
Linköping studies in Science and Technology.
Dissertations, No. 1215

Electron-Lattice Dynamics
in π-Conjugated Systems

Magnus Hultell

Department of Physics, Chemistry and Biology
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Abstract

The work presented in this thesis concerns the dynamics in π-conjugated hy-
drocarbon systems. Due to the molecular bonding structure of these systems
there exists a coupling between the electronic system and the phonon modes of
the lattice. If this interaction is sufficiently strong it may cause externally intro-
duced charge carriers to self-localize in a polarization cloud of lattice distortions.
These particle-like entities are, if singly charged, termed polarons. The local-
ization length of these charged entities depends, aside from the electron-phonon
coupling strength, also on the structural and energetic disorder of the system. In
strongly disordered systems all electronic states become localized and transport
is facilitated by nonadiabatic hopping of charge carriers from one localized state
to the next, whereas in well-ordered systems, where extended states are formed,
adiabatic transport models apply.

Despite great academic efforts a unified model for charge transport in π-
conjugated systems is still lacking and further investigations are necessary to un-
cover the basic physics at hand in these systems. The call for such efforts has been
the main guideline for the work presented in this thesis and is related to the topics
of papers I-IV. In order to capture the coupled electron-lattice dynamics, we use
a methodological approach where the time-dependence of the electronic degrees of
freedom is obtained from the solutions to the time-dependent Schrödinger equa-
tion and the ionic motion in the evolving charge density distribution is determined
by simultaneously solving the lattice equation of motion within the potential field
of the ions. The Hamiltonian used to describe the system is derived from the
Su–Schrieffer–Heeger (SSH) model extended to three-dimensional systems.

In papers I-III we explore the impact of phenylene ring torsion on delocaliza-
tion and transport properties in poly(para-phenylene vinylene) (PPV). The physics
that we are particularly interested in relates to the reduced electron transfer in-
tegral strength across the interconnecting bonds between the phenylene rings and
the vinylene segments that follows from out-of-plane (phenylene) ring torsion. In
papers IV and V we focus on the dynamics of molecular crystals using a stack
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of pentacene molecules in the single crystal configuration as a model system, but
study, in paper IV, the transport as a function of the intermolecular interaction
strength, J . We observe a smooth transition from nonadiabatic hopping to an
adiabatic polaron drift process over the regime 20 < J < 120 meV. For intermolec-
ular interaction strengths above J ∼ 120 meV the polaron is no longer stable and
transport becomes band-like. In paper V, finally, we study the internal conversion
processes in these systems, which is the dominant relaxation channel from higher
lying states. This process involves the transfer of energy from the electronic sys-
tem to the lattice. Our results show that this process is strongly nonadiabatic
and that the relaxation time associated with large energy excitations is limited by
transitions made between states of different bands.



Populärvetenskaplig sammanfattning

I dagens samhälle är elektroniken ett allt viktigare och större inslag i v̊ar vardag.
Vi ser p̊a TV, talar i mobiltelefoner, och arbetar p̊a datorer. I hjärtat av denna
teknologi finner vi diskreta komponenter och integrerade kretsar utformade främst
för att styra strömmen av elektroner genom halvledande material. Traditionellt
sett har kisel eller olika former av legeringar använts som det aktiva materialet i
dessa komponenter och kretsar. Under de senaste 20 åren har dock s̊aväl transis-
torer som solceller och lysdioder realiserats där det aktiva materialet är organiskt,
d.v.s., kolbaserat.

Vi befinner oss för tillfället mitt uppe i det kommersiella genombrottet för or-
ganisk elektronik. Redan idag säljs många MP3-spelare och mobiltelefoner med
sm̊a skärmar där varje pixelelementen utgörs av organiska ljusemitterande dioder
(OLEDs). Denna teknologi h̊aller nu p̊a att introduceras i mer storskaliga pro-
dukter som datorskärmar och TV-apparater som därigenom kommer kunna göras
energieffektivare, tunnare, flexiblare och p̊a sikt ocks̊a billigare. Andra tekniska
tillämpningsomr̊aden för organisk elektronik som förutsp̊as en lysande framtid är
RFID-märkning, organiska solceller, och elektronik tryckt p̊a papper, men även
smarta textiler och bioelektronik har stor utvecklingspotential.

Den kanske största utmaningen kvarst̊ar dock, att skapa elektroniska kretsar
och komponenter uppbyggda kring enskilda molekyler, s.k. molekylär elektronik.
Mycket snart närmar vi oss den fysikaliska gränsen för hur sm̊a komponenter som vi
kan realisera med traditionella icke-organiska material som kisel. En stor drivkraft
bakom forskningen p̊a halvledande organiska material har därför varit just visionen
om molekylär elektronik som inte är mer än n̊agra hundratusendelars millimeter
stora. För detta ändam̊al krävs en mycket noggrann kontroll av tillverkningspro-
cesserna liksom en detaljförst̊aelse för hur molekylerna leder ström och hur denna
förm̊aga kan manipuleras för att realisera s̊aväl traditionella som nya komponenter.

I denna avhandling presenteras en översikt av den fysik som möjliggör led-
ningsförm̊aga hos särskilda klasser av organiska material, s.k. π-konjugerade sys-
tem, samt de forskningsresultat som utgör mitt och min handledare Prof. Sven
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Stafströms gemensamma bidrag till denna disciplin. En av utmaningarna p̊a omr̊adet
är den komplexitet som de organiska materialen erbjuder; laddningsprocesserna
p̊averkas nämligen av en rad olika faktorer s̊asom laddningstäthet, temperatur,
p̊alagd spänning, samt molekylernas former och inbördes struktur. I v̊art arbete har
vi utifr̊an en vidareutveckling av existerande modeller genom numeriska datasimu-
leringar undersökt effekten av de senare tre faktorerna p̊a elektronstrukturen,
laddnigstransporten och energidissipation i denna klass av material.
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CHAPTER 1

Introduction and outline of thesis

The research presented in this thesis aims to provide a deeper insight into the
dynamics of π-conjugated materials and the interplay between the electronic sys-
tem and the motions of the nuclei configuration (i.e., the dynamics/vibrations of
the lattice). In this chapter the aspects and applications that have guided the
academic interest in the field of organic electronics over the last forty years are
briefly reviewed, followed by an outline of the thesis.

1.1 A brief introduction to organic electronics

In 1967 a visiting scientist at Tokyo Institute of Technology was attempting to
synthesize polyacetylene, an organic π-conjugated polymer compound, when by
a fortuitous mistake a silvery thin film was formed instead of the usual black
powder.1,2 His coworker at the time, Hideki Shirakawa, later clarified the mistake
as the result of having added the catalyst substance for polymerization with more
than a thousand times higher concentration than intended.3 Teaming up with
researchers Alan G. MacDiarmid and Alan J. Heeger in 1976, Shirakawa made yet
another surreptitious discovery. When trying to produce thin films of graphite
by treating a polyacetylene film with chlorine and bromine a stepwise increase in
conductivity was noticed. As it turned out, exposure to halogens increased the
films conductivity by a factor of 107 to a level comparable to that of copper.4,5

The possibility for materials exhibiting the electrical properties of metals while
retaining the mechanical and processing advantages of polymers was soon recog-
nized by the research community at large. Initial interest mainly concerned the
development of organic metals for use as electrical conductors, but due to poor en-
vironmental stability of the relevant materials this type of applications were never
commercialized. The focus instead shifted towards the semiconducting properties
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2 Introduction and outline of thesis

of π-conjugated materials, and in the mid 1990s a number of fundamental device
applications had been realized such as organic light-emitting diodes (OLEDs),6,7

field-effect transistors (OFETs),8,9,10 and photovoltaic cells (OPVCs).11,12

Today, more than a decade later, organic electronics is at the verge of its com-
mercial breakthrough. Light-emitting diode (LED) displays incorporating organic
materials are already commercially available for portable system applications (e.g.,
cell phones) and television screens,13 and the integration of polymer heterostruc-
tures is offering great hope for high-efficiency, low price organic photovoltaic cells
(OPVCs).14 Other areas where organic materials may be used for electronic ap-
plications are, e.g., smart textiles15 and printed electronics.16,17 In the later case,
the solubility of organic materials is exploited to produce electrically functional
electronic inks that can be deposited on flexible substrates such as paper or plas-
tic films. Since all-in-line printing processes can produce printed media at a rate
exceeding 100 m/min,18 this technology may result in dramatically reduced man-
ufacturing cost for electronics and present great opportunities for large-scale pro-
duction of, e.g., radio frequency identification (RFID) tags.18

Despite the many promising features and applications of organic conjugated
materials, and the progress made in overall performance, the field still has much
room for developments. In particular, while it is generally agreed that electronic
and crystal structures are related to transport characteristics, and therefore device
performance, it is unclear how and to what extent.19 In addition, algorithms that
allows accurate prediction of such properties a priori do not currently exist. With
stronger predictive capabilities, the field may develop from design based on general
principles to the truly rational design of optimized materials.

To expand the knowledge on processes and phenomena that influence properties
of organic materials, we present in this thesis a methodological approach to study
the dynamics of organic materials at the atomistic level. This enables us to probe,
e.g., transitions between adiabatic and nonadiabatic transport, and to study the
dynamic properties of both conjugated polymers and molecular crystals.

1.2 Outline of thesis

The first part of this thesis, which serves as an introduction to the papers included
in the second part, is organized as follows. In Chap. 2 we provide a brief account
of the physical concepts and processes in π-conjugated systems relevant to the re-
search material presented in this thesis. The information conveyed is intended for
readers not previously familiar with the field and advanced readers are therefore
recommended to go directly to Chap. 3 in which we focus solely on electron trans-
fer and the different types of electron transport processes encountered in organic
solids. The first two sections in particular, i.e., Secs. 3.1-3.2, provide a theoretical
basis for the model Hamiltonian derived in Chap. 4, where also our methodolog-
ical approach for studying electron-lattice dynamics is presented. In Chap. 5 is
then provided a brief introduction to the particular research topics covered in this
thesis supplemented with comments on each paper. Finally, an outlook on issues
for further developments is given in Chap. 6.



CHAPTER 2

Properties of π-conjugated systems

The purpose of this chapter is to give a brief overview of the fundamental processes
in π-conjugated systems which are the materials of relevance in this thesis. General
physical concepts related to the π-conjugated systems are presented in Secs. 2.1–
2.3. In Secs. 2.4–2.5 and 2.6 charge carrier transport and electronic excitations
are reviewed, respectively. For a reader already familiar with these topics it is
recommended to proceed directly to Chap. 3.

2.1 Fundamental aspects

From a fundamental point of view, quantum mechanics has to be employed in
order to capture the physics of a system of particles at the atomistic level. In the
wave mechanical formalism of this approach the system is fully described – in the
instantaneous picture – by the time-independent Schrödinger equation,

ĤΨ = EΨ, (2.1)

which is an eigenvalue equation where the eigenvalue, E, is the total energy of the
system and the eigenstate, Ψ, is a mathematical wave function that describes the
properties of the system, and Ĥ is the total energy operator, i.e., the Hamiltonian.
This equation can be solved exactly only for a very limited number of systems con-
taining no more than three particles. Approximations must therefore be made to
both the Hamiltonian and/or to the wave function in order for larger systems to
be treated quantum mechanically. A particularly useful one when illuminating the
fundamental properties of the systems of interest here is the orbital approxima-
tion. At the heart of this approximation is the neglect of explicit electron-electron
interaction (i.e., repulsion) which makes it possible to separate out, in turn, the
coordinates of each electron and find a solution of the modified equation that is a
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4 Properties of π-conjugated systems

product of single electron wave functions. This allows us to discuss electrons as if
they could be assigned and described in a system by a single orbital.

