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Abstract

Visualization and image filtering are important parts of cryo-electron tomog-
raphy analysis. ArtiaX, a plugin developed for UCSF ChimeraX, has been
extended to improve the functionality of these two parts. For the visualization,
a method of moving 3D surfaces to remove overlap between them has been de-
veloped and implemented. To accommodate this, a Monte Carlo approach using
Poisson disc sampling for approximating volume of overlap between 3D surfaces
is used, and a novel method for measuring overlap has been invented, called the
Normal Projection Method, useful for measuring the depth of overlap between
surfaces. For the image filtering, tomogram averaging and frequency filters have
been added to the ArtiaX toolbox.
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Sammanfattning

Visualisering och bildfiltrering är viktiga delar inom kryoelektrontomografi-
analys. ArtiaX, ett plugin utvecklat för UCSF ChimeraX, har utökats för att
förbättra funktionaliteten inom dessa två områden. För visualiseringen har en
metod för att flytta 3D ytor så att de inte överlappar utvecklats och implmenter-
ats. För att skapa denna funktion används en Monte Carlo metod med Poisson
disk sampling för att uppskatta volymen av 3D ytor, och normalprojektionsme-
toden, en ny metod för att mäta överlappsdjup har skapts och implementerats.
För att förbättra bildfiltreringen har tomogram-snittning och frekvensfilter lagts
till bland verktygen i ArtiaX.

Nyckelord:
Kryoelektrontomografi, bildbehandling, ytvisualisering, överlapsmätning,
normalprojektionsmetoden.
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Chapter 1

Introduction

ArtiaX is an open source plugin available for the molecular visualization software
ChimeraX, and is intended for the visualization and processing of cryo-electron
tomography data1, two important aspects for research in structural biology [8].
For the intentions of this thesis, the functionality of ArtiaX has been extended.
This work embodies two distinct yet interconnected parts, each contributing to
the holistic analysis and interpretation of macromolecular structures and cellu-
lar organization. By addressing limitations in the processing and visualization
of the plugin, the work of this thesis enhances the functionality and applica-
bility of ArtiaX, and by extension, ChimeraX, facilitating more comprehensive
investigations in structural biology.

The first part of the thesis focuses on improving the visualization function-
ality. ArtiaX can be used to render biological scenes on the nano-meter scale
by placing and orienting realistic 3D surface models in a larger scene. It has
many tools that allow the user to manually place and orient surfaces in their
scenes, or automatically generate surfaces using geometrical primitives, such as
along a curve in a helical fashion. However, these scenes often contain large
quantities of complex surface models in close proximity, as they appear in the
real world. Since there is no builtin collision detection in ArtiaX, these surfaces
might overlap, creating an unrealistic scene. The goal of this part of the thesis
was therefore to create a function that can move selected surfaces the shortest
amount possible such that nearby surfaces no longer overlap. The user can place
or generate surfaces at will, and then use this new functionality to remove any
potential overlap that has occurred, resulting in a more realistic scene. In order
to achieve this goal, a novel method for measuring overlap between triangular

1ArtiaX is available at https://github.com/FrangakisLab/ArtiaX.
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2 Chapter 1. Introduction

meshes has been developed, and subsequently dubbed the Normal Projection
Method.

In the second part, tools to improve the signal-to-noise ratio of cryo-electron
tomography data have been developed. These tools focus on tomograms, large
3D images collected from an electron microscope. Tomograms can contain high
and low frequency noise, which reduces the resolution of models generated from
them [9]. To combat this, the goal for this part of the thesis was to implement
filters and averaging tools that can be used to increase the signal-to-noise ratio
in the tomograms.

By implementing both of these functionalities, ArtiaX offers an integrated
platform for working with tomograms in a simple and efficient way, while also
functioning as a tool for rendering state-of-the-art biological scenes. These
scenes are also viewable through ChimeraX’s virtual reality capabilities.

All the code written for the thesis is in scientific python2, using the ChimeraX
development tools, amongst which there are some functions implemented in
C++ that have been utilized as often as possible due to their increased compu-
tation speed. The code also builds heavily on the classes and features already
present in ArtiaX, using the surface and tomogram frameworks extensively. In
addition to the underlying mechanics of the tools added, both a graphical and
a command-line user interface are part of the plugin. However, the description
of these implementation details is outside the scope of this thesis, and can be
found in the ArtiaX documentation.

The development of both parts are completely independent, and as such the
thesis is divided up in two parts; one about removing overlap between surfaces
in a 3D-scene, and one about filtering tomograms. Both these parts will include
sections describing the mathematical background, the implementation, and the
results of the implemented tools. After this, a discussion about the limitations
and improvements of the added features is presented, along with other potential
features to add to ArtiaX. Finally, a short conclusion summarizes the work done
and the conclusions drawn from the thesis.

2Both numpy [11] and scipy [18] have been frequently used.



Chapter 2

Removing Overlap

When rendering realistic biological environments in 3D, it is important that
no two rendered surfaces overlap. ChimeraX, especially with ArtiaX, is a con-
venient and useful tool for creating naturalistic scenes on a nano-meter scale.
But, as there is no builtin collision detection in ChimeraX, a suite of functions
have been developed for ArtiaX to move surfaces so that they no longer overlap.
To create these functions, two methods have been implemented that calculate
overlap between pairs of surfaces. One method generates semi-random points to
calculate the volume of overlap, whereas the other method calculates the depth
of overlap, two notions that are defined in Section 2.1.1. To completely remove
the overlap between all surfaces, an iterative approach is used, where the overlap
between all surfaces is first calculated using one of these methods. Using the
size of the overlaps, the surfaces are then moved away from each other. This
process of measuring overlap and moving the surfaces is then repeated until no
two surfaces overlap anymore. In addition to this, an extension to the functions
has been developed, that moves surfaces on a larger attachment-surface.

In this chapter, the representation of the surfaces and the definition of over-
lap between surfaces is first presented in Section 2.1. The theoretical background
of the methods employed to remove overlap between surfaces is then presented
in Section 2.2, followed by Section 2.3 on the implementation of these functions
in ArtiaX. Lastly, the results of the implementation is presented along with
comparisons between different methods in Section 2.4.

Arctaedius, 2023. 3



4 Chapter 2. Removing Overlap

Figure 2.1: A triangle mesh octahedron.

2.1 Representation of Surfaces
Surfaces in ChimeraX are stored and represented as triangular meshes, i.e., a
list of vertices and a list of triangles explaining how the vertices are connected.
A simple example of this would be an octahedron, which could be described
using eight triangles with the following lists:

vertices = [[0,0,0], [1,1,1], [1,-1,1], [-1,1,1], [-1,-1,1],
[0,0,2]].

triangles = [[0,1,2], [0,1,3], [0,2,4], [0,3,4], [1,2,5],
[1,3,5], [2,4,5], [3,4,5]],

where the vertices list describes six points in 3D space and the triangles list
describes eight triangles, connecting the vertices using their indices in the list of
vertices. Plotting this produces Figure 2.1. ChimeraX uses this format to store
and represent surfaces to the user.

2.1.1 Definition of Overlap
Two surfaces are considered overlapping if any of the triangles from one surface
intercepts any of the triangles of the other surface. In this thesis, two measures
of overlap are considered, namely, overlap volume, and depth of overlap (or,
overlap depth). Depending on the implementation, both measures could be
used for any surface geometry, but the theoretical foundation of the measures
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Figure 2.2: Two spheres overlapping, with the intersection highlighted in green.
The volume of this intersection is the overlap volume of the two spheres.

