defi-
nitions of Gromov hyperbolicity and we will now see how they go together to
prove the hyperbolicity of X.

Theorem 4.5. Definitions 2.11 and 2.13 are equivalent. In particular, if X is
(δ′)-hyperbolic then it is Gromov hyperbolic with constant δ ≤ 6δ′.

Sketch of proof. The proof relies heavily on the results of Haefliger–Bridson
[6] so the interested reader is encouraged to search there for more details. Note
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that it is necessary for the space of interest to be geodesic, which X is by
Corollary 4.2 (a). The outline of the proof is as follows.

By [6, Proposition III.H.1.17], Definition 2.11 is satisfied if and only if there
exists a δ2 > 0 such that insize∆ ≤ δ2 for all geodesic triangles ∆ in X, where
[6, Definition III.H.1.16] provides the definition of insize∆. In particular, if
insize∆ ≤ δ for all geodesic triangles in X then X is Gromov hyperbolic with
constant δ.

It is then shown by [6, Proposition III.H.1.22] that Definition 2.13 is equiv-
alent to there existing a δ2 > 0 such that insize∆ ≤ δ2 for all geodesic tri-
angles ∆ in X. Specifically, X being (δ)-hyperbolic is shown to imply that
insize∆ ≤ 6δ for all geodesic triangles ∆ in X, which concludes the proof.

Theorem 4.6. X is Gromov hyperbolic.

Proof. By Theorem 4.5 it will suffice to show that X is (δ′)-hyperbolic by
Definition 2.13 to show that it is Gromov hyperbolic by Definition 2.11. First
let v = (z, n), w = (y,m) and u = (x, k), then Lemma 4.3 yields

α−(v|w)v0 ≤ αl+2
(
dZ(z, y) + α−n + α−m

)
≤ αl+2

((
dZ(z, x) + α−n + α−k

)
+
(
dZ(x, y) + α−k + α−m

))
≤ αl+2

(
4ζα

α− 1
α−(v|u)v0 +

4ζα

α− 1
α−(u|w)v0

)
≤ 8ζαl+3

α− 1
α−min{(v|u)v0 ,(u|w)v0},

where l is the smallest nonnegative integer such that α−l ≤ ζ − 1. Hence

−(v|w)v0 logα ≤ −min{(v|u)v0 , (u|w)v0} logα+ log

(
8ζαl+3

α− 1

)

which is equivalent to

(v|w)v0 ≥ min{(v|u)v0 , (u|w)v0} − log

(
8ζαl+3

α− 1

)/
logα.

Notice the similarities of the above and the inequality in Definition 2.13, but
here with s = v0 fixed and p, q, r ∈ V . The next step is to show that the
inequality is satisfied whenever p, q, r ∈ X, still with s = v0 fixed.
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Take p, q, r ∈ X and let [v′, v], [u′, u] and [w′, w] be the edges of X which
contain one of these points each, in the enumerated order. Then by the above

(v|w)v0 ≥ min{(v|u)v0 , (u|w)v0} − δ′′

where

δ′′ := log

(
8ζαl+3

α− 1

)/
logα.

Assuming (v|u)v0 ≤ (u|w)v0 , this yields

dX(v0, v)+dX(v0, w)−dX(v, w) ≥ dX(v0, v)+dX(v0, u)−dX(v, u)−2δ′′ (4.7)

upon expanding the Gromov products. Straightforward calculations yield

dX(v0, w) ≤ dX(v0, r) + 1,

dX(v, w) ≥ dX(p, r)− 2,

dX(v0, u) ≥ dX(v0, q)− 1,

dX(v, u) ≤ dX(p, q) + 2.

With the first two inequalities we get

dX(v0, w)− dX(v, w) ≤ (dX(v0, r) + 1)− (dX(p, r)− 2)

while the two latter give

dX(v0, u)− dX(v, u) ≥ (dX(v0, q)− 1)− (dX(p, q) + 2).

Thus, by cancelling dX(v0, v) and adding dX(v0, p) on each side of (4.7), we
arrive at

dX(v0, p) + dX(v0, r)− dX(p, r) + 3 ≥ dX(v0, p) + dX(v0, q)− dX(p, q)− 3− 2δ′′

which is equivalent to

(p|r)v0 ≥ (p|q)v0 −
2δ′′ + 6

2
.

In the case (u|w)v0 ≤ (v|u)v0 it can be shown similarly that

(p|r)v0 ≥ (q|r)v0 −
2δ′′ + 6

2
.
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Thus,
(p|r)v0 ≥ min{(p|q)v0 , (q|r)v0} − (δ′′ + 3)

for all p, q, r ∈ X.
By Haeflinger–Bridson [6, Remark III.H.1.21], the inequality in Definition 2.13

holds for all p, q, r, s ∈ X with double the constant for which it holds when s = v0
is fixed, so

(p|r)s ≥ min{(p|q)s, (q|r)s} − 2(δ′′ + 3)

for all p, q, r, s ∈ X. Hence, X is (δ′)-hyperbolic with

δ′ := 2(δ′′ + 3) = 2 log

(
8ζαl+3

α− 1

)/
logα+ 6 > 0

and therefore Gromov hyperbolic with constant δ = 6δ′ by Theorem 4.5.

