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Mating modifies the expression
of crucial oxidative-reductive
transcripts in the pig oviductal
sperm reservoir: is the female
ensuring sperm survival?
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and Heriberto Rodrı́guez-Martı́nez1*

1Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of
Medicine and Health Sciences, Linköping University, Linköping, Sweden, 2Department of Animal
Reproduction, Instituto Nacional de Investigación Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain,
3Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia,
Murcia, Spain
Background: Mating induces large changes in the female genital tract,

warranting female homeostasis and immune preparation for pregnancy,

including the preservation of crucial oxidative status among its pathways.

Being highly susceptible to oxidative stress, sperm survival and preserved

function depend on the seminal plasma, a protection that is removed during

sperm handling but also after mating when spermatozoa enter the oviduct.

Therefore, it is pertinent to consider that the female sperm reservoir takes up this

protection, providing a suitable environment for sperm viability. These aspects

have not been explored despite the increasing strategies in modulating the

female status through diet control and nutritional supplementation.

Aims: To test the hypothesis thatmatingmodifies the expression of crucial oxidative-

reductive transcripts across the entire pig female genital tract (cervix to infundibulum)

and, particularly in the sperm reservoir at the utero-tubal junction, before ovulation, a

period dominated by estrogen stimulation of ovarian as well as of seminal origin.

Methods: The differential expression of estrogen (ER) and progesterone (PR)

receptors and of 59 oxidative-reductive transcripts were studied using a species-

specific microarray platform, in specific segments of the peri-ovulatory sow

reproductive tract in response to mating.

Results: Mating induced changes along the entire tract, with a conspicuous

downregulation of both ER and PR and an upregulation of superoxide dismutase

1 (SOD1), glutaredoxin (GLRX3), and peroxiredoxin 1 and 3 (PRDX1, PRDX3),

among other NADH Dehydrogenase Ubiquinone Flavoproteins, in the distal

uterus segment. These changes perhaps helped prevent oxidative stress in the

area adjacent to the sperm reservoir at the utero-tubal junction. Concomitantly,

there were a downregulation of catalase (CAT) and NADH dehydrogenase

(ubiquinone) oxidoreductases 1 beta subcomplex, subunit 1 (NDUFB1) in the

utero-tubal junction alongside an overall downregulation of CAT, SOD1, and

PRDX3 in the ampullar and infundibulum segments.
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Conclusions:Natural mating is an inducer of changes in the expression of female

genes commanding antioxidant enzymes relevant for sperm survival during

sperm transport, under predominant estrogen influence through the

bloodstream and semen. The findings could contribute to the design of new

therapeutics for the female to improve oxidative-reductive balance.
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1 Introduction

Oxidative stress is critical to reproductive success and any

distress of antioxidant capacity in the reproductive epithelia is

capable of disturbing endocrine status in sows (1) Natural mating

adds another dimension. On one hand, it imposes the transit and

permanence of the foreign spermatozoa and of immunologically

foreign proteins in the seminal plasma (SP). On the other hand,

mating occurs solely under oestrus, a period dominated by estrogen

influence, both humoral and local, considering the SP of the boar

contains relevant concentrations of the hormone, up to 11.5 µg/

ejaculate (2). These seminal estrogens condition the local release of

prostaglandins, imposing dramatic increases in myometrial and

myosalpingeal contractions ruling sperm transport (3). Mating calls

for a decision by the female immune system; to maintain protection

against pathogens and up to 80% of surplus foreign spermatozoa

while at the same time allowing the survival of an aliquot of

potentially fertile spermatozoa in the sperm reservoir (4). Such

status of tolerance to male antigens is initiated at mating and
02
maintained throughout pregnancy, as documented by several

studies (5–9) including a large cohort of orchestrated events in

the female, which includes preservation of cell homeostasis

controlled by, among other factors, the correct oxidative-

reductive balance of thousands of genes.

How do these genes react to endocrine changes and

reproductive events such as mating? Mating in sows occurs

during standing oestrus, a period of the estrous cycle dominated

by estrogens of ovarian and seminal sources (2, 10), and mating is,

per se, capable of affecting gene expression in tissues of the genital

tract of the female (5) without considering the hormone levels

present in the SP. It is well recognized that mating and deposition of

semen modify the onset and the duration of ovulation in sows (11),

effects also recognized as being affected by the SP (12), a composite

fluid recently proposed as acting as a particular pheromone (13).

Mating and deposition of semen also cause dramatic changes in the

expression of genes, particularly of those related to immune

function, in the internal genital tract of sows during the pre/peri

ovulatory stage of oestrus (6), including the cortisol receptor and
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some prostaglandins (9) and other complex molecules such as the

RNA binding molecules, which have an active part of the immune

response to the presence of spermatozoa (and seminal plasma) in

the reproductive tract (8). The hypothesis behind these changes

includes the existence of a tolerance status in the female, not yet

fully understood, that allows the sperm to survive in the female

genital tract, in particular, the sperm stored in the sperm storage

site. If deprived of the antioxidant protection of the seminal plasma

(14), the spermatozoa in the storage site are quite susceptible to

oxidative stress, a common cause of sperm death (15).