In the Born interpretation of quantum mechanics,20,21 the wave function is
considered to be a statistical quantity that only applies to an ensemble of simi-
larly prepared systems. When discussing the position of the electron it is hence
customary to discuss this in terms of spatial (orbital) regions where the proba-
bility of finding the electron in a particular state is reasonably high. In the case
of atoms, the first four atomic orbitals (AOs) are labeled s, p, d, and f , which
originates from a now discredited system of categorizing spectral lines as sharp,
principal, d iffuse, and f undamental, based on their fine structure. Alphabetical
order is used beyond f.

2.2 Molecules and π-conjugated systems

When two atoms are brought together, the interactions between the constituent
particles serve to modify the shape of the electron probability density regions in
the isolated atoms and the atomic orbitals then no longer adequately describe the
system. A new set of functions is therefore necessary to describe the diatomic
molecule. These are referred to as molecular orbitals (MOs) and can be con-
structed, in accordance with the principle of linear superposition, from a linear
combination of atomic orbitals (the LCAO MO method).22,23 Compared to the
isolated atom, the diatomic system has also undergone a splitting of the energy
levels. These states can be either bonding or anti-bonding, where the later are lo-
calized outside the region of (the) two distinct nuclei and hence serves to destabilize
the molecule as a whole.a These principles as well as the terminology adapted can
be applied also to molecular systems of many atoms, where the molecular orbitals
and the their spatial extension across the system are determined by the nature of
the constituent elements and bonds.

In the case of the conjugated hydrocarbon systems of relevance for this thesis,
three of the four atomic orbitals of carbon associated with the valence electrons
of the outermost occupied shell overlap topside-on along the internuclear axises
to form covalent σ-bonds. A σ-bond has cylindrical symmetry around the inter-
nuclear axis (see Fig. 2.1(a)), and is so called, because when viewed along the
internuclear axis it resembles a pair of electrons in an s orbital (and σ is the Greek
equivalent of s). The remaining 2pz-atomic orbitals are directed perpendicular
to the σ-bond plane and overlap broadside-on to form a π-bond, so called since,
when viewed along the internuclear axis, they resemble a pair of electrons in a p
orbital (and π is the Greek equivalent of p), as seen in Fig. 2.1(b). This overlap
is much weaker than that of topside-on overlap, and as a consequence thereof the
energy level splitting for π-electron states will be considerably smaller than for
the σ-electron states. This is important since the energy gap of the former is
large compared to observed energies for, e.g., phonons and charge carriers within
these systems. The physics of these species must therefor depend primarily on the
π-electrons of the electronic system.

aNote that anti-bonding MOs are usually higher in energy than bonding MOs.



2.3 Semiconducting organic solids 5

Figure 2.1. The molecular orbitals associated with (a) the σ-bond and (b) the π-bond
(b) in ethylene (H2C=CH2) between the two sp3-hybridized carbon atoms, viewed both
along and perpendicular to the internuclear axis.

By analyzing the overlap between π-orbitals (see for example Sec. 4.2) it is
found that there exists a coupling between the π-electrons and nuclei distortions,
commonly referred to as the electron-phonon (e-ph) coupling. This has impor-
tant implications for the properties of the system. First of all, the e-ph coupling
is responsible for the particle-like entities formed when introducing extra charges
into a charge neutral system. The first charge that enters the system will polarize
its surrounding and effectively self-trap in the potential of the lattice distortions
(phonons) to form a localized state referred to as a polaron. If the charge un-
der consideration is taken to be an electron it will, upon entering an unoccupied
anti-bonding state, serve to stabilize this state while destabilizing the associated
occupied bonding state. Introducing the concept of an energy gap as the forbidden
region of energies in between the highest occupied molecular orbital (HOMO) level
and the lowest unoccupied molecular orbital (LUMO) level, polaron formation is
found to cause these levels to migrate into this energy gap. This stabilization-
destabilization effect is even further promoted if a second electron is allowed to
enter the unpaired anti-bonding state, the corresponding particle-like entity of
which is referred to as a bipolaron. Additional electrons introduced into the sys-
tem will serve to increase the density of polaronic and bipolaronic states within
the original band gap. Another implication of the large energy gap associated with
σ-electrons is that they are strongly localized to the covalent bonds in which they
participate. In more formal treatments of π-conjugated systems it is therefore
customary to invoke σ-π separability, i.e., to treat the contributions from the σ-
and π-electron subsystems separately.

2.3 Semiconducting organic solids

Even though electronics at the molecular level have been devoted considerable
academic interest ever since the suggestion of a molecular rectifier by Aviram and
Ratner,24 most practical applications are today concerned with the properties of
systems consisting of a very large number of molecules. With reference to the
previous discussion, we shall refer to the mathematical functions describing the
states of electrons within these systems as molecular crystal orbitals (MCOs) even



6 Properties of π-conjugated systems

though these materials seldom display structural crystallinity. Introducing the
concept of a density of states (DOS) as the number of states at each energy level
that can be occupied by an electron, the density of occupied states (DOOS) per
unit volume at a given energyb can then be obtained as the product of the DOS
and the probability distribution for the likelihood that a particular state will be
occupied by an electron (as given by Fermi-Dirac statistics). Studying the DOOS
of well-ordered structures it is found that the differences between the energy levels
of the MCOs are small, so that the levels may be considered to form ”continuous”
bands of energy rather than the discrete energy levels of the molecules in isolation.
These regimes of very high density of states are separated by intervals where no
energy levels except those of impurities and structural defects are found. We shall
refer to these intervals as energy gaps.

At absolute zero, the probability of occupation provided from Fermi-Dirac
(FD) statistics is given by a step function where occupation is allowed only below
a certain energy referred to as the Fermi level. For the intrinsic system this means
that states in energy bands that lay below this level will be completely occupied,
whereas states in the bands that lay above this level will be completely empty.
Using terminology adapted from solid state theory, the two bands immediately
above and below this level will be referred to as the conduction band and the
valence band, respectively. At nonzero temperatures the FD probability function
”smooths out” and as a consequence thereof an appreciable number of states both
above (below) the Fermi level will be filled (empty).

The density of states in the valence and conduction bands can be directly
related to the chemical structure of the material. If the system is highly ordered,
as in molecular single crystals, there is a narrow spread in energy and the density
of state is large. Positional disorder in these systems serves to broaden the DOS
as it becomes increasingly difficult for electrons to acquire the energy necessary to
populate energetically and spatially available MOs and the spatial region to which
the electron is localized thus shrink. The opposite is of course also true and is often
related to favorable molecular packaging.25 From a physical point of view this can
be understood on the basis of the increased topside-on overlap between π-orbitals
on different molecules as these are stacked in increasingly parallel configurations.
In the well-ordered molecular single crystals the overlap can be both strong and
uniform and the localization length therefore long, whereas in disordered organic
solids for which the intermolecular overlap is weak, the electrons will become
strongly localized.

2.4 Charge transport in organic semiconductors

In strongly disordered system all states are localized and the DOS is assumed
to have a broad Gaussian shape26 (as schematically illustrated in Fig. 2.2(a)).
The elementary transport event in such systems is then the transfer of a charge
carrier between adjacent transporting molecules or segments of a main chain poly-
mer, as described by hopping models when the electron-phonon (e-ph) coupling

bFor the system at thermal equilibrium
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Figure 2.2. The density of state (DOS) as envisioned in (a) disordered organic solids
and (b) more well-ordered systems. Note that E denotes the energy of the state.

is weak and by small polaron models when the e-ph coupling is strong. In both
models electron transfer is assumed to be promoted by absorption and emission
of phonons. The transition rate equations in the case of the former is well ap-
proximated by the rate equations obtained by Miller and Abraham27 for electron
transfer in amorphous semiconductors, and in the case of small polaron hopping
by Marcus theory28 and/or the Holstein-Emin model.29,30

With increasing order, delocalized states will be able to form. A mobility edge
energy may therefore be envisioned,31,32 presumably sharp at low temperatures,33

that separates localized states from delocalized states. The tail sites of the Gaus-
sian DOS assumed for the highest occupied and lowest unoccupied band of MCO
states of the system therefore act as continuous pseudo-exponential traps34 to the
transport band of the delocalized states (as illustrated in Fig. 2.2(b)). Further
discrete trapping levels exist in the carrier energy gap due to chemical impurities
and molecular defects. In these systems two transport mechanisms exists in paral-
lel: (i) adiabatic transport through delocalized states limited by phonon scattering
and (ii) thermal release of electrons trapped in localized states (as described by,
e.g., the multiple trap and release (MTR) model). The later is dominant at low
temperatures, where thermal activations transfer the carriers from the distribution
of trapping centers to the transport band, where they diffuse for a while until they
are trapped again. As the temperature of the system increases, the time spent
in trapped states will start to decrease and eventually the scattering of electrons
due to phonons will become the rate limiting process for charge transport. For
ultrapure oligoacene single crystals, Karl35 has shown that the scattering regime
can be extended to very low temperatures where, in principle, band theory could
be used as a model for charge transport.

With reference to this discussion we present in Fig. 2.3 a taxonomy of transport
models for intrinsic systems organized with respect to the relative dependence of (i)
the electron-phonon (e-ph) coupling strength, which determines the extent of the
charge carriers polaronic signature, and (ii) the disorder in the system as primarily
introduced via conformational distortions and chemical defects, commonly referred
to as structural and energetic disorder, respectively. These models will be discussed
in further detail in Chap. 3, organized with respect to the (dis)order of the systems
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Figure 2.3. Flow chart taxonomy of transport models in semiconducting organic solids.

to which the models apply. Note that the discussion will also encompass the MTR
model, excluded from the taxonomy since it accurately describes transport only at
very low temperatures in well-ordered systems. Finally, it should be emphasized
that the taxonomy presented in Fig. 2.3 is not intended to be exhaustive, but
rather to provide a framework to be used as a reference when discussing models
that aims to describe transport in the intermediate regimes.

2.5 Characterization of charge transport

The key quantity that characterizes a materials ability to transport charge is the
mobility, μ. For electric field-induced (drift) charge transport, which dominates
the migration of charges across an organic layer in a device, μ is defined as the
ratio between the field-induced directional velocity component of the mobile charge
carriers,c 〈v〉, and the applied electric field, E; that is:

μ = 〈v〉/E, (2.2)

where From our previous discussion we expect charge carrier mobilities to be influ-
enced by molecular packaging, disorder, presence of impurities, and temperature
(T ), but also other factors need to be considered such as the electric field strength
(since 〈v〉 = μ · E is usually linear for not to high fields35) and the charge carrier
density, n.36

To illustrate the complexity of these dependencies we present in Fig. 2.4 a
cartoon adapted from the measurements of Podzorov et al.37 on the tempera-
ture dependence of mobility along two crystallographic axises in a rubrene single
crystal. This is a very well-ordered system, and we interpret the knee in the μ(T )-
dependence as the transition from a trapping and releasing temperature activated
regime to a temperature deactivated regime due to scattering. We also observe
an evolving anisotropic behavior in μ(T ) during the transition between the two
charge carrier mechanisms. The reason for this is the lower than cubic symmetry of

cNote that this specification implies a drift motion superimposed on their thermal motion as
a time and ensemble average of a fast sequence of acceleration and scattering events.
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Figure 2.4. The mobility (μ) as a function of temperature (T ) upon cooling a well-
ordered molecular crystal.

molecular crystals that results in more extended states along some crystallographic
directions compared to others and that this property reveals itself first when the
motion of charge is dominated by drift rather than trapping and releasing.

In practice, charge transport measurements are influenced by a variety of ex-
trinsic parameters, such as air exposure, humidity, device geometry, charge carrier
injection. Therefore, first of all, reliable experimental data are required to find
out how large the intrinsic transport parameters are and under which conditions
which kind of transport model can be applied.

2.6 Excitation and relaxation dynamics

In organic photovoltaic (OPV) components such as organic solar cells (OSCs)
and organic light emitting diodes (OLEDs), the fundamental physics concerns the
absorption or emission of light in the active organic material. At the microscopic
level, these processes involve electronic transitions to higher (excitation) or lower
(emission) energy states by the absorption or emission of photons.