As such, the hyperbolic filling X is a roughly starlike Gromov hyperbolic
space, similar to the results of Björn–Björn–Shanmugalingam [2]. By Defini-
tions 2.11 and 2.13 it follows that X is roughly starlike for all choices of x0 ∈ X
and not exclusively for the root v0 which was used in the proof of Corollary 4.2
(e). However, as noted in [2, p. 202], the constant M may change depending on
the choice of x0.



Chapter 5

The Uniformized Boundary of
The Hyperbolic Filling

In this chapter we are investigating the relation between the bounded metric
space Z and the boundary ∂εX of the uniformization of its hyperbolic filling by
ultimately showing that ∂εX is snowflake equivalent to Z. Whether Xε actually
is uniform is the topic of the next chapter, where we also address and expand
on potential issues with ε > logα in regard to results involving the parameter
– evidently we often restrict ourselves to 0 < ε ≤ logα.

Fix ε > 0 and consider the uniformized metric

dε(x, y) = inf
γ

∫
γ

ρε ds with ρε(x) = e−εdX(x,v0)

on X, where the infimum is taken over all rectifiable curves in X with endpoints
x and y. Then Xε = (X, dε) is the uniformization of X with the root v0 = (z0, 0)
as its centre and

dsε = ρε ds,

where dsε is the arc length with respect to the metric dε. Since X is a length
space this makes Xε and therefore also Xε a length space. Moreover, Xε is
geodesic whenever it is compact, and it is compact if and only if Z is totally
bounded; see Proposition 5.7 below for more.

The impact dε has on the hyperbolic filling in comparison to dX is made
explicit by distε(x, ∂εX) ≃ 1

ερε(x). In particular, Xε is bounded. In the follow-
ing we will prove these two claims and in doing so also get familiar with Xε.
First note that for any x ∈ [v, w], where [v, w] is an arbitrary edge of X with
π(v) ≤ π(w), we have

Fagrell, 2023. 27
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e−ε(dX(v,v0)+1) ≤ e−εdX(x,v0) ≤ e−ε(dX(v,v0)−1),

or equivalently,
ρε(x) ≃ ρε(v) (5.1)

with comparison constant eε both ways. By Corollary 4.2 there exists an arc
length parameterized (with respect to dX) geodesic ray γ : [0,∞) → X from v0
and through v so that

distε(v, ∂εX) =

∫
γ|[r,∞)

dsε,

where γ|[r,∞) is the restriction of γ to [r,∞) with γ|[r,∞)(r) = γ(r) := v such
that r = ℓ(γ|[0,r]). Further, for every r′ ≥ r, r′ = ℓ(γ|[0,r′]). Since γ|[0,r′] is
geodesic, ℓ(γ|[0,r′]) = dX(γ|[0,r′](r′), γ|[0,r′](0)), and so

r′ = dX(γ(r′), γ(0)) = dX(γ(r′), v0).

With r′ = r we thus get r = dX(v, v0). As the exception of being the first
integral of this chapter we will treat every step of the computation with care,
hence the details on γ|[r,∞). It follows that∫

γ|[r,∞)

dsε =

∫
γ|[r,∞)

ρε ds

= lim
r′→∞

∫ r′

r

e−εdX(γ|[r,r′](t),v0) dt

= lim
r′→∞

∫ dX(γ(r′),v0)

dX(v,v0)

e−εdX(γ(t),v0) dt

= lim
r′→∞

∫ dX(γ(r′),v0)

dX(v,v0)

e−εt dt

= lim
r′→∞

[
−1

ε
e−εt

]dX(γ(r′),v0)

dX(v,v0)

=
1

ε
e−εdX(v,v0) =

1

ε
ρε(v),

where the arc length parameterization of γ|[r,∞) and the fact that r′ = dX(γ(r′), v0)

for all r′ ≥ r yields dX(γ(t), v0) = t for t ∈ [r,∞) and thus the fourth equality.
Therefore,

distε(v, ∂εX) =
1

ε
ρε(v) (5.2)
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and so with (5.1) we get

distε(v, ∂εX) ≃ ρε(x) (5.3)

with comparison constants eε/ε and εeε.
Since π(v) ≤ π(w) we can estimate distε(x, ∂εX) by

distε(w, ∂εX) ≤ distε(x, ∂εX) ≤ distε(v, ∂εX) + dε(v, w). (5.4)

If [v, w] is vertical then

distε(w, ∂εX) =
1

ε
ρε(w) =

1

ε
e−εdX(w,v0) =

1

ε
e−ε(dX(v,v0)+1)

