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Abstract

In this thesis we study radial weights on Rn. We study two radial weights with
different exponent sets. We show that they are both 1-admissible by utilizing
a previously shown sufficient condition, for radial weights to be 1-admissible,
together with some results connecting exponent sets and Ap weights. Further-
more applying a similar method on a more general radial weight, we manage
to improve the previously shown sufficient condition for radial weights to be
1-admissible. Finally we show for one of these two weights that even though it
is 1-admissible, whether or not it belongs to some class Ap depends both on the
value of p and on the dimension n. Additionally, both of these weights as well as
another simple weight are, at least in some dimensions n, not A1 even though
they are 1-admissible.
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Nomenclature

Rn Set of all ordered real n-tuples.

B(x, r) Open ball in Rn, B(x, r) = {y ∈ Rn : |y − x| < r}.

Br Open ball with center at the origin, Br = B(0, r).

w(x) Weight function on Rn.

w(|x|) Radial weight on Rn, we write w(x) = w(|x|) or w(x) = w(ρ).

µ Positive measure on Rn.

Ap(µ) Class of weights on Rn, see Definition 2.2.

capR
n

p,µ Variational p-capacity.

ωn−1 Surface measure of the unit sphere in Rn.
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Chapter 1

Introduction

The purpose of this thesis is to study weight functions. Weight functions are
of interest for example if one chooses to study the so called weighted Laplace
equation

div(w∇u) = 0,

or more generally in the study of nonlinear equations like the weighted p-Laplace
equation, 1 < p < ∞,

div(w∇u|∇u|p−2) = 0.

In 1993 Heinonen–Kilpeläinen–Martio [5] studied such equations and imposed
four conditions on the weight w, for the solutions to behave somewhat regularly,
and they called such weights p-admissible. Later on two of the four conditions
have been shown to be redundant, the remaining two conditions are that the
measure given by dµ = w dx should be doubling and support a p-Poincaré
inequality (see Definitions 2.3 and 2.4). These two conditions have also later
on in Björn–Björn [1] been used to develop a rich potential theory for so called
p-harmonic functions on metric spaces.

Björn–Björn–Lehrbäck [3], Sofia Svensson [7] and Hanna Svensson [8] gave
examples of various so called radial weights with different exponent sets. The
exponent sets describe the local dimension of Rn equipped with such a weight
function. Moreover these exponent sets play an important role in how capacity
of annuli with respect to these weights behaves. Additionally as we will also see
in this thesis the exponent sets are important when determining admissibility
of the weight functions. In this thesis we will therefore study such radial weight
functions on Rn, and investigate whether or not they are 1-admissible. To do
this we will make use of Proposition 10.5 from [3] (given as Theorem 2.6 here)
which gives a sufficient conditions for radial weights to be 1-admissible. By
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2 Chapter 1. Introduction

combining this condition with some results from Jonsson [6] we show that two
of the radial weights defined in [7] are 1-admissible. With the same methods we
also prove Corollary 4.1 which is an improvement of [3, Proposition 10.5].

Finally we are also interested in a class of p-admissible weights known as
Ap-weights. We show that for some of the weights which we have already shown
to be 1-admissible whether or not they belong to some class Ap depends both
on the value of p and on the dimension n. In particular, some of these weights
are not A1 even though they are 1-admissible.



Chapter 2

Preliminaries

In this chapter we will state most of the different definitions and theorems that
we will use in this thesis.

Definition 2.1. (Weight functions on Rn). A function w : Rn → [0,∞) is
called a weight on Rn if w > 0 almost everywhere. If w(x) = w̃(|x|) for some
w̃ : [0,∞) → [0,∞) then w is called a radial weight function. For radial
weights we will make use of an abuse of notation and write w(x) = w(|x|)
or w(x) = w(ρ).

Definition 2.2. (Measure corresponding to a weight). For a given weight w on
Rn the corresponding measure µ is defined as

µ(A) =

∫
A

w dx =

∫
A

dµ

and we write dµ = w dx. The measure is defined for any set A where the integral
is defined, such sets are called measurable.

Measures can also be defined more generally without weight functions. In
this thesis however all our measures will be given by weight functions as in
Definition 2.2.

Definition 2.3. (Doubling measure). A measure µ on Rn is said to be doubling
if there exists a C > 0 such that for all open balls B(x, r) ⊂ Rn we have that

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Definition 2.4. (p-Poincaré inequality). For 1 ≤ p < ∞, we say that a measure
µ on Rn supports a p-Poincaré inequality if there exists a C > 0 such that for
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4 Chapter 2. Preliminaries

every function f ∈ C∞(Rn) and every ball B = B(x, r) ⊂ Rn the following
inequality holds

1

µ(B)

∫
B

∣∣∣∣f − 1

µ(B)

∫
B

f dµ

∣∣∣∣ dµ ≤ Cr

(
1

µ(B)

∫
B

|∇f |p dµ
) 1

p

.

Definition 2.5. (p-admissible weights). A weight w is said to be p-admissible
if the corresponding measure dµ = w dx is doubling and supports a p-Poincaré
inequality.

The following result from Björn–Björn–Lehrbäck [3, Proposition 10.5] is the
main tool we use to investigate 1-admissibility of radial weights, see also Corol-
lary 4.4.

