
Decentralised Multi-agent Search, Track and
Defence Coordination using a PMBM filter and

Data-driven Robust Optimisation

Department of Mathematics

Anton Söderberg, Jesper Vines

LiTH-MAT-EX–2023/12–SE

Credits: 30 hp

Level: A

Supervisors: Emil Karlsson,
SAAB AB

Dennis Malmgren,
SAAB AB

Elina Rönnberg,
Department of Mathematics

Examiner: Nils-Hassan Quttineh,
Department of Mathematics

Linköping: June 2023





Contents

Abstract v

Acknowledgements vii

Abbreviations ix

Notation xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Choice of method . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 7
2.1 Linear optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Assignment problems . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Robust optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Stochastic optimisation . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Multi-object tracking . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Poisson multi-Bernoulli mixture filter . . . . . . . . . . . . . . . . 20

3 Method 25
3.1 Implementation overview . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Radar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 PMBM filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Mission assignment models . . . . . . . . . . . . . . . . . . . . . 41
3.6 Communication conditions . . . . . . . . . . . . . . . . . . . . . . 47

Söderberg, Vines, 2023. iii



iv Contents

4 Results 49
4.1 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Discussion 61
5.1 Communication condition comparisons . . . . . . . . . . . . . . . 62
5.2 Assignment model comparisons . . . . . . . . . . . . . . . . . . . 64
5.3 Filter performance evaluation . . . . . . . . . . . . . . . . . . . . 66
5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 General future work . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Future model work . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusion 73



Abstract

In an air defence scenario decisions need to be taken with extreme precision
and under high pressure. These decisions becomes even more challenging when
the aircraft in question need to function as a team and coordinate their effort.
Because of the difficulty of the task, and the amount of information that needs
to be rapidly processed, fighter pilots can benefit greatly from computer-assisted
decision making.

In this thesis this kind of decentralised multi-agent coordination problem
is studied and mission assignment models, based on robust and stochastic op-
timisation, are evaluated. Since the information obtained by aircraft sensors
often suffer from a notable amount of noise and the scenario state therefore is
uncertain, a Poisson multi-Bernoulli mixture filter is implemented in order to
model these noisy measurements and keep track of potential adversaries.

The study finds that the filter used was more than capable of handling the
scenario uncertainties and provided valuable task information to the mission as-
signment models. However, the preliminary robust optimisation models based
entirely on the positional uncertainty of the adversaries were not sophisticated
enough for such a complex coordination problem, indicating that further re-
search is needed in this area.
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Abbreviations

For ease of finding, the relevant abbreviations are summarised in this chapter.

TAU Tactical Air Unit
SO Stochastic Optimisation
RO Robust Optimisation
DDRO Data-Driven Robust Optimisation
MOT Multi-Object Tracking
RFS Random Finite Sets
PPP Poisson Point Process
MB Multi-Bernoulli
MBM Multi-Bernoulli mixture
PMBM Poisson Multi-Bernoulli Mixture
SNR Signal to Noise and clutter Ratio
RCS Radar Cross Section
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Notation

For ease of finding, the relevant notation is summarised in this chapter.[
a b
c d

]
The matrix given by concatenating matrices a, b, c and d.

X ⊎ Y The union of two disjoint sets X and Y.∑
X1⊎...⊎Xn=X

The sum over all possible disjoint sets X1, ..., Xn such that the
union of the sets is X.

a ∝ b The value of a is proportional to b.

⟨f, g⟩ The inner product of the functions f(x) and g(x), defined as∫
f(x)g(x)dx.

⌈x⌉ The ceiling function, defined as min{n ∈ Z : n ≥ x}, x ∈ R.
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Chapter 1

Introduction

This thesis aims to study decentralised multi-agent decision making in an un-
certain environment. The agents studied are a group of aircraft, referred to as
the friendly actors, trying to coordinate a search and track mission in an air
defence scenario. The decentralised aspect refers to the fact that the decision
making of the aircraft are distributed and based on their own observations, as
well as communicated information from teammates.

A game-based simulation environment has been provided by SAAB AB to
evaluate and compare the different mission assignment models developed. In
this environment the friendly actors use radar actions to search for and track
detected adversaries, with the goal of preventing them from reaching the friendly
part of the game map. The models will be tested under several different com-
munication conditions.

Söderberg, Vines, 2023. 1



2 Chapter 1. Introduction

1.1 Background

A central aspect of modern aerial combat is the ability to quickly collect infor-
mation, process it, and decide what to do with it. A conceptual framework for
the ability to repeatedly perform these actions was presented in the mid-20th
century, by the late US Air Force Colonel John R. Boyd [22]. It is called the
Observe-Orient-Decide-Act loop, or OODA loop for short. Accomplishing this
OODA loop faster and more effectively than the opponent can give an opera-
tional advantage in a tactical air scenario, since the team has the ability to act
proactively and influence how the scenario develops.

Figure 1.1 shows a cockpit in the Gripen E fighter aircraft system, showing
the large amount of information available to the pilot. However, the ability of
the human brain to process information is limited. For some tasks, the pro-
cessing speed of the brain has been estimated to be around 60 bits/second [19],
compared to a modern day computer which can process billions of instructions
every second. It is therefore interesting to examine if and how computer based
decision methods can be used to assist pilots. In an uncertain environment with
multiple actors a lot of information may be hidden from a single actor, meaning
that the decision methods also need to be robust enough to these uncertainties
in order to be trusted by pilots.

Figure 1.1: Gripen E cockpit.
Photo: SAAB AB, Copyright SAAB AB [1]
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1.2 Problem formulation
The task at hand is divided into two phases. The first phase consists of devel-
oping a method for modelling the uncertainties in the scenario state, that come
with the inherent uncertainties of the radar detections. This includes both an
uncertainty in potential target existence, since every radar detection can be the
result of noise or a potential adversary, as well as an uncertainty in the position
of the potential target.

The second phase consists of developing multi-agent decision methods, based
on mathematical optimisation, in order to guide the friendly aircraft (actors)
in the scenario. The methods in question are used as a basis for decentralised
decision making of a tactical air unit (TAU). This means that there will exist
multiple friendly actors, that all make independent decisions based on their own
state belief. The state belief comes from both personal radar detections, as well
as communicated messages from the rest of the friendly actors. A sketch of the
problem is presented in Figure 1.2.

Figure 1.2: A sketch of the problem at hand.

1.2.1 Delimitations
To ensure that the thesis project could be completed in time, several delimita-
tions were made. First and foremost, the defence scenario used in the simulation
environment is heavily simplified. The adversaries have no common strategy and
can only fly in straight lines. They also have no radar or state belief of their
own, and as such do not react to the actions taken by the TAU. They also
lack any type of radar jamming equipment. Additionally, there are no false
measurements in the scenario, meaning that only adversarial aircraft can gen-
erate measurements. However, the friendly actors are unaware of these scenario
simplifications. As such, neither the method used for determining the uncertain
existence and position of a potential threat, nor the decision strategies, can take
advantage of these facts.
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1.3 Choice of method
Here, the approach taken to solving the problem stated in Section 1.2 is pre-
sented and motivated. A Poisson multi-Bernoulli mixture (PMBM) filter is
proposed as a method of modelling the scenario uncertainty, and assignment
models based on mathematical optimisation are proposed as decision methods.
These decision methods will be evaluated under several different communication
conditions, in order to study what effect communication disruptions have on the
models.

1.3.1 PMBM filter
The general uncertainty in the scenario is formulated as an uncertainty in the
current scenario state for every aircraft in the scenario. The uncertainty in
position and existence of adversaries is modelled according to a probability
distribution gained from a PMBM filter. This probability distribution is then
updated every scenario time step, according to information gained from aircraft
sensors and teammates.

The filter has been used earlier in single-agent search and track applications,
with promising results [7, 10].

1.3.2 Robust optimisation
In this thesis mathematical optimisation is used for the decision methods, in
order to determine an optimal strategy based on each actor’s own state belief.
Since the decision-making is decentralised the models are solved separately for
each friendly actor in the TAU. To decide what to do in a given time step, an
assignment problem is solved where every aircraft is assigned a coordinate pair.
The coordinate pair indicates the position of a target, either an area to search
or an adversary to track. After each actor has been assigned a target coordinate
pair they decide on a radar strategy, based on what type of task the actor was
assigned.

To handle the uncertainties in the scenario, the optimisation models were
based on data-driven robust optimisation (DDRO) [4] and stochastic optimisa-
tion (SO) [12]. These approaches were taken with the aim of providing solid
assignment solutions, even if the exact positions of the adversaries were un-
known.
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1.4 Thesis outline
This thesis is divided into six chapters. In Chapter 2, the background theory
of the thesis will be presented. First, some elementary optimisation theory is
presented, with a separate section for allocation problems. Thereafter, robust
optimisation is given a thorough introduction — together with a short detour
on stochastic optimisation. Lastly, the theory behind multi-object tracking, as
well as the maths behind the PMBM filter, is presented.

In Chapter 3, the implementation and development method is presented.
Special care is taken to describe the implementation details of the PMBM filter,
and how it was integrated into the simulation environment. The decision models
are also presented in full, together with how they were applied to this specific
scenario. In Chapter 4, the results are presented. This consists of the different
metrics extracted from the simulation, taken from every combination of decision
model and communication condition.

In Chapter 5, the results of the thesis are discussed and the different models
and conditions are compared. Following that, the concept of robustness and
how it was used in this thesis is discussed. Suggestions for future research are
also made, both in terms of model improvements and changes that can be made
to the simulation environment. In Chapter 6, conclusions are drawn from the
simulation results and lessons learned from the thesis project in general are
discussed.





Chapter 2

Theory

In this chapter the background theory for the thesis is presented. First, some
fundamental linear optimisation theory is presented, with a focus on the type
of assignment problems used in the thesis. After that an introduction to the
field of uncertain linear optimisation is made, together with the theory used to
tackle these problems — robust optimisation. A brief overview of stochastic
optimisation, as an alternative to robust optimisation, is also presented.

In addition to optimisation theory, a comprehensive explanation of multi-
object tracking using Bayesian filtering and a random finite set framework is
given. Finally, a detailed description of the Poisson multi-Bernoulli mixture
filter, and how it can be efficiently used for multi-object tracking, is presented.

Söderberg, Vines, 2023. 7
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2.1 Linear optimisation
The idea of linear optimisation (LO) — and indeed, mathematical optimisation
in general — is in its core simple: given a set of constraints, find a feasible vector
x that minimises (or maximises) the specified objective function. The solution
vector x∗, which may or may not be unique, is called an optimal solution.
Clearly, a maximisation problem can be reformulated as a minimisation problem
by simply switching signs in the objective function, hence the standard form [16,
p. 77] of a LO problem is the following:

min z = cTx+ d,

s.t. Ax ≤ b,

x ≥ 0

(2.1)

Here, cTx + d is the objective function. It represents a cost ci associated
with every decision variable xi, i ∈ {1, . . . , n}, of the decision vector x ∈ Rn,
as well as a constant term d ∈ R. The inequality Ax ≤ b represents a set of
m constraints, where A ∈ Rm×n is called a constraint matrix and b ∈ Rm is
called the right hand side vector. While many problems contain constraints of
the type x ≥ b or x = b, these types of constraints can be reformulated as
either one or two constraints of the x ≤ b type. The constraints, together with
the requirement x ≥ 0, describe a convex polyhedron in Rn. A vector x that
satisfies all constraints of a problem is called a feasible solution.