=
1

ε
e−εdX(v,v0)e−ε =

e−ε

ε
ρε(v) = e−ε distε(v, ∂εX)

and

dε(v, w) =

∫
γvw

dsε =

∫ dX(w,v0)

dX(v,v0)

e−εt dt ≤ 1

ε
ρε(v), (5.5)

where γvw is the arc length parameterized (with respect to dX) geodesic from
v to w which happens to be the edge itself. If [v, w] is horizontal we take the
midpoint m of [v, w] and since the edge defines a geodesic between the vertices
even in this case it follows that dε(v, w) = 2dε(v,m), where

dε(v,m) =

∫
[v,m]

dsε =

∫ dX(v,v0)+
1
2

dX(v,v0)

e−εt dt ≤ 1

ε
ρε(v). (5.6)

The reason we compute the curve integral along a horizontal edge differently
follows from Corollary 4.2 (d); the curve defining dX(x, v0) only goes through v
when dX(x, v) ≤ 1

2 and so dX(x, v0) ̸= dX(v, v0)+dX(x, v) whenever dX(x, v) >
1
2 . Nevertheless, with [v, w] horizontal, we have distε(w, ∂εX) = distε(v, ∂εX).
Thus, in both the vertical and horizontal case,

distε(v, ∂εX) ≤ eε distε(w, ∂εX)

and

distε(v, ∂εX) + dε(v, w) ≤
1

ε
ρε(v) +

2

ε
ρε(v)

=
3

ε
ρε(v)

= 3 distε(v, ∂εX),
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which together with (5.4) yields{
distε(v, ∂εX) ≤ eε distε(x, ∂εX),

distε(x, ∂εX) ≤ 3 distε(v, ∂εX).

As such,
distε(x, ∂εX) ≃ distε(v, ∂εX)

with comparison constants 3 and eε. Hence, by (5.3),

distε(x, ∂εX) ≃ ρε(x) for all x ∈ Xε,

with comparison constants 3
εe

ε and εe2ε. In particular, with (5.2) we obtain
distε(v0, ∂εX) = 1

ε , from which it follows that

diamε Xε ≤ sup
x,y∈Xε

(
dε(x, v0) + dε(y, v0)

)
≤ 2 distε(v0, ∂εX) =

2

ε
,

and so 1
ε ≤ diamε Xε ≤ 2

ε .

Proposition 5.1. The diameter of the completion Xε of the uniformization Xε

is finite and bounded by ε, with 1
ε ≤ diamε Xε ≤ 2

ε . Moreover,

distε(x, ∂εX) ≃ ρε(x) (5.7)

for all x ∈ Xε, with comparison constants 3
εe

ε and εe2ε.

In the discussion on vertical and horizontal edges we also arrived at the
following, which is quite a powerful tool for estimating the length of an edge
whenever the orientation of the edge is unknown.

Lemma 5.2. Let [v, w] be an edge in Xε with π(v) ≤ π(w). Then

ℓε([v, w]) ≤
2

ε
ρε(v) =

2

ε
e−επ(v).

Proof. See (5.5) and (5.6).

Ahead of this chapter’s main result we introduce the mapping ϕ : V −→ Z,
defined by ϕ((x, n)) = x, along with two additional lemmas.

Lemma 5.3. Let γ be the curve defined in Corollary 4.4. Then ℓε(γ), with
respect to dε, satisfies

dε((zn, n), (ym,m)) ≤ ℓε(γ) ≤
4

ε
e−εh ≤ 4

ε
e−ε(k−l), (5.8)

where k and l are the greatest and smallest nonnegative integers such that
dZ(zn, ym) ≤ α−k and α−l ≤ ζ − 1 respectively, and m,n ≥ h = max{k − l, 0}.
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Proof. Consider the arc length parameterized (with respect to dX) curve γ2 :
[0, ℓX(γ2)] −→ X defined by the path (zn, n) ∼ · · · ∼ (zh, h). Then, as these are
all vertical edges, γ2 defines a geodesic and so

ℓε(γ2) =

∫
γ2

dsε =

∫ n

h

e−εt dt ≤ 1

ε
e−εh.

Extrapolating this idea onto γ yields

ℓε(γ) ≤
∫ n

h

e−εt dt+

∫ m

h

e−εt dt+ 2

∫ h+ 1
2

h

e−εt dt ≤ 4

ε
e−εh

whenever ζ = τ , where

2

∫ h+ 1
2

h

e−εt dt ≤ 2

ε
e−εh

estimates the dε length of (zh, h) ∼ (yh, h). Meanwhile, when ζ = λ, we distin-
guish between two cases: if h < n then

ℓε(γ) ≤
∫ n

h

e−εt dt+

∫ m

h

e−εt dt+

∫ h+1

h

e−εt dt ≤ 3

ε
e−εh

where ∫ h+1

h

e−εt dt ≤ 1

ε
e−εh

estimates the dε length of (zh+1, h+ 1) ∼ (yh, h). If h = n then

ℓε(γ) ≤
∫ m

h

e−εt dt+ 2

∫ h+1

h

e−εt dt ≤ 3

ε
e−εh,

where

2

∫ h+1

h

e−εt dt ≤ 2

ε
e−εh

estimates the dε length of (zn, n) ∼ (zn+1, n+ 1) ∼ (yn, n).
Thus, we conclude that

ℓε(γ) ≤
4

ε
e−εh ≤ 4

ε
e−ε(k−l).