Sperm transit through the female genital tract is quite rapid, and

after only 1-2 h enough sperm is sequestered to ensure fertilization

(16). Such quick transport is issued by myometrial and

myosalpingeal contractions, under the stimulus of estrogens from

the ovary and/or seminal plasma (2, 14, 15, 17). Under this period of

estrogen influence, spermatozoa are stored in the utero-tubal

junction (UTJ) for up to 36 h or more, being kept viable and

fertile, expecting spontaneous ovulation (18–20) and the changes

that progesterone issues on the UTJ, including sperm capacitation

(21). Sperm capacitation, which is triggered by ionic changes in the

sperm environment, is also related to the endocrine variations in the

female (14), being partially regulated by estrogen (22) and

progesterone (20).

However, is it possible to manage female tolerance through diet

composition? This question remains yet unknown because most of

the studies included the addition of antioxidants during pregnancy

and not before, for preparation during the peri-ovulatory phase.

Nutritional studies are usually focused on, for example, fiber

addition that leads to increased oocyte maturation, prenatal

survival, and litter size, being fluid hormones and metabolites,

hypothalamic satiety center on gonadotropin secretion and

epigenetics would affect strong candidates for the mechanism

(23). Other examples of nutritional add-ons are lycopene, which

improves maternal reproductive performance (24), and cysteamine,

which alleviates oxidative stress and enhances angiogenesis in the

porcine placenta (25). In addition, taurine supplementation to gilts

during late gestation and lactation has a large effect on offspring

growth and oxidative stress (26) as does resveratrol, which

increased the oxidative status of offspring (27).

Most of the nutritional studies are oriented to map the

oxidative-reductive balance in the organism, with little attention

being paid to the expression in the female genital tract. An example

of analytical parameters to be assayed in this regard is the

superoxide dismutase (SOD) (SOD1: soluble , SOD2:

mitochondrial, and SOD3: extracellular), which catalyzes the

dismutation of the superoxide radical into a molecular oxygen

and hydrogen peroxide. If abundant, hydrogen peroxide leads to

many types of cell damage (28). Catalase (CAT) is an important

second reactive oxygen species (ROS)-scavenger, converting

hydrogen peroxide into water and oxygen. In addition,

peroxiredoxins are a highly conserved family of cysteine-

dependent peroxidases that reduce hydrogen peroxide, lipid

hydroperoxides, and peroxynitrite and have emerged as one of

the most important scavenging enzymes, together with CAT and

glutathione peroxidases (29). Moreover, caspases are cysteine-

aspartic proteases that are involved in several programmed cell
Frontiers in Endocrinology 03
death functions but act locally, with minimum effect on

surrounding tissues (30). Finally, the oxidative phosphorylation

pathway (OxPhos) is the primary pathway for energy production,

but also to balance the oxidative-reductive balance in several cells

and tissues. NADH:ubiquinone oxidoreductase (complex I) is the

first of three large enzyme complexes located in the inner

mitochondrial membrane which form the electron transport

chain that carries electrons from NADH to molecular oxygen

during oxidative phosphorylation (31). The NADH-ubiquinones,

which are implicated in the respiratory chain complexes,

participated in the NADH transfer of electrons and the oxidation

of NDAH into its oxidized form (NAD+) (32) and, ultimately, are

involved in the oxidation-reduction process, including post-

translational protein modifications.

In the present study, we analyzed the effect of natural mating on

the expression of genes relevant to the oxidative-reductive capacity

of specific segments of the female internal genital tract of pigs pre-

periovulation, relative to the basal expression of non-mated sows.

We hypothesized that mating, on a particular endocrine milieu,

modifies the expression of crucial oxidative-reductive transcripts

across the entire pig female genital tract (cervix to infundibulum)

that are of relevance for the survival of spermatozoa during sperm

transit and particularly in the sperm reservoir (UTJ) during the

lengthy pre-fertilization period.
2 Materials and methods

2.1 Ethics approval

Animal handling and experiments were carried out in

accordance with the European Community Directive 2010/63/EU,

22/09/2010, and current Swedish legislation (SJVFS 2017:40). The

study was accepted by the Regional Committee for Ethical Approval

of Animal Experiments (Linköpings Djurförsöksetiska nämnd,

Linköping, Sweden). Permits number 75-12 (10/02/2012), ID1400

(02/02/2018), and Dnr 03416-2020 (26/03/2020).
2.2 Tissue collection

Weaned sows (parity 1-3, n = 8) and young matured boars (9-11

months of age, n = 5) of the Swedish Landrace breed (Sus scrofa

domestica) were held in individual pens at the Translational

Medicine Centre (TMC/CBR-3) of Linköping University under

temperature and light control. Animals were fed with commercial

feedstuff, and water was provided ad libitum. Females were

cervically infused with protein-free Beltsville thawing solution

(Control group, n = 4) or mated with a single male (Mating

group, n = 4), as previously described (5–7). After 24 h of each

treatment, sows were subjected to general anesthesia during the

tissue collection procedure. The following specific segments were

retrieved: cervix (Cvx), distal uterus (DistUt), proximal uterus

(ProxUt), UTJ, and the oviductal segments isthmus (Isth),

ampulla (Amp), and infundibulum (Inf). Tissue samples were

directly plunged into liquid nitrogen and stored in cryovials at
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-80°C until mRNA expression analyses. Fixed and stained paraffin

sections of complementary tissues confirmed the presence of

spermatozoa in the UTJ of mated sows.
2.3 Oestradiol and progesterone
concentrations in blood

