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Abstract

Automatic bin picking is a well-known problem in industrial automation and computer
vision, where a robot picks an object from a bin and places it somewhere else. There is
continuous ongoing research for many years to improve the contemporary solution. With
camera technology advancing rapidly and available fast computation resources, solving
this problem with deep learning has become a current interest for several researchers. This
thesis intends to leverage the current state-of-the-art deep learning based methods of 3D
instance segmentation and point cloud registration and combine them to improve the bin-
picking solution by improving the performance and make them robust.

The problem of bin picking becomes complex when the bin contains identical objects
with heavy occlusion. To solve this problem, a 3D instance segmentation is performed
with Fast Point Cloud Clustering (FPCC) method to detect and locate the objects in the bin.
Further, an extraction strategy is proposed to choose one predicted instance at a time. In
the next step, a point cloud registration technique is implemented based on PointNetLK
method to estimate the pose of the selected object from the bin.

The above implementation is trained, tested, and evaluated on synthetically generated
datasets. The synthetic dataset also contains several noisy point clouds to imitate a real
situation. The real data captured at the company ’SICK IVP’ is also tested with the imple-
mented model.

It is observed that the 3D instance segmentation can detect and locate the objects avail-
able in the bin. In a noisy environment, the performance degrades as the noise level in-
crease. However, the decrease in the performance is found to be not so significant. Point
cloud registration is observed to register best with the full point cloud of the object, when
compared to point cloud with missing points.
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1 Introduction

Robotic bin picking is a complex process in which a robot detects the object(s) from a con-
tainer, picks it up, and places it somewhere else. Vision bin-picking robots are equipped with
a camera(s) to detect the object and a gripper, e.g. a suction or parallel gripper to hold the ob-
ject. With recent advancements in the industries, robotic bin picking is highly demanded as
it becomes extremely crucial in the factory automation process. The application of robotic bin
picking includes sorting items, picking and placing, packaging, or assembling. Automating
bin picking is a long-known and core problem in industrial automation [37, 50, 24].

Robotic bin picking can improve accuracy and reduce labor costs. This can also be efficient
in reducing the risk of injuries to workers and damage to products while picking. Fig. 1.1
shows a sample robot bin-picking setup.

Figure 1.1: A sample robot for bin picking applications

It appears to be a very simple task for humans to pick objects from an extremely cluttered
environment. However, it is a highly challenging and complex exercise for robots. This com-
posite task can be divided into the detection of individual instances, selecting one instance
at a time, and estimating the pose of the selected object for the robot to pick from the best
angle. Solving this problem with deep learning is an ongoing interest with several continu-
ous enhancements [11, 18, 27, 31]. Current camera technologies are so accurate that they can
capture the height of the object with millimeter precision. This growth in camera technology
can generate 2.5D images from a scene. 2.5D image can be defined as the generation of an
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1.1. Motivation

actual 3D environment from a 2D retinal perception. In general, it is a viewer-centric 3D view,
where the portion of the scene is missing which can’t be seen with the placed camera. With
the generated 2.5D image through the camera, a point cloud can be constructed which allows
a deeper understanding of an image.

A point cloud is an accumulation of many points in 3D space. This cluster of points may
represent a 3D shape or object. Each point in a point cloud has the Cartesian coordinates (X,
Y, Z). Features like color or intensity might also be part of the cloud. Collecting point clouds
from a 3D object has become very convenient due to rapid advancements in 3D measurement
mechanisms. Processing on 3D Point Clouds has been a common start for many applications
recently. Today, 3D point clouds are widely used in projects such as autonomous driving [26],
automatic bin picking [37, 24, 50], pose estimations [25, 10, 21], and others. When several
objects of the same class are present in the bin it becomes difficult for robots to distinguish
between the objects. This problem can be tackled by training a neural network to perform 3D
instance segmentation of point clouds [9, 15].

To find an unknown transformation between point clouds, point cloud registration is
performed. In computer vision and robotics, point cloud registration also known as scan
matching is a method to determine a spatial transformation (mainly, rotation, translation,
and scaling) between two point clouds (source and target) which finally aligns these two
point clouds. It is often researched with motion estimation or Simultaneous Localization and
Mapping (SLAM) applications. However, it can also be useful for object detection and pose
estimation. Industrial applications for point cloud registration can be random bin picking,
i.e., picking known randomly oriented objects from a container.

1.1 Motivation

SICK IVP Linköping1 is a subsidiary of SICK AG that specializes in developing industrial
image processing systems. This division of SICK provides solutions for various industries,
which include automotive, electronics, and packaging. Some of the products offered by SICK
IVP Linköping are 2D/3D sensors, vision cameras, and smart cameras. The vision solutions
provided by SICK IVP Linköping have many applications such as quality control, defect de-
tection, robot guidance, and others. These solutions help companies improve their produc-
tivity, reduce waste, and enhance their overall competitiveness. Fig. 1.2 is the Ranger3, a 3D
machine vision camera developed by SICK, which is capable of extracting the true 3D shape
of an object with high precision. SICK IVP Linköping is also involved in the development of
robotic bin-picking solutions. The company has a wide range of 3D vision sensors which can
be used for bin-picking applications. These sensors leverage laser and camera technology to
detect the position, orientation, and shape of objects in a bin, which makes it easier for a robot
to pick them up.

Figure 1.2: Ranger3 - 3D machine vision camera

Solving the problem of robotic bin picking with the current advancement in deep-learning
is the driving motivation behind this project. While leveraging contemporary solutions, the

1https://www.sick.com/se/en
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1.2. Problem Statement

solution for bin picking can be optimized. The complications associated with this task are
mentioned below:

• Distinguishing individual instances of an object from a bin containing randomly piled
identical objects is a highly challenging problem.

• 2.5D point clouds have missing points from the actual scene. Point cloud registration
in this case of partial point cloud is a difficult task.

• During the real data collection, several noises like offset due to other light sources or
reflection of objects can also get captured in the point cloud.

• Due to similar features in the symmetric objects, the complexity in point cloud registra-
tion increases.

1.2 Problem Statement

One of the main challenges in robotic bin picking is the problem of dealing with identical
objects present in a cluttered environment. Within the scope of this thesis, a bin contains
around 20 identical instances of an object, and a 2.5D point cloud of this image is available.
The object is known and a computer-aided design (CAD) model of the object is present. The
problem addressed in this thesis work is to detect individual instances of the object from the
cluttered bin. From the predicted instances in the bin, chose one instance and estimate the
pose of the chosen instance with respect to the CAD model of the object. The pose of the
object involves rotation and translation in 3D space.

1.3 Research Questions

The main objective of this thesis is to research the existing enhancements in object detection,
and pose estimation and implement these concepts in the field of bin picking. This thesis
aims to answer the below research questions:

1. How to choose one instance from the predicted instances after 3D instance segmenta-
tion?

2. What is the impact on the performance of 3D instance segmentation with the added
noise on synthetic data?

3. What is the change in performance when a partial point cloud and a full point cloud
are registered with the CAD model of the objects?

1.4 Related Work

In earlier decades, robotics was introduced at large to production facilities. Due to the new
advancements, robots are much more affordable now than in previous years and they share
a common workplace as humans. With the human labor cost increasing in production, the
inclination towards enhancing robotics is very demanding.

Intense research is ongoing by several companies including Amazon to enhance the cur-
rent system. One of the most popular ones is Amazon Picking Challenge[8]. The challenge is
about creating a robot that can pick a certain number of different objects from a shelf and put
it in a container in a specified amount of time. The challenge also restricts the robot to being
completely autonomous with zero human interaction during the process.

With the recent rise in deep learning-based applications, pose estimation of objects for bin
picking is heavily researched [11, 18, 27, 31].
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1.4. Related Work

1.4.1 Robotic Bin Picking

Robotic bin picking is a very known, and challenging problem in industrial automation. With
the constant improvement in industrial automation technologies, bin-picking systems have
also been improvised over time resulting in better productivity and less human intervention
[37, 50, 24]. With the increase in high computational power and 3D sensor technologies, deep
learning-based solutions are the current interest of many researchers [20].

One of the many approaches is to train a neural network for planar objects [20]. This ap-
proach has shown great accuracy and flexibility for planar objects. This method can handle
large volumes of objects in the bin and it is also efficient in terms of computation time. How-
ever, the disadvantage of this system is the limitation of the objects to be planar. Another
approach is to train a support vector machine (SVM) to classify and locate the connectors
in the bin [42]. This approach has shown a high accuracy and low hardware dependency.
However, this network is limited to specific or similar objects.

One significant approach is to divide the task into two steps: Localize and registra-
tion [14]. This method uses advanced Density-based spatial clustering of applications with
noise(DBSCAN) to cluster and localize based on geometric features of the input point cloud.
Further, a point cloud registration is performed with the help of principal component analy-
sis(PCA) and iterative closest point(ICP) for coarse and fine registration respectively. How-
ever, the registration technology used in this system is primitive.