Theorem 2.6. Assume the radial weight w(ρ) on Rn, n ≥ 2, is locally absolutely
continuous on (0,∞) and that for some γ1 < n− 1 and 0 < M < ∞ it holds for
almost every ρ > 0 that

−γ1 ≤ ρw′(ρ)

w(ρ)
≤ M.

Then the weight w is 1-admissible.

Remark 2.7. (Locally absolutely continuous). All the weight functions we
study in this thesis will be continuous and piecewise differentiable which is a
stronger condition than locally absolutely continuous.

Example 2.8. Take c > 0 and let w(ρ) = ρc−n be a radial weight on Rn.
Clearly w is continuous and differentiable, so we can apply Theorem 2.6. We
get that

ρw′(ρ)

w(ρ)
= c− n

and thus the weight satisfies the condition in Theorem 2.6 and is 1-admissible
when c > 1. In fact after improving Theorem 2.6 we will see that w is 1-
admissible for any c > 0 (see Theorem 6.1).

The next theorem is well known and follows easily from Hölder’s inequality,
for a proof see Jonsson [6, Proposition 2.15].

Theorem 2.9. If the weight w is 1-admissible then w is also p-admissible for
any p ≥ 1.

Definition 2.10. (Comparable). If for two functions w(x) and v(x) there exists
a constant C > 0 (independent of x) such that w(x) ≤ Cv(x) for every x, we say
that w(x) ≲ v(x) and v(x) ≳ w(x). Additionally if w(x) ≲ v(x) and w(x) ≳ v(x)
we say that w(x) is comparable to v(x) and write w(x) ≃ v(x).



5

Theorem 2.11. Assume that w(ρ) ≃ v(ρ) are radial weights on Rn. If v is
p-admissible then w is also p-admissible.

Proof. Since w(ρ) ≃ v(ρ) there exists an M > 0 such that

1

M
v(ρ) ≤ w(ρ) ≤ Mv(ρ).

And similarly for the corresponding measures dµ = w dx and dν = v dx

1

M
ν(B) ≤ µ(B) ≤ Mν(B)

for every ball B in Rn. If ν is doubling we get that

µ(B(x, 2r)) ≤ Mν(B(x, 2r)) ≤ MCν(B(x, r)) ≤ M2Cµ(B(x, r))

for some C > 0 and thus µ is also doubling.
Now for any ball B = B(x, r) ⊂ Rn and any f ∈ C∞(Rn) we let

fB,µ =
1

µ(B)

∫
B

f dµ

and

fB,ν =
1

ν(B)

∫
B

f dν.

We get that

1

µ(B)

∫
B

|fB,µ − fB,ν | dµ = |fB,µ − fB,ν | ≤
1

µ(B)

∫
B

|f − fB,ν | dµ.

Hence,

1

µ(B)

∫
B

|f − fB,µ| dµ ≤ 1

µ(B)

∫
B

|f − fB,ν | dµ+
1

µ(B)

∫
B

|fB,µ − fB,ν | dµ

≤ 2

µ(B)

∫
B

|f − fB,ν | dµ.
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Now if ν supports a p-Poincaré inequality we get for some C > 0 that

1

µ(B)

∫
B

|f − fB,µ| dµ ≤ 2

µ(B)

∫
B

|f − fB,ν | dµ

≤ 2M2

ν(B)

∫
B

|f − fB,ν | dν

≤ 2M2Cr

(
1

ν(B)

∫
B

|∇f |p dν

) 1
p

≤ 2M2Cr

(
M2

µ(B)

∫
B

|∇f |p dµ

) 1
p

= 2M2+ 2
pCr

(
1

µ(B)

∫
B

|∇f |p dµ

) 1
p

and thus µ also supports a p-Poincaré inequality and w is thus p-admissible.

Definition 2.12. (Exponent sets). In this thesis we let Br = B(0, r). We define
the exponent sets for the measure µ on Rn as

Q
0
(µ) :=

{
q > 0 : there is Cq so that

µ(Br)

µ(BR)
≤ Cq

( r

R

)q

for 0 < r < R ≤ 1
}
,

S0(µ) := {q > 0 : there is Cq so that µ(Br) ≤ Cqr
q for 0 < r ≤ 1},

S0(µ) := {q > 0 : there is Cq so that µ(Br) ≥ Cqr
q for 0 < r ≤ 1},

Q0(µ) :=
{
q > 0 : there is Cq so that

µ(Br)

µ(BR)
≥ Cq

( r

R

)q

for 0 < r < R ≤ 1
}
,

Q(µ) :=
{
q > 0 : there is Cq so that

µ(Br)

µ(BR)
≤ Cq

( r

R

)q

for 0 < r < R
}
,

Q(µ) :=
{
q > 0 : there is Cq so that

µ(Br)

µ(BR)
≥ Cq

( r

R

)q

for 0 < r < R
}
.

If µ is given by dµ = w dx where w is a weight on Rn we write Q
0
(w) = Q

0
(µ)

and we say that Q
0
(w) and so on, are the exponent sets for w.

Next we will define Ap-weights. The definition makes use of the essential
infimum of the weight w over a ball, denoted ess inf

B
w, which is a generalization

of the usual infimum. Note that if w is continuous then ess inf
B

w = inf
B

w, and
in this thesis all the weights we will consider are continuous.