The work in Paper V is related to the relaxation process following an excitation
of an electron to an anti-bonding state above the band gap. In what follows we shall
briefly outline the photophysics of electronic transitions with respect to electron-
phonon dynamics. References are made to the schematic drawing in Fig. 2.5 of
the (a) classical and (b) quantum mechanical picture of an electronic transition
between the ground state Ψgs and the excited state Ψes. Note that the potential
energy of each electronic state is expressed in terms of the normal coordinate (q)
of the system.

The system is initially in its ground state configuration (qgs). Upon absorption
of a photon from the incident light, an electronic transition is made from a bonding
to an anti-bonding state. Since this transition is much faster than the response time
of the nuclei, the molecular geometry will remain unchanged immediately after the
excitation. However, during the transition, the electron density is rapidly built up
in new regions of the nuclei and removed from others, and the nucleus suddenly
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Figure 2.5. Illustration of the (a) classical and (b) quantum mechanical picture of an
electronic transition. In (b) the transition between ν = 0 and ν′ = 2 is favored.

experiences a new force field, i.e., a new potential (upper curve). The response of
the nuclei is that they start to vibrate. Relaxation may now proceed due to either
(i) radiative emission of a photon, (ii) vibrational cooling of the same electronic
state, or (iii) phonon-assisted transitions between two different electronic states.
The later process, termed internal conversion (IC), is usually the fastest relaxation
channel and provides efficient sub-picosecond nonradiative transfer from higher to
lower excited states.38 As a result the vast majority of (organic) molecular systems
follow Vavilov-Kasha’s rule, stating that radiative emission typically occurs from
the lowest excited electronic state.39 The fact that qe > qgs for this state, where
qe is the energetically most favorable configuration of the excited system, follows
from the anti-bonding character of the excited state molecular orbital which gives
rise to an elongation of one or several bonds in the molecules.

There are aspects of the excited state dynamics that due to methodological
reasons never enter the numerical simulations which we use to explore the physics
of certain relaxation processes. Some of these at least are important for the oper-
ation of real devices and a brief discussion is therefore in order. When an electron
makes a transition to an excited state it leaves behind a hole of positive charge
to which it is bound by Coulomb interactions. The bound electron-hole pair is
commonly referred to as an exciton. Exciton dynamics is vital for both organic
solar cells and light emitting diodes. In case of the former, excitons are formed
when the material absorbs energy from the incident light. To be able to harvest
this energy in the form of a photocurrent it is vital that these excitons do not
recombine (radiative emission of a phonon) before they encounter a quenching site
where they can dissociate into free carriers and be collected by the electric field
applied across the device. In a light emitting diode, where radiative recombination
is desired, the problem is reverted to getting the electrons and holes injected into
the material to form excitons.



CHAPTER 3

Electron transfer

The focus of this chapter is to provide a detailed picture of charge carrier transport
processes in π-conjugated systems. In particular, we consider a situation when an
excess electron has been injected into the system and present in Secs. 3.1-3.2 an
archetypal model Hamiltonian for intersite electron transfer processes. The main
purpose of this effort is to provide a theoretical background for the Hamiltonian
which we employ in our own studies of the coupled electron-nuclei dynamics, the
methodological approach of which is developed in Chap. 4. Other issues that
are reviewed in this chapter centers around the influence of the strength of the
electron-phonon coupling constant and the impact of both energetic and structural
disorder on the transport properties of π-conjugated systems of many molecules,
as presented in Secs. 3.3-3.6.

3.1 The electron transfer Hamiltonian

In the following two sections a Hamiltonian for the transfer of excess electrons is
derived. In this description we introduce an effective potential experienced by the
excess electron after entering the system:

V (r) =
∑
m

Vm(r), (3.1)

where each contribution Vm(r) can be understood as a so-called pseudo-potential
which mimics the action of the total electronic system of molecular fragments,
m, on the excess electron. Here, we define the various Vm(r) by requiring that
their ground state energy level Em should coincide with the electronic ground

11
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state of the isolated molecular unit plus the excess charge.a The pseudo-potential
enters the single particle Schrödinger equation which determines the single-particle
energies Em and single-particle wave functions |ϕm(r)〉, respectively:

[Tel + Vm(r)]|ϕm(r)〉 = Em|ϕm(r)〉. (3.2)

Since the energies Em corresponds to different sites in the system, they are usually
called (on)site energies.

At this stage we can now write the total electronic Schrödinger equation on
the following form:

[Tel + V (r)]|φ〉 = E|φ〉. (3.3)

Expanding the wave function in a linear combination of |ϕm(r)〉 ≡ |ϕm〉, i.e.,

|φ〉 =
∑
m

cm|ϕm〉, (3.4)

inserting Eqn. (3.4) into Eqn. (3.3), and multiplying the equation on both sides
by 〈ϕn| from the left, gives

∑
m

cm

⎛
⎝Em〈ϕn|ϕm〉+

∑
k �=m

〈ϕn|Vk|ϕm〉
⎞
⎠ = E

∑
m

cm〈ϕn|ϕm〉. (3.5)

This set of equation contains both the overlap integrals, 〈ϕn|ϕm〉 ≡ Snm, and
the three-center integrals 〈ϕn|Vk|ϕm〉. The later are by far the most numerous to
evaluate and since their contribution is small compared to the one- and two-center
integrals they are often neglected by assuming zero differential overlap (ZDO)
within the system (also known as the Pople approximation).40 As suggested by its
name, it also follows from this approximation that the two-center overlap integrals
will be neglected, i.e., we set Snm = δnm.b In essence, this means that the states
|ϕm〉 form an orthogonal basis. Of the surviving one- and two-center integrals the
latter contain terms of either the type 〈ϕm|Vk|ϕm〉, which introduce a shift of the
onsite energies Em due to the presence of the pseudo-potential Vk at site k, or of
the type 〈ϕn|Vn|ϕm〉, which couples the state |ϕm〉 to the state |ϕn〉 via the tail
of the potential Vn at site m.

An expansion of the electronic part of the Hamiltonian gives that

Hel =
∑
m,n

〈ϕm|Hel|ϕn〉|ϕm〉〈ϕn|, (3.6)

with 〈ϕm|Hel|ϕn〉 ≡ Hmn given by

Hmm = Em +
∑
k �=m

〈ϕm|Vk|ϕm〉, (3.7)

Hmn = 〈ϕm|Tel + Vm + Vn|ϕn〉. (3.8)
aIt is thus taken into account that the full many-electron wave-function adjust itself during

the transfer process, although it is carried out by reducing the many-particle dynamics to the
action of an effective local single-particle potential.

bNote that the Kronecker delta δnm is defined such that δnm=1 for m=n, and 0 otherwise.
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The matrix elements Hmn ≡ Vmn are commonly referred to in literature as transfer
integrals or alternatively inter-state coupling elements. Including the diagonal
matrix elements of the pseudo-potentials into the definition of the site energies
Em, the electronic Hamiltonian for the system reads

Hel =
∑
m

Em|ϕm〉〈ϕm|+
∑
m,n

Vmn|ϕm〉〈ϕn|. (3.9)

3.2 The electronic-nuclei Hamiltonian

Adding also the nuclei degrees of freedom, {Ru} ≡ R, to the electronic Hamiltonian
(see Eqn. (3.9)), the ”complete” electronic-nuclei Hamiltonian becomes

H = Hel(R) + Tnuc + Vnuc−nuc(R)

=
∑
m

[
(Tnuc + Em(R) + Vnuc−nuc(R)) + Θmm

] |ϕm〉〈ϕm|

+
∑
m�=n

[Vmn(R) + Θmn] |ϕm〉〈ϕn|, (3.10)

where Tnuc denotes the kinetic energy of all nuclei coupled to the electron transfer
process and Vnuc−nuc(R) results from the coupling among the vibrational degrees
of freedom (i.e., electrostatic coupling among the nuclei). Note that the nonadia-
baticity operators Θmn have been introduced into Eqn. (3.10) to account for the
dependence of the expansion states |ϕm〉 on the vibrational coordinates.

In the following, we assume that the nonadiabatic coupling is small and neglect
its contribution to the off-diagonal part of the Hamiltonian in Eqn. (3.10). This
assumption is motivated by the localization of the wave functions ϕm(r) at the
various units of the system. With reference to the specific form of H we also
introduce potential energy surfaces (PESs) which relate to those states with the
excess electron localized at site m:

Um(R) = Em(R) + Vnuc−nuc(R) + Θmm, (3.11)

such that the total electron-vibrational Hamiltonian is obtained as

H =
∑
m

[(Tnuc + Um(R)] |ϕm〉〈ϕm|+
∑
m�=n

Vmn(R)|ϕm〉〈ϕn|. (3.12)

Not yet commented, we note that the inter-site couplings Vmn depend on the
nuclear coordinates. Since the magnitude of Vmn is mainly determined by the
overlap of the exponential tail of the wave functions localized at sites m and n, it
is reasonable to expect an exponential dependence on inter-site distance, xmn, of
the form

Vmn(R) = V (0)
mn exp

{
−βmn(xmn − x(0)

mn)
}

. (3.13)

Here, V
(0)
mn is the reference value of the inter-site couplings reached for the ref-

erence (equilibrium) distance x
(0)
mn and βmn is some characteristic inverse length
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determined by the wave function overlap. It should be emphasized that the depen-
dence of Vmn on R is often neglected in comparison with the on-site vibrational
dynamics. We will use this simplification in the following section when discussing
different regimes of electron transfer.

3.3 Regimes of electron transfer

Before we proceed to discuss the transport processes in organic solids it is useful to
first understand the physics of the simplest electron transfer (ET) system possible,
i.e., the two-state system where the transfer is from a donor state (D) to an
acceptor state (A). To keep things as simple as possible, we neglect any dependence
of VDA on the nuclear coordinates, i.e., VDA(R) � VDA. The electronic-nuclei
Hamiltonian (see Eqn. (3.10)) for this two-state model then read

HDA = HD|ϕD〉〈ϕD|+ HA|ϕA〉〈ϕA|+ VDA|ϕD〉〈ϕA|+ VAD|ϕA〉〈ϕD|, (3.14)

where HA(D) = Tnuc +UA(D)(R). Note though that in the following paragraph we
use the reduced index m for both the acceptor (A) and the donor (D).

The dependence on the nuclear coordinates can be made more concrete by
introducing PESs which depend on normal mode coordinates {qξ} ≡ q. In this
case it is advantageous to choose a particular electronic state as a reference state
to define a reference configuration of the nuclei. This state is supposed to be
characterized by the PES Um(R) having the equilibrium configuration at {R(m)

u } ≡
R(m), where u is a site index for the nuclei. Carrying out an expansion of Um(R)
around R(m) up to second order with respect to the deviations ΔR

(m)
u = Ru−R

(m)
u

(the harmonic approximation) we obtain, after a linear transformation to (mass-
weighted) normal mode coordinates, a parabolic PES Um(q) of the form:

Um(q) = U (0)
m +

1
2

∑
ξ

ω2
m,ξ(qξ − q

(m)
ξ )2. (3.15)

Using this definition and the fact that the vibrational kinetic energies are not
affected by this transformation, we obtain PESs for the complete system of the
form

U±(q) =
1
2

(
UD(q) + UA(q)±

√
(UD(q) + UA(q))2 + 4|VDA|2

)
. (3.16)

These adiabatic PESs, together with the diabatic PES for the donor (UD) and the
acceptor (UA) state, are plotted in Fig. 3.1 versus a single coordinate q. We note
that at the crossing point q∗ of the two diabatic PES, defined by UD(q∗) = UA(q∗),
there is, according to Eqn. (3.16), a splitting between the adiabatic PES by 2|VDA|.
This splitting becomes smaller if q deviates from q∗ and the adiabatic and diabatic
curves coincides for |q − q∗| � 0.