1.4.2 Feature Extraction from Point Clouds

Point clouds are the simplest representation of a 2D or 3D object. Acquiring the point clouds
has become one of the first steps in many applications. These acquired point clouds are often
processed by bypassing expensive reconstruction techniques or de-noising filters. Applica-
tions like self-driving cars, robotics, and shape synthesis and modeling have taken advantage
of point cloud processing. [23, 36, 13]. These modern applications need a prominent level of
point cloud processing. During the feature extraction process, a feature vector is generated.

A feature vector can be explained as a numerical representation that contains main charac-
teristics of the points. The representation of point clouds as feature vectors makes it possible
use machine learning algorithms such as classification, segmentation or registration. Feature
vector can encode details like geometric properties (corners, edges), semantic hues, or surface
normal. These features can be local or global features. Local features contain features for ev-
ery point of the point cloud while global features contain features for the entire point cloud.
The choice of these features is task dependent. Local shape detail might be more interesting
for task like object detection, while pairwise geometric information between points is more
attractive for point cloud registration.

The advancement in the deep-learning for image processing has escalated the data-driven
approach for feature extraction of point clouds. The point cloud processing through deep
neural networks is outperforming the conventional approaches. [3]. Introducing deep learn-
ing to point clouds was not elementary; as standard deep neural network frameworks de-
mand regular structure in the input data. Point clouds instead are considered to be unstruc-
tured due to their continuous distribution of positions in the space with any permutation. To
handle this unevenness, state-of-the-art(SOTA) deep networks are designed can manipulate
the raw point clouds. PointNet is a deep neural network architecture, which is capable of
processing the unordered point clouds without requiring any pre-segmentation or voxeliza-
tion. This SOTA architecture can extract both global features for the entire point cloud and
local features for individual points too [32]. PointNet was extended to PointNet++ which
exploits a hierarchical feature extraction process to store multi-scale information of the point
cloud. The working principle behind this architecture involved dividing the point cloud into
a hierarchy of nested partitions, and each partition individual with the help of PointNet ar-
chitecture [33]. Another SOTA is PointCNN, a neural network architecture that leverages the
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1.4. Related Work

concept of convolutional neural networks and applies it to the point clouds. A direct con-
volution of kernels against the features of the points will have some consequences including
desertion of shape information and variance to point ordering. This problem was addressed
by learning χ-transformation on the point clouds, which helps in weighting the input features
of the points and permutating the points to a latent and canonical order [22].

KPConv is a kernel-based point convolutional neural network architecture that is efficient
to extract point features from point clouds in both local and multi-scale manner. Unlike other
point convolution neural network architectures which utilize the fixed kernels, to adapt to
the geometric characteristics of the point cloud, a learned kernel function is used. The usage
of KPConv can be extended to deformable convolutions where it can learn to consider kernel
points to local geometry [41].

1.4.3 3D Instance Segmentation

Instance segmentation can be defined as a process of identifying, segmenting, and classifying
every individual object in the image. 3D segmentation is a computer vision technique, where
a 3D point cloud is divided into meaningful parts or regions. 3D Instance segmentation is an
ongoing interest of many researchers [44, 7].

The 3D U-net is a neural network architecture, which is specifically designed for dense
volume segmentations concerning medical images [7]. This network is an extension of 2D
U-net, which is very commonly used in biomedical imaging. The 3D U-net architecture has
encoder-decoder blocks, where the encoder block extracts the features from the given input
point cloud and the decoder block creates the segmentation map. A novel loss function called
soft dice loss is also introduced to measure the similarity between predicted segmentation
and the ground truth. Overall, the 3D U-net presents a great approach to address the chal-
lenge of dense volumetric segmentation. Along with being computationally expensive, 3D
u-net also rely on manual annotations of the input data, which in turn is very time-consuming
and expensive.

Another approach to perform 3D Instance segmentation is to add an associate embed-
ding module, which combines information from both semantic and instance segmentation to
perform better [44]. The method also has a multi-scale fusion network that uses contextual
knowledge to increase the accuracy of the network. It has shown some benchmark results
on known datasets. Overall, it is a robust technique that can be implemented in real-time
use cases. It does have some limitations too. Due to the presence of several networks and
modules which demands a good amount of computational resources. Another limitation is
the need for annotated data for both instance and semantic segmentation.

1.4.4 Point Cloud Registration

Point cloud registration is the process of aligning two or more point clouds to create a sin-
gle, unified representation of a scene or object. Researchers are constantly developing new
techniques and algorithms to improve the accuracy and efficiency of point cloud registration
[6, 29, 46, 45, 48]. Deep Global Registration, is a deep learning-based approach that uses
deep neural networks to forecast the correspondences between the two point clouds [6]. This
method is used to perform the global point registration. A large amount of training data is
needed in this method to attain good performance.

Iterative closest point (ICP), which is a transformation optimization algorithm has been a
point of interest to many researchers to fine-tune the existing registration methods. One of
the research is a probabilistic point cloud registration (PPCR) for 3D point clouds[1]. PPCR
is an enhanced ICP, which involves a probabilistic model to ameliorate the robustness of the
model to perform better against noise and outliers. This is an iterative algorithm that contin-
uously tries to reduce the error and improve the result until a defined convergence criterion
is reached. This method may suffer the local minima and require multiple initializations.
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1.5. Report Structure

3DRegNet is a deep neural network architecture to perform 3D point cloud registration[29].
The multi-scale feature extraction to record both local and global features of the point clouds
makes it a state-of-the-art method. It also uses a correlation layer that estimates the transfor-
mation among the two point clouds. 3DRegNet is a little sensitive to the quality and com-
pleteness of the source point cloud and doesn’t perform very well in a noisy and cluttered
case.

1.5 Report Structure

Chapter 2 of this report describes the theoretical background needed to implement the meth-
ods. The next chapter presents a detailed description of data, data generation, and collection
techniques. Chapter 4 explains the methodologies used to perform the 3D instance segmen-
tation and registration of the point clouds. Experiments and results are described in Chapter
5. This chapter also includes the evaluation of the results obtained. A discussion of the ob-
tained results and limitations of the methods is performed in Chapter 6. The conclusion of
this thesis is done under Chapter 7.
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2 Theoretical Background

2.1 3D Instance Segmentation

3D Instance Segmentation can be defined as a task to determine a unique label for all the indi-
vidual objects present in the input point cloud. This task includes identifying the individual
object and locating it in the point cloud [4].

Let P be a point cloud with N number of points such that p1, p2, ....., pN represent individ-
ual points. Let A be a set of points which is a subset of P representing one instance of the
object in the point cloud. The task of 3D instance segmentation is to determine a function
P Ñ A, which is capable of mapping the point Pi to the corresponding instance point Aj.

Figure 2.1: An ideal case of 3D Instance Segmentation

An ideal case of 3D Instance Segmentation of a conrod plastic point cloud is demonstrated
in Fig. 2.1. Before the segmentation, all the points in the point cloud are labeled to one class
which can be verified by one color (white). While we observe there are multiple colors in
the point cloud after the 3D instance segmentation is performed. Here one instance of the
object is identified by one color in the point cloud. Fig. 2.1 represents the ideal segmentation
because every actual instance is identified by a unique color.
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2.2. Dynamic Graph Convolutional Neural Network (DGCNN)

2.2 Dynamic Graph Convolutional Neural Network (DGCNN)

DGCNN is a deep neural network architecture that is designed to work with point cloud
data[49]. Point cloud data in general is unstructured 3D data that contains several points
in the 3D space. The recent accomplishments of convolutional neural networks (CNNs) for
image data, indicated the importance of using this concept for point cloud data. DGCNN
works on the principle of creating a dynamic graph representation of a point cloud. In this
graph, each point is considered as a node and the distance between the points defines the
edge. This helps in capturing the local geometric details of the point cloud.

DGCNN comprises several stages, including edge construction, feature extraction, edge
convolution, and pooling. During the edge construction, the nearest neighbors are deduced
for each point of the input point cloud. This defines the edges between the point and its
neighbors. With the edge and point as nodes a dynamic graph is developed. The dynamic
graph is represented with an adjacency matrix A, where Aij = 1 if point j is one of the nearest
neighbors of point i, otherwise 0.

The point cloud data, together with the developed dynamic graph is fed into a neural net-
work. To extract local features from each point, DGCNN uses shared multi-layer perceptrons
(MLPs). The extracted features are used in the edge convolution layer (EdgeConv), where the
dynamic graph is then updated. The EdgeConv layer plays a key role in the DGCNN archi-
tecture. It is introduced to capture the local geometric details of the point cloud. EdgeConv
creates edge features between points which explains the relationship between a point and
its neighbors. This is achieved by generating a local neighborhood graph and implement-
ing convolution on the edges with its neighboring points. This graph is not static but rather
dynamically updated after processing through every edgeConv layer in the network. This
signifies that the nearest neighbors are updated in every layer.