Oestradiol (E2) and progesterone (P4) blood plasma

concentrations were individually measured using porcine enzyme-

linked immune sorbent assay (ELISA) kits (Cat#MBS700342 and

Cat#MBS703577, MyBiosource Inc., San Diego, CA, USA), after

preparation of a standard curve for the individual hormones. The

optical density of each microplate well was determined using a

microplate reader (TECAN, Sunrise GmbH, Grödig, Austria) set at

450 nm.
2.4 Transcriptome analysis
and bioinformatics

Total RNA from reproductive samples was extracted following

a TRIzol (Invitrogen, Carlsbad, CA, USA) modified protocol (25).

RNA concentration, integrity evaluation, cDNA synthesis, and

microarray analyses (GeneChip® Porcine Gene 1.0 ST Array,

Affymetrix Inc., 3420 Central Expressway, Santa Clara, CA, USA)

were performed according to methods previously described (25).

Only samples with RNA values larger than 9 were employed for

microarray hybridization. The GeneChip®Whole Transcript Plus

reagent kit (Affymetrix, Santa Clara, CA, USA) was used to

synthesize cDNA (250 ng/reaction). An initial incubation of the

hybridization cocktail at 99°C for 5 min was done after a fall to 45°C

before loading the array chip (GeneChip® Porcine Gene 1.0 ST

Array, Affymetrix Inc., 3420 Central Expressway, Santa Clara, CA,

USA). The cocktail hybridization solution (130 mL) was then put

into each array chip and incubated for 16 h at 45°C under 60

rotations/min. The hybridized cartridge array was unloaded after

incubation and washed and stained with the GeneChip® Fluidics

Station 450 (Affymetrix, Santa Clara, CA, USA) before being

scanned with the Affymetrix GeneChip® Scanner GCS3000

(Affymetrix, Santa Clara, CA, USA).

Transcriptomic results were processed as previously described

(6, 33). Briefly, the array chip data were processed using robust

multi-array average (RMA) normalization, computing average

intensity values by background adjustment , quanti le

normalization among arrays, and finally, log2 transformation for

extracting the expression values of each transcript in the probe set.

The normalized mRNA expression data of the 60 selected

transcripts were analyzed using the Transcription Analysis

Console (TAC, Affymetrix). Differentially expressed transcripts

were calculated using a linear model and the empirical Bayes’

approach implemented in the package limma, included in the

TAC console. A principal component analysis-based p-value
Frontiers in Endocrinology 04
correction was used, establishing a fold change (FC) >1 or < -1.

GO terms and pathways were analyzed by PANTHER (34) based on

the KEGG database (35). ClustVis (BETA) were used for the

elaboration of the principal component analysis and the

hierarchical clustering of the oxidative-reductive genes (36).
3 Results

3.1 The tissues explored were under
estrogenic influence

Oestradiol concentrations (mean ± SD in pg/ml) were 376.50 ±

27.76 in controls versus 349.10 ± 62.19 in mated sows (ns).

Progesterone concentrations (mean ± SD in ng/ml) were <0.68 ±

0.34 without significant differences between the sow groups. The

hormone concentrations confirmed the animals were all in pre/

peri-ovulatory oestrus, with a predominant estrogen influence.
3.2 The genes commanding progesterone
and estrogen receptors showed a clear
pattern of downregulation in the mated
periovulatory sow

Gene expression of estrogen and progesterone receptors (ER

and PR) showed a conspicuous pattern of down-regulation in all

genital tissues studied, from Proximal Uterus to Infundibulum

(Figure 1; Supplementary Table 1). The ER levels further

confirmed the degree of tissue stimulation by estrogens.
3.3 Differential expression of the 59
oxidative-reductive transcripts

The differential expression of the 59 oxidative-reductive

transcripts across tissues showed a significant number of down-

and upregulation in response to natural mating, as depicted in the

volcano plot (Figure 2). The principal component analysis

explained more than 64% of the variation in the two components,

tightly grouped the DistUt and ProxUt tissues, and showed the UTJ

as the most distal group from the rest of the tissues, interestingly

showing that the UTJ had more proximity to the Cvx expression

than the oviductal tissues (Isth, Amp, and Inf) (Supplementary

Figure 1). The hierarchical clustering analysis through a heap map

representation (Supplementary Figure 2) showed a heterogeneous

grouping pattern in some of the tissues, with the endometrial tissues

being the ones showing a more discrete grouping pattern.