Figure 2.3: Two spheres overlapping, with a line whose direction and length
indicate the shortest distance the spheres could be moved so that they no longer
overlap. This distance and direction compose the depth of overlap between the
two spheres.

rely on continuous, hole-less, surfaces at the point of overlap. The definition, as
used in this thesis, of both measures is as follows:

Definition 1. The overlap volume, VO, between two surfaces A and B, is
defined as

VO = VA∩B , (2.1)

where VA∩B is the enclosed volume of the intersection of A and B.

Definition 2. The depth of overlap between two surfaces A and B, is defined
as the shortest distance, d, either surface can be moved so that they no longer
overlap.

Figures 2.2 and 2.3 shows an example of overlap volume and depth of overlap,
respectively. When working with the depth of overlap, it is often helpful to
measure the direction along which the shortest overlap occurs.
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2.2 Theoretical Background
To remove overlap between surfaces, two methods of measuring the size of the
overlap have been implemented. One method to measuring overlap volume and
one to measure the depth of overlap, named the Normal Projection Method.
The mathematical background to these two methods, and a pseudocode algo-
rithm describing the normal projection method is presented in the forthcoming
sections.

In addition, a method of iteratively moving overlapping surfaces is presented,
along with a mathematical theorem, providing an argument that this method
will indeed remove all overlap with enough iterations. Finally, a mathematical
description of the method used to move surfaces along an attachment-surface is
presented.

2.2.1 Measuring Volume
There are many algorithms available for estimating the enclosed volume of tri-
angular meshes [21, 20, 17]. However, these mostly rely on either voxelization of
the mesh (changing the representation from a triangle mesh to a voxel map), or
knowing the vertices and triangles of the volume to measure. When measuring
the volume of the overlap of two surface meshes, neither of these approaches are
preferable, as the vertices and triangles that make up the intersection surface
are not known, and finding these is expensive.

Monte Carlo Approach for Measuring Volume

One method that can approximate the volume of the overlap between two sur-
faces in 3D-space, without needing a full mesh or voxel description of the overlap,
is a Monte Carlo approach [16]. It, using some sort of random process, generates
points within the bounding box of the surface and then calculates the proportion
of the generated points that are inside the surface. From this proportion and
the volume of the bounding box, an estimate of the volume can be calculated.
For a scenario where the volume of the overlap between two surfaces is to be
calculated, either of the bounding boxes of the surfaces can be chosen, and the
proportion of the generated points that are inside of both surfaces can instead
be used to estimate the overlap volume. Described mathematically, the volume
of the overlap, VO, can be calculated by

VO =
nA∩B

n
Vbbox, (2.2)

where nA∩B is the number of points inside both surfaces, n is the total number
of points generated, and Vbbox is the volume of the chosen bounding box. To
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calculate nA∩B , a method is needed for checking whether a point is inside of
both surfaces.

The problem of testing whether a point is inside or outside of a triangulated
surface mesh is common in computer graphics, so there exists a plethora of
methods available for this task [14]. One of the simplest and quickest methods
is the Jordan Curve Theorem-based method [14], where a ray is cast from the
point being tested, to some point outside the volume, such as outside the edge
of the bounding box. If the ray intercepts the surface of the volume an even
number of times, the tested point is outside the volume. If it intercepts an odd
number, it is inside.

With the Monte Carlo approach, where the points are generated using a
uniform random distribution, the error obtained from the simulation is propor-
tional to c√

n
, where c > 0 and n is the number of points generated [5]. However,

instead of uniformly generated points, the points can be generated using some
other scheme, such as Poisson disc sampling [4]. This is a method that pro-
duces random points in a sample domain that are never within a set distance
r from one another [4], creating points that are more evenly spread than point
generated from a uniform distribution. It works by generating points that are
within r and 2r distance away from set points, and discarding generated points
that are too close to existing points, and adding the ones that are not [2]. Using
some quasi-random sampling method like Poisson disc sampling could decrease
the number of points needed to get the same measurement compared to uniform
sampling.

2.2.2 Normal Projection Method for Measuring Depth of
Overlap

The Normal Projection Method is a computationally efficient method for cal-
culating the depth of overlap between two surfaces in 3D space, developed for
the purposes of this thesis. Its goal is to calculate the depth of overlap (see
Definition 2) between a pair of surfaces. It does this by first finding the inter-
cept between the surfaces, and then finding a fit for the plane described by the
interception points of both surfaces. The normal of this plane is assumed to be
the line along which the surfaces can be moved the shortest distance apart to
remove overlap between them. All points of the surfaces are projected onto the
normal. The furthest distance between two projected points is then measured
and returned along with the normal. Algorithm 1 shows a pseudocode inter-
polation of the method. Figure 2.4 shows the steps of the method graphically,
using two overlapping boxes as an example.
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input : Two surfaces, s1 and s2.
output: The depth of penetration of s1 into s2, s1_depth, the depth of

s2 into s1, s2_depth, as well as the normal along which the
penetration is measured, normal.

intercept_points ← GetInterceptionPoints(s1, s2);
normal, middle ← GetPlaneGeometry(intercept_points);
Turn the normal so that it faces from the first surface’s center to the
plane;

s1_in_s2 ← GetPointsOnOtherSideOfPlane(s1, normal, middle);
s2_in_s1 ← GetPointsOnOtherSideOfPlane(s2, −normal, middle);
s1_depth ← Max(Norm(middle − ProjectToLine(s1_in_s2, normal)));
s2_depth ← Max(Norm(middle − ProjectToLine(s2_in_s1, normal)));

Algorithm 1: A pseudo code implementation of the Normal Projection
Method. It relies on many functions to perform geometrical tasks, such as
finding interception points between surfaces, fitting a plane to a group of
points, sorting points on one side of a plane, and projecting points to a
line. The surfaces can be of any representation, such as a triangular mesh
or voxels. The function GetPointsOnOtherSideOfPlane returns a list of co-
ordinates that can be projected onto the normal.

The method doesn’t require any certain representation of the surfaces, but
has been designed to work well with triangular meshes. It requires a function
that can find common points between the surfaces to find the intersection points,
which can be done in a number of ways, such as a nearest neighbor search. It
also relies on a function for fitting a plane to a group of points, such as a least
squares method. Finally, it needs a function that can find points from one
surface that are on a specified side of a plane. If the surface is a triangular
mesh, the vertices on the selected side of the plane can be the points returned.
In addition to these specialized functions, it also relies on basic linear algebra
calculations, such as projecting points to a line and measuring the length of
vectors.

Algorithm 1 is applicable for many shapes, but is not guaranteed to give a
correct measure for complex geometries. For spheres it is guaranteed to give
a perfect measurement, since the intercept of two spheres is always a circle
that lies on a plane which is orthogonal to the line through the centers of the
spheres, i.e., the line along which the overlap of the spheres is the shortest [10].
The normal projection method tries to measure the depth of overlap, but it
does not always return the shortest distance the two surfaces can be moved to
avoid overlap. This is because it assumes that the shortest distance to move
the surfaces will be along the normal of the interception plane, meaning that
there might be a shorter distance to move the object. However, the normal
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(a) Two overlapping boxes.
(b) The intersection points between the
boxes is highlighted in red.

(c) The normal of the plane and a point
on it has been identified and is presented
as the arrow in red.

(d) The portion of the boxes that are not
in the other box have been removed. No-
tice how the blue box is completely re-
moved, since no part of it is present in the
red box.

(e) The remaining parts of the boxes have been projected onto the normal (the red
arrow). The black arrows indicate the length of the protrusion of the boxes into each
other, which, together with the normal, compose the depth of overlap between the
boxes.