Given a 3D point cloud P with N points: P = p1, p2, ..., pN , the nearest neighbor graph for
each point is computed. This graph contains a set of edges E(i, j), for the point i to all of its
neighbors. During edge convolution edge features are computed. The edge features are de-
fined by: eij = hθ(pi, pj), where hθ is a non-linear function such as rectified linear units(ReLU)
and θ signifies the set of trainable parameters. During the edgeConv layer operation, first, a
linear transformation is performed on the node features followed by aggregation of features
for each point i.

To generate a fixed-length global feature vector, DGCNN applies max pooling on the node
features. This global feature vector summarizes the whole point cloud and represents the
overall structure of the input point cloud.

The developed feature vector can further be utilized in tasks such as classification or seg-
mentation. DGCNN is a widely adapted architecture for various tasks including 3D recon-
struction[39], and 3D Instance segmentation [47].

2.3 Minimum Bounding Box(MBB) Algorithm

A bounding box is a geometric structure that encloses an object or multiple objects in 2D
or 3D space. The bounding box is defined by a cuboidal shape for 3D point clouds and is
recognized by position and orientation. MBB is an algorithm that is used to find the smallest
bounding box in the 3D space that can accommodate all the points of the point cloud [28].
This algorithm first calculates the covariance matrix of the point cloud. The covariance matrix
is a 3x3 matrix, which explains the spread and orientation of the point cloud. The equation
below calculates the covariance matrix.

C =
1
N

N
ÿ

i=1

(xi ´ µ)(xi ´ µ)T
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2.3. Minimum Bounding Box(MBB) Algorithm

In the equation above, N is the total number of points in the point cloud, xi is the ith point of
the point cloud, and µ is the centroid of the cloud defined by

µ =
1
N

N
ÿ

i=1

xi

From the calculated covariance matrix, eigenvectors of C are computed using eigenvalue
decomposition. C ˚ vi = λi ˚ vi, where vi and λi are the ith eigenvector and eigenvalue respec-
tively. For the corresponding eigenvalues, eigenvectors are sorted in a descending manner.
The axes of the bounding box are defined by these eigenvectors. In the next step, minimum
and maximum values along each axes are calculated by projecting the points onto each axes.
The equation below shows the minimum and maximum value calculation along the x-axis.

xmin =
N

min
i=1

xi,x

xmax =
N

max
i=1

xi,x

The MBB needs eight corner points to be defined. With the minimum and maximum
values from each axes, the eight corners of the bounding box are generated in the following
way:

P1 = (xmin, ymin, zmin)

P2 = (xmin, ymin, zmax)

P3 = (xmin, ymax, zmin)

...

P8 = (xmax, ymax, zmax)

Using this algorithm, the length along the axes, the center of the bounding box, and the
rotation of the bounding box can be extracted. It can be used in several computer vision and
robotics applications like detecting collisions or tracking objects in a scene. The advantage of
using the minimum bounding box algorithm is it gives a tight fit around the points. How-
ever, the rotation generated here is highly sensitive to noise and outliers. Fig. 2.2 shows the
bounding box and minimum bounding box around the conrod plastic object.

Figure 2.2: Bounding Box and minimum bounding box for Conrod Plastic
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2.4. Non-Maximum Suppression (NMS)

2.4 Non-Maximum Suppression (NMS)

In object detection tasks, there are several occasions when the detection of the same object
overlaps with each other. To eliminate these redundant and overlapping detections, the
Non-maximum Suppression technique is used. NMS is applied to generate a set of non-
overlapping bounding boxes from the output of the 3D object detection [16]. The probability
of the box containing the object of interest is defined by the confidence score and is assigned
to all bounding box during the object detection task. In NMS algorithm, all the bounding
boxes are sorted by the confidence score in descending order. The bounding box with the
highest confidence score is selected and intersection over union (IoU) is calculated between
the selected and all remaining bounding boxes. A threshold of IoU is set before. If any
bounding box is found with IoU greater than the given IoU threshold, it signifies that both
the bounding box indicates same object. Thus, it is removed. The selected bounding box is
removed and saved in a separate list. This process is carried out in a loop until no bounding
box remains. NMS is highly adapted in state-of-the-art frameworks like Fast R-CNN [12],
YOLO [34], FPCC [47]. A simple demonstration of NMS is shown in Fig. 2.3.

Figure 2.3: An example of Non-Maximum Suppression

In the Fig. 2.3, we observe that two conrod plastic objects. Each of the conrod plastic
object have two predicted instances. After applying the NMS algorithm, only two instances
remain, as other instances have lower confidence score and bigger overlap.

2.5 Smooth L1 Loss

Smooth L1 is a very known loss function in object detection, which is a variant of L1 loss.
L1 loss is very commonly known as Mean Absolute Error (MAE) [12]. The key difference
between the L1 loss and the smooth L1 loss is the introduction of a quadratic term in smooth
L1 loss. This is applied when the absolute difference between the predicted value and the
target value is smaller than 1. This helps in getting a smooth transition around zero, that
reduces the impact of outliers. Thus, the smooth L1 loss has less sensitivity to the outliers
when compared to the L1 loss. The smooth L1 can be defined as:

SmoothL1(x) =

#

0.5 ˚ x2 if |x| ă 1
|x| ´ 0.5 otherwise

where x is the difference between ground truth and predicted value.The smooth L1 loss
is less sensitive to outliers because the squared term in the loss function gives a smooth tran-
sition between the L1 loss and the L2 loss, commonly known as mean squared error(MSE),
which is more robust to outliers. A comparison between L1 loss, L2 loss and smooth L1 loss
function is shown in Fig. 2.4.
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2.6. Point Cloud Registration

Figure 2.4: L1, L2 and Smooth L1 Loss curve

The smooth L1 loss function is used in the calculation of the loss in the FPCC-net [47].

2.6 Point Cloud Registration

Point cloud registration, also known as point-set registration is a well-known task in com-
puter vision and robotics. It can be defined as a process of finding a spatial transformation
(scaling, rotation, and translation) that aligns one point cloud to another [17]. This technique
has numerous applications in fields such as robotics, augmented reality, and 3D scanning.
The goal of registration is to find the optimal transformation that aligns the point clouds
while minimizing the distance between corresponding points. The registration process can
be divided into three main steps: feature extraction, correspondence estimation, and trans-
formation optimization. Some common feature extraction methods include Scale-Invariant
Feature Transform(SIFT), Speeded Up Robust Features(SURF), and others, while correspon-
dence estimation methods include nearest neighbor search and random sampling. Transfor-
mation optimization methods typically involve iterative closest point (ICP) algorithms. For a
rigid transformation, where scaling is not a point of concern, a transformation vector T(a) is
calculated as:

T(a) = Ra + t

Here, R is an orthogonal transformation, which represents a rotation matrix, and t is a
vector signifying the translation of the source point cloud to the target point cloud. If A is
a set of points A = ta1, a2, a3, ...amu and B is a set of points B = tb1, b2, b3, ...bnu, the optimal
transformation T˚ can be written as:

T˚ = armin
T

m
ÿ

i=1

n
ÿ

j=1

wij||T(ai) ´ bj||
2

In the equation above, ai is the ith point from point cloud A, bj is the jth point from point
cloud B. T is the transformation matrix which includes rotation and translation information.
wij is a non-negative weight linked to the corresponding points between point clouds A and
B. To optimize both transformation T and weight wij, an iterative algorithm is used where the
algorithm alternates between T and w until the convergence. In every iteration, T is updated
which reduces the distance between corresponding points, and simultaneously, weight w is
updated based on the alignment. A higher weight is assigned for more accurate correspon-
dences while a lower weight is assigned in the other case.
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2.7. Lucas-Kannade Algorithm

Point cloud registration is a computationally intensive task and can be challenging in
noisy or incomplete point clouds. In Fig. 2.5 an example of point cloud registration is demon-
strated, where the blue bunny1 is the target bunny and the red bunny is the source bunny.
The source bunny is transformed in a way to match exactly with the target bunny.

Figure 2.5: An example of Point Cloud Registration

2.7 Lucas-Kannade Algorithm

To measure the motion vectors of the pixels present in an image sequence (video), also known
as optimal flow estimation, the Lucas-Kannade algorithm is commonly used [30]. There are
a few assumptions in this algorithm like, motion between two adjacent frames is to be small
which can be approximated by a linear transformation. The brightness of an individual pixel
is also assumed to be constant over time, which develops a brightness constancy constraint
given as:

I(x, y, t) « I(x + dx, y + dy, t + dt)

here I denote the intensity for the location (x, y) and time t in the image and the motion
vector is represented by (dx, dy, dt).