The contents of c, A and b give the structure of the problem and together
with d they form the data of the problem. It is immediately obvious that the
constant d has no effect on the optimal solution, and because of this it is often
left out of the expression. However, when dealing with uncertain data in the
LO problem, as is often the case in real world applications, this constant term
can prove useful to include [3, pp. ix-25].

Note that, for a linear optimisation problem (also called a linear program,
LP) the objective function and all constraints are linear. These are the only
types of optimisation problems studied in this thesis.
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Example 2.1.1. A very simple example of a linear program in two dimensions
would be the following:

min z = −x1 − x2,

s.t. x1 + x2 ≤ 8,

3x1 + 5x2 ≤ 30,

x1, x2 ≥ 0

(2.2)

A graphical representation of this LP is shown in Figure 2.1. The blue line
corresponds to the first constraint, the red line to the second constraint and the
shaded area is the feasible set, the set of all feasible solutions. The dotted line
represents the objective function (in the sense that all feasible solutions on the
line have the same objective value).

Figure 2.1: A simple linear program. The coloured lines represent the program
constraints and the arrow shows the direction in which the objective value de-
creases.
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The LP has the following unique solution:

{
x1 = 5,

x2 = 3
(2.3)

The optimal solution (2.3) is easy to find by visual inspection: since the
objective value decreases in the direction of the bold-faced arrow, the solution
should lie in the upper right hand side of the feasible set. Ignoring the fact that
most real-world problem have hundreds (or thousands) of variables and con-
straints, this process of finding the optimal solution is straight-forward. Indeed,
there exist very efficient algorithms for solving these kinds of linear programs
that can guarantee a solution in polynomial time.

If some of the decision variables in an LP problem are required to be integers,
it is referred to as a mixed integer programming (MIP) problem. MIP problems
can in general not be solved in polynomial time, but there exist subclasses of
MIP problems that can be solved efficiently. If all the decision variables are
required to be integers, it is instead called an integer linear programming (ILP)
problem. One class of ILP problems, called assignment problems, are presented
in the next section.
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2.2 Assignment problems
Assignment problems are a class of ILP problems. They can be thought of as
trying to assign a set of actors a ∈ A = {1, . . . , n} to a set of tasks t ∈ T =
{1, . . . ,m}, while minimising the total cost of completing those tasks. For ex-
ample, a group of four aircraft could have several different areas they want to
search, and if they want to minimise say, the total flown distance, this would
constitute an assignment problem.

Usually, an actor must be assigned a task and a task cannot be assigned to
multiple actors. This means that there exist at least as many tasks as actors.
In this case, the assignment problem [16, p. 311] can be formulated as follows:

min z =

n∑
a=1

m∑
t=1

catxat,

s.t.
n∑

a=1

xat ≤ 1, t ∈ T,

m∑
t=1

xat = 1, a ∈ A,

xat = {0, 1}, a ∈ A, t ∈ T.

(2.4)

In Problem (2.4) xat is a binary decision variable, which is 1 if actor a is
assigned task t and 0 otherwise. The cost for a specific actor a to complete a
specific task t is cat. Summation signs instead of vector multiplication are used
for extra clarity.

2.2.1 Allocation problems
An allocation problem is a specific kind of assignment problem, where the num-
ber of tasks is equal to the number of actors. It is worth discussing more in
depth, since this distinction enables the use of several clever algorithms when
attempting to solve the problem. Allocation problems can, as specified later,
be solved in polynomial time. This is in contrast to other ILP problems, as
mentioned in Section 2.1.
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When constructing an allocation problem, a cost matrix is often used. A cost
matrix for an allocation problem with 4 actors and 4 tasks is shown below:

t1 t2 t3 t4
a1 c11 c12 c13 c14
a2 c21 c22 c23 c24
a3 c31 c32 c33 c34
a4 c41 c42 c43 c44

Again, cij is the cost of assigning actor i to task j. Assuming that all cij
are known, one method of solving the assignment method is by utilising the
so-called Hungarian algorithm. It was first presented by Harold Kuhn in 1955
[15], but based on the work of two Hungarian mathematicians, Dénes Kőnig and
Jenő Egerváry, in the 1930s. The algorithm was later studied by James Munkres
in 1957 [20] and is sometimes referred to as the Kuhn-Munkres algorithm.

The complexity of the original algorithm from 1955 is O(n4), while most
modern implementations (such as the JVC algorithm [8] used later in this thesis)
have a complexity of O(n3).

2.2.2 Finding the k best solutions
It is often of interest to not only find a best solution to an assignment or alloca-
tion problem, but also the second best or even third best. One algorithm that
provides this ability is called Murty’s algorithm [21].

After finding an optimal solution, using e.g. the Hungarian algorithm,
Murty’s algorithm partitions the original problem into several sub-problems.
The partitioning is made such that every solution possible in the original prob-
lem, apart from the optimal solution, is attainable. The next best solution is
therefore the best solution among the optimal solutions in the sub-problems. It
is also possible to repeat this partitioning, in order to remove the k−1 previous
best solutions and find the kth best solution.
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2.3 Robust optimisation

In most real world scenarios the data of a problem cannot be given with com-
plete accuracy. As discussed in [4], data uncertainty can have multiple different
sources, such as measurement errors, prediction errors, implementation errors or
inexact data recording. The goal of robust optimisation is to find a solution that
is robust (or resilient) to such uncertainties in the data, rather than one that
is optimal for a specific set of conditions. This means that the solution should
be feasible even if the data changes some small amount from the nominal value.
One could call this a worst-case scenario approach to optimisation.

The errors in the data can be expressed as small perturbations in either
c, d,A or b, e.g. cj → (1 + ϵ)cj . A perturbation in x, xj → (1 + ϵ)xj , can be
thought of as a type of implementation error and is not strictly related to any
uncertainties in the data. While these errors can be significant depending on the
physical details of the problem at hand, their effect is equal to a perturbation
error in the constraint matrix at ai,j , i = (1, . . . , n). In other words, instead of
changing the variable xj , the coefficients in front of the variable are changed (in
all constraints). We can therefore, without loss of generality, assume that x is
certain.

Looking back at Example 2.1.1, these perturbations in ai,j would change the
slope of the coloured lines and as such change the feasible set. The old optimal
solution (2.3) could very well lie outside of this new set and no longer be feasible.
Therefore, a robust solution should lie somewhere inside the coloured area, so
as to not immediately become infeasible should the feasible set change. This is
called being feasible with respect to the uncertainty.

Example 2.3.1. In 1999, Ben-Tal and Nemirovski [2] studied a set of 90 linear
programs in the online database NETLIB. While assuming a 0.01% uncertainty
in all problem parameters, they checked if any optimal solutions would violate
the problem constraints under these conditions. They found that in 19 of these
90 problems the optimal solution that does not take uncertainty into considera-
tion, the nominal optimal solution, violated some constraints by more than 5%.
In 13 of those 19 problems the violations were more than 50%. In one problem
a constraint was violated by a staggering 210,000%.

It is not hard to imagine a real-world scenario where serious consequences
could arise, should such a solution be implemented. Fortunately, robust opti-
misation aims to address these issues.
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2.3.1 Uncertain LO problems

Before delving deeper into the topic of robust optimisation, some useful concepts
need to be defined.

Definition 2.3.1. An uncertain linear optimisation problem, that is, an LO
problem with uncertain data, is not a single deterministic problem, but instead
a set of LO problems [5, p. 23] of the type described in Problem (2.1). It can
be formulated as:

min z = cTx+ d,

s.t. Ax ≤ b,

x ≥ 0,

(c, d,A, b) ∈ U .

(2.5)

All problems in the set share the same number of m constraints and n
variables but depend on a distinct set of data (c, d,A, b) from the uncertainty
set U ⊂ R(m+1)×(n+1). The uncertainty set U is the set of values which can
possibly be taken by (c, d,A, b) and is a part of the design of the uncertain LO
problem. Problem (2.5) can be written compactly as

{
min
x≥0

{cTx+ d : Ax ≤ b}
}
(c,d,A,b)∈U

.

One way of representing U is with a parameterisation by a perturbation vector
ζ varying over a perturbation set Z, that contains the possible variations of the
data in question:

U =

{[
cT d
A b

]
=

[
c0

T d0
A0 b0

]
+

L∑
l=1

ζl

[
cl

T dl
Al bl

]
: ζ ∈ Z ⊂ RL

}
,

[
c0

T d0
A0 b0

]
,

[
cl

T dl
Al bl

]
∈ R(m+1)×(n+1).

The uncertainty set U is here given as a collection of matrices, where the
number of matrices depends on the size of the perturbation set Z.
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A specific perturbation ζl, l ∈ {1, . . . , L}, belongs to a distinct data set and
measures the shift from some nominal data-set (c0, d0, A0, b0) to that specific
set.

For the problem to be tractable, U is assumed to be finite. A thorough treat-
ment of different kinds of uncertainty sets and how they affect the complexity
of the problem is given in [5, pp. 19-52]. Later on, the topic of uncertainty sets
will be examined more closely — as it turns out, the choice of U is vital for the
performance of the developed model.

2.3.2 Robust counterpart
To ensure that a solution is feasible with respect to uncertainties in the data,
meaning that it is feasible in all possible data sets in U , the constraint in (2.5)
needs to be slightly modified.

min
x≥0

{cTx+ d : Ax ≤ b;∀ (c, d,A, b) ∈ U}. (LOU )

A vector x that satisfies the above equation is called a robust feasible solution.
After such a vector has been found, the worst-case scenario objective value
associated with it is the largest value of the original objective function cTx+ d
over all combinations of data in U :

ĉ(x) = sup
(c,d,A,b)∈U

[cTx+ d].

This value, ĉ(x), is called the robust value of the objective function in (LOU ).
Together with the robust feasible solution, it enables the reformulation of the
collection of problems in (LOU ) into what is called its robust counterpart.

Definition 2.3.2. The Robust Counterpart (RC) of (LOU ) is defined as:

min
x≥0

{
ĉ(x) = sup

(c,d,A,b)∈U
[cTx+ d] : Ax ≤ b ∀(c, d,A, b) ∈ U

}
. (2.6)
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To avoid uncertainties in the objective function, Problem (2.6) can be equiva-
lently written as:

min
x≥0,t

{
t :

cTx+ d ≤ t
Ax ≤ b

}
∀ (c, d,A, b) ∈ U . (2.7)

Now, one quickly realises the importance of choosing a good uncertainty set.
A poorly chosen set can lead to unnecessary strict constraints (when trying to
ensure robustness) and, as a result, a poor value of the objective function. There
are ways around this issue, such as allowing the model a small risk of breaking
some conditions or exploiting some known structure of the uncertainty set, but
care should always be taken when constructing the uncertainty set in a problem.

To summarise, robust optimisation provides a solid approach to optimisa-
tion under uncertainty and can guarantee feasible solutions. However, if the
nature of these uncertainties is well-known, for example if they follow a known
distribution, there exist other ways of approaching these kinds of problems.

Remark. The presentation of robust optimisation in this section is inspired by
the work of Ben-Tal, El Ghaoui and Nemirovski from Princeton University [3].
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2.4 Stochastic optimisation
The approach in stochastic optimisation is to make use of the fact that the
uncertain data in the studied problem follows an already known distribution,
for example by optimising with respect to the expected value of the objective
function.