Lemma 5.4. Fix 0 < ε ≤ logα. Then for all vertices v, w ∈ V ,

dZ(ϕ(v), ϕ(w))
σ ≤ Ddε(v, w) with σ =

ε

logα
,

where D = (2ζα)−σ.
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Proof. Let
w0 ∼ w1 ∼ · · · ∼ wk

be a path γ in Xε with w0 = v and wk = w. Without loss of generality we can
assume π(v) ≤ π(w). Then, similar to how we arrived at (4.1) with the use of
the triangle inequality, we get

dZ(ϕ(v), ϕ(w)) <

k−1∑
i=0

ζ(α−π(wi) + απ(wi+1)) ≤ 2ζ

k−1∑
i=0

α−π(wi),

where the last inequality follows from α−π(w0) ≥ α−π(wk) and is easily seen upon
expanding the sum.

With σ = ε
logα we have eε = ασ, so then e−ε(π(wi)+1) = α−σα−π(wi)σ. Since

ℓε(γ) =

k−1∑
i=0

ℓε([wi, wi+1]),

where

ℓε([wi, wi+1]) ≥
∫ π(wi)+1

π(wi)

e−εt dt = e−ε(π(wi)+1)

(
eε − 1

ε

)
> e−ε(π(wi)+1)

regardless of the orientation of [wi, wi+1], we thus get

ℓε(γ) ≥
k−1∑
i=0

α−σα−π(wi)σ = α−σ
k−1∑
i=0

α−π(wi)σ

≥α−σ

k−1∑
i=0

α−π(wi)

σ

≥ α−σ

(
dZ(ϕ(v), ϕ(w))

2ζ

)σ

,

where the second to last inequality follows from the fact that σ ≤ 1. By taking
the infimum over all curves in Xε from v to w we arrive at

dε(v, w) ≥ (2ζα)−σdZ(ϕ(v), ϕ(w))
σ.

Proposition 5.5. Fix 0 < ε ≤ logα, then Z and ∂εX are snowflake-equivalent
with σ = ε

logα ≤ 1 and comparison constants 4
εα

σ(l+1) and (2ζα)σ, where l is
the smallest nonnegative integer such that α−l ≤ ζ − 1.

Proof. First we show that there exists a well-defined mapping Ψ : Z −→ ∂εX.
Let z ∈ Z, then there exists a Cauchy sequence {zj}j∈N in Z converging to
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z. Fix j ∈ N, then by Lemma 4.1 there exists a sequence {zjm}m∈N ⊂ Z with
zjm ∈ Am and zjm → zj so that

(zj0, 0) ∼ (zj1, 1) ∼ · · · ∼ (zjm,m) ∼ (zjm+1,m+ 1) ∼ . . .

and zj ∈ BZ(z
j
m, α−m) for each m ∈ N by construction. Note that for each

j ∈ N, zj ∈ BZ(z
j
m, α−m) implies dZ(zj , z

j
m) < α−m for all m ∈ N.

Let ε′ > 0 be arbitrary. Since {zj}j∈N is a Cauchy sequence, there exists an
N ∈ N such that dZ(zm, zn) <

ε′

3 whenever m,n ≥ N . Moreover, with M ∈ N
chosen so that α−M < ε′

3 , it follows from the above that for each (fixed) j ∈ N,
dZ(zj , z

j
m) < ε′

3 whenever m ≥ M . Thus, dZ(zm, zmm) < ε′

3 whenever m ≥ M ,
where zmm is the m’th element of the sequence {zmi }i∈N ⊂ Z corresponding to
zm ∈ Z, and we arrive at

dZ(z
m
m , znn) ≤ dZ(z

m
m , zm) + dZ(zm, zn) + dZ(zn, z

n
n) <

ε′

3
+

ε′

3
+

ε′

3
= ε′

whenever m,n ≥ max{N,M}. Hence, {zmm}m∈N is a Cauchy sequence in Z.
Consider the sequence {(zmm ,m)}m∈N in Xε and take (zmm ,m) and (znn , n)

for m,n ∈ N. Since Xε is connected, there is a path γnm between these two
vertices. Let k be the greatest nonnegative integer such that k ≤ min{m,n}
and dZ(z

m
m , znn) ≤ α−k. Also, l is the smallest nonnegative integer such that

α−l ≤ ζ − 1, which will be the case for the remainder of the proof. Then we
can assume γnm is the path given by Corollary 4.4, in which case it follows from
Lemma 5.3 that

dε((z
m
m ,m), (znn , n)) ≤ ℓε(γ) ≤

4

ε
e−ε(k−l). (5.9)

Since the sequence {zmm}m∈N is Cauchy, we can choose K ∈ N such that dZ(zmm , znn)
is small enough and min{m,n} large enough to make k large enough for

4

ε
e−ε(k−l) < ε′.