Definition 2.13. (Ap-weights). A weight w that is locally intergrable with
respect to a measure µ is said to be of class Ap with respect to µ, if one of two



7

inequalities is satisfied, depending on the value of p. If p = 1, there must exist
a C > 0 such that for every ball B we have that∫

B

w dµ ≤ C
(
ess inf

B
w
)
µ(B).

If 1 < p < ∞, there should exist C > 0 such that for all balls B(∫
B

w dµ

)(∫
B

w
1

1−p dµ

)p−1

≤ Cµ(B)p.

We write w ∈ Ap(µ) and if µ is the Lebesgue measure we write w ∈ Ap.

The next theorem was proved in Jonsson [6, Theorem 4.6].

Theorem 2.14. Let µ be a doubling measure on Rn and w(x) = |x|α where
− supQ(µ) < α ≤ 0. Then w ∈ A1(µ).

A result similar to Theorem 2.9 is also true for Ap-weights. It also follows
from Hölder’s inequality, for a proof see Jonsson [6, Proposition 2.18].

Theorem 2.15. Let p ≥ 1 and w ∈ Ap(µ). Then w ∈ As(µ) for every s > p.

The following result connects p-admissible weights to Ap-weights. It was
proved by J. Björn in [4, Theorem 4].

Theorem 2.16. Let v be an s-admissible weight and let w ∈ Ap(v). Then the
weight vw is ps-admissible.

In particular since the Lebesgue measure dx is known to be 1-admissible, it
follows from Theorem 2.16 (taking v = 1) that Ap-weights are p-admissible.

The two following theorems from Björn–Björn–Christensen [2] are useful for
showing that certain radial 1-admissible weights are also Ap-weights. Theo-
rem 2.17 follows from [2, Theorem 1.2 and Corollary 5.4]. Both Theorem 2.17
and 2.18 make statements about capacities, in these cases capR

n

p,µ({0}, Br) refers
to the variational p-capacity of {0} with respect to Br. A precise definition of
what that is will for our purposes not be necessary and will therefore be left
out.

Theorem 2.17. Let w be a radial weight function on Rn such that dµ = w dx
is a doubling measure. Assume that

capR
n

p,µ({0}, Br) ≃ r−pµ(Br) for all r > 0.

Then µ supports a p-Poincaré inequality on Rn if and only if w is of class Ap.
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The next theorem is from [2, Theorem 1.3].

Theorem 2.18. Assume that µ is a doubling measure supporting a p-Poincaré
inequality on Rn, where p > 1. Then

capR
n

p,µ({0}, Br) ≃ r−pµ(Br) for all r > 0

if and only if p > inf Q(µ).



Chapter 3

Introductory example

We study the weight w(ρ) defined in Chapter 3 in Svensson [7]. We will later
modify the weight and see that the modified weight is 1-admissible and maintains
the same structure for the exponent sets.

The weight is defined with the following variables. For k = 2, 3, ..., let

αk = 2−2k ,

and let
βk = α

4+k
3+k

k .

These are the same βk as in [7], but written in a different way. Now define the
weight by

w(ρ) =

{
α

1
k

k ρ
1− 1

k−n, if αk < ρ < βk−1,

α
−1− 1

k

k−1 ρ2+
1
k−n, if βk−1 ≤ ρ ≤ αk−1,

for k = 3, 4, ...

Note that w is continuous since for k = 3, 4, ...,

w(βk−1) = α
−1− 1

k

k−1 β
2+ 1

k−n

k−1 = α
1
k

k β
1− 1

k−n

k−1 ,

which we can see is true since, using αk = α2
k−1 we get that

α
1
k

k β
− 1

k

k−1 = α
2
k

k−1α
− 3+k

k(2+k)

k−1 = α
1+k

k(2+k)

k−1 = α
−1− 1

k

k−1 α
(1+ 1

k )(
3+k
2+k )

k−1 = α
−1− 1

k

k−1 β
1+ 1

k

k−1 ,

and
w(αk) = α

1
k

k α
1− 1

k−n

k = α1−n
k = α

−1− 1
k+1

k α
2+ 1

k+1−n

k .
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10 Chapter 3. Introductory example

Svensson [7, Chapter 3] also showed that the measure defined on B(0, α2) by
dµ = w(ρ) dx has the following exponent sets

Q
0
(µ) = (0, 1), S0(µ) = (0, 1], S0(µ) = (1,∞), Q0(µ) = (2,∞).

Now to investigate whether or not the weight is 1-admissible on Rn we first
need to extend the domain for the weight to ρ > α2. We let

w(ρ) =


α

1
k

k ρ
1− 1

k−n, if αk < ρ < βk−1,

α
−1− 1

k

k−1 ρ2+
1
k−n, if βk−1 ≤ ρ ≤ αk−1,

ρ1−n, if ρ > α2.

for k = 3, 4, ... (3.1)

Note that since w(α2) = α1−n
2 , our weight with the extended domain is still

continuous.
Now since w(ρ) is continuous we can try to apply Theorem 2.6 to see if the

weight is 1-admissible. Note that Theorem 2.6 holds only for n ≥ 2 thus we
investigate our weight on Rn, n ≥ 2. We get

ρw′(ρ)

w(ρ)
=


1− 1

k − n, if αk < ρ < βk−1,

2 + 1
k − n, if βk−1 < ρ < αk−1,

1− n, if ρ > α2,

for k = 3, 4, ...,

where we now see that in the first case the quotient is less than 1 − n, so
Theorem 2.6 does not imply that w is 1-admissible. One of our aims is therefore
to show this by other means, see Corollary 3.5. We will therefore create a
new auxiliary weight by multiplying w with ρα for some appropriate α. With
v(ρ) = ραw(ρ) we will get new weights which are indeed 1-admissible. The
following is our first result in this direction.