In addition, transcripts were classified following PANTHER

and KEGG databases, according to molecular function (Figure 3A),

particularly for catalytic activity and binding. In terms of protein

class (Figure 3B), most transcripts belonged to metabolic

interconversion enzymes. As for the cellular component
frontiersin.org
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(Figure 3C), all transcripts were classified into cellular anatomical

entities and protein-containing complexes. Cellular and metabolic

processes, followed by a response to stimulus and biological

regulation, were the main categories inside biological process
Frontiers in Endocrinology 05
classification (Figure 3D). Finally, the four most abundant

pathways of the oxidative-reductive transcripts were the FAS

signaling pathway, apoptosis signaling pathway, Huntington’s

disease, and CCKR signaling map. (Figure 3E).
3.4 Peroxiredoxins 1 and 3 expression
increases in the distal uterus in response
to mating

The detailed analysis of the differential expression of

peroxiredoxins (PRDX) showed upregulation in the DistUt

(PRDX1 and PRDX3), and downregulation in both the Inf

(PRDX1, PRDX3, and PRDX4) and the Amp (PRDX3) (Figure 4).
3.5 Classical oxidative-reduction markers
showed a balanced up- and
downregulation across tissues

The cytoplasmic subtype SOD1 is one of the members of the

SOD protein family catalyzing the conversion of superoxide radicals

into hydrogen peroxide and oxygen. Our results showed an

upregulation in DistUt and a downregulation in Amp and Inf

(Figure 5A). The mitochondrial subtype (SOD2) showed

upregulation in the first part of the oviductal tissues (Inf)

(Figure 5A). In contrast, no differences were found in SOD3, the

extracellular subtype of SOD (Supplementary Table 1).

CAT, an oxidoreductase that together with SOD protects from

radical attacks, converts hydrogen peroxide into oxygen and water.

Our results showed a decrease in its expression in the UTJ, Isth, and

Inf (Figure 5B).

Our findings revealed a differential pattern of expression of

glutaredoxin (GLRX), a redox enzyme that employs glutathione as a

cofactor and becomes essential to maintaining homeostasis and
FIGURE 1

Summary of significant differential expression of progesterone and estrogen receptors. Box-plot representation of the log2 signal intensity of the
selected transcripts by tissue, Cvx, cervix; DistUt, distal uterus; ProxUt, proximal uterus; UTJ, utero-tubal junction; Isth, isthmus; Amp, ampulla; and
Inf, infundibulum. The green color “*” represents a relative decrease relative to the negative control (p < 0.05). PR, progesterone receptor; and ER,
estrogen receptor.
FIGURE 2

Volcano plot depicting a summary of the differential expression
analyses of transcripts in the reproductive internal genital tract
segments (cervix, distal uterus, proximal uterus, utero-tubal junction,
isthmus, ampulla, and infundibulum), 24 h after natural mating vs
unmated, Sham (infusion of BTS extender) controls. The x-axis
shows the log2 fold-changes in expression and the y-axis the
statistical significance (-log10 p-value). This figure depicts p < 0.05
and p < 0.01 relative to the control.
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oxidative equilibrium (Figure 5C). GLRX1 (in Inf) and GLRX3 (in

DistUt) were upregulated, whereas GLRX2 was downregulated in

Inf. No differences were found in GLRX5 expression among tissues

(Supplementary Table 1).

Finally, the antioxidant protein 1 (ATOX1) showed a decrease

in its expression in the Inf (Figure 5D).
3.6 Caspases 1 and 3 showed a high
downregulation pattern across
reproductive tissues, except in the UTJ

CASPs, cysteine-aspartic proteases involved in several

programmed cell death functions, were mapped in our study

(Figure 6). CASP1, with a pro-inflammatory function, was

downregulated in DistUt, ProxUt, Isth, and Amp. In addition,

CASP3, an initiator of apoptosis, was uniformly downregulated in

all the tissues, except in the UTJ. CASP2, CASP8AP2, and CASP9

expression, all apoptosis initiators, were upregulated in DistUt. In

contrast, no differences were found neither in CASP6, an apoptosis
Frontiers in Endocrinology 06
executioner, nor in the apoptosis and caspase activation inhibitor,

in any of the collected tissues (Supplementary Table 1).
3.7 NADH dehydrogenase (ubiquinone)
oxidoreductases showed a heterogeneous
expression pattern in the distal uterus of
the periovulatory sow

The 37 NADH dehydrogenase (ubiquinone) oxidoreductases

(NDUF) included in the present study (Supplementary Table 1)

showed a heterogeneous pattern of differential expression. Thus, 9

out of 16 NDUF (NDUFA2, NDUFA5, NDUFA8, NDUFA10,

NDUFA12, NDUFAB1, NDUFAF1, NDUFAF6, and NDUFAF7)

(Figure 7), and 5 out of 12 (NDUFB6, NDUFC2, NDUFS3,

NDUFS6, and NDUFV1) (Figure 8) were upregulated in DistUt.