Considering the above assumptions and constraints, the basic optical flow equation for
all the pixels is solved by least square minimization as shown below.

ÿ

u,v
(Ix(u, v) ˚ du + Iy(u, v) ˚ dv + It(u, v))2

here (u,v) is the location of a pixel, and Ix and Iy are the partial derivatives of the image
intensity of x and y respectively. It can be defined by the temporal derivative for the image
intensity. With this, the motion vector (du,dv) is calculated which minimizes this objective
function with the help of a least-squares method. The equation is summed over all pixel loca-
tions(u,v), which measures the difference between the actual image intensity and estimated
changes. The aim of this is to minimize this difference to achieve precise estimation in the
optical flow.

In general, the LK algorithm is a well-known computer vision algorithm that is used in
several computer vision-related tasks [40, 38, 43].

2.8 Evaluation Metrics

Evaluation metrics are needed to measure the performance of a statistical or machine learning
model. Several metrics like accuracy, precision, F1 score, mean square error (MSE) can be

1http://graphics.stanford.edu/data/3Dscanrep/
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2.8. Evaluation Metrics

used to evaluate the quality of the algorithm. The selection of these metrics are dependent
on the data quality(balanced, unbalanced), type of algorithm (classification, segmentation,
regression, ranking) and the task that the model is designed to perform. It is very important
to carefully select the appropriate evaluation metrics for the task as it defines if the model is
performing well and justifies the choice of parameters.

2.8.1 Intersection over Union (IoU)

IoU is a known metric in computer vision tasks like object detection and segmentation. It
measures the amount of overlap between the true bounding box and predicted bounding
box or the segmentation masks [35]. It is calculated as the ratio of intersection of predicted
and true region over the union of predicted and true region. The graphical explanation is
shown in Fig. 2.6.

Figure 2.6: Graphical explanation of IoU

2.8.2 Mean Undersegmentation Error (MUCov)

Mean Undersegmentation Error(MUCov) is a quantitative measure in instance segmentation
related tasks. MUCov is an estimation of degree of undersegementation, or missed detec-
tion in the prediction. Formally, undersegmentation is observed when the predicted mask
receives less area than the ground truth of one instance of the object. The undersegmentation
error can be defined as the ratio of number of points of undersegmentation to the number
of points of ground truth mask of one instance and the mean of all the errors of all object
instances is known as mean undersegmentation error.

Technically, it can be written as:

MUCov =
1
N

ÿ Area of Undersegmentation
Area of Ground Truth

Here, N is the total number of object instances in the prediction. MUCov ranges between
0 and 1, where 0 means perfect segmentation, whereas 1 defines total undersegmentation.
Thus, lower the value of MUCov, better is the performance of model.

2.8.3 Mean Oversegmentation Error (MWCov)

Mean Oversegmentation Error(MWCov) is another quantitative measure in instance segmen-
tation related tasks. MWCov is an estimation of degree of oversegmentation, or false positives
in the prediction. Formally, oversegmentation is observed when the predicted mask receives
more area than the ground truth of one instance of the object. The oversegmentation error
can be defined as the ratio of number of points of oversegmentation to the number of points
of ground truth mask of one instance and the mean of all the errors of all object instances is
known as mean oversegmentation error.

Technically, it can be written as:

MWCov =
1
N

ÿ Area of Oversegmentation
Area of Ground Truth
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2.8. Evaluation Metrics

Here, N is the total number of object instances in the prediction. MWCov ranges between 0
and 1, where 0 means perfect segmentation, whereas 1 defines total oversegmentation. Thus,
lower the value of MWCov, better is the performance of model.

2.8.4 Precision and Recall

Precision calculation is a well known metric to calculate the performance of classification or
detection related models. Precision is the measure of amount of correct predictions that are
positive. It can also be defined as the number of positive class predictions which actually
belongs to the positive class.

Mathematically, it can be represented as:

Precision =
TP

TP+FP

Here, TP stands for True Positive and FP stands for False Positive
Recall is another important metric in machine learning tasks. It can be defined as the

measure of correct predictions that are detected by the model.
Mathematically, it can be represented as:

Recall =
TP

TP+FN

Here, TP stands for True Positive and FN stands for False Positive
Fig. 2.7 shows a graphical representation of precision and recall.

Figure 2.7: Visual Explanation of Precision and Recall
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3 Data

This chapter provides a detailed description of the data used in this research. This chapter
also brings out the outlines about the type of data, data collection methods, and, data pre-
processing techniques performed in this study.

3.1 Data Type

The data used in this project are point cloud data. Point clouds are gaining popularity at
a very fast pace in computer vision, industrial applications, and robotics. Point cloud data
can be useful in projects that need 3D information such as robotics, autonomous driving, and
others. Point clouds in real-life are generated using photogrammetry, or light scanning.

In this project, two types of data are used: Synthetic Point Clouds and Real point clouds.
There are 4 different objects with synthetic data, namely IPA Gear Shaft, IPA Ring, Conrod
Metal, and, Conrod Plastic. The objects present with real data are Conrod Metal and Conrod
Plastic. These objects are shown in Fig. 3.1.

Figure 3.1: Synthetic and Real Data
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3.2. Data Description

3.2 Data Description

The synthetically generated data consists of X, Y, and Z values along with the ground truth
of instance class, center location, and transformation with respect to the CAD models. One
point cloud with 30 objects consists of approximately 70000 points. These numbers of points
may vary due to the occlusion complexity or the object’s position in the bin. It can also vary
based on the shape of the object. The synthetically generated point clouds don’t contain any
color information.

The point cloud of real data consists of approximately 400,000 points with X, Y, and Z
values and color(RGB) as well. This point cloud also contains a lot of noise (surroundings,
reflection). A sample point cloud with 10 synthetic conrod plastic objects and 9 real conrod
plastic objects is shown in Fig. 3.2.

Figure 3.2: Synthetic and real image of conrod plastic

In the above image, we observe that the synthetic data is clean and completely noise free.
While in the real image, we find some surrounding surfaces, and light reflections along with
the instances of the conrod plastic object. In our data all the instances are from the same
object, so one point cloud contains only one type of object.

3.3 Data Aquisition

3.3.1 Synthetic Data generation

In a point cloud dataset, there are several point clouds with varying numbers of instances of
the object. As one instance of an object may have a large number of points, the overall size
of the dataset and the number of points are huge. In such cases, labeling individual points is
not feasible. Thus, synthetic data is generated as close as possible to the real data in various
ways.

In this project, two objects from “Fraunhofer IPA Bin-Picking dataset" [19]: IPA Gear Shaft
and IPA Ring, and two objects from SICK IVP: conrod metal and conrod plastic are taken to
generate this synthetic dataset. In the process of generation, to create a scene alike view,
the CAD model of each object is imported. This imported model is dropped randomly into
the bin with a specified bin size one at a time [5]. In the first iteration, an empty bin is
taken, one instance of the object is dropped, the scene is recorded and the bin is cleared. This
process is iterated with the number of instances increasing in every iteration and is continued
until the defined total number of instances in a bin is reached. This concludes one cycle.
This data generation is done over multiple cycles. The synthetically generated point clouds
hold the cartesian coordinates (X, Y, and Z), the centre of each object, rotation, and also the
segmentation class for each point. Fig. 3.3 shows a sample synthetic data generation of IPA
Gear Shafts.
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3.4. Data Pre-processing

Figure 3.3: Synthetic Data Generation

The number of instances is set to 30. Thus one cycle will have 30 point clouds, one for each
number of instances. The data is generated over 60 cycles. Thus, in total 1800 point clouds
are generated for each object.

For training the 3D Instance segmentation network, the data from the first 40 cycles were
used, ie, 1200 point clouds. The rest 20 cycle data were split between validation and training
equally to have 300 point clouds for each set.

For point cloud registration, point clouds with only a single instance were needed. Thus,
200 individual instances were extracted from the previously generated point clouds. This in-
cludes both partial (camera view 2.5D point clouds) and full (complete instance) point clouds.
To add to the training, the 50 best segments from the output of 3D instance segmentation were
also used. For validation, 100 point clouds including partial and full point clouds and 50 best
segments were included. To test this model, 80 point clouds including partial and full point
clouds were taken along with 40 best segments from the previous output of 3D instance seg-
mentation.