Theorem 3.1. Let w be the weight defined on Rn, n ≥ 2, by (3.1). For α > 0,
the weight v(ρ) = ραw(ρ) is 1-admissible.

Proof. Let m ≥ 2 be a integer such that m > 1
α , and let

w0(ρ) =

{
w(ρ), if ρ ≤ αm,

ρ1−n, if ρ > αm.

Now with v0(ρ) = ραw0(ρ) we get that

ρv′0(ρ)

v0(ρ)
=


1 + α− 1

k − n, if αk < ρ < βk−1,

2 + α+ 1
k − n, if βk−1 < ρ < αk−1,

1 + α− n, if ρ > αm,

for k = m+ 1,m+ 2, ...
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hence
ρv′0(ρ)

v0(ρ)
> 1− n for all ρ > 0,

so Theorem 2.6 implies that v0(ρ) is 1-admissible. Furthermore we have that
v0(ρ) = v(ρ) when ρ < αm and when ρ > α2. Since both weights are continuous
we get for αm ≤ ρ ≤ α2 that v0(ρ) ≃ v(ρ). Hence v0(ρ) ≃ v(ρ) for all ρ > 0,
with comparison constants independent of ρ, which implies by Theorem 2.11
that v is also 1-admissible.

We shall now also see what the exponent sets for the new weight v look like.
Roughly speaking the endpoints of the exponent sets are shifted forward by α.

Theorem 3.2. Let µ be a doubling measure on Rn and let ν be the measure
defined as dν = ρα dµ where α > − supQ(µ). Then ν has the following exponent
sets

Q
0
(ν) = {q > 0 : q − α ≤ σ for some σ ∈ Q

0
(µ)},

S0(ν) = {q > 0 : q − α ≤ σ for some σ ∈ S0(µ)},
S0(ν) = {q > 0 : q − α ≥ σ for some σ ∈ S0(µ)},
Q0(ν) = {q > 0 : q − α ≥ σ for some σ ∈ Q0(µ)},
Q(ν) = {q > 0 : q − α ≤ σ for some σ ∈ Q(µ)},
Q(ν) = {q > 0 : q − α ≥ σ for some σ ∈ Q(µ)}.

Proof. For the proof we utilize Theorem 3.5 from Jonsson [6] which states that
for every ball Br = B(0, r) ⊂ Rn and with α > − supQ(µ), we have

ν(Br) =

∫
Br

|x|αdµ ≃ rαµ(Br). (3.2)

Now let q > 0, then q ∈ Q
0
(ν) if and only if

ν(Br)

ν(BR)
≲

( r

R

)q

for all 0 < r < R ≤ 1. By (3.2), this is equivalent to

µ(Br)

µ(BR)
≲

( r

R

)q−α

for all 0 < r < R ≤ 1.

This inequality is satisfied if and only if q − α ≤ σ for some σ ∈ Q
0
(µ). The

statement for the other exponent sets can be shown similarly, where we for Q(ν)

and Q(ν) consider all 0 < r < R < ∞.
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Theorems 3.1 and 3.2 prove the following corollary.

Corollary 3.3. Let w be the weight defined on Rn, n ≥ 2, by (3.1). Then for
any α > 0, the weights v(ρ) = ραw(ρ) are 1-admissible and have the following
exponent sets

Q
0
(ν) = (0, 1+α), S0(ν) = (0, 1+α], S0(ν) = (1+α,∞), Q0(ν) = (2+α,∞).

We shall now see that we can generalize further and find 1-admissible weights
with exponent sets of the form

Q
0
(µ) = (0, c), S0(µ) = (0, c], S0(µ) = (c,∞), Q0(µ) = (c+ 1,∞)

for any c > 0.

Theorem 3.4. Let c > 0 and let w be the weight defined on Rn, n ≥ 2, by (3.1).
Then the weight w̃(ρ) = ρc−1w(ρ) is 1-admissible and has the following exponent
sets

Q
0
(w̃) = (0, c), S0(w̃) = (0, c], S0(w̃) = (c,∞), Q0(w̃) = (c+ 1,∞).

Proof. For the proof we will start with the weight v(ρ) = ραw(ρ) where w is the
weight in (3.1) and then use Theorem 2.14. In addition to Theorem 3.1, we will
also need to know what the exponent set Q(v) looks like. We can by Theorem
3.2 get that Q(v) has its endpoint shifted up by α compared to Q(µ), where
dµ = w dx. So we need to determine how Q(µ) looks like.

Clearly Q(µ) ⊂ Q
0
(µ) = (0, 1). To see that (0, 1) ⊂ Q(µ) we need to

estimate µ(BR) for R ≥ α2. We get

µ(BR) = µ(Bα2
) + µ(BR \Bα2

).

The measure µ(Bα2) is constant and thus comparable to 1. The other measure
µ(BR \Bα2

) can be calculated using polar coordinates. We get

µ(BR \Bα2
) ≃

∫ R

α2

ρn−1ρ1−ndρ = R− α2

and thus
µ(BR) ≃ 1 +R− α2.