Figure 2.4: A pictured example of the Normal Projection Method being used
to calculate the depth of overlap between two overlapping boxes.
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Figure 2.5: An example of how new overlap can occur when moving two surfaces
that are overlapping. In the upper picture the left blue box and the red box
overlap, and in the bottom picture the left blue box has moved left and the red
box has moved right so that they no longer overlap. The red box has however
moved into the right blue box, so that they now overlap. The red outline shows
where the surfaces intercept.

projection method always finds a length to return, even though it is easy to find
examples of concave geometries where the method will fail. For most convex
and even many concave geometries the normal of the plane approximated by
the interception points will yield a result that moves the surfaces apart.

2.2.3 Iterative Movement

When moving overlapping surfaces, they could be moved into other surfaces,
generating new overlaps. Figure 2.5 shows how this can happen when two
overlapping surfaces are moved in the presence of a third surface. To ensure
no surface pairs overlap, an iterative approach is employed where all surfaces
are moved so that their current overlaps are removed, and then moved again
to remove any new overlap that has occurred. This process continues until no
two surfaces overlap. Algorithm 2 shows a pseudocode implementation of the
algorithm which relies on a function that calculates the movements of all surfaces
to remove the current overlaps. This function could, for example, use the normal
projection method presented in Section 2.2.2 or a function that measures the
overlap volume between surfaces, see Section 2.2.1.
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input: Surfaces, a list of all surfaces in some representation. The
surfaces need to be movable by the function MoveSurface()

Movements ← CalculateMovements(Surfaces);
while Movements is not all zeros do

for Surface and corresponding Movement in Surfaces and
Movements do
MoveSurface(Surface, Movement)

end
Movements ← CalculateMovements(Surfaces);

end
Algorithm 2: An algorithm for iteratively moving surfaces until no pair
overlaps. It relies on a function CalculateMovements that can measure over-
lap between all surface pairs and calculate movements for each surface that
removes the current overlaps.

With Algorithm 2, many surfaces can be moved to produce an end result
of a 3D scene with no overlapping surfaces, or at least such a result can be
expected, as discussed in the next section.

Iterative movement convergence

When moving surfaces using the iterative movement described in Section 2.2.3,
the question arises whether the algorithm is guaranteed to finish, that is, whether
after enough iterations, no two surfaces overlap. To provide an argument for
why convergence is expected in a simplified version of the problem, Theorem 1
has been developed and proved. Before getting to the theorem, some restrictions
need to be described, the function that moves surfaces defined, and a lemma
presented.

Let X be a collection of 1 ≤ n <∞ spheres si in R3 with radii 0 < ri <∞
and center point ci for any i = 1, 2, ..., n. Two spheres are said to overlap if they
intercept at more than one point.

Definition 3. Let f(X) be a function that moves spheres in X based on their
overlap. If multiple spheres overlap, f(·) moves the spheres that overlap the
most. If more than one pair of spheres overlap the same amount, one of the
pairs is chosen. The spheres are moved away from each other along the line
that goes through the center of both spheres. Both spheres are moved the same
distance so that they only touch in exactly one point. That is, if sphere si and
sj overlap, they are moved so that ||ci − cj || = ri + rj.

Definition 4. Let S(X) be the sum of the distances of the centers of all spheres
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in X, that is, S(X) =
∑

i ̸=j ||ci − cj ||,∀i, j = 1, 2, ..., n.

Lemma 1. If X = {s1, s2, s3}, where s1, s2, s3 are spheres with radii r1, r2, r3 <
∞ and s1 and s2 overlap, but neither overlap with s3, then the distance from
the center of s3 to the other spheres will never decrease after f(·) is applied to
X.

Proof of Lemma 1. The spheres can, without loss of generality, be assumed to
have centers c1 = (0, 0, 0), c2 = (x2, 0, 0), where x2 > 0, and c3 = (x3, y3, 0) for
s1, s2, and s3 respectively. The overlap between s1 and s2 is ω = r1 − (x2 −
r2) = r1 + r2 − x2, meaning that after f(·) is applied, s1 and s2 will have their
centers in (−ω/2, 0) and (x2 + ω/2, 0) respectively. There are three possible
cases depending on where s3 is placed:

(i) x3 = −ω/4 or x3 = x2 + ω/4.

(ii) −ω/4 < x3 < x2 + ω/4.

(iii) x3 < −ω/4 or x3 > x2 + ω/4.

In Case (i), the distance between s3 and one of the spheres doesn’t change,
whereas the difference increases to the other sphere. In Case (ii) the distance
to both other spheres increase. However, in Case (iii), the distance to one of
the spheres increases, but to the other it decreases. Assuming, without loss of
generality, that x3 < −ω/4, even in this case, the total distance always increases,
except in the case where x3 < −ω/2 and y3 = 0, i.e., all three spheres are on
a line, in which the total distance remains the same. This is because the angle
((x3, 0), (x3, y3), (x2+ω/2, 0)) is larger than the angle (x3, 0), (x3, y3), (−ω/2, 0).

Theorem 1. If X contains 2 ≤ n < ∞ spheres with finite radii and two or
more of them overlap, then

S(X) < S(f(X)).

Proof of Theorem 1. Applying Lemma 1 for all of the non-overlapping spheres
gives that the total distance between them and the overlapping spheres never
decreases, while the distance between the two overlapping spheres must increase.
This means that the difference in total distance between all spheres must in-
crease.

Theorem 1 provides an argument as to why it can be expected that f(·)
applied to X enough times will lead to a scene without any spheres overlapping.
Since f(·) is defined such that it only moves two spheres, Theorem 1 shows that
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S will always increase as long as there are still overlaps. This in turn shows
that the spheres will spread out more and more for every iteration. While not
a full proof that the scene converges to a scenario without overlap even in this
simplified version of the problem, it is taken as enough motivation for assuming
that a function that moves surfaces based on the overlap between them can,
with enough iterations, remove the overlap between all surfaces.

2.2.4 Moving Surfaces Along an Attachment-Surface

When moving surfaces to remove the overlap between them, different boundary
conditions could apply to the movement. One such boundary condition is when
the surfaces are to be attached to some other, usually larger, attachment-surface.
This could, for example, represent proteins embedded in a cell membrane. In
this case, the location of the surfaces can be noted, after which they can be
moved using some method for moving surfaces to remove overlap. The surfaces
can then be moved back onto the attachment-surface. An algorithm to perform
this task has been developed and works by first identifying the attachment-
surface of every surface. After moving the surfaces to remove overlap in the
usual manner, the attachment-surface can be found for each surface by looking
for it along the normal of the attachment-surface at the starting position of the
surface. The surface can then be moved to the attachment-surface at the point
where the normal, extended from the new position of the surface, intercepts the
attachment-surface. Figure 2.6 shows a 2D example of the algorithm. If the line
extended from the new position of the surface does not intersect the attachment-
surface, the surface can be placed on the plane defined by the original location
of the surface and normal of the attachment-surface at the original point of
contact.

This algorithm does not work if the curvature of the attachment-surface is
too large, as it might not be found after the movement of the surfaces. How
large the curvature can be depends on how far the surfaces get moved by the
algorithm to remove overlap. As this algorithm moves the surface away from
where it was originally moved, new overlap might occur. Using an iterative
approach, as described in Section 2.2.3, to remove said overlap can solve this
problem. It cannot, however, solve the problem that it might be impossible
to fit all surfaces on the attachment-surface, if the attachment-surface is not
sufficiently large.
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Figure 2.6: A red triangle being moved along a blue attachment-surface. The red
triangle starts of at position 1, and is moved along the black arrow to position
2. The red arrow indicates the normal of the attachment-surface at position 1,
and the dotted red line shows the direction of this normal. The triangle is then
moved along the dotted red line to the attachment-surface at position 3.