In contrast, the pattern of downregulation was heterogeneously

distributed across tissues, being the Inf the main tissue presenting

this repression in 8 out of 16 (Figure 7) and 7 out of 12

(Figure 8) NDFUs.
B C

D E

A

FIGURE 3

PANTHER classification showing differential gene expression (DEG) of the 59 oxidative-reductive (OR) genes. The bar plots represent different
percentages of DEGs classified according to (A) molecular function, (B) protein class, (C) cellular component, (D) biological process, and (E) pathway.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1042176
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
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4 Discussion

The present study analyzed a particular timeframe, 24 h after

natural mating when spermatozoa had colonized the female sperm

reservoir in the UTJ (14). This particular period of the estrous cycle

is dominated by estrogens, both of ovarian and seminal origin. The

analyses of circulating estradiol and progesterone in the examined

sows confirmed estrogens dominated, and the analyses of the

estrogen (ER) and progesterone (PR) receptor transcripts indicate

the dominance pressed the production of ERs. Certainly, semen was

signaling to the female to activate its local immune system to

counteract incoming micro-organisms, cells, and proteins from

damaging effects (7). The female, nevertheless, tolerates a certain

proportion of spermatozoa, those colonizing the UTJ-reservoir and

further on the hemi-allogeneic embryos and their placentas, for the

entire pregnancy (37). Estrogens, particularly oestradiol, exert clear

effects on the immune system during this particular period (38) as

well as on the genital tract epithelia (39) and the spermatozoa, cells

provided with, among others, estrogen receptors (40–42).

Most current studies focus on improving the oxidative-

reductive balance in sperm samples, but few of them focus on the

environment that spermatozoa find when arriving at the sperm
FIGURE 4

Summary of significant differential expression of peroxiredoxins
(PRDX). Box-plot representation of the log2 signal intensity of the
selected transcripts by tissue, Cvx, cervix; DistUt, distal uterus;
ProxUt, proximal uterus; UTJ, utero-tubal junction; Isth, isthmus;
Amp, ampulla; and Inf, infundibulum. The red color “*” represents a
relative increase relative to the negative control (p < 0.05), whereas
the green color “*” represents a relative decrease relative to the
negative control (p < 0.05). PRDX1, peroxiredoxin 1; PRDX1,
peroxiredoxin 3, and PRDX4, peroxiredoxin 4.
B

C D

A

FIGURE 5

Summary of significant differential expression of superoxide dismutase (SOD); glutaredoxins (GLRX); and catalase (CAT). Box-plot representation of the
log2 signal intensity of the selected transcripts by tissue, Cvx, cervix; DistUt, distal uterus; ProxUt, proximal uterus; UTJ, utero-tubal junction; Isth,
isthmus; Amp, ampulla; and Inf, infundibulum. (A) SOD1, superoxide dismutase 1; cytoplasm; and SOD2, mitochondrial. (B) CAT, catalase.
(C) GLRX1, glutaredoxin 1; GLRX2, glutaredoxin 2; and GLRX3, glutaredoxin 3. (D) ATOX1, antioxidant protein 1. The red color “*” represents a relative
increase relative to the negative control (p < 0.05); whereas the green color “*” represents a relative decrease relative to the negative control (p < 0.05).
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storage place in the female and even further on during the transit

towards the site where the fertilization takes place in the tubal

ampulla. Furthermore, most of the antioxidants and other

nutritional complements are used postpartum or during lactation

but, to the best of our knowledge, little attention is paid to

supplements before mating to favor another early reproductive

event as the peri-ovulatory period. In pigs, the SP contains major

antioxidants whose overall amount relates to fertility (43). Thus, in

the present study, we aimed to analyze how crucial antioxidant

biomarkers modify their expression within the pre/periovulatory

phase. The rationale behind this was that this restricted period

accounts for the main interaction and cross-talk between

spermatozoa (and its eventual cargo, including the one inside the

extracellular vesicles) and its sperm storage place (12). The survival

of spermatozoa in the female genital tract depends on the seminal

plasma and its antioxidant properties, but only before the

spermatozoa reach the UTJ, the place where seminal plasma

becomes scarce. So, the secretion produced by epithelial cells

turns critical for sperm survival and fertilization capacity afterward.

PRDXs are thioredoxin-dependent peroxide reductases localized

either in the cytoplasm (PRDX1 and PRDX2) or the mitochondria

(PRDX3) and they protect the cell from ROS. PRDX1 controls

ovulation in mice through a decrease in intracellular ROS (44),

confirmed by the described role of PRDX1 in antioxidant scaffold

during maternal to zygotic transition in mice (45). In the male

counterpart, PRDXs in human testis, epididymis, and spermatozoa

prevent H2O2-induced damage to spermatozoa (46), with PRDX1

being essential at the epididymis level to fight against the oxidative

damage (47). Our results showed an increase of PRDX1 and PRDX3 in

DistUt, maybe facilitating the passage of the spermatozoa toward the

female reproductive tract. PRDX3 is involved in the thioredoxin

pathway (48) and is involved in the protection of late events, as
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placental function, from oxidative stress occurring in mitochondria

(49). Moreover, lower levels of PRDX3 were found in cumulus cells

from higher-quality human embryos (50), establishing a negative

correlation that could explain, at least in part, the downregulation

that we found in Amp and Inf, as preparatory homeostasis for oocyte

passage. Moreover, PRDX4 plays an important role in regulating male

fertility, showing a positive correlation with litter size (51, 52).