Which type of representation is more appropriate depends on the problem un-
der discussion. When the inter-site coupling is weak both the donor state and
the adiabatic state are spatially rather separated with only a small fraction of
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Figure 3.1. The donor (UD) and acceptor (UA) potential energy surfaces (PESs) are
plotted versus a single process (reaction) coordinate (q). The diabatic curves UD and UA

are represented by dashed line, whereas the adiabatic curves U+ and U− are drawn with
full lines. Also shown are the activation barrier energy ΔE‡ for nonadiabatic ET, the
driving force ΔE(0) = U

(0)
D −U

(0)
A , and the splitting between the adiabatic curves with a

magnitude of 2VDA at the crossing point q∗.

the electron probability density reaching the donor state. For this type of situa-
tions the diabatic (or nonadiabatic) representation is adequate and carrying out a
perturbation expansion with respect to VDA, where the diabatic states represent
the zeroth-order states, it is found that the electron transfer (ET) rate becomes
proportional to |VDA|2, but that it also depends on the probability at which the
crossing region on the donor PES UD is reached by the vibrational coordinates.
Accordingly, the electron transfer rate, kET , is expected to be of the following
form:

kET ∝ |VDA|2e−Eact/kBT . (3.17)

Note that since, in the lowest order of perturbation theory, ET occur when the
donor and acceptor levels are degenerate, Eact here denotes the activation energy
needed to enter the crossing region starting at the minimum position of the donor
PES, i.e., Eact = UD(q∗)− UD(qD).

Within the framework of nonadiabatic ET, an illustrative example of these
dependencies is obtained in the high-temperature limit, where kBT � �ωξ for
all phonon modes ξ and a description of the vibrational dynamics using classical
physics therefore is valid. Assuming parabolic PESs and vibrational frequencies
independent of the electronic state, it is then possible to show that (with reference
to the two-level system displayed in Fig. 3.1):

kET =
2π

�

1√
4πEλkBT

|VDA|2 exp
{
− (ΔE(0) + Eλ)2

4EλkBT

}
. (3.18)
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Here, Eλ is the reorganization energy, ΔE(0) = U
(0)
D − U

(0)
A is the driving force,

and (ΔE(0) + Eλ)2/4Eλ ≡ ΔE‡ is the activation energy for nonadiabatic ET.
Equation (3.18) is usually referred to as the Marcus formula after R. A. Mar-
cus, who pioneered the theory of ET starting in the 1950s.28,41,42,43,44 The main
advantage of this rate equation is that it describes the complex vibrational dy-
namics accompanying the electronic transition by a small number of parameters,
namely the inter-site coupling VDA, the driving force ΔE, and the reorganization
energy, Eλ. It should be emphasized, though, that a more elusive model for ET
is required in the low-temperature regime (kBT 
 �ωξ), where tunneling effects
become important and phonons needs to be considered quantum mechanically.

In the case when the inter-site coupling is strong, the electronic states are ex-
pected to extend over several sites and it becomes advantageous to change from
the (nona)diabatic to the adiabatic representation. When the states extend over
the full width of the system they are referred to as delocalized. The electron trans-
fer process involves in the case of extended states a gradual shift of the electronic
wave function from the donor site to the acceptor site intimately connected with
the rearrangement of the vibrational degrees of freedom from qD to qA. This re-
arrangement is connected with a barrier crossing, and we expect for the ET rate
an expression of the standard Arrhenius type:

kET ∝ e−Eact/kBT . (3.19)

Note though that the activation energy Eact is different from the one appearing in
the nonadiabatic ET rate equation (Eqn. (3.17)), and here refers to the barrier in
the lower adiabatic PES U− (Eqn. (3.16)).

3.4 The impact of disorder

When systems with many transport sites are considered it turns out that the
transfer of electrons is strongly influenced by the distribution of values in both
Em and Vmn, commonly referred to in literature as diagonal- and off-diagonal
disorder, respectively. An early model for diagonal disorder was introduced by
P. W. Anderson45 in which the onsite energies Em are chosen randomly with equal
probability in the range Em ∈ [−W/2, W/2] (box distribution). Furthermore, the
energy scale is fixed by setting the hopping integrals between nearest-neighbors
to unity and zero otherwise. With respect to the bandwidth, B, of the energy
levels, Anderson showed that once the disorder exceeds a critical value, (W/B)crit,
the solutions of the Schrödinger equation for any energy band are no longer the
extended states of Bloch, but are localized in space so that an electron can move
from one site to the other only by exchanging energy with phonons.c It was later
pointed out by Mott46,47 that localized states will exist near the extremities of
a band even if (W/B) lies below the critical value, and that an energy Ec must
separate energies where states are localized from energies where the states are

cIt should be pointed out that the transition between localized and extended states is only
observed in three-dimensional systems and that localization occur for any non-zero disorder
introduced in one- and two-dimensional systems.
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Figure 3.2. Localization of states as a function of the ratio between the width of the
onsite energy distribution, W , and the band width, B. Note that the cross section at A
and C (dashed line) corresponds to Figs. 2.2(a) and 2.2(b), respectively.

extended. This is the mobility edge previously discussed in Sec. 2.4. A schematic
illustration of the results of the analysis of Anderson and Mott are displayed in
Fig. 3.2. In this context it should be noted that similar results are expected to
hold also for off-diagonal disorder.

It is important to recognize that diagonal and off-diagonal disorder are directly
related to the energetic and the structural disorder of the real system, where the
former is due to chemical defects and impurities, and the later a consequence of
conformational distortions. Synthesis and film preparation techniques are hence
critical in the construction of organic electronic devices that rely on high mobilities
in the active layer(s). This explains, e.g, why the highest mobilities so far observed
has been measured in organic devices with ultrapure well-ordered molecular single
crystals as the active layer.35,37 It should be emphasized, though, that these mate-
rials, although very useful for obtaining basic physical insight, will have no chance
in technical electronic applications because of their poor mechanical properties.
Rather, organic thin films with as high structural and energetic order as possible
should be considered the true candidates.35

In the following two sections some of the many models suggested in literature
for use in analyzing transport characteristics in dis-/ordered materials will be
reviewed, for which a crude and by no means exhaustive taxonomy was presented
in Fig. 2.3 in Chap. 2.

3.5 Charge transport in disordered systems

In many polymer solids the molecules are subjected to considerable spatial (and
often also energetic) disorder and the elementary transport event is the nona-
diabatic transfer of a charge carrier between adjacent transporting molecules or
segments of a main chain polymer, henceforth referred to as transport sites. For
such transfer processes to occur the charge carrier needs to overcome the potential
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energy barrier between the two localized states. This may be achieved either by (i)
emitting or absorbing phonons, or (ii) by simply tunneling from one state to the
other. The former process is thermally activated and by far the most dominant
transport mechanism at room temperature in disordered organic solids. The as-
sociated activation barrier is, in general, related to both intermolecular as well as
intramolecular interactions, the first of which arises from the physical nonequiv-
alence of the hopping sites, whereas the latter is due to the change in molecular
conformation upon removal/addition of an electron from/to the transport site.
Transfer of charge then requires the concomitant activated transfer of the molecu-
lar distortion, i.e., transfer of a polaron. The essential difference among transport
models is related to the relative importance of these two contributions. When
the coupling between the charge carrier and the intra(or inter)molecular modes is
weak, hopping models apply with distributions in activation energies for electron
transfer that serves to reflect the disorder associated with the transport sites. The
(small) polaron model, on the other hand, considers the disorder energy negligible
relative to the molecular deformation energy.

Hopping in the absence of polaronic effects is usually treated in terms of Miller-
Abrahams hopping,48 which is a special case of the more general Holstein-Emin
equation.29,30 Within Miller-Abrahams formalism the hopping rate from an initial
(donor) site i with energy εi to a final (acceptor) site f with energy εf = εi + ΔE

can be expressed as27

kET ≡ νif = ν0 exp(−2αRif )
{

exp(−ΔE/kBT ), ΔE ≥ 0,
1 ΔE ≤ 0,

(3.20)

where the pre-factor ν0 ∝ |Vif |2 is the attempt-to-jump frequency, Rif is the dis-
tance between the initial and final site, and α is a decay factor which takes into
account the decay of the inter-site coupling with distance. Accordingly, jumps
upwards in energy are thermally activated, as they involves the absorption of
an available phonon, whereas jumps downwards in energy is temperature inde-
pendent and involves the emission of a phonon. The actual hopping rate will be
determined by the competition between the two exponential factors in Eqn. (3.20).
An important observation in this context is that while at small distances the first
exponential factor in Eqn. (3.20) will be large, the chance of finding sites that are
close in energy is small. Hence, the rate of hopping between nearest neighbors
could be smaller than that between sites farther apart but closer in energy. This
type of reasoning gave rise to the so-called variable range hopping (VRH) model
in which carriers jump between sites for which the range R ≡ 2αRif + ΔE/kBT ,
i.e., the rate, is the highest.49,50,51 As a final remark to the Miller-Abrahams hop-
ping rate it should be emphasized that only single acoustic phonon transitions are
accounted for and no consideration is taken to include polaronic effects. When
applied to organic materials, Eqn. (3.20) should therefore merely be considered as
a phenomenological expression for the hopping rate.

If the charge carriers transferred through a system acquires a polaronic char-
acter, Eqn. (3.20) no longer holds and the hopping rate is rather obtained from
the Marcus or (small) polaron theory.28,44,52,53,54 Details of the derivation from
a general expression for a polaron hopping rate in disordered organic systems
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to formulations for different temperature regimes have been provided by Jortner
and Bixon55,56 and Schatz and Ratner.53 In particular, it is noted that the clas-
sical result originally derived by Marcus (see Eqn. (3.18)) is obtained from the
more general expression derived by Jortner55 in the low temperature regime. By
comparing the classical Marcus rate equation with those presented by Miller and
Abrahams, we note that the rate in the former will decrease if ΔE < −Eλ, a
region which is commonly referred to as the Marcus inverted region and which is
completely absent in the Miller-Abrahams model. Another important observation
from Eqn. (3.18) is that the rate, while increasing with increasing temperature at
low temperatures, T , where the exponential factor dominates, will decrease with
temperature at high T due to the 1/

√
T prefactor.

In disordered materials the hopping rate will vary from site to site due to
variations in the onsite energies and the inter-site coupling. Consequently, for dis-
ordered systems, general analytical expressions for the mobility based on the hop-
ping rates discussed above are difficult to obtain. Using the alternative approach
of Monte Carlo simulations, Bässler demonstrated that hopping theory based on
Miller-Abrahams formalism and a Gaussian distribution of onsite energiesd (with
width σDOS) could reproduce many of the observations made in experiments on,
e.g., molecularly doped polymers.48 In particular, he found that the dependence of
mobility, μ, on electric field strength, E, and temperature, T , within this approach,
commonly referred to as the Gaussian disorder model (GDM), can be described
by:

μ = μ0 exp[−(2σ̂/3)3 + C(σ̂2 − Σ2)
√

E], (3.21)

where μ0 is the mobility in the limit T →∞ and E → 0, C is a constant determined
from simulations, σ̂ = σDOS/kBT is the width of the DOS relative to kBT , and
Σ describes the off-diagonal disorder. Since Eqn. (3.21) has been widely used
to analyze experiments under the assumption that μ0, σDOS, and Σ completely
characterize any given material, with σDOS representing the width of the DOS
due to all sources of energetic disorder, a few remarks are in order. (i) From
experiments it is well known that the dependence of mobility on the strength of
the electric field follows a characteristic Poole-Frenkel (PF) like μ ∝ exp (γ

√
E)

behavior, with γ being a constant, but Eqn. (3.21) only predicts this type of
behavior over a very narrow field range for E > 3× 105 V/cm.57 As pointed out
by Gartstein and Conwell,58 though, the PF behavior can be obtained over a wide
range of field strengths simply by using a spatially correlated potential for the
charge carriers. Several suggestions have been put forward as a cause for this type
of correlations, of which the most notable are charge-dipole interactions59,60 and
thermal fluctuations in molecular geometries.61 However, (ii) as recently pointed
out by Pasveer et al.,62 inclusion of the charge carrier density, ρ, into the GDM
will also govern a Poole-Frenkel like behavior over a wide region of field strengths.e

These authors also demonstrated that the ρ dependence of μ is, in general, more

dThe Gaussian shape of the DOS is suggested by the Gaussian profile of the (excitonic) band
and by the recognition that the polarization energy is determined by a large number of internal
coordinates each varying randomly by small amounts.26

eThe observations by Pasveer et al. was based on a master equation approach and has been
reproduced by Jakobsson using Monte Carlo simulations.63
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important than the field dependence, but that a field dependence is still required
to describe the mobility, i.e., μ(ρ, E, T ), at low temperatures and high fields. (iii)
Finally, it is known that ln(μ) is, for some systems, better described as a linear
function of 1/T , than as a linear function of 1/T 2. Since this behavior, i.e., the 1/T
dependence, is retained if the Miller-Abrahams formulas is replaced by jumping
rates derived from Marcus theory, the 1/T dependency was originally interpreted
as a fingerprint of polaron formation.f Although the fingerprint issue is still a
matter of some controversy,65 it is generally recognized that polaron formation
should be accounted for in materials with a strong electron-phonon coupling.