In general, there are two different kinds of stochastic optimisation: single-
stage and multi-stage. The term single-stage means that a single decision is
taken, with no respect to what effects that decision has on future states. A
single-stage stochastic program can be formulated as follows:

min
x≥0

{f(x) = E[F (x, ξ)] : Ax ≤ b}. (2.8)

Here, ξ is a random variable that follows a known distribution. If ξ is affected
by the decision vector x the outcome is called endogenous. An example of an
endogenous outcome would be the problem studied in this thesis: the choice
of flight path and radar usage directly affects the distribution of potentially
detected targets over time. On the other hand, if ξ is unaffected by the choice
of x, the outcome is called exogenous, for example the outcome of a slot machine.

A multi-stage stochastic program instead focuses on minimising the cost of
a series of decisions over a specified time frame t = 0, 1, 2, . . . , T . A multi-stage
stochastic program can be formulated as an iterated expectation [12]:

minx0∈X0 E
[
infx1∈X1(x0,ξ1) F1(x1, ξ1) + E

[
· · ·+ E

[
infxT∈XT (x0:T−1,ξ1:T ) γ

T−1FT (xT , ξT )

]]]
(2.9)

Here, xt ∈ Xt means that x satisfies all constraints (i.e. Ax ≤ b, as formu-
lated earlier) at time t. The factor γ is called the discount rate, and provides the
ability to give different weights to outcomes closer or further into the future.
Again, it is only the mean value of the objective function that is taken into
account.

However, sometimes it is desirable to include more information about the
distribution, beyond just the mean value. For example, when trying to deter-
mine the location of an adversary (whose position is estimated using a known
distribution), only looking at the positional mean value could potentially risk
losing track of the target.

In this thesis, stochastic optimisation will be used as a baseline when eval-
uating the models based on robust optimisation.
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2.5 Multi-object tracking
Multi-object tracking (MOT) is a problem consisting of identifying and track-
ing a number of objects in an environment. Many approaches to solving this
problem use Bayesian filtering [10], where the state belief is modelled as an
probability density function (p.d.f.) and updated recursively. To update the
state belief of the objects, based on available measurements, Bayes’ theorem is
used:

p(xk+1|zk+1) =
p(zk+1|xk+1)p(xk+1|zk)

p(zk+1|zk)
∝ p(zk+1|xk+1)p(xk+1|zk). (2.10)

Here, p(xk+1|zk+1) is the updated probability density of a state xk given
measurement zk+1. The term p(zk+1|xk+1) is referred to as the likelihood func-
tion and represents the probability of obtaining measurement zk+1 given the
state xk. The likelihood function is multiplied by the prior p(xk+1|zk) which
is the probability of obtaining xk+1 without any new measurements. The de-
nominator p(zk+1|zk) is a normalisation constant and therefore the updated
probability density is proportional, denoted ∝, to the numerator. The prior is
calculated using the Chapman-Kolmogorov equation:

p(xk+1|zk) =
∫

p(xk+1|xk)p(xk|zk)dxk. (2.11)

Calculating the prior is often referred to as the prediction step, and utilising
Bayes’ theorem is referred to as the update step. Repeating the prediction
and update step results in recursive Bayesian estimation, also called Bayesian
filtering.

2.5.1 Random finite sets
When the number of objects that can appear in the environment is uncertain,
a framework utilising random finite sets (RFS) is frequently used [10]. Before
delving deeper into RFS, it is useful to revisit some basic set theory.

A set is a collection of elements where each element can be any kind of
mathematical object. Sets are invariant to order and cannot contain duplicate
elements. Any two sets that contain the same elements are considered to be
equal. The empty set is denoted as ∅. The intersection ∩ of two sets A and B
is the set A ∩B = {x : x ∈ A and x ∈ B}.
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If the intersection of two sets is the empty set, the two sets are said to be disjoint.
The union ∪ of two sets A and B is the set A ∪ B = {x : x ∈ A or x ∈ B}.
When the two sets A and B are disjoint, sometimes the ⊎ symbol will be used
to emphasise this. In this case, the union is then called a disjoint union.

The cardinality |·| of a set refers to the number of elements it contains. A set
is finite if its cardinality is finite. A random finite set is a finite set of objects
where both the contents of the set and the set’s cardinality can be modelled
as random variables. As such, the RFS framework is practical when modelling
the uncertain state of an unknown number of objects in an environment and is
therefore often used in MOT applications.

The probability density p(X) of a random finite set X is referred to as the
multi-object p.d.f. It represents the probability of obtaining different instances
of X with regards to both the cardinality of X, as well as the individual states
of the elements in X. When using the RFS framework in MOT problems, the
state belief is modelled as an multi-object p.d.f.

Theorem 2.5.1. If X1, ..., Xn are independent RFS and X = X1 ∪ ... ∪ Xn,
then X has the multi-object p.d.f:

p(X) =
∑

X1⊎...⊎Xn=X

n∏
i

pXi(Xi) (2.12)

This is referred to as the Convolution formula [17, p. 85] for RFS. The
unusual summation notation used in (2.12) is a sum over all possible disjoint
sets X1, ..., Xn, such that the disjoint union of these sets is X.
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2.6 Poisson multi-Bernoulli mixture filter
The Poisson multi-Bernoulli mixture (PMBM) filter is a Bayesian filtering algo-
rithm that utilises RFS-theory to track an unknown number of potential objects.
The PMBM filter was first presented in 2015 [23] and has since been successfully
applied to MOT problems [10, 7]. By using the Bayesian prediction (2.11) and
update steps (2.10) with available measurements, the computed PMBM density
gives an updated probability distribution that describes where potential objects
are most likely to be. The PMBM filter separates the potentially detected ob-
jects and still potentially undetected objects into two disjoint subsets, Xd for
the potentially detected objects and Xu for the potentially undetected.

The undetected objects are modelled as a Poisson point process (PPP) where
the cardinality is Poisson distributed with rate µ and the elements are indepen-
dent and identically distributed (IID) according to a distribution p(x). The
intensity λ(x) of the PPP is calculated as the product λ(x) = µp(x). The
density function P(X) is defined as

P(X) = e−⟨λ,1⟩
∏
x∈X

λ(x). (2.13)

Here, ⟨·⟩ denotes the inner product. The density function P(X) describes
where potentially undetected targets could be, and forms the Poisson part of
the PMBM filter.

Each potentially detected object is modelled as a Bernoulli RFS where the
cardinality is Bernoulli distributed and can either contain one or zero elements.
The density of the Bernoulli RFS is

B(X) =

{
1− r, X = ∅,
rp(x), |X| = 1.

(2.14)

The existence probability r is the parameter of the Bernoulli distribution and
p(x) is the density function of the element. A Bernoulli component represents
the uncertainty in position and existence of a potentially detected object.

A multi-Bernoulli (MB) RFS is the union of a fixed number of Bernoulli
RFS. The density function of a MB component is defined as

MB(X) =
∑

X1⊎...⊎Xn=X

n∏
i

Bi(Xi). (2.15)
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Here, Bi(Xi) is the density of the ith Bernoulli component in the MB and n is
the number of such Bernoulli components. The convolution formula for RFS
(2.12) is used. The multi-Bernoulli mixture (MBM) RFS contains all the MBs
and their assigned weights. Its density function is a weighted sum of its MBs:

MBM(X) =
∑
j

wj
∑

X1⊎...⊎Xn=X

∏
i

Bj,i(Xi) (2.16)

Here, j is the index over all MB components in the MBM and i is the index
over all Bernoullis in the jth MB component, hence Bj,i is the ith Bernoulli in
the jth Multi-Bernoulli.

The Poisson multi-Bernoulli mixture (PMBM) density PMBM(Xk) at time
step k is given in (2.17) by a combination of the PPP density P(Xu

k ) (2.13)
and the MBM density MBM(Xd

k ) (2.16), where Xu
k is the set of potentially

undetected objects at time step k and Xd
k is the set of potentially detected

objects at time step k. This gives

PMBM(Xk) =
∑

Xu
k⊎Xd

k=Xk

P(Xu
k )MBM(Xd

k ). (2.17)

2.6.1 Prediction step
The prediction step computes the prior probability for time step k + 1, used
in the update step (2.10). The prior can be calculated using the Chapman-
Kolmogorov equation

PMBM(Xk+1|Zk) =

∫
p(Xk+1|Xk)PMBM(Xk|Zk)δXk. (2.18)

Here, p(Xk+1|Xk) is the multi-object transition density, which is commonly
implemented as a motion model. If the standard multi-object motion model
[18, pp. 311-314] is used, p(Xk+1|Xk) models a Markovian process for each
detected object, with separate transition densities and survival probabilities ps.
A Markovian process only relies on the latest state k, and never on previous
states k − 1, k − 2, etc. A PPP birth-process is used for new born objects and
is implemented as a birth model with intensity λb. The integral in (2.18) is a
set integral, defined in [18, pp. 361-362].
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2.6.2 Update step

Bayesian updating is used to compute the updated PMBM density at time step
k + 1 with the prior from the prediction step and a set of measurements Zk+1.
This gives

PMBM(Xk+1|Zk+1) =
p(Zk+1|Xk+1)PMBM(Xk+1|Zk)∫
p(Zk+1|Xk+1)PMBM(Xk+1|Zk)δXk

. (2.19)

Here, p(Zk+1|Xk+1) is the likelihood function and is commonly modelled
as a measurement model. The standard multi-object measurement model [18,
pp. 311-314] can be used if the following assumptions are made regarding the
measurements:

• In each time step, each object generates at most one measurement.

• A measurement cannot be generated by more than one object.

• All measurements are conditionally independent of the state.

The standard multi-object measurement model models noisy measurements
of different objects with a probability of detection pd and a PPP clutter-process
with clutter intensity λc.

2.6.3 Relation to the Kalman filter

The Kalman filter, named after Rudolf E. Kálmán [13], is a recursive algorithm
that estimates the state of a linear dynamical system when noise is present in
the measuring. Also called linear quadratic estimation, it minimises the mean-
squared estimation error of the current state given those measurements.

In [10], it is shown that the PMBM distribution is a conjugate prior for
the likelihood function based on the standard measurement model. This means
that the initial prior and the posterior after the prediction and update steps
are of the same distribution family, which gives a closed-form expression for
the posterior. If the motion and measurement models are linear with Gaussian
noise, as is the case with the standard motion and measurement model [18, pp.
311-314], the Kalman filter provides the closed-form solution for the posterior.
The prediction (2.18) and update (2.19) steps can then be computed using the
Kalman prediction and update equations described in (2.20)–(2.21) and (2.22)–
(2.27).
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If a motion model with state transition matrix Fk and process noise with co-
variance Qk at time step k is used in the prediction of the new prior, the predict
step can be formulated as follows.

x̂k+1|k = Fkxk|k, (2.20)

P̂k+1|k = FkPk|kF
T
k +Qk (2.21)

Here, x̂k+1|k and P̂k+1|k are the predicted state and covariance at time step
k+1 given the state xk|k from time step k. Similarly, given a measurement zk+1

and a measurement model with observation matrix Hk+1 and observation noise
with covariance Rk+1 at time step k+1, the update step can be formulated as:

ỹk+1 = zk+1 −Hk+1x̂k+1|k, (2.22)

Sk+1 = Hk+1P̂k+1|kH
T
k+1 +Rk+1, (2.23)

Kk+1 = P̂k+1|kH
T
k+1S

−1
k+1, (2.24)

xk+1|k+1 = x̂k+1|k +Kk+1ỹk+1, (2.25)

Pk+1|k+1 = (I −Kk+1Hk+1)P̂k+1|k, (2.26)

ỹk+1|k+1 = zk+1 −Hk+1xk+1|k+1 (2.27)

In (2.22)–(2.27) ỹk+1, ỹk+1|k+1, Sk+1 and Kk+1 are called the innovation,
the post-fit residual, the innovation covariance and the optimal Kalman gain
respectively, while xk+1|k+1 and Pk+1|k+1 are the updated state and covariance.