2.3 Implementation

In ArtiaX, particles with a location and rotation can be placed in 3D-space. Tri-
angular mesh surface models can be attached to these particles, which are used
to render a scene with realistic biological features displayed through particles
with attached surfaces. However, the surfaces simply render at the position of
the particles they are attached to without any regard for collision between the
surfaces. This can lead to an unrealistic scene where surfaces are overlapping.
To solve this, two methods for removing overlap between surfaces have been
implemented.

Both methods operate by pairwise measuring the overlap between surfaces,
applying a force proportional to the overlap, and moving all surfaces in a iter-
ative process until no surfaces overlap. The difference in the methods is their
way of measuring the overlap and application of the force. One method uses
a probabilistic method of determining the volume of the overlap, described in
Section 2.2.1, whereas the other method attempts to measure the depth of the
overlap, described in Section 2.2.2. This section deals with the implementation
of these methods, by first looking at the implementation of the methods for
measuring overlap in Section 2.3.1, and then the function that moves surfaces
iteratively in Section 2.3.2. To illustrate the implemented methods, the surfaces
used in the images of this section are recreations of a transmembrane adhesion
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complex1, representing a realistic example of the types of surfaces that might
be used in ChimeraX [1].

2.3.1 Measuring Overlap

The two methods for measuring overlap discussed in Sections 2.2.1 and 2.2.2,
namely the Monte Carlo approach to measuring volume and the normal projec-
tion method for measuring depth of overlap respectively, have been implemented
into ArtiaX. From the user’s perspective, there is a function available that moves
the selected surfaces so that they no longer overlap, with the option of choosing
the normal projection method or the Monte Carlo approach as the method for
calculating the overlap between surfaces. The normal projection method is the
default choice available to users but since it is not guaranteed to work for all
geometries, the Monte Carlo approach exists as an alternative.

The following sections outline and describe the implementation of both meth-
ods, describing in detail the algorithms used and showing how the methods work
in ArtiaX.

Calculating Overlap Volume

Multiple approaches have been tested to find the quickest and most reliable
method for measuring the volume of two overlapping surfaces. They all rely on
generating points within a given bounding box of the surface and calculating the
proportion of points inside the surface. This proportion can then be multiplied
with the volume of the bounding box for an estimate of the volume of the
surface. The basic principles are these described in Section 2.2.1, however,
different methods of generating the points inside the bounding box have been
tried out.

The three methods tested were: A classic Monte Carlo approach with points
generated with uniform randomness within the bounding box, a Poisson disc
approach with points generated using Poisson disc sampling (see Section 2.2.1),
and a regular grid approach, where the points were placed on a 3D regular
grid. The accuracy and time taken for the different approaches can be found
in Section 2.4.1. The number of points used in a particular method is specified
by the user, as the number of points needed for a good approximation of the
volume of overlap depends on the shape of the surfaces. More specifically, it
depends on the proportion of the volume of the surface and the volume of the
bounding box that encloses the surface. Figure 2.7 shows an example of the
three different methods for generating points.

1Available at https://www.emdataresource.org/emdlist=DOI:10.1038/s41467-020-16511-2
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(a) Points generated using
uniform randomness.

(b) Points generated using
Poisson disc sampling.

(c) Points placed on a reg-
ular grid.

Figure 2.7: Two overlapping surfaces, with three different methods of generating
260 points in the bounding box of the pink surfaces. Note how the points are
more spread in (b), whereas the points have a tendency to clump together, and
there are holes without any points in (a).

To calculate overlap between a group of surfaces, they are all compared pair-
wise. The bounding boxes of the surfaces are compared, and the surfaces that
have overlapping bounding boxes are noted. Then the surfaces are processed,
starting with the surface overlapping with the most other surfaces. A set of
points is generated inside of the currently processed surface’s boundary box us-
ing one of the methods for generating points described above. These points are
then checked to determine if they are contained within the currently processed
surface, and all other generated points are discarded. The remaining points
are then checked to find how many are contained in each of the other surfaces
that have overlapping bounding boxes with the currently processed one. This
produces a list, with the number of points that are contained in both the cur-
rently processed surface and the surfaces whose bounding boxes overlap with
it. Calculating the fraction of all generated points that are in both surfaces
and the volume of the bounding box of the currently processed surface, an es-
timate of the overlapping volume between the two surfaces can be calculated.
The currently selected surface is completely processed and is removed from the
calculations so as not to be processed again. The next surface with the most
overlapping bounding boxes is selected to be processed. The processing con-
tinues until there are no more surfaces whose bounding box overlaps another
that is not yet processed. Figure 2.8 shows a small 2D example of the process,
highlighting how the selection of which surface to process works, as well as how
the points are generated for that surface.

This algorithm relies on a function for finding whether a point is inside or out-
side of a surface, which has been implemented using the Jordan Curve Theorem-
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Figure 2.8: A simplified 2D example of the process used for measuring the
pairwise overlap volume between surfaces. In this example, the circles represent
the surfaces, and the dotted lines around them represent their bounding boxes.
The first step of the process is to find the surface whose bounding box overlaps
with the most other surfaces, which in this case is surface four, overlapping
with three other surfaces. Points are then generated inside of the bounding box
belonging to the fourth surface, and the ones that are outside of surface four are
discarded (the red points). The remaining points (the green points), are then
checked to see how many are contained in the surface whose bounding boxes
overlap with surface four, i.e., surfaces two, five, and six. Surface four is then
considered processed, and so are surfaces three, five, and six, as none of them
have overlapping bounding boxes with any more unprocessed surfaces. The next
surface to process would therefore be surface one or two, after which the process
will finish, as the overlap between all surfaces is known. Using this method, only
two sets of points need to be generated, which accelerates processing compared
to generating points for every pair of surfaces.
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based method mentioned in Section 2.2.1. A function exists in ChimeraX for
finding the first intersection between a line and a triangle in a triangular mesh,
implemented in C++, making it faster than the code implemented in python.
This function has been used to implement the Jordan Curve Theorem-based
method.

Calculating Overlap Depth

The normal projection method was created to solve the problem of calculating
the depth of overlap between two surfaces, and as such has been implemented
in ArtiaX (see Section 2.2.2 for the theoretical background to the method). It
is the standard method used in the function that moves surfaces until they no
longer overlap.

The implementation of the normal projection method relies on a ChimeraX
function implemented in C++ that quickly finds points close to one another
between two lists of points. As input it takes two lists of coordinates and returns
the points in both lists that are within a specified distance from each other. This
function is used to find the intersection between two surfaces, using the triangle
vertices in the mesh representation of the surfaces as the points given to the
function. With the intersection points found, a least squares fit is used to find
the normal of a plane approximated by the intersection points, and the mean of
them is defined as a point on the plane. Using the normal and this point on the
plane a mathematical description of the plane is calculated, and the surfaces
are filtered to only leave the vertices on the other side of the plane compared
to the center of the surfaces. These remaining points are then projected onto
the normal, and the maximum distances of a vertex from the plane for both
surfaces is calculated. The sum of these two distances are returned along with
the normal of the plane. An example of how this might look using two surfaces
in ArtiaX is shown in Figure 2.9

2.3.2 Moving Surfaces

When using the normal projection method for measuring overlap of a surface
pair, a distance and a direction is returned. These values are used to move
both surfaces half the returned distance each along the returned direction but
opposite ways. When a surface overlaps with more than one other surface,
the average of the movements is used to move the surface. Using the Monte
Carlo approach returns an approximation of the overlap volume, which is used
to calculate a distance to move the surfaces, which are both moved the same
amount away from their respective centers. The distance is calculated by simply
taking the third root of the overlap volume, multiplied by a constant specified
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Figure 2.9: Two surfaces overlapping, with the intersection points and the nor-
mal fit to those points shown in white in the image to the right.

by the user, meaning the overlap is assumed to be cubic. The overlap is almost
certainly not cubic, but it gives a fair estimate of the overlap distance, often
only needing one or two iterations to move the surfaces a good distance apart.