Thus,
dε((z

m
m ,m), (znn , n)) < ε′ whenever m,n ≥ K,

so {(zmm ,m)}m∈N is a Cauchy sequence with limm→∞(zmm ,m) ∈ ∂εX.
Set Ψ(z) = limm→∞(zmm ,m). Evidently the sequence {(zmm ,m)}m∈N is Cauchy

in Xε so the limit exists in Xε and in particular it is located on the boundary.
To show that Ψ is well-defined, let {ẑj}j∈N be another Cauchy sequence in
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Z which also converges to z, and consider its corresponding Cauchy sequence
{(ẑmm ,m)}m∈N in Xε. By Corollary 4.4 and Lemma 5.3,

dε((z
m
m ,m), (ẑmm ,m)) ≤ 4

ε
e−ε(k−l) (5.10)

where we now let k be the greatest nonnegative integer such that

k ≤ m and dZ(z
m
m , ẑmm) ≤ α−k.

Since
dε(z

m
m , ẑmm) ≤ dε(z

m
m , zm) + dε(zm, ẑm) + dε(ẑm, ẑmm),

where dε(z
m
m , zm) < α−m → 0, dε(ẑm, ẑmm) < α−m → 0 and dε(zm, ẑm) → 0 as

m → ∞, it follows that k → ∞ and thus by (5.10) that dε((zmm ,m), (ẑmm ,m)) → 0
as m → ∞. We arrive at limm→∞(ẑmm ,m) = limm→∞(zmm ,m) = Ψ(z), so then
Ψ is well-defined and gives the map Ψ : Z −→ ∂εX.

In order to show that Ψ is a bijection we will first show the equivalence
dε(Ψ(z),Ψ(y)) ≃ dZ(z, y)

σ since the injective and surjective property of Ψ fol-
lows fairly easily from there. Furthermore, it is a necessary condition for the
snowflake-equivalence between Ψ and Z, so it needs to be shown regardless.

Take z, y ∈ Z with z ̸= y and let k be the greatest nonnegative integer such
that k ≤ m and dZ(z, y) ≤ α−k. Then by Lemma 5.3,

dε(Ψ(z),Ψ(y)) = lim
m→∞

dε((z
m
m ,m), (ymm ,m)) ≤ 4

ε
e−ε(k−l).

With σ = ε
logα we have eε = ασ, which yields

4

ε
e−ε(k−l) =

4

ε
α−σ(k−l) =

4

ε
ασ(l+1)α(−k−1)σ <

4

ε
ασ(l+1)dZ(z, y)

σ,

and so
dε(Ψ(z),Ψ(y)) <

4

ε
ασ(l+1)dZ(z, y)

σ.

Moreover, from Lemma 5.4 it also follows that

dε(Ψ(z),Ψ(y)) = lim
m→∞

dε((z
m
m ,m), (ymm ,m))

≥ lim
m→∞

1

D
dZ
(
ϕ((zmm ,m)), ϕ((ymm ,m))

)σ
= lim

m→∞

1

D
dZ(z

m
m , ymm)σ =

1

D
dZ(z, y)

σ.

Hence, dε(Ψ(z),Ψ(y)) ≃ dZ(z, y)
σ with comparison constants 4

εα
σ(l+1) and 1

D =
(2ζα)σ.
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To show that Ψ is injective we show the contrapositive. Take z, y ∈ Z such
that Ψ(z) = Ψ(y), then dε(Ψ(z),Ψ(y)) = 0 but dε(Ψ(z),Ψ(y)) ≥ 1

D dZ(z, y)
σ

so dZ(z, y) = 0 and therefore z = y. Thus, Ψ is injective.
To show that Ψ is surjective, consider a Cauchy sequence {xj}j∈N in Xε with

x := limj→∞ xj ∈ ∂εX and let ε′ be arbitrary. Then there exists an N ∈ N such
that dε(xn, xm) < ε′

2 whenever n,m ≥ N . Note that for each j ∈ N there is a
vertex vj satisfying dX(vj , xj) ≤ 1

2 and so dε(vj , xj) ≤ 1
εe

−επ(vj). Thus

dε(vn, vm) ≤ dε(vn, xn) + dε(xn, xm) + dε(xm, vm)

≤ 1

ε

(
e−επ(vn) + e−επ(vm)

)
+

ε′

2

whenever n,m ≥ N . Take M ∈ N such that 2
εe

−επ(vM ) < ε′

2 (which exists since
π(xj) → ∞ and therefore π(vj) → ∞ as j → ∞), then

dε(vn, vm) < ε′ whenever n,m ≥ max{N,M},

so {vj}j∈N is also a Cauchy sequence in Xε with limj→∞ vj = limj→∞ xj = x.
Now set zj := ϕ(vj) ∈ Z. It follows immediately from Lemma 5.4 that

{zj}j∈N is Cauchy in Z with z∞ := limj→∞ zj ∈ Z. Take vj , j ∈ N, and
Ψ(z∞) ∈ ∂εX, then there exists a greatest nonnegative integer k such that

k ≤ π(vj) and dZ(zj , z∞) < α−k

so by Corollary 4.4 and Lemma 5.3 it follows that dε(vj ,Ψ(z∞)) ≤ 4
εe

−ε(k−l).
But

lim
j→∞

dZ(zj , z∞) = 0 and π(vj)
j→∞−−−→ ∞

so k → ∞ as j → ∞, which yields limj→∞ dε(vj ,Ψ(z∞)) = 0 and thus Ψ(z∞) =
limj→∞ vj = x.