3.3.2 Real Data Collection

4 datasets with 50 point clouds each are collected for real data. Conrod plastic and conrod
metal are the 2 objects for real data. To collect the real conrod plastic data, 9 and 18 objects
of conrod plastics were used to create a dataset of 50 point clouds each. However, 10 and
23 objects were taken to collect the real conrod metal data with 50-point clouds. These point
clouds don’t contain any ground truth and are collected to perform qualitative analysis. All
these images were collected using Zivid Two M70 camera, which uses structured light stereo
as its 3D technology. The point cloud generated after capturing the image contains 3D(XYZ),
Color(RGB), and Signal-to-noise ratio (SNR) values for each point. The focal distance of this
camera is 700 mm with a spatial resolution of 0.39 mm.

3.4 Data Pre-processing

3.4.1 Noise removal from real data

The noise present in the real data is first reduced by cropping along the X, Y, and Z axes.
Secondly, the data collected by the real camera is 1000 times more scaled than the synthetic
data. It is due to the resolution of the camera with which the image is taken. Thus, the data
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3.4. Data Pre-processing

collected is scaled down by 1000 to bring the synthetic and real data at the same scale. It was
also observed that the number of points in the real data was far more than in the synthetic
data. Hence, the real data is down-sampled using random sampling with the sampling ratio
of 0.22 to have a similar number of points with respect to the synthetic data. Fig. 3.4 shows
the data pre-processing pipeline for the real data..

Figure 3.4: Noise removal pipeline for real data

3.4.2 Adding noise to synthetic data

Synthetic data is usually clean and noise-free. However, the real data can have several dif-
ferent types of noises like offset due to other light sources or reflection of objects can also get
captured in the point cloud. This noise may affect the result of the real data. To observe, the
impact of noises on the model, 36 test sets are generated with different percentages of noise.
Out of the 36 test sets, 9 test sets for each object are generated synthetically, with different
noise percentages. These noises are generated by offsetting a randomly chosen point in a
random direction in 3D space. The distance of offset is drawn from a Gaussian distribution
with zero mean and varying standard deviation. The percentage of noise is decided by the
number of offset points. There are 3 noise percentages namely 10%, 30%, and 100%. For ex-
ample, 10% noise signifies that randomly chosen 10% points of the given point cloud to get
offset in a random direction by a fixed distance, ie. standard deviation. Fig. 3.5, represents
the same point cloud with different noises.

Figure 3.5: Adding several noise to real data

In the image above, it can be observed that the point cloud with 30% noise and a standard
deviation of 0.02 looks noisier than the point cloud with 10% noise and the same standard
deviation. Also, in the last image of Fig. 3.5, where 100% of the points are shifted with a
small standard deviation, it can be observed it doesn’t look so noisy, but that the shape of the
instance is lost.
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4 Methodology

This chapter presents a detailed discussion of the chosen methods mentioned in the the-
ory chapter. The necessary steps involved in implementing the theoretical concepts to the
company-specific data are also discussed. This thesis work is broadly divided into two main
parts, namely 3D Instance Segmentation and Point Cloud Registration. An overview of the
thesis work is shown in Fig. 4.1.

Figure 4.1: Overview of System Design

The overview begins with data acquisition where real data is collected with a stereo cam-
era and synthetic data is generated using the available CAD models of the object. In the data
pre-processing stage, the noise is removed from the real data and some offset noise is added
to the synthetic data to imitate the real data. The third stage is instance registration, where
the pre-processed input point cloud is first segmented to identify the instances of the object
present in the bin, followed by choosing one predicted instance to perform point cloud reg-
istration. The pose estimation is done with the point cloud registration for the chosen point
cloud with respect to the CAD model of the respective object.
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4.1. 3D Instance Segmentation

4.1 3D Instance Segmentation

3D Instance Segmentation is a computer vision task, where individual instances of an object
from a point cloud are detected by labeling every point in the cloud. 3D Instance Segmenta-
tion may become a complicated exercise because of the complex geometrical shapes of objects,
size, orientation, and noise percentages. In this thesis, to perform 3D Instance Segmentation,
we leverage a state-of-the-art approach Fast Point Cloud Clustering (FPCC) [47]. FPCC in-
troduces deep learning-based, 3D instance segmentation which is capable of distinguishing
individual objects from a large number of occluded objects efficiently. The key notion of this
approach is to locate the geometric center of each object. These identified centers are further
used for creating the clusters.

The network architecture of FPCC-net consists of Feature Extraction, Embedded Feature
branch, Center Score branch, Inference phase, and Training phase. The FPCC-net architecture
is shown in Fig. 4.2. A detailed discussion of each stage is done in later sections.

Figure 4.2: Architecture of FPCC Network

4.1.1 Input point cloud pre-processing

Point clouds with irregular and varying densities can lead to poor clustering. Thus, a pre-
processing step is needed to address this issue. In the pre-processing step, all points of the
point clouds are changed to a new coordinate system. Considering a point cloud with N
points, represented as pi = (xi, yi, zi), where i = 1, 2, ..., N and (xi, yi, zi) are the locations
of ith point in the X-axis, Y-axis, and Z-axis respectively. The location of points in the new
coordinate system is calculated as:

x̄i = xi ´ mintx1, x2, ..., xNu

ȳi = yi ´ minty1, y2, ..., yNu

z̄i = zi ´ mintz1, z2, ..., zNu

The new coordinate system is better aligned with the geometric property of the point
cloud and is also less harmed by the varying density of the point clouds. Particularly, the
new coordinate system has a uniform density along each axis and aligns better with principal
axes.

In the next step of pre-processing, each point from the new coordinate system is normal-
ized to generate a normalized location, which is a vector of the form (nx, ny, nz). To calculate
the normalized location, the average of all points is computed to find the centroid of the point
cloud. Further, the point cloud is scaled to the longest dimension to fit in a unit cube. To this
end, all the coordinates of each point are divided by the length of the longest dimension to
find the normalized location, which ensures that the values range between 0 and 1.
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4.1. 3D Instance Segmentation

In the last stage, the new coordinates (x̄i, ȳi, z̄i) is combined with the normalized location
(nx, ny, nz) to obtain a 6-dimensional vector for each point.

4.1.2 Feature Extraction

In the FPCC network architecture, the pre-processed input cloud of shape (N x 6) is fed into
the feature extraction block. The feature extraction in this network is done using DGCNN
model (2.2). During the implementation of DGCNN model, the last layers of classification
and segmentation is ignored, in order to generate only the feature vectors of N input points.
DGCNN generates point-wise features of N points from the input point cloud with the shape
(N x 256). To further refine and enhance the input point cloud features FPCC-net uses the
Embedded Feature branch.

4.1.3 Embedded Feature Branch

The feature extraction branch results in high-dimensional feature vectors, which can be com-
putationally expensive and may also add noise or redundancy. FPCC-net introduces Em-
bedded Feature Branch, which aims at refining the feature representations by reducing di-
mension and normalizing features. The feature vectors are normalized to ensure a consistent
range and scale across all features. Embedded Feature Branch applies a shared Multi-Layer
perceptron(MLP) and produces a global feature vector for all points by pooling through all
points.

For a single point, it can be written as:

fi = MLP(hi)

where, hi is the output of Feature Extraction layer of the ith point, MLP here is a shared
MLP and fi is the output of this layer for ith point. Pooling is done to collect the features of
all the points from the point cloud and generate a global feature vector. This layer calculates
the maximum value of each feature for all points in the cloud and can be written as:

v = maxpool( f1, f2, f3, ..., fN)

where, f1, f2, f3, ..., fN are the output feature vectors from the previous feature embedded
layer for each point in the point cloud and v is the output of this layer, which signifies a global
feature vector for all the points.

4.1.4 Center Score Branch

A center score can be defined as the significance of a point within a point cloud to be the
center of an instance. The Center Score branch estimates the center score for each point in the
point cloud and generates a vector of shape (N x 1). This branch is in parallel to the Feature
Embedded branch. In this branch, the features extracted are passed through two MLPs and
are finally activated by a sigmoid function. Based the on features extracted, estimated centers
are stored.

The center score for each point is calculated based on the distance from the estimated cen-
ter. The Euclidean distance for each point is calculated with the nearest center. Considering
a point cloud P with N points, the distance is calculated as follows:

d =

g

f

f

e

N
ÿ

i=1

(pi ´ centeri)2

here d is the calculated distance, pi represents point i in the point cloud and centeri is the
nearest center for this point.
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4.1. 3D Instance Segmentation

This distance is normalized by dividing it by dmax, where dmax is a hyper-parameter and
is defined as the maximum distance from the cluster center of the object.

drate =
d

dmax

here, drate is the normalized distance. Further, this normalized distance is clipped between
0 and 1, which signifies that any drate below 0 is given 0, and above 1 is given 1. Finally,
the score calculation for each point is done by subtracting the squared distance rate by 1.
Mathematically, it can be shown as:

score = 1 ´ d2
rate

A high score indicates a more significant and tightly-cluster center.