2.4 Results
The functions described in Section 2.3 have been implemented and work for
moving surfaces to remove overlap between their attached surfaces. Figure 2.10
shows a simple case of two surfaces overlapping, and how they look after being
moved to remove overlap. Figure 2.11 shows a more complex scene with several
overlapping surfaces, and what that scene looks like after using the implemented
functions to move the surfaces.

2.4.1 Generating Points for the Monte Carlo Approach

The three strategies to generate points for the Monte Carlo approach discussed
in Section 2.3.1 were tested for speed and accuracy, by using them to approxi-
mate the volume of an enclosed surface with known volume. The full results can
be found in Table 2.1. As can be noted from the table, using a regular grid gives
a poor approximation of the volume, no matter how many points are generated.
In the experiment, the number of points generated with Poisson disc sampling
is not actually the values stated. Instead of generating a set number of points,
a radius was set within which no other points could be created. The stated
value actually represents the number of points possible using the set radius, if
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Figure 2.10: Two surfaces, one blue and one pink, being moved to remove the
overlap between them.

(a) 31 copies of the same
surface, many of which
overlap.

(b) The surfaces moved us-
ing the normal projection
method.

(c) The surfaces moved us-
ing the Monte Carlo ap-
proach.

Figure 2.11: A group of overlapping surfaces, being moved to remove overlap.
All images are from the same angle.
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all points were places on a grid. This means that the total number of points for
the Poisson disc sampling is different in every run, and usually about half of the
stated value. This explains why the time taken for the Poisson disc sampling
method is usually shorter than the time taken for uniform sampling, as fewer
points had to be tested to determine if they were contained in the surface.

Table 2.1: Data collected from approximating the volume of a surface with
known volume using different methods for generating points. All values are
averages from ten rounds of approximation, except for the grid approach, which
generates the same points every time and therefore gives the same result every
time. All the relative values are related to the value in the uniform row with
the same number of generated points. So, for example, the average error using
500 points generated with Poisson disc sampling has 44% of the error, 71% of
the standard deviation, and takes 73% of the time needed for using 500 points
with uniform sampling.

Method N.o.
points

Error
[%]

Rel.
Error

Rel. std.
dev.

Time [s] Rel.
time

Uniform 10 46.0 1.00 1.00 0.0114 1.00
100 11.9 1.00 1.00 0.0878 1.00
500 5.3 1.00 1.00 0.4398 1.00
1000 4.6 1.00 1.00 0.8699 1.00

Poisson 10 64.6 1.40 2.05 0.0242 2.12
100 9.1 0.77 1.15 0.0763 0.87
500 2.3 0.44 0.71 0.3216 0.73
1000 2.6 0.56 0.76 0.6183 0.71

Grid 10 100.0 2.17 - 0.0035 0.30
100 55.5 4.67 - 0.0627 0.71
500 32.8 6.20 - 0.3134 0.71
1000 26.1 5.65 - 0.6693 0.77

While the results are not conclusive, the Poisson disc sampling method was
selected for its high accuracy and low standard deviation, leading to a more
stable result. As calculating whether a point is in a surface or not is time
consuming, the ability of the Poisson disc sampling method to produce a set
of spread points and thus a good approximation of the volume even at low
point-counts makes it superior to the other two methods.
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2.4.2 Normal Projection Method and Monte Carlo Time
Comparisons

Because of the different nature of the methods, it is hard to directly compare
the normal projection method and Monte Carlo approach for removing overlap.
The reason is twofold; Firstly, for the Monte Carlo approach more points can
always be generated, and the distance moved based on the overlap volume can
always be decreased (an option given to the user), leading to a slower but more
precise method, as the risk of surfaces being moved to far away from each other
decreases, but the risk that two surfaces don’t move far enough away increases,
leading to more iterations being needed to move the surfaces so that they no
longer overlap. Secondly, as no measure for the success of the methods has been
defined, it is hard to tell which function did a better job of moving the surfaces
as little as possible while still removing the overlap.

However, using settings for the Monte Carlo approach that give a result that
looks similar to the normal projection method, the time taken for each method
to move 31 overlapping surfaces was measured. After performing the movements
ten times for each method, the average time taken in seconds for the normal
projection method was 48.22958, and for the Monte Carlo approach 58.03436.
So, for this test case, the Monte Carlo approach took almost 10 seconds, or
20%, longer. It should be mentioned that the measured time also includes the
time taken to do all the surrounding work for the function, such as updating
the location of the surfaces, redrawing the scene, and organizing all the data.
This work is the same for both functions, but takes many seconds each time the
function is called, meaning that the normal projection method can be expected
to work more than 20% faster than the Monte Carlo approach.
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Tomogram Processing

Tomograms are large three-dimensional images, reconstructed from a series of
2D images taken from different angles with an electron microscope [19]. In
ArtiaX, tomograms can be displayed and analyzed. To increase the signal-to-
noise ratio of the tomograms, Fourier-space filters and slice-averaging has been
implemented. Frequency filters can be useful as both high-frequency and low-
frequency noise appear in the tomograms. Slice-averaging, or simply averaging,
refers to averaging voxel-values of the 3D image, which can also reduce the noise,
as it is is assumed to be Gaussian. This chapter will examine the theory behind
the image processing in Section 3.1, the tested methods in Section 3.2, and the
results of the testing and the filters in Section 3.3. Since tomograms can take
up many Gigabytes of storage space, many methods and algorithms have been
tested to find a space and time efficient implementation.

3.1 Theoretical Background

Image processing, specifically frequency filters, can be efficiently done in Fourier-
space. This section gives an explanation of how cross-correlation can be used
to average a 3D image, and presents the mathematical background to how the
Fast Fourier Transform (FFT) can be used to filter large 3D images.

3.1.1 Discrete Cross-Correlation

The discrete Cross-Correlation is an operation that has many uses, but is most
commonly used for measuring similarity between signals [15]. The one dimen-
sional cross-correlation of two real discrete signals x[l] and h[l] can be defined

Arctaedius, 2023. 23
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as [15]
z[l] =

∑
i

x[i]h[l − i], (3.1)

or, for three dimensional signals x[l,m, n] and h[l,m, n],

z[l,m, n] =
∑
i

∑
j

∑
k

x[i, j, k]h[l − i, j −m,n− k]. (3.2)

In Figure 3.1, an example of multidimensional cross-correlation using this
definition is presented using a small 6x6 size image and a 3x3 kernel. The kernel
is moved over the entire input image, multiplying the values in the kernel with
the aligned values in the input image, to produce the output value at the position
where the kernel is currently centered. The same principle of calculation applies
for 3D images as well. What happens at the border of the signal depends on
the type of cross-correlation used, usually with the input signal expanded some
way and the kernel only being moved over the original size of the signal. In the
example in Figure 3.1, the signal has been padded with zeros. Another common
technique is to assume the signal is surrounded by copies of itself, or that the
signal is mirrored in the edges.

Averaging Through Cross-Correlation

Cross-correlating an image with the right kernel can be used to average the
image in a desired direction. The values of the kernel decide the weight to put
to different parts of the original image when computing the average. To ensure
the image is averaged and does not increase the total size of the signal, all the
values in the kernel should sum to 1. Figure 3.2 shows a simple example of how
cross-correlation can be used to average an image in a set direction. This can be
done to a signal in an arbitrary number of dimensions, by simply using a kernel
of the same number of dimensions. The number of pixels that are considered
for the averaging depends on the size and the values of the kernel.