Corollary 5.6. Z and ∂εX are biLipschitz equivalent when ε = logα, with
comparison constant 4ζα2l, where l is the smallest nonnegative integer such
that α−l ≤ ζ − 1.

Proof. By Proposition 5.5 there is a well-defined homeomorphism Ψ : Z → ∂εX
such that

dε(Ψ(z),Ψ(y)) ≤ 4

ε
ασ(l+1)dZ(z, y)

σ

and
dZ(z, y)

σ ≤ (2ζα)σdε(Ψ(z),Ψ(y)). (5.11)
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If ε = logα then σ = ε
logα = 1 and

4

ε
ασ(l+1) =

4

logα
αl+1 < 4αl,

since α > logα. Further, α−l ≤ ζ − 1 < ζ so 4αl = 4α−lα2l < 4ζα2l, which
yields

4

ε
ασ(l+1) < 4ζα2l.

Moreover, since l is a nonnegative integer, we get (2ζα)σ = 2ζα ≤ 4ζα2l. Thus,

dε(Ψ(z),Ψ(y)) ≤ 4ζα2ldZ(z, y)

and
dZ(z, y) ≤ 4ζα2ldε(Ψ(z),Ψ(y)), (5.12)

and therefore dε(Ψ(z),Ψ(y)) ≃ dZ(z, y) with comparison constant 4ζα2l both
ways, which concludes the proof.

We bring this chapter to a close with a collection of statements which elab-
orates on the structure of Xε and ∂εX and how it depends on properties of Z
and the construction of X. Note that Vn may be referred to as vertex layer n
due to the structure of X, appearing as a graph of several layers of vertices and
with edges within a vertex layer or across adjacent vertex layers. Moreover, the
degree of a vertex specifies the number of neighbours it has.

Proposition 5.7. The following are equivalent:

(a) Z is totally bounded,

(b) each vertex layer Vn is finite,

(c) every vertex in X has finite degree,

(d) X and Xε are locally compact,

(e) Xε is compact.

Additionally, Xε is geodesic whenever any of these hold, and if ε ≤ logα then
∂εX is compact if and only if any and all of (a)-(e) holds.

Sketch of proof. The proposition is identical to Björn–Björn–Shanmugalingam
[2, Proposition 4.6] and the proof with respect to their construction of X and
Xε works well with ours in this case. In particular, [2] shows that (a) holds
whenever Xε is compact by using the fact that compactness is a topological
property and that Xε and Z are homeomorphic as per Proposition 5.5. Ascoli’s
theorem is then used to show that Xε is geodesic when Xε is compact.



Chapter 6

Uniformity of Xε

We now make the claim that the uniformization Xε of the hyperbolic filling X is
uniform whenever ε ≤ logα. This chapter is dedicated to prove this statement.

Theorem 6.1. For every ε satisfying 0 < ε ≤ logα, Xε is uniform with the
constant

A = max

{
8

ε
eε(l+3), 8e4ε

}
,

where l is the smallest nonnegative integer such that α−l ≤ ζ − 1.

Proof. We want to show that Xε is an A-uniform domain in its completion Xε,
with A ≥ 1. To this end, we determine a quasiconvex curve between an arbitrary
pair of points in Xε and show that it satisfies the twisted cone condition. As
usual, l is the smallest nonnegative integer such that α−l ≤ ζ − 1. Also recall
that σ = ε

logα and therefore ασ = eε.
Take x, y ∈ Xε, x ̸= y, with x ∈ [v, v′] and y ∈ [w,w′], where [v, v′] and

[w,w′] are edges defined by vertices v, v′, w, w′ ∈ Xε such that v ̸= v′ and
w ̸= w′. Set π(v) := n and π(w) := m. Without loss of generality, we can
assume that

distε(x, ∂εX) ≥ distε(y, ∂εX),

which implies n ≤ m+1. Assume further that v and w are two (not necessarily
unique) vertices of [v, v′] and [w,w′] which are the closest to one another with
respect to dε. We distinguish between two main cases: either v ̸= w or v = w.
In particular, in the first case every vertex is distinct while in the second either
v′ ∼ v ∼ w′ with v = w, or [v, v′] = [w,w′].