In this thesis the motion, measurement and birth models used are constant.
The models are presented in more detail in Sections 3.4 and 4.1.2.





Chapter 3

Method

In this chapter the method of solving the problem at hand is presented. First, an
overview of the implementation is given, complete with a description of the dif-
ferent modules and how they interact. Thereafter, the simulation environment
used for testing the models is described in detail and some basic radar theory
is presented. The implementation details and parameter choices for the PMBM
filter are also described in detail. Lastly, the different assignment models and
communication conditions that were developed and tested are presented.

Since the problem consisted largely of managing a decision loop for the
friendly actors, the OODA loop mentioned in Section 1.1 was used as a broad
guideline for the implementation. The mapping of the loop for this specific
problem is as follows:

Table 3.1: The scenario-specific mapping of the OODA loop.

O (Observe) Gather measurements from own sensors.
O (Orient) Receive communicated information and update the PMBM

filter.
D (Decide) Run mission assignment optimisation model to determine

flight points and sensor strategies for all friendly aircraft.
A (Act) Fly to the calculated point of interest and realise sensor

strategy.

Söderberg, Vines, 2023. 25
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3.1 Implementation overview
The OODA loop described in Table 3.1 was implemented using a number of
different modules, each performing different parts of the loop. A description of
all modules is given in the list below.

1. Environment State: The environment state keeps track of all the indi-
vidual aircraft and general state variables described in Section 3.2. In each
time step an observed state is generated for each actor, consisting of their
own positional information and the obtained uncertain measurements.

2. Actor: Each friendly actor communicates their position and measure-
ments from their own observed state to the other friendly actors. They also
receive measurements and positional information from the other friendly
actors.

3. PMBM Filter: The PMBM filter is used to update the individual state
belief of each friendly actor using all the available measurements. Com-
municated information about the friendly actors, such as their actions and
positions, is also used. The filter is described in detail in Section 3.4.

4. Task Prioritisation: The task prioritisation converts the state belief
given by the filter into a list of tasks that can be of interest. This list is
then given to the assignment model.

5. Assignment Model: The assignment model assigns a task to each friendly
actor. The assignments generated for teammates represents the specific
actor’s best guess of what their team-mates will do in the next time step,
based on the actor’s own state belief. The different models used are de-
scribed in Section 3.5.

6. Act Function: The assigned task, consisting of a target coordinate pair,
is then converted into an action. An action consists of a destination point
and a specific sensor strategy. The different kinds of actions are described
in more detail in Section 3.2.3.

7. State Update: Lastly, the state update function collects the actions from
all the friendly actors and updates the environment state.
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An overview of the modules implemented and the interaction between them can
be seen in Figure 3.1 below.

Figure 3.1: Overview of a single scenario time step for a single friendly actor.

The loop is completed separately by each friendly actor for every time step of
the scenario. Every friendly actor has their own instance of modules 2–6. This
means that every actor has their own separate state belief, their own assignment
model solution and the actions taken are decentralised. The instances of modules
1 and 7 are shared among all friendly actors, since they operate in the same
simulation environment.
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3.2 Simulation environment
The mission takes place in a game-based simulation environment. An example
of a visual representation of the environment state is shown in Figure 3.2. The
goal is to reject incoming adversaries, preventing them from reaching the friendly
part of the game map. A rejection occurs when a friendly actor is sufficiently
close to an adversary and applies a repulse mode with the radar sensor.

The environment keeps track of the number of adversaries (shown as red
aircraft, called “reds”) that enter the game map, how many that are rejected
and how many that reach the left hand side — the part of the map that the
friendly actors are trying to defend. If an adversary manages to exit the game
map on the left side, without being rejected, it is counted as a “passed” aircraft.

Figure 3.2: The game map used in the simulation environment. A green circle
represents a friendly actor, whilst a red circle represents an enemy actor. A blue
circle sector represents the field of view of a radar action. At the top, the time
step and number of passed adversaries is shown.
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3.2.1 Game rules
All red aircraft enter the game map at random positions on the right hand side,
while the team of friendly actors (green aircraft) start from pre-determined
positions on the left hand side. The goal of the friendly actors is to make sure
that no adversaries cross the left hand side of the game map. The adversaries
have no common strategy and do not react to the actions taken by the friendly
actors.

The friendly actors use three different kinds of radar actions during the
scenario: search, track and repulse. The search action is a wide radar cone, in-
tended to span over a large area, that has a relatively low accuracy and detection
probability. The track action is used when a potential target has been found
and is a medium wide cone with a higher detection probability. Finally, the
repulse action is a very tight cone with even higher detection probability, and is
in this scenario only used when tracking an adversary very close to the friendly
actor. This action gives a high precision in the position of the adversary and,
when used at close range, the adversary is said to be rejected. In the simulation
environment, uncertainties in the detection of adversaries is modelled after the
Radar Equation (3.4).

3.2.2 Measurements
A measurement can be obtained if an adversarial actor is located within the
field of view of a friendly radar. The probability of a detection is based on
the radar model described later in Section 3.3. A measurement consists of
x and y coordinates, the time step when the measurement was obtained and
a measurement type. The measurement types available are observation and
communicated. The observation type is the standard measurement type and is
used for measurements obtained by an actor’s own radar. The communicated
type is used for measurements that have been obtained by another friendly
actor and then communicated to the rest of the TAU. The relative position of
the adversary to a friendly actor is given by Cartesian coordinates (x, y). To
calculate a distance and relative angle to the adversary instead, the Cartesian
coordinates are converted to polar form (r, θr):

r =
√
x2 + y2

θr = atan2(y, x) · 180
π

(3.1)
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Here, θr is the relative angle in degrees between the friendly actor and the
adversary. The atan2-function gives the arc tangent of y

x for a coordinate pair
(x, y), which is the angle between the positive x-axis and the ray emanating
from the origin and passing through the point (x, y). The resulting angle θ is
given in radians, with −π < θ ≤ π. The relative angle θr is then calculated by
converting from radians into degrees. Note that if y = x = 0, atan2 is undefined
and a value of 0 will be given instead.

Apart from measurements obtained with the radar, the friendly aircraft can
also spot nearby adversaries through the cockpit. A cockpit detection occurs
when the adversary and friendly actor are sufficiently close to each other and
results in a guaranteed measurement with exact position, unlike the uncertain
positions obtained by a radar detection.

3.2.3 Actions
The action of a friendly actor consists of a coordinate pair, given by the assign-
ment model solution, and a radar strategy. The radar strategy consists of a
radar angle span [−α, α].

The angle span is given by the type of action (search, track or repulse) and
are as follows:

• Search: [-50°, 50°].

• Track: [-20°, 20°].

• Repulse: [-10°, 10°].

In Figure 3.2, three of the friendly actors are using a search action, indicated
by the larger cone sizes. The fourth actor has spotted a potential target and is
therefore using a track action.

The friendly actor also has a direction θD, so that the angle of incidence of
the cone is given by [θD − α, θD + α] in degrees. When the relative angle θr is
inside [θD − α, θD + α], a measurement is possible. An example of this would
be the red aircraft in the centre of Figure 3.2, which is inside the tracking angle
span of the friendly aircraft.

The adversaries in the environment have no kind of radar strategy.
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3.2.4 Uncertainty
To simulate the uncertainty in the measurements, the coordinates of the raw
measurements are recalculated by applying a truncated Gaussian distribution
within the field of view of the radar cone. The truncated Gaussian distribution
is based on the polar coordinates of the raw measurements. The probability den-
sity of a truncated 1-dimensional Gaussian distribution f(x;µ, σ, a, b) is given
by

f(x;µ, σ, a, b) =


1

σ

φ(
x− µ

σ
)

Φ(
b− µ

σ
)− Φ(

a− µ

σ
)

, a ≤ x ≤ b,

0, otherwise.

(3.2)

Here, µ is the mean value, σ the standard deviation and (a, b) the first
and second truncation point. The function φ(ξ) is the p.d.f. of the standard
Gaussian distribution and Φ(ξ) is its cumulative distribution function. They
are defined as

φ(ξ) =
1√
2π

exp(−1

2
ξ2)

and

Φ(ξ) =
1√
2
(1 + erf(

ξ√
2
)).

The raw measurement (relative to the friendly actor) with coordinates (xo, yo)
is first converted to polar coordinates (ro, θo). These are then used as the mean
value. The p.d.f. in Equation (3.2) is used to make sure that the noisy mea-
surements are inside the radar cone, in a two stage process — first the angle is
recalculated, and then the distance. The distance r to the measurement is re-
calculated in the same way as described earlier for the angle. These calculations
are made to avoid physically impossible measurements, such as a measurement
being on top of the friendly actor or outside the field of view of the radar. The
different functions fθ and fr are defined as

fθ = f(θ; θo, σθ,−α, α)

and
fr = f(r; ro, σr, rmin, rmax).

(3.3)
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In Figure 3.3 a truncated Gaussian distribution of the target angle is shown.
The raw measurement is in this case located straight ahead of the friendly actor,
in other words θo = 0, and the distribution shown is used to sample a random
angle. It is the new sampled angle that is then given to the actor as an uncertain
measurement. These uncertain measurement are then given to the PMBM filter
to update the state belief.

For comparison, the ordinary Gaussian distribution with the same mean and
standard deviation is also shown in dashed lines.

Figure 3.3: The truncated Gaussian distribution used to model uncertainty in
angular position, when θo = 0. The ordinary Gaussian (normal) distribution
with the same parameters is also shown in dashed lines.
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3.3 Radar model

The uncertainties in the simulation environment are based on a simplified radar
model. A radar consists of two components, a transmitter and a receiver. The
governing equation describing the power that returns to the receiving antenna,
Pr, after it has been transmitted [11, p. 104] is

Pr =
PtGtGrλ

2σF 4

(4π)3R2
tR

2
r

. (3.4)

Here, Pt is the transmitter power, Gr is the gain of the receiving antenna,
Gt is the gain of the transmitting antenna and λ is the transmitted wavelength.
In addition to those parameters, Equation (3.4) contains the parameters σ,
which is the Radar Cross Section (RCS) of the target, Rt, the distance from the
transmitter to the target, and Rr, the distance from the target to the receiver.
The pattern propagation factor F is set to 1 in this scenario. Additionally,
Rt and Rs are approximated as the same distance R, after which the equation
becomes

Pr =
PtGtGrλ

2σ

(4π)3R4
. (3.5)

In this environment, Equation (3.5) was used to calculate the returned power.
The following values for Pt, Gt, Gr and λ were used for the radar of the friendly
aircraft:

Pt = 1000 W,

Gt = 1000,

Gr = 1000,

λ = 1 m.