However, and in agreement with our results, the PRDX1 was

upregulated in endometrial epithelial cells in response to

trophectodermal small extracellular vesicles (53), so whether this

upregulation is the starting point for preparation for embryo

implantation requires further analysis. Overall, and in light of our

findings, we suggest a concerted mechanism of both the PRDX1 and

SOD1, PRDX1 and SOD1 are upregulated in DistUt and PRDX1 and

SOD1 are downregulated in DistUT.

Linseed oil improved the antioxidant capacity of boars, including an

increase in CAT abundance (54). In contrast, while CAT looks like a

protective agent for the male gamete (54), our results showed a

significant decrease in its expression in the UTJ and the oviductal

tissues (except Amp (p=0.0833). Indeed, from the group of pure

antioxidant enzymes, CAT, SOD, ATOX1, and GLRXs, only SOD1,

GLRX1, and GLRX3 showed an increase in their expression locally:

DistUt, Inf, and DistUT, respectively. In females, CAT supplementation

improved fetal growth, modulating antioxidant capacity (55). In

addition, resveratrol improved the antioxidant status of sows by

increasing levels of CAT and SOD1, and also other molecules such as

GPX4, agreeing with a recent research paper by our group where we

found increased expression of GPX4 in high fertility boars (56). These

results are supported by other studies using an antioxidant treatment on

sows (from day 85 of gestation), where they confirmed an increase in

the placental expression of SOD (57), as previously demonstrated in the

human placenta, the increase in the expression of antioxidant enzymes

was in response to oxidative stress (58).

The decreases in mRNA expression of the cytosolic antioxidant

GLRX1 and the mitochondrial antioxidant PRDX3 are involved in age-

related ovarian oxidative damage to lipid, protein, DNA, and other

cellular components vital for maintaining ovarian function and fertility

(59). GLRX2, a gene associated with oxidative stress, was

downregulated in the presence of antioxidant supplementation

during in vitro culture of mice oocytes (60). Our results showed a

downregulation of GLRX2 in the Inf, which could be associated with

the preparation of the receptacle to the soon-to-be ovulation. This idea

could be supported by the aberrant redox gene expression patterns and

disrupted redox homeostasis in prepubertal porcine oocytes that lead to

a decrease in developmental competence (61). GLRX3 has a conserved

function in protecting cells against oxidative stress and its deletion in

mice causes early embryonic lethality, which may be associated with

defective cell cycle progression (62). Our results highlighted the

increase of GLRX3 mRNA in DistUt, perhaps relevant for the

preparation of endometrium receptivity.

Concerning CASPs, CASP-2, 8, 9, 10, and 12 are classed as initiators

or pro-apoptotic caspases, whereas Casp-3, 6, and 7 are classed as

downstream effector caspases that are cleaved and activated by these

initiators (30). In the murine oviduct, the CASP3, CASP6, and CASP12

were detected through the estrous cycle, as a plausible indicator of a

certain level of basal apoptosis in this anatomical region (63). Results
FIGURE 6

Summary of significant differential expression of caspases (CASP).
Box-plot representation of the log2 signal intensity of the selected
transcripts by tissue, Cvx, cervix; DistUt, distal uterus; ProxUt,
proximal uterus; UTJ, utero-tubal junction; Isth, isthmus; Amp,
ampulla; and Inf, infundibulum. The red color “*” represents a
relative increase relative to the negative control (p < 0.05), whereas
the green color “*” represents a relative decrease relative to the
negative control (p < 0.05). CASP1, caspase 1; CASP2, caspase 2;
CASP3, caspase 3; CASP8AP2, caspase 8 associated protein 2;
CASP9, caspase 9; and CASP14, caspase 14.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1042176
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
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from CASP3 in our study showed an interesting pattern, with the UTJ

being the only one not showing downregulation on CASP3 expression

in response to mating. We could hypothesize that the caspase activity

through the female genital tract in response to the travel of spermatozoa

is repressed, avoiding a highmobilization ofmacrophages, at least at this

particular period. Interestingly, the dietary supplementation of CAT in

sows leads to a dramatic reduction of CASP3 and CASP9 (64) which

partially agrees with our results on CASP3, but not in the case of CASP9,

since we found an increase in CASP9 in DistUt. This overexpression is

consistent with the results in CASP2 and CASP8AP2, all of the

apoptosis initiators, and may be involved in sperm clearance in the

endometrium for later preparation for implantation. Previous studies

have mapped the increase of mRNA abundance of CASP1, with a pro-

inflammatory function, up to 18 days of gestation (65). Our results agree

with the low level found by authors at 0 and 5 days, confirming the

relevance of these low levels for the later reproductive success in this

species. Since CASP1 acts by increasing the level of IL-1b, the lower

levels obtained in our study relative to the un-mated control make sense.