Fourier-Space Cross-Correlation

Cross-correlation can also be performed in Fourier-space, with (3.3) describing
the relationship between the cross-correlation of two time-discrete functions h[l]
and x[l], and the discrete Fourier transform of the cross-correlation as

z[l] =

N−1∑
i=0

x[i]h[l + i]⇐⇒ Z[n] = X∗[n]H[n], (3.3)
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Figure 3.1: A 6x6 signal being cross-correlated with a 3x3 kernel, using zero
padding. The image highlights how the kernel matches the signal when centered
at position (5,2), and it shows the sum that defines the value of the output at
position (5,2). The entire output image is produced by moving the kernel across
the input image and calculating the matching sum.

where H[n] and X[n] are the discrete Fourier transforms of h[l] and x[l], and
X∗[n] refers to the complex conjugate of X[n] [3]. Using the FFT (described in
Section 3.1.2) can potentially speed up the calculation for computing a discrete
cross-correlation [13].

3.1.2 Fourier-Space Filters

To reduce noise in an image, high and low-pass filters can be applied. The sim-
plest filters are brick-wall filters, where all frequency components above or below
a threshold value are simply set to zero. This design is simple to implement, but
can cause ringing effects. To minimize these effects, more advanced transitions
between the filtered and non-filtered frequencies can be applied. A raised cosine
function can be used to smooth the transition, or the more common Gaussian
cut-off [15].

To filter a discrete signal, the FFT can be utilized. The FFT is a sweep of
efficient algorithms all implementing the discreet Fourier transform [3], allowing
a digital image to be transformed into Fourier-space. After transforming the sig-
nal to Fourier-space using the FFT, a mask can be applied to reduce or increase
certain frequencies in the signal, after which the signal can be transformed back
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Figure 3.2: An image averaged in different directions using cross-correlation.
All three images to the left are the same input signal, and the * symbol denotes
cross-correlation with the kernel. The three different kernels produce three
different outputs; the first image is averaged in a horizontal direction, the second
a vertical, and the third a diagonal. In all three examples a 5x5 kernel is used,
and 5 pixel values are used to calculate every pixel value in the output. The
input signal is padded using mirroring.
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with the inverse FFT. When using real-valued signals, the computations can be
simplified and sped up using the real-valued fast Fourier transform, the RFFT,
and its inverse, the IRFFT [12]. The FFT can be used to transform multidi-
mensional signals by transforming it along one axis at a time. However, since
the result of a RFFT is itself complex, the RFFT can only be used along one
axis in the case of a multidimensional real signal, and the remaining directions
must be transformed using the normal FFT. As such, when a multidimensional
signal is said to be transformed using the RFFT, the RFFT is only used along
one axis.

3.2 Implementation

In ArtiaX, tomograms are three-dimensional density maps, usually constructed
using data collected from a cryo-electron microscope. These tomograms are
represented by a 3D-matrix, and can be visualized as rectangular prisms, where
each density-value is rendered as the brightness of the corresponding voxel.
However, tomograms are also often rendered as a series of 2D-slices. These 2D-
slices (or slabs, used interchangeably) are then studied to find features in the
collected data. To simplify data collection and improve the resolution of models
created using the data, multiple methods are employed to improve the signal-to-
noise ratio in the tomograms. Two such methods have been implemented into
ArtiaX as part of this thesis, namely, averaging of multiple tomogram slices and
frequency filters.

To understand the challenges with the implementations of these methods,
it is necessary to first give a quick explanation of the way that tomograms are
stored and represented in ChimeraX.

3.2.1 Data Format

As previously noted, the tomograms are stored as 3D-matrices in ChimeraX,
where each voxel value can be reached by three indices, noting the distance in
each of the Cartesian axes. So, if the tomogram is stored in matrix T , the voxel
value at position (x, y, z) is reached as T [x, y, z]. Using this, the 3D version
of the tomogram can be rendered. However, as mentioned, a more common
way of viewing the tomograms is as a series of 2D slabs that cut through the
tomogram, where the user can choose the orientation of the slab. The user can
then move through the entire tomogram, by keeping the orientation of the slab
stable, but moving the slab along its normal. The size of the tomogram and
the orientation of the slab decides the total number of slabs needed to view the
entire tomogram. The slab is always moved one unit along its normal when
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(a) The normal of the slab is along
the z-axis.

(b) The normal of the slab is not
along one of the Cartesian axes.

Figure 3.3: Examples of how tomograms are stored in ChimeraX, where each
cube is one data point in the 3D-matrix. In (a), the slab goes perfectly through
the center of each data point, but in (b) the slab does not. Because of this, in
(a), the pixel values in the slab can be read directly from the matrix, whereas
some interpolation method is needed in (b) to calculate the pixel values of the
slab.

moved, where one unit is the distance between two neighboring voxels. Figure
3.3a shows an example of the slab being moved through the tomogram, where
the slab is oriented such that its normal is along the z-axis. In a case where
the normal of the slab is along a Cartesian axis, the data describing the slab
is simply a 2D-matrix taken directly from the original 3D-matrix. However,
when the slab is oriented such that its normal is not along a Cartesian axis,
the situation is more complicated. As illustrated in Figure 3.3b, the size of the
slab shifts as it moves through the tomogram, and the data describing the slab
is not simply a 2D-matrix extracted from the original 3D-matrix. Since the
slab doesn’t necessarily go though the center of each voxel of tomogram, some
interpolation method is required to calculate the pixel values for the slab. In
ChimeraX, this interpolation is done on the GPU using shaders implemented
in OpenGL, resulting in quick calculations, so that the user can change the
orientation of the slab and move the slab through the tomogram in a quick
manner. This real time interpolation data is not available to ArtiaX, but is
only used for drawing the scene.
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3.2.2 Tomogram Slice Averaging

A simple way to increase the signal-to-noise ratio of a tomogram is to average
the data from multiple slices. That is, instead of only showing the data corre-
sponding to the slice currently being viewed, showing a slice composed of the
average data of the current slice and n slices above and below the current one,
effectively acting as a low-pass filter focused in one spacial direction. If the noise
is randomly distributed, and the signal is spread over a number of slabs, the
noise should be reduced and the signal improved. This operation is henceforth
called tomogram averaging.

To average tomograms, two methods have been tested. The first one relies
on calculating the pixel values for each slab and creating a new tomogram where
the matrix defining the tomogram is changed so that each slab is an average
of a specified number of slabs above and below it. To do this, interpolation is
needed, because, as discussed in Section 3.2.1, computing the pixel values of a
slab is easy when the normal of the slab is one of the Cartesian axes, but not
when the normal is an arbitrary axis. The second method uses cross-correlation
to average the tomograms, avoiding the problem of interpolation.

Interpolation method

To solve the problem of finding the values describing a tomogram slice that is not
along one of the Cartesian axes, interpolation is needed, as explained in Section
3.2.1. This interpolation is done on the GPU in ChimeraX, but in ArtiaX
all computation takes place on the CPU. As tomograms often consist of tens of
millions of floating point values, two interpolation implementations1 were tested
to find a method that could compute the required values in a sufficiently short
time. Both implementations utilize that the data to be interpolated is stored
on a structured rectilinear grid, and both are able to use linear and nearest
neighbor interpolation. Section 3.3.1 compares the runtime needed between the
four different methods on a large tomogram data set.

Using these interpolation methods, the pixel values of an arbitrary slab
through the tomogram can be calculated. By calculating the values for all
the slabs in the tomogram, theses slabs can then be averaged. A new tomogram
can then be created by interpolating from the averaged slabs back to the matrix
representation of the tomogram, after which ChimeraX can display the new,
averaged, tomogram to the user.