When spawned, each enemy aircraft is given a random uniformly distributed
RCS value between 2 and 6. An RCS value of 4 was used in the calculations in
Figures 3.4 and 3.5. Using the returned power Pr, a Signal to Noise and clutter
Ratio (SNR) is obtained, in decibel, by the formula

SNR = 10 · log(Pr

Pn
). (3.6)
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Here log is the decimal logarithm and Pn is the expected power of the back-
ground noise. In this environment a value of 1 W was used for Pn. In Figure 3.4
the SNR value is shown (in dB) as a function of R.

Figure 3.4: SNR value in dB, as a function of distance (in metres). An RCS
value of 4 was used for the calculations.

3.3.1 Probability of detection
From the SNR a probability of detection, PD, is calculated when a measurement
is obtained. The PD is based on a Swerling type 4 model [6] and approximated
by the hyperbolic tangent function shown in Figure 3.5.

As mentioned in Section 3.2.2, different radar actions also give different
probabilities of detection. This is because the distance of the radar sweep is
greater when the radar cone is wider, which means that the potential target
will come in contact with the radar beam less often. To account for this, the
PD is multiplied by a factor of 0.3 for a search action, simulating 0.3 full sweeps
of the radar per time step. Likewise, PD is multiplied by 0.8 for a track action.
The PD is left untouched for a repulse action.

Since the RCS value of an adversary differs from aircraft to aircraft, the PD

will also change depending on the specific aircraft that has entered the radar
cone. The respective PD, as a function of distance, is shown for some different
RCS-values in Figure 3.6.

When an adversary is inside the radar cone of a friendly actor, these calcu-
lations are performed based on the adversaries RCS and distance.
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After that, a uniformly distributed random number s ∈ [0, 1] is generated, and
if s ≤ PD, the measurement is kept and the noise described in Section 3.2.4 is
applied. Otherwise, the measurement is thrown away.

Figure 3.5: Probability of detection PD as a function of SNR. An RCS value of
4 was used for the calculations.

Figure 3.6: Probability of detection PD as a function of distance (in metres),
for different RCS values. Note that this plot is using a repulse action and that
the PD would be significantly lower, but still maintain the same general shape,
if the friendly actor was using a search or track action.
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3.4 PMBM filter
The state belief of every actor is given by the PMBM-filter. The PMBM filter
used in this thesis was implemented in Python and based on the implementation
described in [10].

3.4.1 Filter parameters and models
To be able to utilise the standard Kalman filter, presented in Section (2.6.3),
the implementation used linear Gaussian motion and measurement models and
the birth model intensity λb was implemented as a Gaussian mixture model (a
weighted sum of Gaussian distributions). The following assumptions were also
made:

• The Bernoulli state densities were assumed to be Gaussian.

• The Poisson component was assumed to be a Gaussian mixture.

• The probability of survival, ps, and clutter intensity, λc, were assumed to
be constant.

In this environment ps was set 0.9999 and λc to 10−12. In addition to a Gaus-
sian density, that represents the uncertainty of its state, every Bernoulli com-
ponent has a existence probability r. For computational tractability Bernoulli
components with r lower than a threshold dt were removed after the prediction
and updates steps.

When calculating the existence probability of a potentially detected target
and when updating the intensity of the Poisson components, a probability of
detection pd is used. Note that this pd is a filter parameter and not the same
as the PD described in Section 3.2.2. The pd is chosen as follows:

• If the potential target is outside of the field of view, pd = 0.

• If the distance to the potential target is less than 44 pixels, pd = 0.05.

• If the distance to the potential target is less than 35 pixels, pd = 0.125.

• If the distance to the potential target is less than 30 pixels, pd = 0.45.

• If the distance to the potential target is less than 5 pixels, pd = 1, used
for a cockpit detection.

The above choices were made for a scenario size of 300 × 350 pixels. They
are based on the PD of the radar described in Section 3.3, but with a distance
measured in pixels instead of metres.
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The Constant velocity (CV) motion model and the standard point target mea-
surement model were used for the prediction step and update step respectively.
The prediction and update steps were then performed by applying equations
(2.20)–(2.27) separately on all Gaussian densities in both the Poisson compo-
nent and the Bernoulli components.

The Bernoulli states were 4-dimensional Gaussian distributions with state
vectors [x, vx, y, vy]T . For the motion model the CV state transition matrix FCV

and noise covariance matrix Q were set to

FCV =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 (3.7)

Q = q


∆t3/3 ∆t2/2 0 0
∆t2/2 ∆t 0 0

0 0 ∆t3/3 ∆t2/2
0 0 ∆t2/2 ∆t

 . (3.8)

Here, ∆t is the number of time steps since the previous prediction. The Q
matrix is the same as described in [10], except that q, the process noise, was set
to 10−4 in this implementation. For the measurement model, the observation
matrix H and the observation noise covariance matrix R were set to

H =

[
1 0 0 0
0 0 1 0

]
, (3.9)

R = I2. (3.10)

Here, I2 represents the 2× 2 identity matrix.

3.4.2 Hypothesis structure
Each potential target was implemented as a local hypothesis consisting of a
measurement-to-target association, a weight and a Bernoulli component. In
Figure 3.7 an example of a hypothesis diagram is shown, where two measure-
ments were obtained at time step 1, (z11 , z21), zero measurements obtained at
time step 2 and one at time step 3, (z13).
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These measurements make it possible for three different potential targets x1, x2

and x3 to exist. Each tree in the diagram consists of possible local hypotheses
at each time step for each potential target. The symbol ∅ represents a local
hypothesis without a measurement association, referred to as a misdetection
hypothesis. Each global hypothesis consists of a number of compatible local
hypotheses from the same time step. The weight w of a global hypothesis is the
sum of the weights of its local hypotheses.

Figure 3.7: Visual representation of the hypothesis structure.

3.4.3 Prediction step
For each local hypothesis, the Kalman filter prediction step (2.20)–(2.21) is
applied to the Gaussian density of its Bernoulli component. The Bernoulli exis-
tence probability rj,i (the existence probability of the ith Bernoulli component
in the jth global hypothesis) is multiplied by ps. Similarly, for the undetected
targets, the Kalman prediction step is applied to each Gaussian density in the
Poisson intensity. The birth model intensity λb is then added to the Poisson
intensity.
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3.4.4 Update step

There are three different updates made in the update step. First an update to
the previously detected targets is made, where each local hypothesis generates
at least one new local hypothesis, consisting of a misdetection as well as possible
associations with new measurements.

Ellipsoidal gating using Mahalanobis distance [14] is used to determine whether
a measurement can be associated with a target or not. Since the square of the
Mahalanobis distance is χ2-distributed the gating distance can be set appropri-
ately by looking at the cumulative p.d.f. of the χ2 distribution. Each new local
hypothesis, that represents an association between a target and a measurement,
is represented by an updated Bernoulli with rj,i = 1 and the Bernoulli state is
updated using (2.22)–(2.27). The new weight is given by

ωj,irj,ipdN (z;Hx̄j,i, Sj,i). (3.11)

The Bernoulli in a new local hypothesis associated with a misdetection is
given the updated existence probability

rj,i(1− pd)

1− rj,i + rj,i(1− pd)
. (3.12)

The updated weight is

ωj,i(1− rj,i + rj,i(1− pd)). (3.13)

After that, an update to targets potentially detected for the first time is
made. This consists of creating new local hypotheses from the weighted Gaus-
sians in the Poisson component if they can be associated with a measurement.
Again ellipsoidal gating with is used to determine if a measurement can be
associated with a weighted Gaussian from the Poisson component. Moment
matching is used when multiple Gaussians from the Poisson component can be
associated with a single measurement.

Lastly, the undetected targets are updated, which consists of multiplying
each weighted Gaussian in the Poisson component within the field of view of a
radar by (1− pd).
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3.4.5 Generating global hypotheses
After the prediction and update steps each previous global hypothesis is used
to generate new global hypotheses from the newly created local hypotheses.
Generating a global hypothesis involves choosing a number of compatible local
hypotheses, such that each measurement is associated to a unique potentially
detected target. This is an association problem, essentially the allocation prob-
lem presented in Section 2.2.1.

Murty’s algorithm, presented in Section 2.2.2, is used to generate the k best
global hypotheses without having to do an exhaustive examination of all possible
new global hypotheses. The JVC algorithm [8] is used together with Murty’s
algorithm to solve each assignment problem and obtain the k best solutions.

The cost matrix used is

C =

[
−ln(Wot) −ln(Wnt)

−ln(Wmiss) 0

]
∈ R(m+to)×(to+m).

Here Wot is the measurement association weight matrix for potential targets
that have been previously detected and Wnt is a diagonal measurement associ-
ation weight matrix for new potential targets detected for the first time. The
dimensions of the matrices Wot and Wnt are m × to and m × m respectively,
where m is the number of measurements obtained in that particular time step,
to is the number of previously detected potential targets. The third matrix
Wmiss is the misdetection weight matrix for potential targets that have been
previously detected and has dimensions to × to.

The number of new global hypotheses generated from a previous global hy-
pothesis is k = ⌈Nh ·wj⌉, where Nh is the maximum number of new hypotheses
generated (a parameter given when initialising the filter) and wj is the weight of
previous global hypothesis j. Global hypotheses with higher weights therefore
generate more new global hypotheses.

3.4.6 State estimation
In each time step each actor updates its state belief by choosing the global
hypothesis from the multi-Bernoulli mixture with the highest weight. This is
done by obtaining index

j⋆ = argmax
j

∑
i

wj,i.

Here wj,i is the weight of local hypothesis i in global hypothesis j.
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3.5 Mission assignment models
Three mission assignment models were implemented, one non-robust model and
two different robust models. The non-robust model is inspired by the theory
of single-stage stochastic optimisation presented in Section 2.4. For the robust
models, the theory of robust optimisation from Section 2.3 is used.

The set of actors A in the assignment problem is the set containing the
positions of all friendly aircraft. The number of actors depends on the scenario.
The tasks in the problem are either high interest search areas (high Poisson
intensity) or the position of a potentially detected target (Bernoulli component).
To distinguish between these different types of tasks, the tasks are separated
into two sets — search tasks, Ts and tracking tasks Tt. Note that a repulse task
is simply a tracking task with a sufficiently close target. The full set of tasks T
in the mission assignment problem is

T = Ts ∪ Tt. (3.14)

3.5.1 Non-robust model
The non-robust model is used as a baseline in the evaluation of the two robust
models. In this model, the positional components of the expected values of the
Gaussian distributions are used when creating tasks. The tracking tasks Tt are
based on the distributions of the Bernoulli components. This ensures that every
task in Tt represents a single, unique potentially detected target.

The search tasks Ts are likewise based on the distribution of the Poisson
component. It consists of the positional mean value of the Np Gaussian dis-
tributions with highest weight in the global hypothesis, where Np is scenario
dependent. The model can then be formulated as

min z =
∑
a∈A

∑
t∈T

catxat,

s.t.
T∑

t=1

xat = 1, a ∈ A,∑
a∈A

xat ≤ 1, t ∈ T,

xat = {0, 1}, a ∈ A, t ∈ T.

(3.15)
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The cost of a task, cat, is given by

cat =
dat
pat

. (3.16)

The factors dat and pat depend on the type of task in question. For a search
task, t ∈ Ts, dat is defined as

dat = dist(a, t)

and pat is defined as

pat = 1.

Here, dist(a, t) is the standard Euclidean distance to the task, scaled to
always be between 0 and 1 by dividing with the diagonal length of the scenario
map, Dm, yielding

√
(ax − tx)2 + (ay − ty)2

Dm
.