Furthermore we get that

1 +R− α2 ≤ 16R since R ≥ α2 = 2−22 =
1

16
.
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Additionally,
1 +R− α2 ≥ R

and thus
µ(BR) ≃ 1 +R− α2 ≃ R.

Let 0 < q < 1 be arbitrary. For 0 < r < R < α2 we now get

µ(Br)

µ(BR)
≲

( r

R

)q

,

from Q
0
(w) = (0, 1). For 0 < r < α2 < R we also get that

µ(Br)

µ(BR)
=

µ(Br)

µ(Bα2
)

µ(Bα2)

µ(BR)
≲

(
r

α2

)q (α2

R

)
≤

( r

R

)q

.

Finally for R > r ≥ α2 we have that

µ(Br)

µ(BR)
≃

( r

R

)
≤

( r

R

)q

.

This shows that (0, 1) ⊂ Q(µ) and thus that Q(µ) = (0, 1). Hence with v(ρ) =
ραw(ρ), we get that Q(v) = (0, 1 + α).

We now for any c > 0 fix α > 0 and let β = 1 + α− c. Recall that

w̃(ρ) = ρc−1w(ρ) = ρ−βv(ρ).

Theorem 2.14 gives that ρ−β ∈ A1(v) since

−β = −(1 + α− c) > −(1 + α) = − supQ(v).

Since v is 1-admissible by Theorem 3.1, it follows from Theorem 2.16 that w̃ is
1-admissible. Finally we get from Theorem 3.2 that the exponent sets for w̃ are

Q
0
(w̃) = (0, c), S0(w̃) = (0, c], S0(w̃) = (c,∞), Q0(w̃) = (c+ 1,∞).

With c = 1 we get that the original weight is 1-admissible.

Corollary 3.5. The weight w defined in (3.1) is 1-admissible.





Chapter 4

Admissibility of more general
weights

In this chapter we apply some of the methods used in Chapter 3 to more general
radial weights and prove an improvement of Theorem 2.6.

Theorem 4.1. Assume that the radial weight w(ρ) on Rn, n ≥ 2, is locally
absolutely continuous on (0,∞) and that for some 0 < M < ∞ it holds for
almost every ρ > 0 that

−M <
ρw′(ρ)

w(ρ)
< M.

If the exponent set Q(w) is non-empty, then w is 1-admissible.

To prove Theorem 4.1 we will need the following lemma.

Lemma 4.2. Assume that the radial weight w(ρ) on Rn, n ≥ 2, is locally abso-
lutely continuous on (0,∞) and that for some 0 < M < ∞ it holds for almost
every ρ > 0 that

−M <
ρw′(ρ)

w(ρ)
< M.

Then the weight v(ρ) = ραw(ρ) is 1-admissible for any α > M + 1− n.

Proof. Take α > M + 1− n. Then we get that

ρv′(ρ)

v(ρ)
=

ρ(ραw(ρ))′

ραw(ρ)
= α+

ρw′(ρ)

w(ρ)
> 1− n

Bladh, 2023. 15
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and also
ρv′(ρ)

v(ρ)
< M + α < ∞

so Theorem 2.6 implies that v is 1-admissible.

Proof of Theorem 4.1. Let v(ρ) = ραw(ρ) for some α > 0 large enough such
that Lemma 4.2 implies that the weight v is 1-admissible. Since

−α > −(α+ supQ(µ)) = − supQ(ν),

where the equality α + supQ(µ) = supQ(ν) follows from Theorem 3.2, The-
orem 2.14 shows that ρ−α ∈ A1(v). Finally since w(ρ) = ρ−αv(ρ) and v is
1-admissible, Theorem 2.16 implies that w is 1-admissible.

Next we will show a sufficient condition for the exponent set Q(µ) to be
non-empty.

Lemma 4.3. If there exists 0 < θ < 1 such that

µ(Br) ≤ θµ(B2r) for all r > 0. (4.1)

Then Q(µ) is non-empty.

The condition (4.1) is sometimes called reverse doubling.

Proof. Take 0 < r < R < ∞. Then r ≤ 2kr ≤ R for some integer k ≥ 0. We
take the largest such k and then get using (4.1) that

µ(Br)

µ(BR)
=

µ(Br)

µ(B2r)

µ(B2r)

µ(B4r)
...
µ(B2kr)

µ(BR)
≤ θk.

Now we want to show that

θk ≲
( r

R

)q

for some q > 0.

We have that ( r

R

)q

=

(( r

2r

)(
2r

4r

)
...

(
2kr

R

))q

≥
(
1

2

)(k+1)q

.

Now

θk ≤
(
1

2

)kq
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is equivalent to

k log θ ≤ kq log
1

2

which can be rewritten as
q ≤ log θ

log 1
2

.

Hence we have that

µ(Br)

µ(BR)
≤ θk ≤

(
1

2

)kq

≤ 2q
( r

R

)q

for 0 < q ≤ log θ

log 1
2

,

and thus Q(µ) is non-empty.

With this lemma we can prove the following corollary which is an improve-
ment of Theorem 2.6.

Corollary 4.4. Assume the radial weight w(ρ) on Rn, n ≥ 2, is locally abso-
lutely continuous on (0,∞) and that for some m < n and 0 < M < ∞ it holds
for almost every ρ > 0 that

−m ≤ ρw′(ρ)

w(ρ)
≤ M. (4.2)

Then the weight w is 1-admissible.