4.1.5 Inference Phase

In the Inference Phase of FPCC-net, the outputs of the feature-embedded branch and center
score branch are taken as input. The NMS algorithm (2.4) is adapted here to find the non-
overlapping center points of the instances from the input point cloud.

Algorithm 1 Non-Maximum Suppression Algorithm
Input: Center score threshold (θth), Points P, Screening radius (γdmax), Predicted center scores S

Output: Non-overlapping center points C(c1, c2, ..., ck)

for i=1 to N do
if si ď θth then

P Ð Pztpiu

S Ð Sztsiu

end if
end for
C Ð tu

while P ‰ ϕ do
m˚ Ð arg maxmtsm|sm P Su

C Ð pm˚

P Ð Pztpm˚u

S Ð Sztsm˚u

for pi in P do
if d(pm˚ , pi) ď γdmax then

P Ð Pztpiu

S Ð Sztsiu

end if
end for

end while
return C

A center score threshold (θth) is set for the points to qualify as a center of the instance.
The NMS algorithm takes a center score threshold (θth), a set of points (P), a hyper-parameter
dmax which signifies the maximum distance of any point from the geometric center, and the
predicted center scores (S) for every point as an input. The output of the algorithm is a set of
non-overlapping centers C.

The algorithm is iterated for the total number of points in the point cloud, and if the
predicted score (si) is less than the threshold for the center score (θth), then pi is removed
from the set of possible instance center points, and si is removed from the predicted center
score list. It is done so that pi does not suppress other nearby points which may be an instance
center during other iterations of the algorithm.
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4.1. 3D Instance Segmentation

The algorithm continues by initializing the center list C. The algorithm is iterated then
until the updated set of points is null. During each iteration, the highest center score m˚ is
taken from S, and the corresponding point pm˚ gets added to the center point list C. Once it is
added, the point pm˚ is then removed from P, and its corresponding score sm˚ is eliminated
from the scores list S.

Further, the algorithm is iterated with remaining points in P. All the points which fall
within the screening radius γdmax are removed from the set of points P and their correspond-
ing score si is removed from the center score list S. This process is continued until every point
is processed and finally, a list of center points C of length k is generated which doesn’t contain
any overlapping instances.

In the next part of the inference phase, the feature distances between computed center
points and all the other points are calculated using:

d(e(i)F , e(k)F ) = ||e(i)F ´ e(k)F ||2

The formula above represents the Euclidean distance between the feature vectors of ith
point from the remaining points and kth center point determined by the Algorithm 1, where
e(i)F is the feature vector of ith point and e(k)F is feature vector for kth center point. Based
on these feature distances, all the points excluding center points C are clustered with the
nearest center points. It is important to notice that the nearest center point for every point is
calculated in the feature embedding space, while the distance between the point pi and center
point ck is calculated with Euclidean distance in 3D space. At last, based on the nearest center
point in 3D space instance label is assigned to every point, which distinguishes one instance
cluster from another.

4.1.6 Training Phase

In the training phase of the network, the model tries to learn precisely to predict the center
score and key geometric features of the points in the point cloud. Three matrices, feature
distance matrix(FDM), valid distance matrix(VDM), and attention score matrix (ASM) are
used to identify and prioritize the salient geometric features of the point cloud.

Feature Distance Matrix (FDM)

With the given input point cloud with N points, the FDM forms a square matrix with the
size (N x N). This matrix is the pairwise distance between the feature vectors of each point in
the point cloud. The purpose of this matrix is to collect local geometric features. The feature
distance calculation is done using the formula below:

dF(i,j) = ||e(i)F ´ e(j)
F ||2

where, dF(i,j) is the distance between the feature vectors of ith point and jth point of the
point cloud. The dF(i,j) should be small if i, j are in the same point cloud. The feature distance
matrix is represented by DF P RNxN .

Valid Distance Matrix (VDM)

A binary matrix of elements either 0 or 1 of size (N x N) is introduced. This matrix aims at
deciding if the two points belong to the same instance or not. If the distance between two
points exceeds twice the maximum distance (dmax), then two points don’t belong to the same
instance. Mathematically, it can be written as:

dV(i, j) =

#

1 if ∥pi ´ pj∥2 ă 2dmax

0 otherwise
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4.1. 3D Instance Segmentation

where, dV(i, j) is a binary value that signifies if ith point and jth point of the point cloud
belongs to the same instance or not. The valid distance matrix is represented by DV P RNxN .

Attention Score Matrix (ASM)

The point pair close to the center should have a bigger weight than other points. To give
importance to such point pairs attention score matrix is introduced in the FPCC-net. The
ASM matrix is a square matrix of size (NxN), represented by SA P RNxN and is calculated as:

SA(i,j) = min(1, scenter(i) + scenter(j))

where, SA signifies the point-pair weight between points i and j of the point cloud. scenter(i)
and scenter(j) are the actual centre scores of the associated centre of the ith and jth point respec-
tively.

4.1.7 Network Loss

The loss of the FPCC-net is a sum of two losses namely feature embedded loss (LEF) and
center score loss (LCS). The total loss is calculated as below:

L = LEF + αLCS

here, L is the total loss, LEF is the loss of embedded feature branch and LCS is the loss of center
score branch. α is a constant term to equally weigh both losses.

Embedded Feature Loss

Two points in the point cloud can either belong to the same cluster or another. The Embedded
Feature Loss is used to optimize the clustering with the given ground truth. The LEF can be
defined as:

LEF =
N

ÿ

i=1

N
ÿ

j=1

w(i,j)k(i,j)

where w(i,j) is the weight for ith point and jth point of the point cloud. w(i,j) is the product
of element-wise multiplication of DV and SA.

w(i,j) = dV(i,j)sA(i,j)

where, dV(i,j) is an element of DV and sA(i,j) is an element of SA. The feature distance
between the two points of different instances should be greater than the points belonging to
the same cluster.

The k(i,j) is a loss based on point pair features and is defined by:

k(i,j) =

#

max(0, dF(i,j) ´ ϵ1) if pi and pj are in same instance
max(0, ϵ2 ´ dF(i,j)) otherwise

here, ϵ1 and ϵ2 are constants. If the distance between the feature representations dF(i,j) is
greater than ϵ1, the value dF(i,j) ´ ϵ1 is used as the value of k(i,j). If the distance is less than
or equal to ϵ1, the value of k(i,j) is set to 0. This is done when both points pi, pj are in the
same instance. In other case, value ϵ2 ´ dF(i,j) is used for k(i,j) when ϵ2 is greater than dF(i,j).
If the distance is greater than or equal to ϵ2, k(i,j) is set to 0. This determines the relationship
between points of the same instances while considering both similarities and dissimilarities
between them.
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4.2. Extracting Best Segmentation

Center Score Loss

Smooth L1 loss function (2.5) is used in calculating the center score loss due to its robustness.
The LCS can be defined as:

LCS =
1
N

N
ÿ

i=1

smoothL1(scenter(i) ´ ŝcenter(i))

where, scenter(i) is the actual center score and ŝcenter(i) is the predicted center score. The
actual center score (scenter) is calculated during the synthetic data generation process, while
the predicted center score (ŝcenter) is computed in the center score branch.

4.2 Extracting Best Segmentation

The 3D Instance segmentation labels every point of the point cloud with the instance class.
Usually, the number of predicted instances is more than the actual number of objects in the
point cloud. Since the prediction is not 100% precise, some of the points of the actual instance
get classified as different instances. Thus, the predicted instance may have some extra points
from the actual instance and/or fewer points from the actual instance.

As the registration will be done with one of the predicted instances, it is important to
decide which of the predicted instance will be the most suitable to do the registration. Two
things can be considered while choosing one instance: the number of points in the predicted
instance and the shape of the predicted object.

In the synthetic data with only one object, there are approximately 3000 points, while in
the point cloud with 30 objects, there are approximately 70000 points. The average number
of points per object is calculated to set a baseline as the expected number of points in one pre-
dicted instance. Assuming a scenario where the predicted instance may have the expected
number of points or more, but many of the points are from different instances and are widely
spread. This indicates that the shape of the object is lost in this point cloud. Thus, the min-
imum bounding box algorithm (2.3) is taken to check, if the predicted instance has a good
shape.

4.2.1 Method 1: Fixed threshold

In this method, a threshold is set for the number of expected points and the volume of the
predicted instance. The number of expected points is set to be the average number of points
for the individual object. The volume of the predicted instance is set to be the volume of
the CAD model of the respective object. According to this method, only those predicted
instances are considered which have at least an average number of points and at max CAD
model volume. Once the qualified instances are obtained, it is sorted based on the number of
points. So, the qualified predicted instance with the maximum number of points is chosen as
the best instance for registration.