For further discussions on hopping theory, we refer the reader to the excellent
reviews of Walker et al.66, Coehoorn et al 67, and Arkhipov et al.68

3.6 Charge transport in well-ordered systems

When it comes to charge transport in well-ordered organic materials, the archety-
pal systems are the organic molecular crystals which display very limited energetic
and spatial disorder. In discussions on the impact of the electron-phonon (e-ph)
coupling in these systems the distinction is, in general, not made between systems
with weak or strong e-ph coupling (although the taxonomy in Fig. 2.3 might give
this impression), but rather on account of whether or not it is the local or the
nonlocal e-ph coupling that dominates the transport characteristics. While the
former refers to the modulation of the onsite energies by both intramolecular (in-
ternal) and intermolecular (external) vibrational degrees of freedom and is the key
interaction present in the Holstein molecular crystal model (MCM),52,69 the later
concerns the modulation of the transfer integrals by lattice phonons which consti-
tutes the major interaction in Peierls models70 such as the Su-Schrieffer-Heeger
(SSH) Hamiltonian.71,72 In general, the transport characteristics will depend on
the influence of both the local and the nonlocal electron-phonon interactions.

The Hamiltonian including (explicitly) the electron-phonon (e-ph) interaction
is obtained from Eqn. (3.9) by expanding Em and Vmn in a power (or Taylor)
series of the phonon coordinates.73 In the linear e-ph coupling approximation, the
Holstein model for a molecular crystal with only one excess electron is obtained
when nonlocal e-ph terms are omitted. The Holstein model Hamiltonian then
reads:

H = −tm
∑
i,j

c†i cj − g
∑

i

c†i c
i(ai + a†

i ) + ω0

∑
i

a†
iai, (3.22)

where ci (c†i ) and ai (a†
i ) are, respectively, annihilation (creation) operators for

fermions and intramolecular phonons of frequency ω0 on site i,g tm is the elec-
tron inter-site resonance integral, and g is a local electron-phonon (e-ph) coupling
constant.

fIt should be pointed out that it is possible to deduce the Miller-Abrahams jump rate equa-
tions from Marcus theory in the classical limit under the assumption that 0 < ΔE � Eλ.64

gNote that the molecules in the Holstein model are diatomic units with phonons that corre-
sponds to local vibrations of the internuclear separation distance.
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Within this model, the setting in of a polaronic regime is directly related
to the magnitude of two parameters which are often introduced in this field:
λ ≡ g2/(2tmω0), which measures the energetic convenience to form a bound state,
and α ≡ g/ω0, which controls the number of excited phonons to which the charge
couple. For polarons to form, both conditions λ > 1 and α > 1 have to be satisfied,
corresponding to (i) a lattice deformation energy gain, Ep = −g2/ω0, larger than
the loss of bare kinetic energy (of the order of half the bandwidth,h ∼ −2tm) and
(ii) a strong reduction of the effective hopping matrix element due to a sizeable
local displacement of the nuclear positions. However, from the definitions of λ and
α one can immediately recognize that since λ = (α2/2) · (ω0/tm), a crucial role is
played by the adiabatic ratio ω0/tm. In essence, this ratio tells us weather it is the
electrons (ω0 
 tm) or the phonons (ω0 � tm) that constitutes the faster subsys-
tem of the two. When ω0 
 tm the electrons very rapidly readjust their motions
to match the motion of the much slower nuclei and the adiabatic approximationi

may be used to describe the self-trapped states. In this case the condition for a
large λ is more difficult to realize than α > 1 and polaron formation will therefore
be determined by the more restrictive λ > 1 condition. The opposite is true when
the system is in the nonadiabatic regime, i.e., when ω0 � tm.

A significant insight into polaron transport has been obtained from the analyt-
ical results derived by Holstein in his seminal work.52,69 In particular, the theory
predicts the temperature dependence of mobility with respect to the strength of
the local electron-phonon (e-ph) coupling constant. In the case of weak local e-
ph couplings (g2 
 1), the mobility is dominated by tunneling and display a
bandlike temperature dependence (μ ∼ T−n, where n > 0) in the full range of
temperatures.79 For intermediate couplings (g2 ≤ 1), the mobility is bandlike at
low temperatures but will, due to a significant increase in hopping contribution,
exhibit a weaker temperature dependence at high temperatures. For strong local
couplings (g2 � 1), three distinct temperature regimes occur: (i) at low tempera-
tures the mobility is bandlike, (ii) as the temperature increases, the hopping term
starts to dominate, and the mobility exhibits a crossover from coherent transport
to incoherent temperature-activated transport, and (iii) if the system can reach
very high temperatures at which the thermal energy becomes large enough to dis-
sociate the polaron, the residual electron is scattered by thermal phonons and as
a result the mobility decreases again with temperature.

Despite its qualitative agreement with experiments, transport theories based
solely on the original Holstein molecular model cannot fully describe the charge-
transport mechanisms in organic materials. In particular, the diatomic treatment
of the molecular sites in the Holstein model fails to capture the complex dynam-
ics of the multiatomic configurations of real molecules. One way to handle this

h This value can be obtain, in the most simple approach, from the ”energy splitting in dimer”
(ESD) method,74,75,76,77 which is based on the realization that at the transition point of a
symmetric dimer, where the charge is equally delocalized over both points, the energy difference
E2 −E1 between the adiabtic states Φ1 and Φ2 will correspond to 2t12. A further simplification
is to apply Koopmans’ theorem (KT),78 such that, e.g., t = (εLUMO+1 − εLUMO )/2.

iAlso known as the Born-Oppenheimer approximation it involves the complete neglect of the
nonadiabaticity operator in Eqn. (3.10) and is often rationalized on account of the significantly
higher velocities of the much heavier nuclei.
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problem is presented in Paper IV where we employ the Su-Schrieffer-Heeger (SSH)
Hamiltonian at the atomistic level and study the impact of the electron-lattice dy-
namics on the transport properties in a model molecular crystal system. In this
work time-independent inter-molecular transfer integrals was used, which means
that only local e-ph coupling was considered. Troisi and Orlandi, however, recently
showed that variations in transfer integrals due to thermal fluctuations of the lat-
tice can be of the same order of magnitude as the corresponding average values.80

This is a clear indication that also the nonlocal intermolecular electron-phonon
coupling must be considered.j Following up on these results, Troisi and Orlandi
developed a one-dimensional semiclassical frontier orbital modelk to compute the
(temperature dependent) charge carrier mobility in the presence of thermal fluctu-
ations of the electronic Hamiltonian.84 In particular, this model accounts for non-
local coupling with molecular motions restricted to lateral displacements only and
exclude modulations of εi and ti due to intramolecular vibrations. It is found from
numerical simulations that this type of dynamics will induce strong localization of
the charge carrier at room temperature without reference to polaron formation,
which could explain contrasting experimental observations pointing sometimes to
a delocalized ”bandlike” transport35,85 and sometimes to the existence of strongly
localized charge carriers.86

It should be noted that several attempts have been made to extend the mi-
croscopic transport theory for the case where both local and nonlocal couplings
are operative, most notably by Silbey and co-workers,87,88,89 Bobbert and co-
workers,90,91 and Kenkre et al.92. Neither of these is, however, without flaws.
Both the Bobbert approach and the Silbey approach build on extensions of the
Holstein theory, but omits specific terms which, although the theories yields qual-
itative results in agreement with experiment, raises questions about the validity
of the range of both models. Also the approach adapted by Kenkre et al. is
based on the Holstein model, but generalized to higher dimensions. It was found
to reproduce the temperature dependence and anisotropy of charge transport in
naphtalene very well, but the values of the electronic coupling required for the fit-
ting are significantly smaller than estimates obtained from, e.g., DFT and INDO
calculations.

As a final remark, it is important to stress that only in truly ultrapure single
crystals is it reasonable to assume that the energetic disorder of real systems can
be considered small. In general, chemical impurities within the crystals will intro-
duce localized states that serve to trap charge carriers who then require thermal
activation to be released. Transport at low temperatures is therefore dominated by
a mechanism where thermal activations transfer the carrier from the distribution
of trapping centers to the transport band, where they diffuse for a while until they
are trapped again. This behavior, accounted for in the multiple trapping and re-
leasing (MTR) model,93 is unlike hopping wherein transport takes place between
the localized sites themselves.

jNote that experimental evidence to support a strong dependence of the transfer integrals on
intermolecular motion has been found in many organic dimers.81,82,83

kWith individual molecules as transport sites and one molecular orbital per molecule.



CHAPTER 4

Methodological approach

The research presented in Papers I-V included in this thesis is intimately related
to electron-lattice dynamics in the π-conjugated systems. For these studies we
use a methodological approach originally proposed by Block and Streitwolf94 with
a model Hamiltonian extended to three-dimensional systems by Åsa Johansson95

and myself96,97 in collaborations with our supervisor Prof. Sven Stafström. The
general considerations addressed within this methodology are presented in Sec. 4.1,
followed by a detailed account in Sec. 4.2 of the model Hamiltonian used to de-
scribe the molecular systems of interest. In Secs. 4.3 and 4.4 we then derive the
relationships used to obtain information about the static properties and dynam-
ical behavior of these systems on the form in which they are treated within the
program used to extract this data numerically.

4.1 General considerations

In our approach, we obtain the time-dependence of the electronic degrees of free-
dom from the solutions to the time-dependent Schrödinger equation,

i�|Ψ̇〉 = Ĥel|Ψ〉, (4.1)

with |Ψ(t)〉 ≡ |Ψ〉, and determine the ionic motion in the evolving charge density
distribution by simultaneously solving the lattice equation of motion within the
potential field:

Mir̈i = −∇ri
〈Ψ|Ĥ|Ψ〉. (4.2)

Here, Ĥ (Ĥel) is the (electronic) Hamiltonian and ri and Mi the position and mass
of the i th atom, respectively. This type of calculations can be computationally
very demanding and hence require approximate treatments of both Ĥ and |Ψ〉.