1Both from scipy [18], one from the image processing tools, scipy.ndimage.map_coordinates
and one from the interpolation tools, scipy.interpolate.RegularGridInterpolator.
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(a) Creating and rotating the line (red line) according to the given axis (black arrow).

(b) Sampling the line and creating a kernel using the samples.

Figure 3.4: The sampling method for creating a 2D kernel that can be used for
averaging an image in the direction dictated by an arbitrary axis using cross-
correlation. As is clearly seen in this example where only 17 sample points have
been used, a high sample rate is necessary to obtain a kernel that accurately
represents the given axis.

Cross-Correlation method

Another way to create averaged tomograms is to use cross-correlation. By cross-
correlating the tomogram with an appropriate kernel, it can be averaged over
an arbitrary axis without the need of interpolation, as described in Section
3.1.1. To create the correct kernel, a 3D-matrix is created of the same size in all
directions, which is specified by the user and determines over how many slabs
the tomogram is to be averaged. A line is then created along the axis with the
same length as the size of the matrix, and this line is then sampled at a high
rate. The cells of the kernel matrix are assigned values equal to the proportion
of the samples of the line that are within the cell. Figure 3.4 provides a simple
2D example of this method for creating a kernel.



3.3. Results 31

The operation of cross-correlating a kernel with an image can be done in
Fourier-space, potentially speeding up calculations, as described in Section 3.1.1.
This, however, has not been implemented, but instead the cross-correlation is
performed directly on the matrices, without Fourier transformation.2 Another
way of speeding up calculations is to not use a cubic kernel, but instead create
the smallest, rectangular matrix that covers all the non-zero values. As imple-
mented currently, many of the cells on the kernel matrix end up being zero,
causing unnecessary computations.

The result from a cross-correlation with this kernel and the matrix that
defines the tomogram yields a matrix that is used to create a new, averaged,
tomogram. Section 3.3.1 shows the time taken to perform this operation on a
large tomogram, and Section 3.3.1 provides a comparisons between this method
of averaging a tomogram and the interpolation method described in Section
3.2.2.

3.2.3 Tomogram Frequency Filters

The noise apparent in tomograms captured using cryo-electron tomography is of
both higher and lower frequency than the signal [9]. As such, the ability to high-
, low-, and band-pass filter tomograms has been added to ArtiaX. The user can
specify the cutoff frequencies and whether to use a sharp, Gaussian, or raised
cosine cutoff for the filters. To filter a tomogram, the matrix data defining the
tomogram is transformed into Fourier-space, and multiplied point-wise with the
chosen filter created from user-specified values. The result of the multiplication
is transformed back using the inverse Fourier transform, and then used to create
a new, filtered, tomogram, as per the method described in Section 3.1.2. All
transformations are implemented using the RFFT, as this decreases the amount
of ram required by a factor of two, compared to using the normal FFT, as also
mentioned in Section 3.1.2.

3.3 Results

In this section, the results of the implemented image-processing tools are pre-
sented, along with pictures showing the application of the tools used on tomo-
grams 3. The different methods of averaging tomograms are compared, and one
of the methods is implemented.

2The cross-correlation is performed using the scipy function scipy.ndimage.correlate [18].
3The tomogram used to visualize the effects of the tools implemented is taken from the

public tilt series in the Electron Microscopy Public Image Archive (EMPIAR accession code:
EMPIAR-10304) https://www.ebi.ac.uk/empiar/EMPIAR-10304/ [7]
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3.3.1 Tomogram Slice Averaging
The first set of results are tests performed to compare the speed of the interpola-
tion method and the cross-correlation method of averaging described in Section
3.2.2. In all experiments, the same tomogram with a size of 1024× 1700× 200
floating point values is used. In addition to the results of the experiments used
to compare the methods, a small discussion is given regarding which methods
has been implemented into ArtiaX.

Interpolation

To compare the four implementations of interpolation described in Section 3.2.2,
they were all used to interpolate many values on a tomogram.

For every interpolation method, three experiments were carried out, the
results of which are presented in Table 3.1. All experiments interpolated n slabs
of size 1024× 1700 in the center of the tomogram, with n set to 3, 21, and 41.
The different values of n represents different amounts of slabs used to average a
tomogram, with n = 1 representing the scenario where 1 slab above and below
the current slab are used to calculate the average of the current slab, n = 21 a
scenario where 10 slabs above and below the current slab are used, and n = 41
a scenario where 20 slabs above and below the current slice are used. Each
experiment was repeated ten times, with the average representing the time it
would take to calculate the values of one slice in the averaged tomogram, where
200 slices are needed to create an averaged tomogram the size of the original.
This average time was therefore multiplied with 200, to give en estimate of the
time needed to interpolate the values to create an entire averaged tomogram,
assuming that the interpolated values used to create one averaged slab cannot
be used in creating any others. Even assuming that the interpolated values can
be used to calculate the average of many slabs, the time taken to interpolate a
sufficient number of values is too large as to still be desirable to users.

In addition to the interpretation needed, there are many more steps needed
to create a complete averaged tomogram, as described in Section 3.2.2. This
means that for a large tomogram, with a correspondingly large data set, such as
the one used in the experiment, it would take many minutes on most computers
to average.

Cross-Correlation

The time taken for the cross-correlation method to average the tomogram was
also measured, for comparison purposes with the interpolation methods. Table
3.2 contains the time taken for different numbers of slabs to include in the
averaging. As in the experiments with the interpolation methods, the number
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Table 3.1: Different interpolation methods and the time it takes to interpolate
over a specified number of slabs of size 1024x1700 for a regular 3D grid. Map
stands for the scipy method scipy.ndimage.map_coordinates, and RGI stands
for scipy.interpolate.RegularGridInterpolator. Further, N.o. Slabs is how many
slabs were interpolated above and below the current slab, and time/tomogram
is the estimated time it would take to create an average slab for a full tomogram
made up out of 200 slabs. The relative time shows the time for the different
methods as compared to a nearest neighbor interpolation using Map. All times
are the average times from 10 runs with the same settings.

Method Order N.o.
Slabs

Time/Slab
[s]

Time/Tomo.
[s]

Rel.
Time

Map Nearest 1 0.18 36.48 1.00
10 1.28 255.06 1.00
20 2.45 489.55 1.00

Linear 1 0.31 62.92 1.72
10 2.15 429.33 1.68
20 4.14 828.98 1.69

RGI Nearest 1 0.48 96.88 2.66
10 3.48 696.32 2.73
20 6.29 1257.66 2.57

Linear 1 1.19 238.90 6.55
10 8.17 1634.72 6.41
20 15.54 3109.00 6.35

of slabs refers to the number of slabs above and below the current slab to
weight into the average. Again, all experiments were carried out ten times, with
the averaged displayed in the results. Unlike the other experiments however,
this time the data comprising the entire tomogram is calculated, meaning the
resulting data from the cross-correlation can be used to directly create a new,
averaged, tomogram. This is in contrast to the interpolation experiments, when
only the interpolation needed to average one slab was measured, not taking into
account the time it would take to actually average over all required interpolated
values. Even so, the time taken is related to time per tomogram of the fastest
interpolation method. One problem that becomes apparent with this method is
that the number of multiplications grows on the scale of O(n3).
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Table 3.2: Measured time taken for the cross-correlation method of averaging
tomogram data. See Table 3.1 for an explanation of the different values and a
comparison with the interpolation method.

N.o Slabs Time Relative Time
1 2.77 0.029
10 9.38 0.013
20 28.28 0.022

Averaging Method Discussion

When comparing the time taken to simply interpolate the required values used
in the interpolation method to the time taken to produce the matrix describing
the averaged tomogram using the cross-correlation method, it is clear that the
cross-correlation method is superior in terms of computation speed. Because
of this much faster computation speed, it was chosen as the preferable method,
and has as such been introduced in ArtiaX, allowing the user to average any
tomogram in an arbitrary direction. However, because of the cubic growth of
the computations needed it is still not a perfect implementation for averaging
over many slabs.