Case 1: v ̸= w. Let k be the greatest nonnegative integer such that

k ≤ min{n,m} and dZ(ϕ(v), ϕ(w)) ≤ α−k, (6.1)
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and consider the curve γ from v to w thus given by Corollary 4.4. By Lemma 5.3,

ℓε(γ) ≤
4

ε
e−εh ≤ 4

ε
e−ε(k−l),

where h = max{k − l, 0}. Set

γxy := [x, v] ∪ γ ∪ [w, y],

which defines a curve from x to y with γxy ⊃ γ. Then, by Lemma 5.2,

ℓε(γxy) = dε(x, v) + ℓε(γ) + dε(w, y)

≤ 2

ε
e−ε(n−1) +

4

ε
e−εh +

2

ε
e−ε(m−1)

≤ 4

ε
e−εh +

4

ε
e−ε(min{n,m}−1)

=
4

ε
e−εh

(
1 + e−ε((min{n,m}−1)−h)

)
≤ 4

1 + eε

ε
e−εh

≤ 8eε

ε
e−εh (6.2)

=
8

ε
e−ε(h−1)

≤ 8

ε
e−ε(k−l−1)

=
8

ε
e−ε(k+1−(l+2))

=
8

ε
eε(l+2)e−ε(k+1)

≤ 8

ε
eε(l+2)(α−k−1)σ. (6.3)

Note that by Equation (6.1),

α−k−1 < dZ(ϕ(v), ϕ(w)) (6.4)

whenever k < min{n,m}, so if k < min{n,m} then

8

ε
eε(l+2)(α−k−1)σ <

8

ε
eε(l+2)dZ(ϕ(v), ϕ(w))

σ

≤ 8

ε
eε(l+2)(2ζα)−σdε(v, w),



39

where the last inequality follows from Lemma 5.4. Since 2ζα > 1 we have
(2ζα)−σ < 1, and dε(v, w) ≤ dε(x, y) by assumption, so k < min{n,m} yields

ℓε(γxy) ≤
8

ε
eε(l+2)dε(x, y) ≤ Adε(x, y).

If instead k = min{n,m} ≥ n − 1 then (6.4) does not necessarily hold.
However, since v ̸= w, there is an edge v ∼ u with u ∈ V such that

n− 1 ≤ π(u) ≤ n+ 1

on the curve which defines dε(x, y). As such,

dε(x, y) ≥
∫
[v,u]

dsε ≥
∫ n+1

n

e−εt dt = e−ε(n+1)

(
eε − 1

ε

)
≥ e−ε(n+1) ≥ e−ε(k+2) = (α−k−2)σ = α−σ(α−k−1)σ = e−ε(α−k−1)σ.

As shown leading up to (6.3), 8
εe

ε(l+2)(α−k−1)σ ≥ ℓε(γxy), so then

eε
8

ε
eε(l+2)dε(x, y) ≥

8

ε
eε(l+2)(α−k−1)σ ≥ ℓε(γxy).

Thus, even when k = min{n,m}, we arrive at

ℓε(γxy) ≤ Adε(x, y).

What remains is to show that distε(γxy(t), ∂εX) ≥ 1
A min{t, ℓε(γxy)− t}, for

all t ∈ [0, ℓε(γxy)], where γxy and γ are parameterized by arc length with respect
to dε. Our approach is to divide into cases by first assuming h < min{n,m},
then h = n and finally h = m.

Suppose first that h < min{n,m}, then γ consists of two vertical segments
connected by either a horizontal (possibly collapsed) edge (if ζ = τ) or another
vertical edge (if ζ = λ). Take t ∈ [0, ℓ(γxy)]. We shall consider the cases where
γxy(t) is on [x, v], the vertical segment connecting to [x, v], or the (possibly
collapsed) horizontal/vertical edge. If γxy(t) ∈ [x, v], then by Lemma 5.2,

ℓε(γxy
∣∣
[0,t]

) ≤
∫
[v,v′]

dsε ≤
1

ε
e−εmin{π(v),π(v′)} ≤ 1

ε
e−ε(n−1).

Moreover,

distε(γxy(t), ∂εX) ≥ 1

ε
e−2εe−εdX(γxy(t),v0) ≥ 1

ε
e−2εe−ε(n+1) =

1

ε
e−4εe−ε(n−1)
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by Proposition 5.1, so

e−4εℓε(γxy
∣∣
[0,t]

) ≤ distε(γxy(t), ∂εX). (6.5)

Next, if γxy(t) is somewhere on the vertical segment of γ connecting to [x, v],
then dX(γxy(t), v0) ≤ π(v) = n and so

ℓε(γxy
∣∣
[0,t]

) ≤
∫
[v,v′]

dsε +

∫ n

dX(γxy(t),v0)

dsε

≤ 1

ε
e−ε(n−1) +

∫ ∞

dX(γxy(t),v0)

dsε

≤ 1

ε
eεe−εdX(γxy(t),v0) +

∫ ∞

dX(γxy(t),v0)

dsε,

where
∫∞
dX(γxy(t),v0)

dsε = distε(γxy(t), ∂εX). Further, by Proposition 5.1,

e−εdX(γxy(t),v0) ≤ εe2ε distε(γxy(t), ∂εX). (6.6)

As such,
ℓε(γxy

∣∣
[0,t]

) ≤ (e3ε + 1) distε(γxy(t), ∂εX),

or equivalently,

1

e3ε + 1
ℓε(γxy

∣∣
[0,t]

) ≤ distε(γxy(t), ∂εX).