Proof. The inequality (4.2) gives

−m

ρ
≤ w′(ρ)

w(ρ)
= (logw(ρ))′.

Integrating the right-hand side from r to 2r we get∫ 2r

r

(logw(ρ))′ dρ = logw(2r)− logw(r) = log
w(2r)

w(r)

and integrating the left-hand side gives∫ 2r

r

−m

ρ
dρ = −m(log 2r − log r) = −m log 2 = log(2−m).

So we get the following inequality

log
w(2r)

w(r)
≥ log(2−m)
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or equivalently
w(r) ≤ 2mw(2r). (4.3)

Calculating the measures of Br and B2r with polar coordinates and using (4.3)
we get the following estimate (with ωn−1 being the surface measure of the unit
sphere in Rn)

µ(Br)

ωn−1
=

∫ r

0

w(ρ)ρn−1 dρ =
∞∑
j=0

∫ 2−jr

2−j−1r

w(ρ)ρn−1 dρ

≤ 2m
∞∑
j=0

∫ 2−jr

2−j−1r

w(2ρ)ρn−1 dρ = 2m
∞∑
j=0

∫ 21−jr

2−jr

w(t)

(
t

2

)n−1
1

2
dt

= 2m−n

∫ 2r

0

w(t)tn−1 dt = 2m−nµ(B2r)

ωn−1.

Since m < n and thus 0 < 2m−n < 1, Lemma 4.3 implies that Q(w) is
non-empty and w is therefore 1-admissible by Theorem 4.1.



Chapter 5

Admissibility of another
weight

In this section we will use Theorem 4.1 to show admissibility of one more weight.
We study another weight from Svensson [7, Chapter 2]. Just as before in

Chapter 3 we need to extend the domain of the weight, so we define the weight
as follows. Take any c > 0, fix an integer k0 > 1/c and let for positive integers
k ≥ k0,

αk = 2−2k and βk = α
3
2

k .

We then define the weight as

w(ρ) =


α

1
k

k ρ
c− 1

k−n, if αk < ρ < βk−1

α
− 1

k

k−1ρ
c+ 1

k−n, if βk−1 ≤ ρ ≤ αk−1,

ρc−n, if ρ > αk0 ,

for k > k0. (5.1)

Svensson [7, Chapter 2] also showed that the weight has the following exponent
sets

Q
0
(w) = (0, c), S0(w) = (0, c], S0(w) = (c,∞), Q0(w) = (c,∞).

Theorem 5.1. The weight w defined on Rn, n ≥ 2, by (5.1) is 1-admissible.

Proof. Fist we can see that w is continuous since

w(βk−1) = α
− 1

k

k−1β
c+ 1

k−n

k−1 = α
2
k

k−1α
− 3

2
2
k

k−1 β
c+ 1

k−n

k−1 = α
1
k

k β
c− 1

k−n

k−1

and
w(αk) = α

− 1
k

k α
c+ 1

k−n

k = αc−n
k = α

1
k

k α
c− 1

k−n

k .
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Additionally we also get that

ρw′(ρ)

w(ρ)
=


c− 1

k − n, if αk < ρ < βk−1,

c+ 1
k − n, if βk−1 < ρ < αk−1,

c− n, if ρ > αk0 ,

for k > k0.

so it is clear that the quotient ρw′(ρ)
w(ρ) is bounded from above and below. In

order to use Theorem 4.1 it remains to show that Q(µ), where dµ = w dx, is
non-empty.

We use that µ(BR) = µ(Bαk0
)+µ(BR \Bαk0

), when R ≥ αk0
, where we can

calculate the second measure using polar coordinates as follows,

µ(BR \Bαk0
) ≃

∫ R

αk0

ρn−1ρc−ndρ =

∫ R

αk0

ρc−1dρ = Rc − αc
k0

to see that µ(BR) ≃ 1 +Rc − αc
k0
. For R > 1 > αk0

we now have the following

1 +Rc − αc
k0

≤ 2Rc

and also
1 +Rc − αc

k0
≥ Rc

so µ(BR) ≃ Rc.
For 0 < r < 1 < R we now get the following

µ(Br)

µ(BR)
≃ µ(Br)

Rc
≲

( r

R

)c

,

since c ∈ S0(µ). For 0 < r < R ≤ 1 we get that

µ(Br)

µ(BR)
≲

( r

R

)q

for all q < c,

since Q
0
(w) = (0, c). Furthermore we get for R > r ≥ 1 that

µ(Br)

µ(BR)
≃

( r

R

)c

.

The conclusion we can draw is that (0, c) ⊂ Q(µ) and since we know that
Q(µ) ⊂ Q

0
(µ) = (0, c) we can say that Q(µ) = (0, c), which in particular means

that Q(µ) is non-empty, so Theorem 4.1 implies that w is 1-admissible.

We have now shown that the first two weights in Svensson [7] are 1-admissible.



Chapter 6

Ap versus 1-admissibility

It is known that weights that are of class Ap are also p-admissible. The converse
however is not always true, that is p-admissible weights are not necessarily of
class Ap. In this chapter we will study some weights which are 1-admissible and
see when they are and when they are not of class A1 or Ap.