For a tracking task, t ∈ Tt and a specific actor ā, the factor dat is instead
given by

dat =

{
−100 + 10 · dist(a, t), a = ā and dist(a, t) ≤ d∗,

dist(a, t), otherwise,

and pat is given by

pat =

{
1, a = ā and dist(a, t) ≤ d∗,

10, otherwise.

Here, d∗ is a constant called the critical distance, set between 0 and 1, that
determines when a task is of critical importance. This ensures that if a friendly
actor discovers an adversary close to their own position, they will assign that
task to themselves.



3.5. Mission assignment models 43

3.5.2 Robust models
In the robust formulation the tracking tasks are created differently. Instead
of using the mean values directly, samples are taken from the distributions
of the Bernoulli components, in order incorporate more information from the
probability distributions generated by the PMBM filter. The tracking tasks are
then further divided into sets according to which sample set and local hypothesis
l they are connected to. The set containing a single task from sample k and
related to hypothesis l is

T k
t,l = {bkl }.

Then the sample set that contains the kth sample from every Bernoulli com-
ponent becomes

T k
t =

L⋃
l=1

T k
t,l = {bk1 , bk2 , . . . bkL}.

The uncertainty set U for the robust problem becomes

U = {T k
t }k∈K. (3.17)

Here, K is the index set of U , meaning that if K = {1, 2, . . . ,K}, then
U = {T 1

t , T
2
t , . . . T

K
t }. As such, the cardinality of the uncertainty set is equal to

the number of samples per Bernoulli component. Separating the tasks according
to which local hypothesis they belong to gives the set

Tt,l =
⋃
k∈K

T k
t,l = {b1l , b2l , . . . bKl }.

The set of tracking tasks then becomes

Tt =
⋃
k∈K

T k
t =


b11, b21, . . . bK1 ,
b12, b22, . . . bK2 ,
...

. . .
b1L, b2L, . . . bKL

 . (3.18)
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Note that Tt is a set and that the matrix-like representation in (3.18) is only
used as a compact way of describing the set. The set of search tasks, Ts, is
defined in the same way as for the baseline model.

Robust model 1

Using the theory of robust optimisation, the baseline model (3.15) was re-written
into two different robust models, both using the uncertainty set U described
above. The first model used the same kind of re-writing as was presented in
Problem (2.7). With L Bernoulli components, this yields the following model:

min
x,c̄

z = c̄,

s.t.
∑
a∈A

(∑
t∈Ts

catxat +
∑
t∈Tk

t

catxat

)
≤ c̄, k ∈ K,

∑
t∈Ts

xat +
∑
t∈Tt

xat = 1, a ∈ A,

∑
a∈A

∑
t∈Tt,l

xat ≤ 1, 1 ≤ l ≤ L, l ∈ Z,

∑
a∈A

xat ≤ 1, t ∈ T,

xat ∈ {0, 1}, a ∈ A, t ∈ T.

(3.19)

The cost cat is calculated the same way as in Model (3.15). However, this
model takes into account a set of sampled points per Bernoulli component,
instead of just the mean value. The third constraint is therefore needed to
ensure that no more than one friendly actor is assigned to the same Bernoulli
component.
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Robust model 2

For a less conservative model, the following reformulation of Robust model 1 (3.19)
was used. It can be thought of as a compromise between the baseline model
and first robust model. Again, with L Bernoulli components, this yields the
following model:

min
x,c̄

z = c̄,

s.t.
∑
a∈A

(∑
t∈Ts

catxat +
∑
k∈K

∑
t∈Tk

t

catxat

)
≤ c̄,

∑
t∈Ts

xat +
∑
t∈Tt

xat = 1, a ∈ A,

∑
a∈A

∑
t∈Tt,l

xat ≤ 1, 1 ≤ l ≤ L, l ∈ Z,

∑
a∈A

xat ≤ 1, t ∈ T,

xat ∈ {0, 1}, a ∈ A, t ∈ T.

(3.20)

Using this model, the cost function is a sum of all the sampled points instead
of based entirely on the cost on the worst-case scenario sample set. Again, cat
is calculated the same way as in the baseline model and depends on the task
t ∈ T k

t . Note that the double sum over K and T k
t is identical to a sum over Tt

and only used to make it easier to compare the two robust model formulations.

3.5.3 Complexity analysis
In order to compare the efficiency of the models, a short analysis of the complex-
ity of the different models is done. First, let C be the number of constraints and
V the number of variables in the problem. Then, let S be the total number of
solutions possible, which would be the complexity of solving the problem using
a brute force method.



46 Chapter 3. Method

The complexity of the baseline model, for a problem with n actors, L Bernoulli
components, and Np search areas then becomes

C = O(n+ L+Np),

V = O(n(L+Np))

and

S = O
(

(L+Np)!

n!(L+Np − n)!

)
.

For the robust models, the number of tasks in the problem now depends more
heavily on the total number of Bernoulli components, L, as well as the number
of samples made per Bernoulli, K = |U|. Again, n is the number of friendly
actors in the problem and Np is the number of search areas. The complexity of
the first robust model is

C = O(K + n+ L+ ((K · L) +Np)),

V = O(n((K · L) +Np))

and

S = O
(

((K · L) +Np)!

n!(((K · L) +Np)− n)!

)
.

For the second robust model, the number of constraints scale slightly differ-
ently. The number of variables and solutions are the same, however, since the
number of tasks in the problem is the same. The complexity becomes

C = O(1 + n+ L+ ((K · L) +Np)),

V = O(n((K · L) +Np))

and

S = O
(

((K · L) +Np)!

n!(((K · L) +Np)− n)!

)
.

It is clear that the baseline model scales better in scenarios with a lot of
potentially detected targets, especially if the number of samples per Bernoulli
component is high.
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3.6 Communication conditions
Different communication conditions were explored in order to analyse and eval-
uate the effect they had on the scenario outcome and model performance.

Baseline

The baseline condition was instantaneous communication for both communi-
cated measurements, as well as the positions and actions of all friendly actors.
The decision making was still decentralised.

Delayed

In the delayed communication condition, communicated measurements were
sent to the rest of the friendly actors 5 time steps after the measurement was
obtained by one of the actors. The same delay was applied for the positions and
actions of the friendly actors.

No communication

To simulate an environment with extreme communication jamming present, the
communication was entirely removed. This also simulates a scenario where each
friendly actor always assigns the highest priority task for themselves, without
taking the rest of the team into account, when running the assignment models.





Chapter 4

Results

In this chapter, the findings from the testing of the different assignment models
and communication conditions will be presented. First, an overview is given
of the finer details of the simulation environment, together with the scenario-
specific parameters that were used when testing. The parameter choices and
models used in the PMBM filter are also presented. After that, the different
metrics for evaluating the assignment models and communication conditions are
described. These metrics include both the absolute efficacy in the scenario as
well as performance efficiency.

Each combination of mission assignment model and communication condi-
tion was tested in 100 different scenarios, resulting in a total of 900 simulations.
All combinations used are presented in Table 4.1.

Table 4.1: Model and communication combinations used in the simulations.

Model Communication condition

Baseline model No communication
Baseline model Delayed communication
Baseline model Instant communication

Robust model 1 No communication
Robust model 1 Delayed communication
Robust model 1 Instant communication

Robust model 2 No communication
Robust model 2 Delayed communication
Robust model 2 Instant communication

Söderberg, Vines, 2023. 49
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4.1 Simulation details
The game map used for all simulations had a size of 300×350 pixels, giving a
diagonal size of Dm = 460 pixels. Each scenario was run for 10, 000 time steps,
and every time step an adversary had a chance of spawning anywhere on the
right hand side of the map.

4.1.1 Scenario details
To ensure fair comparisons between the models and the conditions tested, the
start positions and spawning time steps of the adversaries were set in advance.
This was done by sampling 100 random vectors, according to a uniform distri-
bution, containing all the information needed for initialising a scenario. This
ensured that every model and communication combination faced the exact same
conditions in all 100 test scenarios. The total number of adversaries was set to
20 aircraft for each scenario.

4.1.2 Filter details
The PMBM filter parameters were constant for every simulation. Originally
presented in Section 3.4, they are repeated in Table 4.2 below. Here, dist is
the Euclidean distance to the target (in pixels). For a deeper discussion and
motivation behind some of the parameters, see Section 5.3.

Table 4.2: Filter parameters used in the simulations.

Parameter Value

ps 0.9999

pd



0, dist ≥ 44

0.05, dist ≥ 35

0.125, dist ≥ 30

0.45, dist ≥ 5

1, otherwise
λc 10−12

Nh 5
Np 28
∆t 1
dt 10−10
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The number of sampled points used in the uncertainty sets for each Bernoulli
component, K, was set to 5. A low value was used since the complexity of
the robust models scaled rapidly with the number of samples per Bernoulli
component.

The birth model used was an even spacing of 12× 14 Gaussian distributions
around the game map. This resulted in 168 possible search areas, from which
to choose the Np search tasks. Testing showed that this number of search areas
allowed for a decent search distribution, since it retained a relatively high reso-
lution in the uncertain areas, while still ensuring a reasonable distance between
search tasks. Figure 4.1 illustrates the distribution of intensities.

Figure 4.1: A visual representation of a birth model similar to the one used in
the simulations, here with 10 × 12 Gaussian distributions instead. Each circle
represents one standard deviation of a Gaussian distribution from the Gaussian
mixture.
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4.2 Model results
Here, the performance of the different models will be presented, as well as
what metrics were used in order to evaluate them. The models tested were
the Baseline Model (3.15), Robust Model 1 (3.19) and Robust Model 2 (3.20).
The critical distance d∗ used in the cost function for tracking tasks was set to
80
460 ≈ 0.174, since a distance of 80 pixels was considered as being “close” to a
target.

For solving the assignment problems, the Coin-OR Branch-and-Cut (CBC) [9]
solver was used for all models. The assignment models were all run until opti-
mality, with no time out. A team size of 4 was used for all simulations, meaning
that the assignment models had 4 actors to assign tasks to. The number of
tasks varied during the simulation and depended of the number of potentially
detected adversaries (i.e. Bernoulli components), L. For the baseline model the
total number of tasks was Np + L, while the robust models had Np + K · L
tasks instead. As mentioned earlier, Np was here set to 28 and K, the number
of samples per Bernoulli component, was set to 5.

4.2.1 Scenario metrics
Three different metrics were recorded from each scenario. The first is labeled
seen, the total number of adversaries spotted by a friendly actor during a sce-
nario. The second metric is labeled repulsed and measures the total number of
repulsed adversaries. The third metric, passed, measures the number of adver-
saries that made it to the left hand side of the game map, i.e. the part that
the friendly actors were tasked with defending. All metrics are presented in
Table 4.3 below.

Table 4.3: The scenario metrics.

Name Description

Seen No. of red aircraft seen
Repulsed No. of red aircraft repulsed
Passed No. of red aircraft passed

A higher number is better for the seen and repulsed metrics, while a lower
number is better for the passed metric. Note that repulsed is a subset of seen,
since an adversary needs to be spotted in order to be repulsed.
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4.2.2 Scenario metric results

The scenario metric results are presented in Table 4.4 below. The results were
taken from the average performance of the models over 100 simulations, using
different seeds for randomness. Note that the sum of the number of seen and
the number of passed adversaries for each combination does not necessarily have
to equal 20. An adversary can, for example, be spotted but still pass to the left
hand side if the friendly actors were not able to reject it. An adversary could
also never have been seen but still not reach the left side within the 10, 000, if
it spawned late in the scenario.