Finally, expression of mRNA for CASP14 was higher in oviducts
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collected from mice at dioestrus than metaestrus (63), and our results,

during the periovulatory phase, showed an increase of expression in

ProxUt, whereas showing a downregulation in the Cvx.

Oxidative phosphorylation pathway Complex I includes several

subunits, and 28 out of 37NDUFs included in the present study showed

significant expression differences. Interestingly, 14 out of 28 NDUFs

were upregulated in DistUt. The pattern of downregulation was

heterogeneously distributed across tissues, being the Inf the main

tissue presenting this repression in 15 out of 28 NDUFs. NADH:

ubiquinone oxidoreductase (complex I) is the first of three large

enzyme complexes located in the inner mitochondrial membrane

which form the electron transport chain that carries electrons from

NADH to molecular oxygen during oxidative phosphorylation (31).

Antioxidant addition during in vitro culture of bovine embryos reduced

theNDUFA2, improving resilience to stress (66). In contrast,maybedue

to thematrix differences, our results showed an increase of NDUFA2 in

DistUt, as well as so many other NDUFs analyzed in the present study.

NDUFA8 was downregulated in ovine oocytes matured in the presence

of lipopolysaccharide (67).However, whether there is a relation between
FIGURE 7

Summary of significant differential expression of NADH dehydrogenase (ubiquinone) oxidoreductases (NDUF) Part 2. Box-plot representation of the
log2 signal intensity of the selected transcripts by tissue, Cvx, cervix; DistUt, distal uterus; ProxUt, proximal uterus; UTJ, utero-tubal junction; Isth,
isthmus; Amp, ampulla; and Inf, infundibulum. The red color “*” represents a relative increase relative to the negative control (p < 0.05), whereas the
green color “*” represents a relative decrease relative to the negative control (p < 0.05). NDUFA1, NDUF 1 alpha subcomplex, subunit 1; NDUFA2,
NDUF 1 alpha subcomplex, ubunit 2; NDUFA3, NDUF 1 alpha subcomplex, subunit 3; NDUFA4L2, 1 alpha subcomplex, 4-like 2; NDUFA5, NDUF 1
alpha subcomplex, subunit 5; NDUFA6, NDUF 1 alpha subcomplex, subunit 6; NDUFA7, NDUF 1 alpha subcomplex, subunit 7; NDUFA8, NDUF 1
alpha subcomplex, subunit 8; NDUFA10, NDUF 1 alpha subcomplex, subunit 10; NDUFA12, NDUF 1 alpha subcomplex, subunit 12; NDUFA13, NDUF 1
alpha subcomplex, subunit 13; NDUFAB1, NDUF 1 alpha subcomplex, subunit 5; NDUFAF1, NDUF 1 alpha subcomplex assembly factor 1; NDUFAF4,
NDUF complex assembly factor 4; NDUFAF6, NDUF complex assembly factor 6; and NDUFAF7, NDUF complex assembly factor 7.
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the downregulation of its expression in Inf and upregulation in both

DistUt and ProxUt in our study requires further research. NDUFAB1 is

a promotor of ovarian follicle development by stimulating granulosa cell

proliferation in hens (68) and establishing a direct link with the

increased capacity in egg-laying production. We observed a decrease

in the Inf and an increase in DistUt, the latter may be highlighting the

necessity of a decrease in the apoptotic activity to the allowance of sperm

travel towards the uterus. NDUFAF1 interacts to form the core

mitochondrial respiratory complex I assembly complex (69).

NDUFAF1 is indispensable for activation-induced IL-2 and IL-4 (70),

both necessary for the establishment of cellular immunity memory.

NDFUAF7 is essential for complex I assembly and early vertebrate

embryogenesis (71), and it seems relevant in our experimental design,

being upregulated in DistUt and ProxUt, as well as UTJ and Isth. In

addition, the antioxidant curcumin, administrated orally in mice, can

increase the abundance of several proteins, including the ones involved

in protein phosphorylation, namely, NDUFB3, NDUFAB1, and

NDUFA7 (72). Our results showed a significant decrease of these

three genes in the Inf, suggesting the necessity of a controlled

downregulation in this specific tissue may be related to the soon

reception of the oocyte; however, further mechanistic studies are
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needed. Moreover, NDUFB3 plays a pivotal role in recurrent