Finally, if γxy(t) is on the horizontal/vertical edge connecting the two vertical
segments of γ then dX(γxy(t), v0) ≤ h + 1. Recall that ℓε(γxy) ≤ 8eε

ε e−εh by
(6.2), so then

ℓε(γxy
∣∣
[0,t]

) ≤ 8eε

ε
e−εh ≤ 8eε

ε
eεe−εdX(γxy(t),v0).

With (6.6) we thus get

e−4ε

8
ℓε(γxy

∣∣
[0,t]

) ≤ distε(γxy(t), ∂εX). (6.7)

In summary, since A ≥ max{8e4ε, e3ε + 1, e4ε},

distε(γxy(t), ∂εX) ≥ 1

A
ℓε(γxy

∣∣
[0,t]

) =
1

A
t

for every t ∈ [0, ℓε(γxy)] such that γxy(t) is on [x, v], the vertical segment con-
necting to [x, v], or the (possibly collapsed) horizontal/vertical edge. Let γyx be
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γxy but with reverse orientation. Then, by symmetry, the same result applies
to γyx when γxy(t) is on [y, w], the vertical segment connecting to [y, w] or the
(possibly collapsed) horizontal/vertical edge. Thus,

distε(γxy(t), ∂εX) ≥ 1

A
min{t, ℓε(γxy)− t} for all t ∈ [0, ℓε(γxy)],

when h < min{n,m}.
Now suppose that h = n. The only relevant difference from when h <

min{n,m} is when ζ = λ since we then need to take the vertical edge

(zn, n) ∼ (zn+1, n+ 1),

where zn, zn+1 ∈ Z, into account. Therefore, we again consider the reverse
oriented curve γyx and take t ∈ [0, ℓε(γyx)] such that γyx(t) is on this vertical
edge. But then dX(γyx(t), v0) ≤ h+ 1 and we obtain (6.7). Thus,

distε(γxy(t), ∂εX) ≥ 1

A
min{t, ℓε(γxy)− t} for all t ∈ [0, ℓε(γxy)],

in this case as well.
Finally, suppose that h = m and note that by construction of γ, we have

n ≥ m and
distε(γxy(t), ∂εX) ≥ distε(u, ∂εX)

for all such t, where u ∈ V such that π(u) = n+ 1. But then

π(u) ≤ m+ 2 = h+ 2,

so with (5.2) we get

distε(u, ∂εX) =
1

ε
e−ε(n+1) ≥ 1

ε
e−ε(h+2) =

e−2ε

ε
e−εh.

Since ℓε(γxy) ≤ 8eε

ε e−εh by (6.2) it follows that

distε(u, ∂εX) ≥ e−3ε

8
ℓε(γxy) ≥

e−3ε

8
t ≥ 1

A
t, t ∈ [0, ℓε(γxy)],

so distε(γxy(t), ∂εX) ≥ 1
A min{t, ℓε(γxy)− t} for all t ∈ [0, ℓε(γxy)].

In conclusion, γxy is a quasiconvex curve which satisfies the twisted cone
condition independently of h. Hence, γxy is an A-uniform curve.

Case 2: v = w. In addition to v = w we either have v′ ̸= w′ or v′ = w′

so there is at most one vertex, assuming to be v, between x and y. Thus, by
Lemma 5.2,

dε(x, y) ≤
∫
[x,v]

dsε +

∫
[v,y]

dsε ≤
2

ε
e−ε(n−1).
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Let γ̂xy be the curve defining dε(x, y) (which immediately makes it quasiconvex
with constant 1), and let u be a vertex with π(u) ≥ n+ 1. Then with (5.7) we
get

distε(γ̂xy(t), ∂εX) ≥ distε(u, ∂εX) for all t ∈ [0, ℓε(γ̂xy)],

where

distε(u, ∂εX) =
1

ε
e−ε(n+1) =

e−2ε

ε
e−ε(n−1),

so

distε(γ̂xy(t), ∂εX) ≥ e−2ε

2
dε(x, y) =

e−2ε

2
ℓε(γ̂xy) ≥

1

2e2ε
min{t, ℓε(γxy)− t}

for all t ∈ [0, ℓε(γ̂xy)]. Notice that 2e2ε ≤ 8e4ε ≤ A, so γ̂xy is an A-uniform
curve, thus concluding the proof.

As shown by Björn–Björn–Shanmugalingam [2, Proposition 4.1], it can hap-
pen that the boundary of Xε only consists of one point if ε > logα. The
result specifically concerns pathconnected metric spaces Z where there exists
an L < ∞ such that ℓZ(γZ) ≤ L for some path γZ joining arbitrary points
x, y ∈ Z. In particular, it means that Z and ∂εX are not homeomorphic and
that Xε is not uniform, see Rogovin–Shibahara–Zhou [8, Corollary 4.4] for more
on the latter claim. Hence, we set the constraint 0 < ε ≤ logα whenever we
work with arbitrary metric spaces Z.
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