Table 4.4: Scenario metric results.

Model Comm. condition Repulsed Seen Passed

Baseline model No communication 11.87 12.74 3.71
Baseline model Delayed comm. 11.73 12.64 4.25
Baseline model Instant comm. 11.82 12.79 3.60

Robust model 1 No communication 11.68 12.85 4.03
Robust model 1 Delayed comm. 4.19 12.21 9.67
Robust model 1 Instant comm. 5.27 12.62 8.38

Robust model 2 No communication 11.40 12.76 4.26
Robust model 2 Delayed comm. 10.77 12.10 4.75
Robust model 2 Instant comm. 11.27 12.67 4.08

When looking at the repulsed metric in Table 4.4, the baseline model per-
formed the best regardless of communication condition. Additionally, the com-
munication seemed to have little to no impact on both the baseline model and
the second robust model. However, the performance of the first robust model
was greatly impacted — the number of repulsed adversaries dropped by 65%
when communication between friendly actors was delayed, compared to having
no communication. Even more surprisingly, no communication seems to also be
more than twice as effective as instant communication for that model.

Looking at the seen metric, the results are very similar regardless of model
and communication condition. While the impact is minimal, all models per-
formed the worst when experiencing delayed communication. The communica-
tion condition that lead to the best performance, instant or no communication,
varied from model to model.
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The robust models seemed to benefit from not being able to communicate (and
in fact, this combination performed the best overall for both robust models),
while the baseline model preferred instant communication.

For the passed metric, the baseline model again performed the best under
every communication condition. A small decline in performance (allowing an
average 0.5 additional adversaries to pass) can be observed when communication
between actors was delayed, compared to instantaneous or no communication.
The first robust model again performed much better when the actors were not
able to communicate, resulting in around half the number of passed adversaries.

4.2.3 Model comparison with no communication
The results from Table 4.4 for the different models, when under the no commu-
nication condition, are presented in Figure 4.2 below.

Figure 4.2: The metric results for the different models when no communication
was available.

The baseline model performs the best in all metrics apart from seen, where
the result was extremely even across the models. The first robust model per-
formed almost as good, while the second robust model performed the worst.
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4.2.4 Model comparison with delayed communication
The results from Table 4.4 for the different models, when under the delayed
communication condition, are presented in Figure 4.3 below.

Figure 4.3: The metric results for the different models when the communication
was delayed.

When the communication between actors was delayed, the baseline model
once again performed the best across all metrics. However, the second robust
model was not far behind in any of the metrics. The first robust model was by
far the worst performing model in both the repulsed and passed metrics, but
had similar performance in the seen metric.
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4.2.5 Model comparison with instant communication
The results from Table 4.4 for the different models, when under the instant
communication condition, are presented in Figure 4.4 below.

Figure 4.4: The metric results for the different models when instantaneous com-
munication was available.

Instant communication between actors displayed a similar difference in re-
sults between the models as when communication was delayed. The baseline
model performed the best in all metrics, while the first robust model performed
the worst. Once again all models performed similarly in the seen metric.
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4.3 Additional results
Here, some additional results are presented to further compare the different
models tested.

4.3.1 Additional metrics
The solutions to the assignment problems were recorded during each time step in
order to study the discrepancy between the assignments made within the team.
This was thought to give a good indication of how well the assignment models
and communication conditions handled the decentralised multi-agent aspect —
i.e. how synchronised the actors were. This value was calculated as the sum of
the absolute difference in distance between all assigned tasks in each time step
for each pair of actors. This value was averaged over the first 50 simulations
run for each combination of model and communication condition, and referred
to as the assignment discrepancy.

The no communication condition was not included when studying the dis-
crepancy in mission assignment. Because there was only one actor in each model
when under that condition, there exists no discrepancy.

Additionally, the run time of the different assignment models were recorded
for every type of communication condition. It was recorded only during a single
simulation. However, since every simulation contains 4 · 104 model instances, it
was nevertheless judged enough to get a good evaluation of the performance.
The additional metrics are presented in Table 4.5.

Table 4.5: Additional metrics.

Metric Description

Run time Average time to find the optimal solution to the
assignment problem.

Assignment discrepancy Sum of absolute difference in distance of assigned
tasks, for each pair of actors in each time step
averaged over all simulations.
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4.3.2 Run time efficiency
To compare the computing performance of the different models, the average
time to find an optimal solution was calculated for each combination of model
and communication condition.

Table 4.6: The run time (in milliseconds) for the different models and commu-
nication conditions.

Model Comm. condition Run time (ms)

Baseline model No communication 0.975
Baseline model Delayed comm. 4.860
Baseline model Instant comm. 4.831

Robust model 1 No communication 1.805
Robust model 1 Delayed comm. 6.797
Robust model 1 Instant comm. 5.491

Robust model 2 No communication 1.693
Robust model 2 Delayed comm. 3.669
Robust model 2 Instant comm. 3.540

It is clear that the choice of communication condition has a big impact on the
run time of the model. The lowest run time comes from the baseline model that
uses no communication, having its run time shortened by almost 80%. However,
the second robust model outperforms the baseline model when communication
is added, being almost 30% faster using either delay or instant communication.
A peculiar statistic is that using delayed communication slows down the first
robust model with about 20%, while having almost no impact on the baseline
model or the second robust model.

A shorter run time when using no communication is not very surprising, since
there are no friendly actors to assign to targets, and fewer actions (discovered
targets) to optimise over.
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4.3.3 Discrepancy in assignments
To assess how well the communication condition worked in combination with
each model, the assignment discrepancy of assigned tasks in each time step was
calculated and then averaged over all simulations. The values are presented
in Table 4.7. A lower value means that the friendly actors had more similar
solutions to each other.

Table 4.7: The assignment discrepancy within the team for each combination
of model and communication condition.

Model Comm. condition Dist. discrepancy (pixels)

Baseline model Delayed comm. 59.71
Baseline model Instant comm. 36.25

Robust model 1 Delayed comm. 174.66
Robust model 1 Instant comm. 134.41

Robust model 2 Delayed comm. 91.28
Robust model 2 Instant comm. 67.42

Unsurprisingly, the results show that delayed communication results in sig-
nificantly higher assignment discrepancy between the actors’ assignment solu-
tions for all different models. In the robust models the actors all have different
uncertainty sets since the sampling is unique for each actor. Because of this, the
discrepancy should be higher for the robust models than for the baseline model
as can be seen in Table 4.7. There is however also a large difference between
the two robust models, with Robust model 2 having around half the assignment
discrepancy compared to Robust model 1.





Chapter 5

Discussion

In this chapter the results presented earlier will be discussed in depth. First,
a comparison between the different communication conditions and how they
affected the scenario results is made. After that, the performance of the assign-
ment models is evaluated and compared. The implementation and use of the
PMBM filter, and how the parameters were chosen, is also discussed. Potential
alternatives to the way robustness was handled in the scenario are later pre-
sented, together with a general discussion of the effect different uncertainty sets
could have had.

Lastly, future work is proposed. Potential changes to the communication
between the friendly actors are discussed, as well as what changes could be
made to the assignment models to increase scenario efficiency.

Söderberg, Vines, 2023. 61
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5.1 Communication condition comparisons

The three different communication conditions tested — no communication, de-
layed communication and instant communication are here evaluated and com-
pared. In general the communication conditions seemed to have a larger impact
on the robust models, especially Robust model 1 (3.19).

5.1.1 No communication

As mentioned earlier, the no communication condition was meant to simulate an
environment with extreme communication jamming present. When the priori-
ties and positions of friendly actors within the team are unknown, it invariably
leads to selfish assignments, i.e. every actor assigns high priority (tracking)
tasks to itself. A higher tracking efficiency (high number of repulsed adver-
saries) therefore makes sense. This is because the case where two actors both
think that the other friendly actor will track a discovered adversary, which leads
to both actors abandoning the task, will never happen. The tracking efficiency
then depends entirely on the performance of the radar and PMBM filter, and
of course the assignment model used.

In a way, having no communication added another sort of robustness to the
models. While the robust models were designed to be robust to the uncertainty
in the position of the adversaries, not communicating instead gave robustness
in task assignment, guaranteeing that no adversary was ignored because of a
disagreement over what actor should track the potentially detected target.

5.1.2 Delayed communication

It is fair to say that the delayed communication condition gave rise to the worst
overall performance. Initially, it was surprising that not communicating at all
was more successful than having access to delayed information. However, it
shows that communicating bad information, which is to say old information in
this case, was worse than not communicating at all in this scenario.

This was more notable when studying the search efficiency (the number of
seen adversaries). Most likely, this has to do with a phenomenon observed where
the actors chose the same search areas, only to switch after 5 time steps, when
they realised they were not the only ones in that area. This led to fewer areas
searched overall, and as such fewer adversaries discovered.

It also has to be noted that the delay of 5 time steps used is relatively low
compared to the scenario length (10, 000 time steps). A more significant delay
would probably have an even greater effect on the effectiveness of the models,
as discussed further in Section 5.5.
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5.1.3 Instant communication
Instant communication should, by all means, perform the best when trying to
coordinate actions within a team. While the results presented in this thesis seem
to indicate otherwise, with models performing better under the no communica-
tion condition in some metrics. This can likely be attributed to the assignment
models used, and especially the cost function which was primarily based on the
distance to the target. This phenomenon is discussed more in Section 5.2.

5.1.4 Communicated information
From an informational perspective, more information should always lead to
better, or at least equally good, decision making capability. This is not true
in general however, since decisions based on bad or incorrect information can
have detrimental effect on a teams’ coordination. The performance of the no
communication-strategy seems to indicate that the friendly actors in this sce-
nario shared bad information — since even the instant communication was some-
times worse than no communication. An initial approach in the thesis was to
study the effect that different types of communicated messages had on the sce-
nario outcome. While this could not be done because of time restrictions, it
could have shed light on the unexpected results presented here.

What is more likely, however, is that the assignment models were not so-
phisticated enough to handle the complexity of the task studied here. The
information communicated (friendly and adversarial positions) are not what
one would call controversial information. In fact, it was essential in order to
solve the assignment problem.
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5.2 Assignment model comparisons

When judging from the available metrics, the baseline model performed the best
overall between the tested models. This can most likely be attributed to the
accuracy of the mean value of the Bernoulli components.

5.2.1 Efficiency

Because of the radars low probability of detection, PD, the number of actual
measurements obtained was relatively low. This often resulted in a large co-
variance for the Gaussian distributions of the Bernoulli components, which in
turn generated a larger spread in the samples in the uncertainty sets. This had
a large effect on the assignment discrepancy for the robust models, as seen in
Table 4.7. The tracking efficiency (ratio of repulsed to seen adversaries) of the
first robust model in particular also suffered from this, illustrated by the frankly
abysmal tracking performance shown in Table 4.4. The robust models often lost
track of potential targets by instead following a sampled point that was far off
the real position of the targets, but since the second model used a sum of the
sampled points this issue was less prevalent in those simulations. A friendly
actor, using one of the robust models, also frequently displayed somewhat er-
ratic behaviour when switching between different sampled points. This likely
also affected the models tracking efficiency. Solving the assignment models less
frequently, perhaps every five time steps instead, could probably reduce this
phenomenon. However, it could potentially have other negative effects instead.