pregnancy loss in humans when it is upregulated (73). In addition,

NDUFB3 has been identified as a candidate gene to climate adaptation

in cattle (74) and plays an important role in development (75). Our

results showed a reduced expression ofNDUFB3 inAmpand Inf. As for

NDUFB6, previous results in rats have demonstrated that NDUFB6

decreased in oocytes from preovulatory exposure to a low-protein diet

compared to the control diet (76). Thus, its overexpression in DistUt

may suggest a necessary role of this gene in the complex I formation at

this level. The expression of NDUFB8 was reduced in an experimental

model of androgen excess in rats (77), and these changes were also

confirmed in a previous study on maternal nutrient restriction in

baboon-cultured skin fibroblast (78). Thus, despite our results

showing a decrease at the Inf level, which could be read as damage in

the mitochondrial structure, it seems that the decrease could play

another role at the Inf level, yet not fully understood. NDUFC1 is a

key activator of cell proliferation and apoptosis (79). Therefore, our

results showing downregulation in Inf could be linked to a low necessity

of this relevant process in this tissue. Reduction of NDUFC2 was

associated with mitochondrial impairment (80) and the

overexpression in DistUt suggests a relevant function in this specific
FIGURE 8

Summary of significant differential expression of NADH dehydrogenase (ubiquinone) oxidoreductases (NDUF) Part 2. Box-plot representation of the
log2 signal intensity of the selected transcripts by tissue, Cvx, cervix; DistUt, distal uterus; ProxUt, proximal uterus; UTJ, utero-tubal junction; Isth,
isthmus; Amp, ampulla; and Inf, infundibulum. The red color “*” represents a relative increase relative to the negative control (p < 0.05), whereas the
green color “*” represents a relative decrease relative to the negative control (p < 0.05). NDUFB1, NDUF 1 beta subcomplex, subunit 1; NDUFB2,
NDUF 1 beta subcomplex, ubunit 2; NDUFB3, NDUF 1 beta subcomplex, subunit 3; NDUFB5, 1 beta subcomplex, subunit 5; NDUFB6, NDUF 1 beta
subcomplex, subunit 6; NDUBA8, NDUF 1 beta subcomplex, subunit 8; NDUFC1, NDUF 1 subunit C1; NDUFC2, NDUF 1 subunit C2; NDUFS3, NDUF
iron-sulfur protein 3; NDUFS4, NDUF iron-sulfur protein 4; NDUFS6, NDUF iron-sulfur protein 6; and NDUFV1, NDUF flavoprotein 1.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1042176
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
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tissue and at the periovulatory stage. NDUFS4was reduced in advanced

antral atretic follicles in the porcine (81). In contrast, our results

confirmed an increase at the Cvx level, suggesting a healthy and

relevant overexpression in this tissue. NDUFS6 was detected

downregulated in adult mesenchymal stem cells (82), as a

measurement of senescence. Our results suggested a specific role in

the ProxUt, being downregulated after mating. Finally, maternal

nutrition modulates fetal development in gilts, with the non-treated

with high-energy diet sows overexpressing the NDUFV1 genes, which

are involved in energymetabolism (69, 83). Our results, downregulation

in DistUt and ProxUt, suggest the endometrium plays a relevant

function in relation to the oxidative phosphorylation status.

Previous studies from our group (6–9, 84) highlighted the

presence of a complex immunomodulatory expression of several

genes in response to mating in pigs. In particular, semen-induced

downregulation of cytokine, interleukine, interferon-gamma, and

JAK/STAT pathways in the sperm reservoir (6). In particular, the

anti-inflammatory IL-10 was upregulated in the UTJ (84), and the

pro-inflammatory cytokine CXCL8 was downregulated in the

cervix and proximal uterus (8). Even heat sock proteins,

associated with several controlling physiological aspects, were

downregulated in the female tract in response to mating (9).

Considering all the aforementioned results, the present study

specifically focused on oxidative-reductive transcripts, to discover

the differential effect of mating on the expression of key targets of

possibly designable nutritional additives. Maternal nutrition

triggers thousands of different expression patterns and affects

several different genes and complex pathways. Increasing our

knowledge of the expression status in sows, before and after

mating, is a relevant starting point of reproductive success and

could lead to the development of new additives or procedures to

increase the preparation of the female genital tract to succeed in

decreasing embryo losses, which is a major concern in this species.

Our results showed that a fine tune of the mRNA abundance was

triggered during the pre-ovulatory stage, a period dominated by

estrogenic influence, particularly by the upregulation of SOD1, SOD

2, CASP2, CASPAP2, CASP9, PRDX1, and PRDX3. These

transcripts can become plausible targets when designing diet

contents leading to an increase in the oxidative-reductive enzymes.
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across female reproductive tissues.
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and duration of ovulation in the sow. J Reprod Fertil (1972) 31:327–30. doi: 10.1530/
JRF.0.0310327

12. Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal
plasma: relevant for fertility? Int J Mol Sci (2021) 22:4368. doi: 10.3390/ijms22094368

13. Robertson SA, Martin GB. Perspective: re-defining “Pheromone” in a
mammalian context to encompass seminal fluid. Front Vet Sci (2021) 8:819246.
doi: 10.3389/fvets.2021.819246

14. Rodriguez-Martinez H, Saravia F, Wallgren M, Tienthai P, Johannisson A,
Vazquez JM, et al. Boar spermatozoa in the oviduct. Theriogenology (2005) 63:514–35.
doi: 10.1016/j.theriogenology.2004.09.028
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