Figure 3.5 contains a tomogram, next to an image of the same tomogram
averaged along the direction of the camera using the cross-correlation method.
The averaged image can be seen to contain less high-frequency noise in the
empty areas between particles, and the particles are more clear. This is a result
of the noise being averaged out, but the signal being reinforced.

3.3.2 Tomogram Frequency Filters
The Fourier-space filters implemented in ArtiaX can successfully filter tomo-
grams using the RFFT. Figure 3.6a shows a tomogram containing many copies
of the same particle before any filter has been applied to it, and Figures 3.6b
and 3.6c shows the same tomogram after being low-pass and high-pass filtered
respectively. The low-pass filtered tomogram has been blurred, but contains less
noise in-between particles. The high-pass filter on the other hand, has clearer
particles than the original image. Both filters are applied to the tomogram in
Figure 3.6d, where the particles are distinct, and the noise reduced. However,
there is still noise in the image, some of which cannot be removed with frequency
filters, because it is in the same frequency band as the original signal.
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(a)

(b)

Figure 3.5: A portion of a tomogram in 2D representation (a), and the same
tomogram but with the slab shown being the average of the 10 slabs above
and below it (b). The dark regions are the particles being examined in the
tomogram, and the black oval in the top right corner is an artifact from the
tomogram acquisition process. In (a) there is high-frequency noise in-between
particles, creating a grainy image. In (b), this noise has been reduced, while the
particles remain clear.
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(a)

(b)

(c)

(d)

Figure 3.6: A part of a tomogram in 2D representation (a), with the same
tomogram low-pass filtered (b), high-pass filtered (c), and band-pass filtered
(d). The dark regions are the particles being examined in the tomogram, and
the black oval in the top right corner is an artifact from the tomogram acquisition
process. In the original image there is both high and low frequency noise, as
can be seen in (b), where the grainy noise in between particles is lessened, and
in (c) where the particles are made clearer. In (d) the noise is reduced while
the particles are highlighted through the use of a band-pass filter.



Chapter 4

Discussion

The implementation of both parts of the thesis have their limitations, and there
is potential for improving the new features, as well as adding other features
to ArtiaX. A discussion on the limitations and possible improvements of the
implemented features is presented in this chapter, which finishes with a section
on other potential future additions to the plugin.

4.1 Removing Overlap Limitations and Improve-
ments

The methods for removing overlap work in every scenario on which it has been
tested. For both methods of measuring overlap the function finds overlapping
surfaces and moves them accordingly. However, both methods can take a sig-
nificant amount of compute time to finish when there are many surfaces in the
scene. As such, the implementations of both methods could be improved, by
potentially moving some of the calculations to the GPU or by implementing
them in C++. The bottleneck in the current implementation of the normal
projection method is identifying the vertices on the either side of the intercept
plane.

The normal projection method developed for this thesis has been described
mathematically in Section 2.2.2, but as is seen there, the mathematical descrip-
tion for the robustness of this new methodology is lacking. The extent of the
shapes for which the method will give a good approximation of the depth of over-
lap would be useful to know for understanding the limitations of the method.
Additionally, such an analysis may guide possible improvements to the method
and its applicability to a broader class of cases. There are certainly many special
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cases that could be handled for arbitrary complex geometries.
When it comes to the Monte Carlo approach to approximating overlap vol-

ume, the Poisson disc sampling was shown to give better approximations of the
volumes than a uniform distribution in the experiments discussed in Section
2.4.1, but no mathematical analysis of this has yet been made. An analysis of
the convergence rate of the Poisson disc sampling approach to approximate the
volume of a surface could help give these results a mathematical foundation.

As for the method of moving the surfaces, this too could benefit from a more
thorough analysis. Section 2.2.3 provides a mathematical argument for why a
function moving surfaces can be expected to over time remove all overlap, but
even in this simplified scenario it does not prove that it always will. Extending
this theorem to show that it always does (or does not) converge would give a
better understanding of how a function moving surfaces could be designed to
work better. Also looking at a more general scenario where not all surfaces are
spheres might give insight into how the function could be improved.

That being said, for the purposes of this thesis and ArtiaX, the current meth-
ods work well and quickly in practice. In addition to the additional constraint
presented in 2.2.4, another potentially useful boundary condition would be one
for containing surfaces in some larger boundary-surface. A common use-case
might be that some surfaces are bound by some larger boundary, for example
proteins inside of a cell membrane. In this case, an extension of the method for
removing overlap would be useful, where the surfaces that are moved cannot be
moved outside of a selected boundary-surface.

4.2 Image Processing Limitations and Improve-
ments

Both the averaging and the filtering of tomograms function as intended in Ar-
tiaX. Even so, there are definite improvements that could be made to both
functions. One major improvement would be to not keep the entire tomogram
in RAM, but letting some of the information be stored in ROM, only accessing it
when necessary. Tomograms can take up Gigabytes of space, and can therefore
push the limits of the available ROM. Such a change would almost certainly in-
crease computation time, but could be worth it for the improvements in memory
availability.

For the averaging, improvements could be made by performing the cross-
correlation in Fourier-space, as described in Section 3.1.1. This might speed up
computation of the averaged tomogram. As is also mentioned in Section 3.1.1,
another potential improvement would be to limit the size of the kernel as much
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as possible, to avoid unnecessary calculations. Also for the filtering there are
potential improvements that could be made, such as adding more options for
the filter cutoffs.

There are also more image processing tools that could be useful when working
with tomograms. One important process currently unavailable in ArtiaX is
contrast transfer function correction. The contrast transfer function introduces
aberrations to the signal casued by the defocus and the spherical aberration
coefficient of the objective lens used in the microscope [6]. Adding functionality
into ArtiaX that could remove this noise would decrease the reliance on other
tools for tomogram processing.

4.3 Addition Features
In addition to the features previously mentioned, there are others that could be
implemented in ArtiaX to improve the user experience. The most pressing ones
would be a feature for saving the current working session and an undo-button
for undoing the last action. Being able to save an ArtiaX session would allow
users to build up complex scenes, save them, and then continuing to work on
them at a future time. Right now, if a session is closed, the entire scene must
be rebuilt step-by-step, or recreated using a script the user has to write. As for
the undo-button, such a feature could be highly useful for users, in case some
element is accidentally deleted or moved. These features would not improve the
processing ability of ArtiaX, but would improve usability, and potentially make
the tool more accessible for new users.





Chapter 5

Conclusion

The development of the thesis has fulfilled its goals stated in the introduction,
namely, to create a function that can move surfaces until they no longer over-
lap, and adding capabilities for filtering and averaging tomograms. Both parts
encountered problems that had to be solved, and methods that needed to be
tested and compared. For the removing overlap functions, a new method had
to be created for measuring the depth of overlap between surfaces. This re-
sulted in the development of the Normal Projection Method. Different methods
for generating points for the Monte Carlo approach for approximating volume
were also tested, with the Poisson Disc Sampling method being found superior.
For the image processing part, different methods for averaging tomograms were
compared, with the cross-correlation method chosen for the implementation. In
addition to this, filters were successfully implemented using the RFFT.

With these two features added to ArtiaX, the plugin becomes an even more
useful and relevant tool for structural biology analysis and visualization. Some
of the methods developed for the purposes of this thesis can also be useful for
other, unrelated goals. In particular, the normal projection method might be
applicable to many other areas where 3D surfaces are represented and overlap
is to be avoided, such as in animation rendering or video games.
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