4.2.2 Method 2: Score all the predicted instances

Considering the two parameters: number of points and volume of the predicted instance, a
score calculation formula is proposed below.

iScorek =
1

µPointsj
˚ nPointsk ´

1
aVolumej

˚ dVolumek

where j defines the object type (conrod metal, conrod plastic, gear shaft, or ring) and k is
the predicted instance. iScorek is the calculated instance score for the kth predicted instance.
nPointsk is the number of points in the kth instance and µPointsj is the expected number
of points for jth object, which is the average number of points for the jth object. The actual
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volume of the minimum bounding box of the CAD model for jth object is the aVolumej and
dVolumek is the absolute difference in the minimum bounding box volume of the kth predicted
instance and CAD model.

The extracted best segmentation is taken as a source for point cloud registration with the
CAD model to determine the 6D pose of the object.

4.3 Point Cloud Registration

Point Cloud registration is a technique to find the transformation of a source point cloud with
respect to the template point cloud (CAD model). The task of registration becomes complex
if the point cloud is incomplete, noisy or the object is symmetrical.

PointNetLK has combined deep learning with the iterative improvement from Lucas Kan-
nade algorithm (2.7) to obtain benchmark results. With the given source and template point
cloud, features for individual points are extracted using the deep learning architecture of
PointNet [32]. These extracted feature vectors help in predicting the correspondence between
the source and template point cloud by using the modified LK algorithm. Least Square Opti-
mization is considered to compute the optimal rigid transformation (a transformation where
the size or shape of the geometric figure doesn’t change). This entire process is repeated until
the convergence is achieved.

In this thesis, to perform the point cloud registration we leverage the method proposed in
PointNetLK: Robust and Efficient Point Cloud Registration [2].

4.3.1 PointNetLK architecture

PointNetLK is a deep learning-based approach for estimating the rigid transformation be-
tween two point clouds. The mechanism of the PointNetLK can be divided into two main
groups, namely feature extraction and iterative LK algorithm. The architecture of the Point-
NetLK is shown in Fig. 4.3. The red arrows in the image indicate that it is part of the iteration
to find the optimal transformation while the black arrows suggest that the task is performed
only once.

Figure 4.3: PointNetLK architecture

The feature extraction is based on PointNet architecture, where a point cloud P =
p1, p2, ..., pN is passed as an input, and a feature vector is produced as an output. Let PT
be the target point cloud and PS be the source point cloud. This registration task aims to find
the transformation matrix G such that source point cloud PS aligns best with the target point
cloud PT . The transformation G can be expressed as:

G = exp(
ÿ

i

ξiTi)
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where ξ is a 6-dimensional transformation parameter containing both rotational and
translational components. The first 3 components represent the rotation (angular velocities)
and the next 3 represent the translation (linear velocities). Ti is the 4x4 twist matrix associated
with the transformation. It also contains both rotational and translational information. A 3D
point registration can be expressed as; PT = G.PS, which can also be written as PS = G´1.PT .
To generate a K-dimensional vector descriptor, a transformation function ϕ is applied.

ϕ(PS) = ϕ(G´1.PT)

For a point cloud with N points, ϕ can defined as; ϕ : R3XN Ñ RK.
For a small perturbation in the transformation parameter, we expand the transformation

function ϕ around Identity transformation with first-order Taylor expansion.

ϕ(G´1PT) « ϕ(I +▽ϕ(I) ˚ ξ)

where, I is the Identity transformation, ▽ϕ(I) is the Jacobian matrix evaluated at the Iden-
tity transformation and ξ is the twist vector denoting a small change in the transformation
parameter. It can further be written as:

ϕ(G´1PT) « ϕ(I) +▽ϕ(I) ˚ ξ

As we apply ground truth transformation to PT , we substitute the ϕ(PT) for ϕ(I).

ϕ(G´1PT) « ϕ(PT) +▽ϕ(I) ˚ ξ

Upon differentiating both side of the equation with respect to ξ, we get:

δ

δξ
ϕ(G´1PT) «

δ

δξ
ϕ(PT) +▽ϕ(I)

δ

δξ
ϕ(G´1PT) « ▽ϕ(I)

here the term δ
δξ ϕ(PT) was neglected, as it is an approximation equation and the term

δ
δξ ϕ(PT) is negligible as compared to ▽ϕ(I). Finally, replacing this derivative value in our
initial expansion, we get:

ϕ(PS) = ϕ(PT) +
B

Bξ
[ϕ(G´1.PT)]ξ

The G´1 can be defined as

G´1 = exp(´
ÿ

i

ξiTi)

and the derivative of the transformation function ϕ is denoted by

J =
B

Bξ
[ϕ(G´1.PT)]

which is a Kx6 matrix. This representation of J can be expressed as the gradient of the
transformation function with respect to the transformation parameter ξ. This traditional ap-
proach of the LK algorithm to calculate the Jacobian becomes difficult with unstructured data
like point cloud data. The calculation here is the differentiation of the geometric transforma-
tion function with respect to the transformation parameter. As geometric transformation has
complex operations like point-wise transformation, the equation becomes non-differentiable.
This limitation hinders the deep learning optimization methods. Thus, the approach to cal-
culating the Jacobian needs to be modified.
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4.3.2 Modified LK Algorithm

To address the above challenges, the Jacobian is calculated by stochastic gradient. The Jaco-
bian for every column is approximated as below.

Ji =
ϕ(exp(´tiTi).PT) ´ ϕ(PT)

ti

where ti represents the extremely small deviation of ξ, and i refers to the ith column of
the Jacobian. In the above Jacobian calculation, first, the inverse transformation is computed
with respect to the template point cloud. This undoes the effect of transformation and brings
back the source point cloud into the coordinate frame of the template point cloud. This oper-
ation is identified as ϕ(exp(´tiTi).PT). Further, the difference between source and template
point cloud is calculated which measures the error between the two point clouds after the
transformation was applied. Finally, the calculated error is normalized by dividing it by ti. It
is important to note that ti should be extremely small for the modified Jacobian calculation to
equal to the traditional Jacobian derivative.

To calculate the optimal twist, it is iterated over a loop while updating the source point
cloud as PS Ð △G.PS where △G can be expressed as △G = exp(

ř

i ξiTi).
A minimum threshold (△Gth) is set to stop the loop and final transformation is calculated

as the product of estimates from every iteration. Mathematically, it can be written as:

Gest = △Gn.....△G1.△G0

4.3.3 Training Phase

The transformation matrix G is a 4X4 homogeneous matrix, which consists of rotation and
translation in 3D space. To minimize the difference between the predicted output and the
ground truth, a loss function is needed during the training. Here the loss is minimized by the
following equation:

||(Gest)
´1.Ggt ´ I4||F

This way of minimizing is simpler and efficient as it avoids matrix logarithmic operations.
The loss function here is measuring the distance between the ground truth transformation
and the estimated transformation. It encourages the estimated transformation to merge with
the ground truth transformation while training.

Since point clouds are unordered set of points, it is quite important to apply the pooling
operation as it helps in generating a global feature vector from all the local feature vectors.
So, a pooling operation either a maximum pool or average is applied.
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5 Experiment and Results

This chapter presents the outcome of the conducted experiments and also focuses on ana-
lyzing the obtained results. It aims upon evaluating the performance of various datasets to
show the usefulness of the developed approach. Along with the detailed description of the
experimental setup, the evaluation of the chosen methods is also discussed here. This chapter
also motivates the choice of hyper-parameters and presents produced results in-depth with
several visualizations.

5.1 Result of 3D Instance Segmentation

5.1.1 Experimental Setup

The training was performed for 50 epochs for each of the 4 synthetically generated objects.
For each object, there are 1200 point clouds with the number of objects ranging from 1-30 in a
point cloud. The FPCC network is trained in Pytorch with a learning rate of 0.0001, batch size
of 2, and Adam Optimizer to reduce the overall loss and improve the accuracy. Nvidia GTX
1080 GPU with 12GB RAM is used during the entire training and testing of the model. During
the training phase, dmax is varied with 0.07, 0.1, 0.18, and 0.25 to find the optimal dmax, while
other parameters like γ, α, and k were kept constant at 0.1, 3, and 20 respectively. Here, γ is the
coefficient of the screening factor, α is the weight to balance both losses (LEF, LCS), and is the
number of nearest-neighbors to consider while performing the majority voting in K-nearest
neighbor algorithm. Based on the original results of the FPCC paper, these parameters were
chosen. Every batch takes 4096 unique points. The training consumes around 12 hours for
one object with the above-mentioned parameter values.

5.1.2 Training Loss

The combined loss of the network is calculated as L = LEF + αLCS. During the training, the
loss of the network seems to decrease normally and saturate after some epochs. The model is
saved upon every epoch and the best model is chosen with the least loss. The line chart for
the training loss of different objects is shown in Fig. 5.1. The loss shown in Fig. 5.1 is the total
loss during training for all the objects.
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Figure 5.1: Training loss during 3D instance segmentation

We observe that the total training loss of the network saturates after some epoch for all
the objects.