First we study a simple weight defined as follows

w(ρ) = ρc−n (6.1)

for c > 0. In [3, Example 3.1] with c ≥ 1 (and β = 0) it was shown that the
weight has the following exponent sets

S0(w) = Q
0
(w) = Q(w) = (0, c], S0(w) = Q0(w) = Q(w) = [c,∞)

but we also get the same exponent sets for all c > 0.

Theorem 6.1. The weight w in (6.1) is 1-admissible for all c > 0.

Proof. We get that
ρw′(ρ)

w(ρ)
= c− n

so the result follows directly form Corollary 4.4.

Now we shall also see that even though the weight ρc−n is always 1-admissible
whether or not it is of class A1 depends on the value of c.

Theorem 6.2. The weight w in (6.1) is of class A1 if and only if c ≤ n.

The sufficient part of Theorem 6.2 follows directly from Theorem 2.14 but
for the reader’s convenience we provide a complete proof.

Bladh, 2023. 21
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Proof. For c > n it is clear that infBr
w = 0 for any ball Br which contains the

origin. Thus it is clear that for every C > 0 and all such balls,∫
Br

w dx > Crn inf
Br

w = 0,

showing that w is not of class A1.
If c = n then w ≡ 1 and is clearly of class A1. For c < n and for any ball

B(x0, r) with |x0| ≥ 2r, we have the following estimates. For all x ∈ B(x0, r),

|x− x0| < r ≤ 1
2 |x0|.

Now by the reverse triangle inequality, we get

|x| ≥ |x0| − |x− x0| > |x0| − r ≥ 1
2 |x0|,

from which it follows that

w(|x|) = |x|c−n ≤ ( 12 |x0|)c−n.

With this we can estimate the integral as follows∫
B(x0,r)

w dx ≤
∫
B(x0,r)

( 12 |x0|)c−n dx = 2n−c|x0|c−n

∫
B(x0,r)

dx.

Since r ≤ 1
2 |x0|, we also have that

inf
B(x0,r)

w = (r + |x0|)c−n ≥ (
1

2
|x0|+ |x0|)c−n =

(
3

2

)c−n

|x0|c−n.

With C = 3n−c we then get∫
B(x0,r)

w dx ≤ C inf
B(x0,r)

w

∫
B(x0,r)

dx.

For a ball B(x0, r) with r ≥ 1
2 |x0|, we notice that B(x0, r) ⊂ B(0, 3r).

Because w ≥ 0, we can estimate the integral by∫
B(x0,r)

w dx ≤
∫
B(0,3r)

w dx.

Now we calculate the integral over the larger ball B(0, 3r) using polar coordi-
nates as follows,∫

B(0,3r)

w dx = ωn−1

∫ 3r

0

ρc−nρn−1 dρ =
3cωn−1

c
rc,
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where ωn−1 is the surface measure of the unit sphere in Rn. We also get that

inf
B(x0,r)

w = (r + |x0|)c−n ≥ (r + 2r)c−n = 3c−nrc−n.

Furthermore, we have that ∫
B(x0,r)

dx =
ωn−1

n
rn,

so we can take C = 3nn
c and get∫
B(x0,r)

w dx ≤ C inf
B(x0,r)

w

∫
B(x0,r)

dx.

This covers all cases and proves that w ∈ A1 when c < n.

Now we will see that a similar result holds for the weight defined in (5.1).

Theorem 6.3. The weight w defined in (5.1) is not of class A1 when c ≥ n.

Proof. Svensson [7, Chapter 2] showed that∫
Bαk

w dx ≃ αc
k

for any k ≥ k0. We thus get that∫
Bαk

w dx

αn
k inf

Bαk

w
≃

αc−n
k

inf
Bαk

w
.

Now since
inf
Bαk

w ≤ w(αk+1) = α
− 1

k+1

k+1 α
c+ 1

k+1−n

k+1 = αc−n
k+1,

we get ∫
Bαk

w dx

αn
k inf

Bαk

w
≳

αc−n
k

αc−n
k+1

=

(
αk

αk+1

)c−n

=

(
αk

α2
k

)c−n

= αn−c
k .

If we now let k → ∞ and thus αk → 0, we see that

lim
k→∞

∫
Bαk

w dx

αn
k inf

Bαk

w
= ∞ if n < c.
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This shows that w is not of class A1 if c > n. If c = n we get, since βk ≤ αk,
that

inf
Bαk

w ≤ w(βk) = α
− 1

k+1

k β
1

k+1

k = α
− 1

k+1

k α
3
2

1
k+1

k = α
1

2(k+1)

k

hence we get that∫
Bαk

w dx

αn
k inf

Bαk

w
≃

αn−n
k

inf
Bαk

w
≥ α

− 1
2(k+1)

k = 2(−2k)(− 1
2(k+1)

) = 2
2k−1

k+1 → ∞, as k → ∞,

which shows that w is not of class A1 when c = n.

Remark 6.4. The case where c > n can also be shown by noticing that

w(αk) = αc−n
k → 0, as k → ∞

so
inf
Br

w = 0, for all r > 0.

Which is not possible for an A1-weight.

Next we show that the weight is not Ap for p ≤ c
n .

Theorem 6.5. The weight w defined in (5.1) is not of class Ap when 1 < p ≤ c
n .

Proof. Take p = c
n . We will prove that w is not in Ap for this p by showing that

for k0 > 1
c , ∫

Bαk0

w
1

1−p dx = ∞.