23



24 Methodological approach

4.2 Model approximations

The materials of relevance for this thesis are all π-conjugated hydrocarbon systems
for which the energy gap between the σ bonding and anti-bonding states is large
compared to the phonon and polaron energies and of the order of those energies
involved in covalent bond breaking. For our purposes it is hence sufficient to treat
the σ-electrons as fully localized to the bonds which they are involved in and
the wave function for the molecular states as separable with the same σ-electron
wave function for all molecular states (the π-electron approximation).98 The total
electronic energy of the system can then be written as

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ψσ|Ĥσ|Ψσ〉+ 〈Ψπ|Ĥπ|Ψπ〉 = Eσ + 〈Ψπ|Ĥπ|Ψπ〉, (4.3)

where Hσ and Hπ refer to the Hamiltonian of the σ- and π-electron subsys-
tems, respectively. Since Eσ is assumed to be simply a constant, the relationship
Eπ = 〈Ψπ|Ĥπ|Ψπ〉 can be used to find the optimum π-electron MOs, which we
expand in a linear combination of atomic orbitals (the LCAO MO approximation)
using a minimal basis set of only one 2pz orbital per site. The π-electron model
Hamiltonian is derived below from the independent electron tight-binding model
introduced in Secs. 3.1 and 3.2 and relies on an approximation scheme introduced
by Su, Schrieffer and Heeger (SSH) for studies of the electron-lattice dynamics
of quasi-one-dimensional systems, but is here extended to encompass also three-
dimensional structures. A single unique parameter set is then used for obtaining
all properties of a given system.

The essential elements in implementing this model are the choice of the func-
tional forms for the different energy contributions to the system. In the general
case of three-dimensional molecules (schematically depicted in Fig. 4.2) a standard
classic force field potential such as CHARMM (Chemistry at HARvard Macro-
molecular Mechanics)99 can be used to calculate the energy contribution from the
σ-bonds. Neglecting the contributions from both Coulomb and van der Waals
interactions on account of the small corrections to the overall energy that these
contributions are expected to have on the systems, the force field potential then
read:

Eσ =
K1

2

∑
〈ij〉

(rij − a)2 +
K2

2

∑
〈ijk〉

(ϑijk − ϑ0)
2 + K3

∑
〈ijkl〉

(1− cos(θijkl − θ0)). (4.4)

Here, K1, K2, and K3 are force field constants for the stretching, bending, and
twisting of bond lengths, rij , bond angles, ϑijk, and dihedral angles, θijkl, around
the undimerized state (a, ϑ0, θ0), and the angle bracketed summation indices are
used to emphasize that only nearest neighbors are considered. The total cost in
energy, Etot, due to lattice distortions is then obtained by supplementing Eqn. (4.4)
with the contribution from the kinetic energy of the ions, i.e.,

Etot = Eσ +
1
2

N∑
n=1

Mnṙn. (4.5)
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Figure 4.1. Illustration of all variables that enter the Hamiltonian of the system.

For the π-electron subsystem it is necessary to adopt a quantum mechanical
description of the system in order to be able to capture the fundamental physics
of, e.g., phonon excitations and polaron formation, both of which requires energies
comparable to the gap between π bonding and anti-bonding states. Treating the
resonance integrals, βij , in the Mulliken approximation,100 i.e., as proportional
to the overlap integrals, Sij , by a constant k, the energy contribution from the
π-electron system then read

Ĥπ = −k
∑
〈ij〉

Sij [ĉ
†
j ĉi + ĉ†i ĉj ], (4.6)

where ĉ†i (ĉi) creates (annihilates) an electron on site i and, assuming a tight-
binding approach, the summation run over nearest neighbors only. Analytical
formulas for Sij between 2p Slater type atomic orbitals pπ,i and pπ,j on sites
i and j (arbitrary directions) have been obtained by Hansson and Stafström101

from the master formulas of Mulliken et al.102 Expanded to first order around the
undimerized state, it is easy to show that for systems where all 2p Slater type
atomic orbitals are orthogonal to the bond plane

Sij = k−1 cos(Φij)[t0 − α(rij − a)], (4.7)

where Φij = arccos(pπ,i · pπ,j/|pπ,i||pπ,j |) is the angle between pπ,j and the pro-
jection of pπ,i along the interatomic bond axis, and

t0 = A · (15 + 15aζ + 6(aζ)2 + (aζ)3), (4.8)
α = A · aζ2(3 + 3aζ + (aζ)2), (4.9)

with A = k · (e−aζ/15) and ζ = 3.07 Å−1 for the 2p orbitals of carbon,101 are
parameters referred to as the bare hopping integral and the electron-phonon cou-
pling constant, respectively. Equations (4.6)–(4.9) are the relevant formulas for
the π-electrons in the systems treated in this thesis. Note though that if the or-
thogonality condition is not satisfied by all pπ vectors, π-electrons will mix with
the σ-bonding system which would hence require an exact treatment also of this
part of the Hamiltonian.
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4.3 Statics

Having defined our model Hamiltonian, Ĥ, the next step is to determine the pa-
rameter set that most accurately reproduce such properties of the real system as,
e.g., the atomic configuration, the distribution of charge, and the band gap en-
ergy. This is a multi-objective optimization problem that can be solved efficiently
using evolutionary algorithms (EA).103 An EA is a generic population-based meta-
heuristic optimization algorithm inspired by the mechanisms of ”natural selection”
where candidate solutions to the optimization problem play the role of individuals
in a population, and a fitness function is designed to rank the optimality of a solu-
tion against all other candidate solutions. Evolution of the population then takes
place after the repeated application of operations designed to mimic reproduction,
mutation, recombination, and selection.

An ideal fitness function correlates closely with the algorithms goal, and yet
may be computed quickly.103 For the problem at hand the first of these criteria
implies that the fitness function should be stated in terms of the accuracy by which
molecular properties obtained from ab initio calculations or experimental observa-
tions are reproduced by the candidate solution. The second criteria concerns the
efficiency by which each candidate solution can be retrieved and evaluated. In this
case it is the first of these two steps that is time consuming since the properties
of the system need to be evaluated at the variational minimum of the total energy
with respect to the atomic configuration. These calculations are carried out self-
consistently for each candidate (Hamiltonian) parameter set, x, using, e.g., the
resilient propagation method RPROP.104,105 In order to keep the molecular size
of the system during these procedures, we use the method of Lagrangian multipli-
ers to include the constraint that the total change in bond lengths should amount
to zero,106 i.e.,

∑
〈ij〉(rij − a) = 0, which can be incorporated into the model by

simply subtracting a constant term in the ”distance spring part” of Eqn. (4.4)
such that

K1

2

∑
〈ij〉

(rij − a)2 → K1

2

∑
〈ij〉

(
rij − a− 2α

K1

〈ρ〉
)2

, (4.10)

where 〈ρ〉 is the mean density of charge in the system.
To shed light as to how this scheme can be carried out in practice, we take

as an example the situation where the primary objective is to reproduce the ab
initio bond lengths, rij , and band gap energies, Eg, of some particular molecule.
A possible fitness function, f , for candidate solutions, x, would then be,

f(x) = |Eg, ab − Eg, oc(x)|+
∑
〈ij〉
|rij, ab − rij, oc(x)|, (4.11)

where ab denote values obtained from ab initio calculations and oc those obtained
using the optimized configuration of the ions for each candidate parameter set.
The later are, as already mentioned, retrieved from the self-consistent solutions to
the following equation

∇ri
Etot = ∇ri

〈Ψ0|Ĥπ + Ĥlatt|Ψ0〉 = ∇ri
[〈Ψπ

0 |Ĥπ|Ψπ
0 〉+ E

′
latt] = 0 (4.12)
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where |Ψ0〉 is the state that minimize Etot and E
′
latt is the lattice energy as spec-

ified in Eqn. (4.5) but modified in accordance with Eqn. (4.10). The evolutionary
algorithm can then be employed to find the optimal parameter set that minimizes
f with respect to x by repeatably modifying a population of candidate solutions
{xi} over a predefined number of generations ng. At each step, the algorithm gen-
erates ne children (new candidates) that are exact copies of the three individuals
(present candidates) with the best fitness values, nm children that are uniformly
selected individuals with random numbers of normal distribution appended to each
vector element, and nc children that are weighted arithmetic means of two parents
chosen through roulette selection within the current population. For a continuous
population size of 20 individuals evolving over ng=100 generations with ne=3,
nm=6, and nc=11, an optimal parameter set that minimizes f is typically found
within 30 to 40 generations.

4.4 Dynamics

We are now finally at a position to outline and further develop the finer details
of the methodological approach which was briefly sketched in Sec. 4.1. However,
since we are interested in non-trivial dynamics we must first extend our model
Hamiltonian to also include external forces that can act to perturb the otherwise
static properties of the system. In this thesis, we focus mainly on field induced
charge carrier dynamics, but study also excitation dynamics. As the later situation
do not add to the methodological description required for the former, we only need
to modify our model Hamiltonian by incorporating the impact of an externally
applied electric field, E(t).

In our approach we take the field into account in the Coulomb gauge, i.e., by
a scalar potential. Since periodic boundary conditions are not applicable in the
Coulomb gauge, this will restrict us to use only finite sized systems. We further
assume that the electric field is uniform in space and constant in time after a
smooth turn on described by a half Gaussian function of width tw centered at tc.
The external electric-field contribution to the Hamiltonian then reads

ĤE = |e|
∑

i

riE(t)(ĉ†i ĉi − 1), (4.13)

where, in the direction of the electric field, ê,

E(t) =
{

E0 exp[−(t− tc)
2/t2w]ê t < tc,

E0ê, otherwise. (4.14)

Supplementing this contribution to Hπ, we then arrive at the following expression
for the electronic Hamiltonian:

Ĥel = Ĥπ + ĤE =
∑
〈ij〉

ĉ†ihij(t)ĉj − |e|
∑

i

riE(t). (4.15)

Note that a similar onset behavior as in Eqn. (4.14) is obtained for E(t) = 0
at t < ts,

1
2E0

[
1− cos(π t−ts

tf−ts
)
]

at ts < t < tf , and E0 otherwise, but with the

advantageous possibility of controlling the time period [ts, tf ] for the onset of E(t).
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Having defined the constituent parts of Ĥ, it follows that Eqns. (4.1) and (4.2)
are coupled via the one-electron density matrix elements, ρnm(t), and therefore
must be solved simultaneously. Within the mean-field approximation we make
the ansatz94 that ρnm(t) =

∑N
ν=1 C∗

nν(t)fνCmν(t), where fν ∈ [0, 1, 2] is the
time-independent occupation number of the ν:th time-dependent molecular or-
bital |ψν(t)〉 and Cnν(t) is the time-dependent expansion coefficient of a linear
combination of atomic orbitals, |ψν(t)〉 =

∑N
n=1 Cnν(t)|φn〉. Using the generalized

Hellmann-Feynman theorem for the ionic forces,107 Eqns. (4.2) then resolves into

Mn′ r̈n′(t) = −
N∑

n,m=1

N∑
ν=1

fνC∗
nν(t) 〈φn|∇rn′ Ĥ(t)|φm〉Cmν(t), (4.16)

where Cnν(t) is obtained from the following equations (as derived from Eqn. (4.1)):

i�Ċnν(t) = −ernE0(t)Cnν(t)−
∑

m∈〈nm〉
βnm(t)Cmν(t). (4.17)

The coupled differential equations (4.16) and (4.17) constitute an ordinary differ-
ential equation initial value problem (ODE IVP) and are solved numerically using
a Runge-Kutta method (in the rksuite 90 package108,109) of order 8 with step-size
control, which in practice means a time step of about 10 as. Furthermore, we use
a ”global time step” of 1 fs and take as the starting wave function the solution to
the time-independent Schrödinger equation of the atomic configuration at t = 0,
the later of which is obtained from a complete relaxation of atomic positions.