On the other hand, the mean values of the Bernoulli components proved
very accurate, which is probably the reason for the better tracking efficiency of
the baseline model. This indicates that the approach of stochastic optimisation
works well in combination with the powerful PMBM filter and when distribu-
tions are well known and fairly accurate.

A problem that was constant across the different models was a clustering
of search area assignments. This resulted in multiple actors moving in close
proximity to each other and sometimes leaving large areas ignored for longer
periods of time. An attempt to solve this problem is presented in Section 5.6,
but this model could not be implemented due to time constraints. Improving
the spread of search areas would almost certainly improve the search efficiency,
i.e. the number of seen adversaries, which was relatively low for all models.
As seen in Table 4.4, it hovered around 60–65%. The search efficiency could
likely also be improved by implementing a more advanced birth model, which
is discussed further in Section 5.3.
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5.2.2 Coordination
As seen in Table 4.7, the most substantial difference in performance between
the baseline model and the robust models was observed in the discrepancy in
assignments. As mentioned earlier, the large difference in the discrepancy can
mostly be attributed to the way the uncertainty sets were defined in the robust
models. The sampled points from the spatial distributions are unique for all ac-
tors, meaning that the tasks to choose from in the assignment models will differ
from actor to actor. Therefore, it is natural for the discrepancy in assignments
to be larger for these models than for the baseline model.

There is however a much lower discrepancy for the second robust model,
compared to the first. This would indicate that the second robust model works
better in the multi-agent context, in that the actors seem more coordinated.

5.2.3 Cost function
The cost function (Equations (3.5.1) and (3.5.1)) used for all models was rela-
tively simple, mostly depending on the Euclidean distance between the actors
and the adversaries or search areas. A more complex cost function with more
focus on the multi-agent aspect could potentially generate better assignments
and therefore increase the general search and tracking efficiencies. It would also
lower the discrepancy in assignments between the actors as well, if the actors
could agree more often in what tasks they should assign to each other.

One way to ensure a base level of robustness in all models was the special
tracking cost function from Equation (3.5.1), where an actor was essentially
forced to take care of an adversary if they were in close proximity. It is perhaps
not the most elegant solution and initially the priority was used to tackle this
problem. However, the priority by itself was not sufficient and therefore the
critical distance was added.
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5.3 Filter performance evaluation
One feature of the filter implementation that the authors are especially happy
with, is the fact that the filter is independent from the rest of the simulation
environment. It could therefore be used in different kinds of environments,
provided that some scenario specific parameter tuning is done.

However, the implementation of the PMBM filter took much longer than
originally expected. This was partly due to the large amount of scenario spe-
cific parameter tuning that had to be done. These parameters also had bigger
effects than anticipated and much research was done to motivate the choice of
parameter values.

5.3.1 Parameter and model choices
The parameter choices were found mostly through large amounts of manual
testing. Initially, parameters were set according to earlier implementations of
the filter, but a lot of manual tuning had to be done. Because of the multi-
agent aspect however, parameters used in similar scenarios, such as [7], were
not guaranteed to give a good result. Due to time constraints, the parameter
tuning abruptly halted when no more major deficiencies were found and no
further tuning was done to achieve better performance after that. It is likely
that more tuning would result in better overall performance of the filter, which
in turn could improve the results obtained for all models.

The constant velocity motion model used was considered sufficient for the
scenario after the initial integration with the simulation environment. Although
there exist alternative motion models, such as the constant acceleration motion
model, no time was spent comparing the results from different models. The
tracking capability of the filter using the CV model was deemed good enough.
The implementation is however independent of the motion model used and built
in such a way that using another motion model would be as simple as switching
the model specific F and Q matrices.

In a similar way, one could also change the birth model or measurement
model used. The choice of the simple birth model described in Section 4.1.2
was mostly due to performance issues. Several more complex models, that for
example included moment matching for the Poisson component, were tested but
never used for collecting results since the run time of the simulations became
overwhelming.
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5.3.2 Improvements
One drawback of the filter implementation is that Bernoulli components some-
times got very low existence probabilities quickly, due to a number of consecu-
tive time steps without measurements. This process results in actors sometimes
“forgetting” about adversaries. This is a concrete example of what could be
improved with more time for parameter tuning — with more scenario specific
parameters related to the updating of existence probabilities for the Bernoulli
components this issue could likely be fixed.

Additionally, as mentioned earlier, the birth model used was relatively sim-
ple. A more complex birth model could likely improve the search efficiency, by
providing more accurate search areas.
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5.4 Robustness
In the robust models formulated in this thesis the robustness was related to
the uncertainty in the positions of tracked adversaries. The results show that
this “robustness” did not provide better performance compared to the baseline
model, which only considered the mean values of the distributions. This robust-
ness therefore does not seem to be enough to give any guarantees on performance
in this scenario.

Defining robustness and choosing uncertainty sets in a scenario like the one in
this thesis is not straight forward and can be tackled from different angles. The
idea of building uncertainty sets using samples points was based on wanting to
utilise that the distributions for tracked adversaries were known. This approach
to robustness in combination with the first robust model, which optimises for
the positional “worst case” scenario, appears to have had limited success. This
approach did not outperform the other two models in any metric.

5.4.1 Uncertainty sets
In this thesis the construction of the uncertainty sets used in the robust models
was very basic. Because the complexity of the models scaled rapidly with the
size of the set, no large sets were used. One could however reflect on what would
happen if |U| → ∞, meaning that the number of samples from each Bernoulli
component approaches infinity. For the first robust model the objective value
can never decrease with more samples, since it optimises for “worst case” sample
set from the uncertainty set. This also means that it will be more dependent on
the quality of the distributions from the filter. In the case of the second robust
model the assignments would converge to that of the baseline model, but with
a much larger computational complexity.

Another way of dealing with the uncertainties in the scenario would be to
consider the uncertainty in the state belief of other friendly actors and thereby
trying to better “align” assignments with the rest of team. This could help
with avoiding the scenario where all actors assign each other to a task and no
actor ends up performing the task. However, changes to the type of uncertainty
considered in the uncertainty sets would most likely lead to having to change
parts of the model formulations.
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5.5 General future work
A lot of interesting avenues are left to explore within this area of research. The
simulation environment used was very simple, and a lot can be done to improve
the usefulness of the simulations.

5.5.1 Communication using Bernoulli components
A communication strategy where Bernoulli components were sent to friendly
actors instead of raw measurements would give the actors a more accurate un-
derstanding of their team-mates state belief. This could, for example, lead to
more information about how certain a friendly actor is of an adversaries position
as well as indicate when that adversary was last spotted.

5.5.2 Investigate the effect of communication strategies
A deeper analysis of how the different communication strategies affect the per-
formance of the models could give a better understanding of what type of in-
formation is valuable to communicate. Different time delays could also be used
to simulate different levels of jamming and message loss.

5.5.3 Different strategies for adversarial team
It would be interesting to see how resilient the models would be to different
strategies used by the adversarial team. For example, radar jamming and elec-
tronic warfare would probably increase the level of uncertainty, when accounting
for ghost targets and disappearing targets. This would also lead to a more chal-
lenging environment for the PMBM filter and better parameter tuning would
likely be necessary.

5.5.4 Multi-stage stochastic optimisation and MDP
While multi-stage stochastic optimisation was not used in this thesis, it can be
interesting, from a game-theory perspective, to examine in the future. It seems
natural for a team to want to think ahead when acting or base their actions on
results from previous time steps. Another alternative would be to use Markov
decision processes (MDP) to achieve the same result.
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5.6 Future model work
To address some of the issues found when testing the original models, several
additional models were proposed. These models were never implemented in the
simulation environment due to time restrictions.

5.6.1 Avoiding actor clustering
When examining the scenario a tendency of the friendly actors to group together
could be observed. A further variant of the first robust model, that included
a cost for search tasks related to how close the areas were to each other, was
therefore proposed. That model is as follows.

min
x,c̄

z = c̄+
∑

(t1,t2)∈Ts×Ts

invdist(t1, t2)yt1yt2 ,

s.t.
∑
a∈A

(∑
t∈Ts

catxat +
∑
t∈Tk

t

catxat

)
≤ c̄, k ∈ K,

∑
t∈Ts

xat +
∑
t∈Tt

xat = 1, a ∈ A,

∑
a∈A

∑
t∈Tt,l

xat ≤ 1, 1 ≤ l ≤ L, l ∈ Z,

∑
a∈A

xat ≤ 1, t ∈ T,∑
a∈A

xat = yt, t ∈ Ts,

xat ∈ {0, 1}, a ∈ A, t ∈ T,

yt ∈ {0, 1}, t ∈ Ts

(5.1)

Here the invdist-function used in the objective function is a custom function
that generates larger values for two tasks that have shorter Euclidean distance
between them. This idea, however, makes the problem non-linear.
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5.6.2 Increasing performance
A third robust model was proposed, but again not implemented due to time
restrictions. It uses the same cost function as Robust model 2 (3.20), but the
task assigned will instead always be the mean value of the Bernoulli component
(local hypothesis l). This would make it so that the model scales better for
larger problems where more samples are used.

min
x,c̄

z = c̄,

s.t.
∑
a∈A
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t∈Ts
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l∈L
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∑
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xat ≤ yl, 1 ≤ l ≤ L, l ∈ Z,

xat ∈ {0, 1}, a ∈ A, t ∈ T,

yl ∈ {0, 1}, 1 ≤ l ≤ L, l ∈ Z

(5.2)

The run time of the models was not a significant problem when simulating.
However, if the number of samples would become very high, the complexity
of the first and second robust models would quickly become intractable. The
complexity of this third model is:

C = O(1 + n+ L+ ((K · L) +Np))

V = O(n((L+Np)))

and

S = O
(

((L+Np)!

n!((L+Np)− n)!

)
For this model the number of constraints are the same as in the second

robust model, while the number of variables and solutions are equivalent to the
baseline model. This would likely allow for more efficient testing and perhaps
result in better tuning of the parameters chosen in the cost function, something
that was not given a lot of time.
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Conclusion

In this thesis, three optimisation models for mission assignment in a decen-
tralised multi-agent search, track and defence scenario were developed. One of
these models was based on stochastic optimisation, while the other two models
were based on the theory of robust optimisation. Robust optimisation was used
in an effort to attain robustness with regard to the uncertainties in the scenario.
To model the uncertainties in the radar detections, a stand-alone PMBM filter
was implemented and then integrated into the simulation environment. The
information from the PMBM filter was used as a basis for the uncertainty sets
in the robust optimisation models, as well as the cost function in the model
based on stochastic optimisation.

The problem of coordinating a decentralised multi-agent search-and-track
mission is hard. The thesis shows that the approach in the two robust models
tested — where the uncertainty sets were built entirely on the positional uncer-
tainty of the adversaries, is not enough to ensure good task assignment. The
model based on stochastic optimisation instead proved to have better efficiency
in rejecting the incoming adversaries.

The implementation of the PMBM filter is seen as the major success in this
thesis, since it provided a straightforward and effective way of attaining both
high interest search areas as well as the positions of potentially detected targets.
This information was then directly used by the implemented assignment models,
and especially the mean positions of potential targets proved very accurate.

The authors end by providing several interesting ideas for improving the
assignment models tested in this thesis, as well as what changes could be made
to the filter and simulation environment used, in order to likely increase the
efficiency of the models.
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