With polar coordinates we get that∫
Bαk0

w
1

1−p dx ≃
∫ αk0

0

w(ρ)
1

1−p ρn−1 dρ.

Now since w ≥ 0 we can get the following estimate∫ αk0

0

w(ρ)
1

1−p ρn−1 dρ ≥
∫ βk−1

αk

w(ρ)
1

1−p ρn−1 dρ
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for all k > k0. Now we can calculate the integral as follows∫ βk−1

αk

w(ρ)
1

1−p ρn−1 dρ =

∫ βk−1

αk

(α
1
k

k ρ
c− 1

k−n)
1

1−p ρn−1 dρ

= α
1

k(1−p)

k

[
ρ(c−

1
k−n) 1

1−p+n

(c− 1
k − n) 1

1−p + n

]βk−1=α
3
4
k

αk

=
α

1
k(1−p)

k

(c− 1
k − n) 1

1−p + n

(
α

3
4 ((c−

1
k−n) 1

1−p+n)

k − α
(c− 1

k−n) 1
1−p+n

k

)
.

Now we note that for p = c
n > 1,

(c− 1

k
− n)

1

1− p
+ n = − 1

k(1− p)
=

n

k(c− n)
.

Hence, since c
n > 1 also implies that c > n, we get that

∫ βk−1

αk

w(ρ)
1

1−p ρn−1 dρ =
α
− n

k(c−n)

k α
n

k(c−n)

k
n

k(c−n)

(
α

−n
4k(c−n)

k − 1

)
=

k(c− n)

n

(
2

2k−2n
k(c−n) − 1

)
→ ∞, as k → ∞.

Thus ∫
Bαk0

w
1

1−p dx = ∞

and w is not of class Ap for p = c
n . Theorem 2.15 thus implies that w is not of

class Ap for any p ≤ c
n .

Now we will see that the weight is actually of class Ap for some larger p.

Theorem 6.6. The weight w defined in (5.1) is of class Ap when p > c.

Proof. By Theorem 5.1 w is 1-admissible, and hence by Theorem 2.9 it is also p-
admissible for all p ≥ 1. This means that the measure dµ = w dx is doubling and
supports a p-Poincaré inequality. Now we want to use Theorems 2.17 and 2.18,
so we need to show that inf Q(µ) = c. Recall that Svensson [7, Chapter 2] showed
that Q0(µ) = (c,∞). In the proof of Theorem 5.1 we showed that µ(BR) ≃ Rc

for R > 1. Let q > c be arbitrary. For 0 < r < 1 < R we get that

µ(Br)

µ(BR)
=

µ(Br)

µ(B1)

µ(B1)

µ(BR)
≳

(r
1

)q
(
1

R

)c

≥
( r

R

)q
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and for 0 < r < R ≤ 1
µ(Br)

µ(BR)
≳

( r

R

)q

because Q0(µ) = (c,∞). And finally for 1 < r < R

µ(Br)

µ(BR)
≃

( r

R

)c

≥
( r

R

)q

.

Thus Q(µ) = (c,∞) and we can apply Theorem 2.18 to get that

capR
n

p,µ({0}, Br) ≃ r−pµ(Br) for all r > 0.

With this we can apply Theorem 2.17. Since the measure dµ = w dx is doubling
and supports a p-Poincaré inequality Theorem 2.17 implies that w must be of
class Ap.

Theorem 6.7. The weight w defined in (3.1) is not of class A1 when n = 2.

Proof. Svensson [7, Chapter 3] showed that∫
Bαk

w dx ≃ αk.

Since βk ≤ αk it now follows that

inf
Bαk

w ≤ w(βk) = α
−1− 1

k+1

k β
1

k+1

k .

Hence∫
Bαk

w dx

α2
k inf
Bαk

w
≳

αk

α2
kα

−1− 1
k+1

k β
1

k+1

k

=
α

1
k+1

k

β
1

k+1

k

= α
− 1

k+1 (
4+k
3+k−1)

k = α
− 1

(k+1)(3+k)

k ,

where we used that βk = α
4+k
3+k

k . Thus we get that∫
Bαk

w dx

α2
k inf
Bαk

w
≳ α

− 1
(k+1)(3+k)

k = 2(−2k)(− 1
(k+1)(3+k)

) = 2
2k

(k+1)(3+k) → ∞, as k → ∞,

which shows that w is not of class A1.



Chapter 7

Discussion

In Chapter 3 we showed that one of the weights in Svensson [7] is 1-admissible.
Furthermore in Theorem 3.4 we managed to generalize the weight and show
that the generalized weight was 1-admissible. Additionally in Chapter 5 we
showed that another weight from [7] is 1-admissible. Svensson [7] also defined
a third weight, one could probably use the results from Chapter 4 to show that
this weight is also 1-admissible, and if that is true a generalization such as in
Theorem 3.4 should also be possible.

Finally in Chapter 6 we showed that the simple weight w(ρ) = ρc−n is of
class A1 if and only if c ≤ n. Whereas we for the more complicated weights from
Svensson [7] only showed that they were not of class A1 when c ≥ n and for
n = 2. The obvious question that remains is if either of these weights are A1

for any values of c and n. Additionally in Theorems 6.5 and 6.6 we showed that
one of the weights is not of class Ap when 1 < p ≤ c

n and is of class Ap when
p > c. Whether or not the weight is Ap for the cases in between, that is when
c
n < p ≤ c, still remains an open question.
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