One of the greatest advantages with this method is that it enables studies of
both nonadiabatic and adiabatic dynamics and the intrinsic and extrinsic proper-
ties that govern transitions between the two. For this reason it becomes necessary
to probe the adiabaticity of the system during simulations. In order to do so, we
first express the normalized time-dependent MOs, |ψp(t)〉, in a basis of instanta-
neous eigenfunctions, |φq〉. Expanding |φq〉 in the same basis set as |ψp(t)〉,

|ϕq〉 =
N∑

n′′=1

Bn′′q|φn′′〉, (4.18)

with expansion coefficients Bn′′q derived from the time-independent Schrödinger
equation −∑N

j=1 βij(t)Bjq = εqBiq, we obtain, at each time step t during simu-
lations, a relationship between the two sets of expansion coefficients of the form
Cn′p(t) =

∑N
q=1 Bn′qαqp(t), where the elements αqp(t) = 〈ϕq|ψp(t)〉 are used to

define the time-dependent occupation number of the instantaneous eigenstates as

nν(t) =
N∑

μ=1

fμ|ανμ(t)|2. (4.19)

In adiabatic dynamics the occupation numbers are held fixed at their initial values,
i.e., ανμ(t) � δνμ, and the dynamics is determined by the instantaneous eigenfunc-
tions |ϕμ〉. However, by simultaneously solving Eqns. (4.16) and (4.17) we allow
for non-adiabatic transitions to occur which are implied in the nν(t)-spectrum by
multiple state occupancy and rapid interstate transitions.



CHAPTER 5

Comments on papers

Having detailed the theoretical framework of which I have been a part of devel-
oping, the purpose with this chapter is to give a brief introduction to the papers
included in this thesis and highlight the main results that were obtained. In Sec. 5.1
is presented the results of Papers I-III dealing with properties of intrachain trans-
port in conjugated polymers (CPs) using poly(para-phenylene vinylene) as a model
system. The results presented in Sec. 5.2 for Papers IV-V concern, respectively,
the transport and relaxation dynamics in molecular crystals (MCs) using the pen-
tacene single crystal as a model system. In this context I would like to point out
that although I have performed all calculations and written most of the text in
Papers I-II and IV-V, I have been firmly advised by my supervisor and coauthor
Prof. Sven Stafström. It should also be mentioned that Paper III is a collabora-
tion between myself, Prof. Sven Stafström and PhD Mathieu Linares, where my
contribution mainly concerned program modifications for data acquisition from
the TINKER software package used for the study (the methodology of which is
presented below) as well as participation in the analysis of the system dynamics.

5.1 Electron-lattice dynamics in CPs

Organic conjugated polymers have, as previously noted, emerged as a highly
promising class of materials for electronic, photovoltaic, and optoelectronic ap-
plications. Considerable experimental and theoretical efforts have therefore been
devoted to understand the basic properties of these systems. Among the most
vividly studied conjugated polymers is poly(para-phenylene vinylene) (PPV), a
molecule with a repeat unit consisting of a phenylene ring and a vinylene segment,
the ball-and-stick model of which is presented in Fig. 5.1. Although surpassed
by other materials for use in real devices, it is still considered to be an excellent
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θ

Figure 5.1. A poly(para-phenylene vinylene) (PPV) chain of five monomers with
phenylene ring torsions. The torsion angle, θ, between the bond planes of the first
vinylene group and the second phenylene ring is highlighted.

prototypical system for π-conjugated polymers.
The ground state of the isolated PPV molecule is that of a planar chain, but

the potential energy required to induce the type of small non-zero torsion angles,
θ, between the phenylene ring and the vinylene segment (see Fig. 5.1) is exceed-
ingly small. For instance, the energy difference between a planar PPV chain and
a PPV chain with phenylene ring torsion angles θ of ∼ 7 ◦ is less than 1 meV.110

This is also evident from x-ray diffraction studies of the crystalline phase of PPV,
where the experimental results suggests a nonplanar thermal-averaged chain con-
formation with thermally driven large-amplitude phenylene ring liberation. Since
phenylene ring torsion will reduce the interatomic interaction between vinylene
segments and phenylene rings along the molecular backbone, this would explain,
e.g., the thermochromic blue-shift observed in the spectrum of the PPV deriva-
tive MEH-PPV.111 It is also believed that ring torsion will influence the transport
characteristics of the material, in particular the intrachain transport processes,
although the details concerning the physics of these processes are not yet fully
understood. The studies in Papers I-II, briefly presented below, intend to bridge
at least a part of this gap.

5.1.1 Paper I:
Transport along chains with static ring torsion

In paper I we focus on the impact of ring torsion due to steric effects and torsional
modes with very low frequencies.112,113 A static picture was therefore adopted
for the phenylene ring torsion angles of the system (henceforth denoted as {θn})
and its impact on the transport of charge carriers along the molecular backbone
studied. In the limit of zero applied field any finite fluctuations in the phenylene
ring torsion angles will lead to a localization of the charge and a nonadiabatic
transport process. When an external electric field is applied across the chain the
barriers for charge transport imposed by the torsion of the phenylene rings will
be reduced and a crossover to adiabatic drift transport is possible. This crossover
occurs at higher and higher electric field strengths for increasing magnitudes of
the variations in {θn}. The sensitivity for such transitions in the case of random
variations in {θn} is strong and in systems with θn ∈ [0 ◦, 20 ◦] adiabatic transport
is absent already at a field strength of 5.0× 104 V/cm.
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Also presented in this paper are results from simulations performed for step-
like changes in the value(s) of θn along the chain for which quantitative details
concerning the transition from adiabatic to nonadiabatic transport are obtained.
It is clear from these simulations that the strength of the barrier depends on
an interdependence between the magnitude of the torsion angles associated with
individual phenylene rings and the extension of the region with larger torsion
angles. For small torsion angles and short barrier extensions, we find that it is the
sum of the decrease in the resonance integrals of the individual rings that produces
the strength of the total barrier.

5.1.2 Paper II:
Transport along chains with dynamic ring torsion

In Paper II we study out-of-plane torsional modes with frequencies high enough
to actually have a direct influence on the charge transport processes along the
chain.114 A mixed quantum mechanical / molecular dynamics (QMMD) simula-
tion in the NV T ensemble at T = 300 K with the TINKER software packagea

(URL http://dasher.wustl.edu/tinker/) reveals that these are the dominant tor-
sional modes at room temperature and that the time period for these modes is
roughly 1.4 picosecond. The modulations of the resonance integrals at the C-C
phenylene-vinylene bonds due to dynamic ring torsion therefore only imposes tem-
porary restrictions of localization for propagating charge carriers. Incorporating
this type of dynamics into our model, we focus in this paper on the impact of
dynamic phenylene ring torsion on the intrachain transport processes. Our previ-
ous results from Paper I then provide information only about the instantaneous
picture in this type of systems with the most important result being the detailed
analysis of the barrier crossing which still applies.

Simulations were performed on both unbiased and biased systems. In partic-
ular, we find that charge carriers in the unbiased system move as a consequence
of the continuous changes made to the potential energy surface by the dynamics
of ring torsion. Furthermore, we also observe nonadiabatic interstate transitions
when the charge carrier is either destabilized by the torsion of rings within the
region where it resides or when it breaches a potential energy barrier as a result
of the time evolution of the torsion angles that constitutes the barrier. In the case
of the biased systems, we find that the dynamics of ring torsions can lead to a
nonadiabatic transport process. In Fig. 5.2, where the results from a simulation
on a system across which an external electric field is turned on smoothly over a
time interval of t ∈ [1400, 1600] femtoseconds, such an occasion can be observed at
t � 1900 femtoseconds. During a small time frame, we then observe a reallocation
of charge density from one end of the system to the other (left panel). This process
involves, with reference to the time evolution of the occupation number of occu-
pied levels displayed in the center panel, a transition from the localized polaron
level to a delocalized level followed by stabilization of this delocalized level into a
new polaronic state. From the time evolution of the strength of the resonance in-
tegrals, {βn(θn)}, across each interconnecting bond between a phenylene ring and

aA methodological approach which is further detailed in Sec. 5.1.3.
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Figure 5.2. The time evolution of the density of charge (left panel), the occupation
number per occupation level (center panel), and the resonance integral strength for each
interconnecting bond between a phenylene ring and a vinylene group (right panel) is
displayed. These results are obtained from a simulation on a PPV chain with 31 phenylene
rings across which an external electric field is raised from E0 = 0 V/cm to 5.0×104 V/cm2

during a time period of 200 femtoseconds (fs), initiated at t = 1400 fs. Note that the
solid line in the right panel is used to highlight the position of the center of the local
density of charge (left panels).

a vinylene segment, as displayed in the right panel of Fig. 5.2, it is evident that
this process is brought about by the torsional motion of the phenylene rings. We
hence conclude that intrachain transport processes at room temperature involves
both nonadiabatic effects and the dynamics of the polaron state.

5.1.3 Paper III:
Localization due to ring torsion dynamics

To gain further insight into the impact of ring torsion dynamics on the electronic
properties in PPV we employed the previously mentioned combined quantum me-
chanical / molecular dynamics (QMMD) approach, which enables us to include
temperature in an explicit fashion.

In brief, we performed molecular dynamics simulations on PPV oligomers using
the TINKER molecular software package (URL http://dasher.wustl.edu/tinker/).
For the Hamiltonian we used a MM3 force field115,116,117 for the nuclear motion
combined with the quantum mechanical Pariser–Parr–Pople (PPP) model40,118,119

for the π-electron system.b Compared to the SSH Hamiltonian used in the previous
studies, the PPP model includes also the one- and two-center electron-electron
repulsion integrals. Similar to the approach detailed in Sec. 4.2, the effect of
torsion (around a given π bond) on the bond conjugation is included in the model
by imposing a modulation of the resonance integral of the form:

βij = cos(θij)β
(p)
ij , (5.1)

where β
(p)
ij is the resonance integral for the planar conformation. The MD simu-

bCompared to harmonic force field potentials such as CHARMM,99 Allinger’s MM3 method
uses, in particular, a quartic Taylor series expansion to approximate the Morse potential for bond
stretch and a sextic expansion for angle bend.
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lations were performed in the NVT canonical ensemblec using periodic boundary
conditions with a very large super cell (20 × 20 × 20 nm) to simulate an isolated
chain in vacuum. The full time period of the simulation is 20 picoseconds with
a time step of 1 atosecond. Every femtosecond during the simulation we extract
the LCAO expansion coefficients for the molecular orbitals (MOs) of the PPV
oligomer and, being primarily interested in the electron localization properties of
the system, calculate the inverse participation ratio (IPR). The IPR for the j:th
MO is defined as:

IPRj =

∑N
i=1 C4

ij(∑N
i=1 C2

ij

)2 , (5.2)

where Cij is the LCAO expansion coefficient at site i and N the number of sites
(carbon atoms) in the system. For an infinite system with an orthonormal basis,
the value of IPRj would vary from zero for extremely localized states to one for
fully delocalized states.

The thermally induced dynamics of the PPV oligomer involves bond stretching,
bond angle bending, and torsional degrees of freedom and we focus on how these
geometrical changes couple to the electronic structure of the system, in particular
to electron localization as described by the IPR value. Due to computational costs
we limit our study to a chain of five monomer units.d In Fig. 5.3(a) is shown the
IPR as a function of time for the highest occupied molecular orbital (HOMO)
at T= 1 K (solid gray line) and 300 K (solid black line), respectively, during a
time period of 700 femtoseconds. At T= 1 K all phonon mode amplitudes are
small which means that the oligomer is at all times close to its planar ground
state confirmation. This favors delocalization of the wave function, but since the
structure of PPV is such that the HOMO has different expansion coefficients for
the AOs at different sites, the value of the IPR is higher than what might be
expected for the fully delocalized state in the five monomer oligomer, which would
be 1/40 = 0.025. At T= 300 K we see a clear effect on the localization properties
due to thermally induced phonon modes. Note though that the relatively small
change in the IPR value indicates that the degree of localization is rather small,
which is to be expected in a system of this moderate size.

An interesting feature of the time evolution of the IPR for the HOMO level
at T= 300 K are the high and low frequency oscillations that occurs with similar
amplitudes. From the Fourier transform of the IPRHOMO at T = 300 K, taken
over the full simulation period, i.e., 20 ps, and displayed in Fig. 5.3(b), these
components are clearly resolved. We observe low frequency components in the
frequency range 0-250 cm−1, as well as three other contributions around 900, 1270
and 1600 cm−1. These regimes could be correlated to changes in the resonance
integral strength of specific types of covalent bonds along the molecular backbone.

cA statistical ensemble representing a probability distribution of microscopic states of the
system where the number of particles (N), the volume (V ), of each system in the ensemble are
the same, and the ensemble has a well defined temperature (T ).

dNote that simulations over a couple of picoseconds with a chain of ten monomer units showed
that the wave function is significantly localized only over 3 monomer units, which implies that
the five monomer system is sufficiently large for our analysis of the influence of system dynamics.
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Figure 5.3. In (a) is shown the IPR of the HOMO as a function of time at two
temperatures: T = 1 K (solid gray) and T = 300 K (solid black). In (b) is shown the
Fourier transform of the later (but taken during the full time period of the simulation,
i.e., 20 ps).

The most important changes, corresponding to the signatures in the low frequency
regime and around 1270 cm−1, could be traced to the dynamics of the C-C single
and double bonds on the vinylene segments. The additional contributions to the
IPR spectrum at 900 cm−1 and 1600 cm−1 are due to modes localized to the
phenylene rings.

The C-C bond stretching of the double bond in the vinylene unit is of secondary
interest in relation to the intrachain transport properties. First, the increase in
IPR is rather limited and remains essentially unchanged if we go to more extended
oligomers. Second, the time scale for the associated changes in β and IPR is faster
or of the same order as the time scale of polaron transport and it will therefore not
reduce the polaron drift velocity to any larger extent. We therefore conclude that
the single most important intrachain lattice mode which limits polaron transport
along a PPV chain is the torsion of phenylene rings with respect to the vinylene
segments. These results are in favor of our previously adapted approach in Papers I
and II.

5.2 Electron-lattice dynamics in MCs

Organic molecular crystals (MCs) are often employed by experimentalists to ob-
tain basic physical insight into the intrinsic properties and processes of organic
molecular solids. Of these, the ultrapure single crystals, in which the crystal lat-
tice of the entire sample is envisioned as continuous and unbroken, offers a minimal
influence of extrinsically induced diagonal and off-diagonal disorder. Most vividly
studied are the oligoacene single crystals and in particular the pentacene (C22H14)
single crystal in which a hole mobility exceeding that in amorphous silicon has
been measured.120

The fundamental limit for charge transport in these systems depends on the
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Figure 5.4. The ab-plane of the triclinic crystal structure of pentacene, where the
strongest pathways for charge transport has been highlighted.

molecular packing within the organic crystal. In the case of the (small) oligoacene
molecules, the structure of the crystal is triclinic with two planar molecules in
the unit cell, situated on independent centers of symmetry.121 The intermolecu-
lar overlap in the direction of the long molecular axis is weak, and transport is
thus facilitated predominantly in two dimensional molecular sheets, as depicted in
Fig. 5.4 in the case of the pentacene crystal.

We have conducted two studies with respect to molecular crystals, one related
to their associated transport properties (Paper IV) and the other to nonradiative
relaxation dynamics (Paper V). In both of these studies we use as a model system
for molecular crystals linear segments of pentacene molecules extracted from the
single crystal configuration along the a + b crystallographic direction (as defined
in Fig. 5.4).

5.2.1 Paper IV:
Transport dynamics in MCs with local e-ph coupling

In this work we study the charge carrier transport process in molecular crystals
as a function of intermolecular interaction strength, J ,e with an emphasis on the
transition from adiabatic polaron drift to nonadiabatic hopping transport. The
details of this transition is determined by the relative strength of J and Ep, the
later of which is the energy gained by the system from the self-localization of a
single charge, i.e., the polaron formation energy.f In particular, we can identify
three different regimes for charge carrier transport in molecular solids. On the
one hand we have the systems with weak intermolecular interactions (J 
 Ep) for

eThis quantity is obtained from the energy splitting in dimer with Koopmans’ theorem (ESD-
KT) method, as presented in footnote h in Sec. 3.6.

fIt was shown by Capone et al.122 that λ, i.e., the energetic convenience to form a bound state,
need to be larger than one for the settling in of a polaronic regime. This quantity was introduced
already in Sec. 3.6, and since J � −2tm (tm being the intermolecular transfer/resonance integral),
it follows from the definition of λ that λ = Ep/J .
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which the small polaron localized to a single molecule is stable and transport may
be analyzed in terms of hopping, and on the other hand we have the systems with
strong intermolecular interaction (J � Ep) for which the localized carrier state
is unstable and band transport applies. For systems in the intermediate regime
(J ∼ Ep) the polaron is delocalized over several molecular units. The dynamics of
this type of systems can be analyzed with our methodological approach, which is
the main focus of this work.

As a model system we use linear segments of pentacene molecules in the single
crystal configuration121 and introduce scaled values of the intermolecular inter-
atomic resonance integrals of the form of Eqn. (4.7) in order to simulate different
intermolecular interaction strengths, J . The time-dependence of the occupation
number (see Eqn. (4.19)) is used as a measurement of the adiabaticity123 of the sys-
tem. Within our model we determine the polaron formation energy to be Ep = 97
meV. Covering the regime J ∈ [20, 120] meV we then observe a shift from a
nonadiabatic to an adiabatic polaron drift process. For intermolecular interaction
strengths J > 120 meV the polaron is no longer stable and the transport becomes
band like, whereas for J ≤ 20 meV the polaron is localized to a single molecule
and transport is assumed to occur through nonadiabatic hopping transport.

These observations imply that our approach can be used to study the dynamics
of charge transport in the intermediate regime where neither band theory nor
perturbative treatments like the Holstein model52,69 or extended Marcus theory56

apply.

5.2.2 Paper V:
Internal conversion dynamics in MCs

In this paper we explore the dynamics of nonradiative electronic relaxation pro-
cesses in molecular crystals. This is known from experiments to constitute the
dominant relaxation channel from higher lying excited states in this type of sys-
tems. Typically, the process involves an ultrafast nonradiative relaxation between
states of the same spin multiplicity, a process referred to as internal conversion
(IC), followed by a much slower decay of the phonons induced into the system
during the IC phase. Depending on the excitation energy the relaxation process
can involve interstate transitions both within and between the bands of molecular
crystal orbitals.

The dynamics of a typical intraband relaxation process is captured in Fig. 5.5,
where the time evolution of (a) the occupation numbers and (b) the energy levels
of the manifold of instantaneous eigenstates following an electron excitation across
the band gap from the 105 th to the 116 th molecular crystal orbital (MCO) are
displayed. These results clearly show a nonadiabatic internal conversion process
towards the states closest to the band gap followed by a subsequent adiabatic
decay of vibrational modes within the system accompanied by the evolution of a
self-localized electron-hole species with a polaronic signature. Note that the quasi-
static phase observed in the beginning of the simulation is an artifact of the way
in which we introduce electron excitation into our model (as further detailed in
Paper V).
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Figure 5.5. The evolution of (a) the occupation numbers and (b) the energy levels
of the instantaneous eigenstates as a function of time (in femtoseconds) following the
excitation of an electron from the 105 th to the 116 th molecular crystal orbital in a
system of ten pentacene molecules. Note that the 110 th and the 111 th levels are the
highest occupied and the lowest unoccupied MCOs in the system, respectively.

When excitations are made from states well below the highest occupied MCO to
states well above the lowest unoccupied MCO, the nonradiative relaxation process
will also involve interband interstate transitions. Our calculations show that these
events are facilitated by the transfer of energy from the electronic system to the
lattice and that the phonons induced couples only to the states in the bands of
MCOs to which the transition is made. It is also clear from these simulations
that the relaxation process observed is limited by the interband transitions made
between states of considerably different eigenenergies.
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CHAPTER 6

Outlook

To conclude the first part of this thesis we here provide an outlook of developmental
issues that if solved would improve the applicability of the model/methodology
used in the research presented in Papers I-II and IV-V. In particular:

1 The Hamiltonian introduced in Chap. 4 does not include electron-electron
repulsion. To take also these interactions into account would be particularly
valuable in studies of, e.g., excitons or systems with multiple charges.

2 With the currently employed classical description of the nuclei dynamics,
our model is strictly speaking only valid in the high-temperature regime,
i.e., where kBT � �ωξ for all phonon modes ξ. Obviously it would be
beneficial to extend its applicability also towards the low-temperature regime
by incorporating a quantized description of the lattice.

3 The weak interactions between molecules and their interdependence on the
electron-phonon coupling dynamics is currently lacking in our model. With
a full description of the intra- as well as intermolecular interactions, it would
be possible to probe not only local coupling (as in Paper IV) or nonlocal
coupling (as in the work by Troisi and Orlandi80) separately, but to actually
study the full dynamics of systems with many molecules.

4 To be able to treat longer systems while keeping computational costs down, it
would be beneficial to implement our method using periodic boundary condi-
tions. This has been done by others on quasi-one-dimensional systems such
as trans-polyacetylene124,125,126 and generally requires that the externally
applied electric field is treated as a vector potential. Within this approach,

39



40 Outlook

the electronic and electric field part of the Hamiltonian can be written as

Hel = −
∑
〈nm〉

βnm(t)[eiγA(t)ĉ†nĉm + H.c.], (6.1)

where the parameter γ is defined as γ = ea/�c, with e being the abso-
lute value of the electronic charge, a the bond length in the undimerized
molecules, and c the speed of light, and A(t) is a vector potential of the form
E(t) = −(1/c)·(∂A(t)/∂t), introduced to describe a uniform time-dependent
external electric field E(t) along the chain. The modified electronic Hamil-
tonian Eqn. (6.1) is then incorporated into the time-dependent Schrödinger
equation and the equation of motion. When solving these two coupled equa-
tions using the Runge-Kutta (RK) method previously mentioned in Sec. 4.4,
we note that since the time step Δt taken by the RK solver is small compared
to the characteristic time of the lattice vibration it follows that

A(t) =
∫
t′

∂A(t′)
∂t′

dt′ = −c

∫
t′

E(t′)dt′ � −cΔtE(t). (6.2)

What remains to be considered, besides the actual implementation of these
relationships into the simulations software, is to evaluate exactly what type
of periodic boundary condition that should be used.

It is my sincere hope that others continue to work with the model and solve these
or other developmental issues, whichever they may be.
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48. H. Bässler, Phys. Stat. Sol. (b) 175, 15 (1993).

49. N. F. Mott, Phil. Mag. 19, 835 (1969).

50. N. F. Mott, and E. A. Davis, Electronic Processes in Non-Crystalline Mate-
rials, Calendron Press, Oxford, 1979.

51. N. Apsley, and H. Huges, Phil. Mag. 30, 963 (1974).

52. T. Holstein, Ann. of Phys. 8, 343 (1959).

53. G. C. Schatz, and M. A. Ratner, Quantum Mechanics in Chemistry, Dover
Publication, Mineola, NY, 2002.

54. D. Emin, Adv. Phys. 24, 305 (1975).

55. J. Jortner, J. Chem. Phys. 64, 4860 (1976).

56. M. Bixon, and J. J, Adv. Chem. Phys. 106, 35 (1999).

57. L. B. Schein, Phil. Mag. B 65, 795 (1992).

58. Y. N. Gartstein, and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).

59. D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542
(1996).



44 BIBLIOGRAPHY

60. S. V. Novikov, D. H. Dunlap, V. Kenkre, P. E. Parris, and A. V. Vannikov,
Phys. Rev. Lett. 81, 4472 (1998).

61. Y. Roichman, and N. Tessler, Synth. Met. 135-136, 443 (2003).

62. W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, B. P. A., P. W. M. Blom,
D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).

63. M. Jakobsson, Monte Carlo simulations of charge transport in organic mate-
rials, Master’s thesis, Linköpings Universitet (2006).
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