5.1.3 Tuning hyper-parameter dMax

dmax is a parameter that is dependent upon the shape and size of the object. We have tried
different dmax values to check the performance of the model for different objects. The results
from this hyper-tuning are mentioned in table 5.1 and table 5.2. All the evaluation of precision
and recall is done with respect to IoU as 0.5. The value of IoU is chosen to be 0.5 as per the
original FPCC implementation. This hyper-tuning is done on the validation data to choose
the best dmax for every object.

Table 5.1: Performance of 3D instance segmentation with different values of dmax at IoU=0.5
on validation data (gear shaft and ring)

dmax
Gear Shaft Ring

Precision Recall Precision Recall
0.07 0.218 ˘ 0.021 0.588 ˘ 0.034 0.859 ˘ 0.030 0.970 ˘ 0.009
0.1 0.211 ˘ 0.019 0.580 ˘ 0.037 0.825 ˘ 0.026 0.965 ˘ 0.008
0.18 0.219 ˘ 0.020 0.606 ˘ 0.032 0.843 ˘ 0.013 0.967 ˘ 0.006
0.25 0.231 ˘ 0.020 0.609 ˘ 0.030 0.835 ˘ 0.014 0.968 ˘ 0.007

Table 5.2: Performance of 3D instance segmentation with different values of dmax at IoU=0.5
on validation data (conrod plastic and conrod metal)

dmax
Conrod Plastic Conrod Metal

Precision Recall Precision Recall
0.07 0.506 ˘ 0.026 0.856 ˘ 0.034 0.600 ˘ 0.019 0.915 ˘ 0.011
0.1 0.509 ˘ 0.010 0.867 ˘ 0.020 0.595 ˘ 0.018 0.902 ˘ 0.013
0.18 0.529 ˘ 0.019 0.900 ˘ 0.015 0.614 ˘ 0.022 0.917 ˘ 0.016
0.25 0.512˘ 0.026 0.874 ˘ 0.032 0.590 ˘ 0.010 0.895 ˘ 0.017

From the results of hyper-tuning dmax, we observe that gear shaft, ring, conrod plastic,
and conrod metal objects have the best mean precision and mean recall with dmax values as
0.25, 0.07, 0.18, and 0.18 respectively on the validation data. The presented results contain

30



5.1. Result of 3D Instance Segmentation

mean precision and mean recall with the respective standard deviation for every experiment.
The deviation from the mean in the precision and recall for conrod metal is found to be less
than 2%. In the case of conrod plastic, the deviation from the mean in the precision and
recall is found to be close to 2.5% and 3% respectively. For the ring object, the deviation from
the mean in the recall is observed to be very small that is 0.6%, while the deviation in the
precision from the mean was less than 3%. Gear object was seen to have less than 2.5% and
4% deviation from the mean in precision and recall respectively.

To observe the performance of the trained model on test data, different dmax with IoU =
0.5 is also tested. Table 5.3 and 5.4, presents the result of this experiment.

Table 5.3: Performance of 3D instance segmentation with different values of dmax at IoU=0.5
on test data (gear shaft and ring)

dmax
Gear Shaft Ring

Precision Recall Precision Recall
0.07 0.248 ˘ 0.023 0.617 ˘ 0.035 0.843 ˘ 0.022 0.942 ˘ 0.005
0.1 0.256 ˘ 0.019 0.648 ˘ 0.039 0.836 ˘ 0.027 0.944 ˘ 0.006
0.18 0.260 ˘ 0.016 0.662 ˘ 0.028 0.826 ˘ 0.014 0.938 ˘ 0.007
0.25 0.262 ˘ 0.024 0.655˘ 0.030 0.805 ˘ 0.011 0.937 ˘ 0.005

Table 5.4: Performance of 3D instance segmentation with different values of dmax at IoU=0.5
on test data (conrod plastic and conrod metal)

dmax
Conrod Plastic Conrod Metal

Precision Recall Precision Recall
0.07 0.533 ˘ 0.022 0.804 ˘ 0.033 0.624 ˘ 0.018 0.853 ˘ 0.011
0.1 0.543 ˘ 0.020 0.822 ˘ 0.025 0.619 ˘ 0.014 0.838 ˘ 0.012
0.18 0.560 ˘ 0.027 0.850 ˘ 0.034 0.625 ˘ 0.012 0.844 ˘ 0.014
0.25 0.539 ˘ 0.023 0.823 ˘ 0.025 0.617 ˘ 0.010 0.841 ˘ 0.016

From Table 5.1, 5.2, 5.3, and 5.4 we observe a similar performance of the trained model on
both validation and test data. The value of dmax for all objects is chosen based on the results
of the validation set. The experiment of different dmax with test data is done to ensure the
similar performance of the model on both datasets.

5.1.4 Results from Noisy Data

The chosen model is applied to the noisy test data created with several noise percentages. It is
interesting to see the behavior of the evaluation metrics with the increasing noise percentage
through line charts. Below are the line plots of individual evaluation metrics comparing all
the objects with increasing noise percentages.

In all the figures 5.2, 5.3, 5.4, and 5.5, there are 3 line plots for noise percentages 10, 30, and
100 in the order left to right. Different colors in the line plots represent the different objects.
All the plots are evaluated for 3 levels of increasing standard deviation. In Fig. 5.2, we
observe that the mean precision is degrading with the increasing noise (standard deviation)
for all three noise percentages. However, we also observe that the mean precision increases
with the increasing noise in the case of the ring object. A similar trend was observed for the
other evaluation metrics in Fig. 5.3, 5.4, and 5.5.

Table 5.5, presents the numerical representation for the results on the noisy data with con-
rod metal. The average precision clearly seems to drop with increasing standard deviation.
However, the difference is not so significant.
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Figure 5.2: Precision vs Noise Percentages for all objects

Figure 5.3: Recall vs Noise Percentages for all objects

Figure 5.4: MUCov vs Noise Percentages for all objects

Figure 5.5: MWCov vs Noise Percentages for all objects
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Table 5.5: Results for Conrod Metal on noisy test data with IoU = 0.5

Noise Percentage Std. Dev. Precision Recall MUCov MWCov

10
0.01 0.620 0.863 0.684 0.691
0.015 0.610 0.861 0.688 0.695
0.02 0.589 0.860 0.690 0.697

30
0.01 0.578 0.825 0.664 0.671
0.015 0.573 0.825 0.664 0.672
0.02 0.555 0.822 0.663 0.671

100
0.003 0.591 0.850 0.681 0.688
0.005 0.586 0.838 0.672 0.679
0.007 0.577 0.824 0.663 0.670

5.1.5 Number of predicted instances vs number of actual instances

It was observed that the number of predicted instances is usually higher than the actual num-
ber of instances in the bin. The test set contains 300 points clouds which were generated in
10 cycles. As each cycle contains 1-30 instances, therefore there are 10 point clouds for each
number of instances (1-30) for every object. The average number of predicted instances for
each number of actual instances is calculated and shown in Fig. 5.6.

Figure 5.6: Number of predicted instances vs Actual number of objects

It can be seen that for conrod metal, conrod plastic, and ring objects, the number of pre-
dicted instances is slightly higher than the actual number of instances while it is approxi-
mately twice in the case of the gear shaft.

5.1.6 Qualitative Analysis

With the shown results above, it will also be interesting to observe the 3D instance segmenta-
tion performed on all the objects visually. 3D Instance segmentation performed on synthetic
conrod plastic, gear shaft, and ring objects is shown in Fig. 5.7, Fig. 5.8, and 5.9 respectively.

The segmented images contain color gradients, where every color represents one pre-
dicted instance. We observe there are several instances that are well segmented, while there
are some instances that have multiple predictions. We also observe that few predicted in-
stances contain points from multiple actual instances.

The trained model is also tested on the real data. The point clouds of real conrod metal
and real conrod plastic objects were collected at SICK to test the model. Conrod metal is a
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5.1. Result of 3D Instance Segmentation

Figure 5.7: 3D Instance Segmentation of Conrod Plastic with 15 objects

Figure 5.8: 3D Instance Segmentation of IPA Gear Shaft with 15 objects

Figure 5.9: 3D Instance Segmentation of IPA Ring with 15 objects

customer data, which can’t be demonstrated here. In the Fig. 5.10, the segmentation on real
conrod plastic object with 9 instances is shown. The segmentation contains 15 instances.
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5.2. Results for choosing Best Segmentation

Figure 5.10: 3D Instance Segmentation of Real Plastic rod with 9 objects

5.2 Results for choosing Best Segmentation

As we observed in Fig. 5.6, the number of predicted instances is always higher than the actual
number of instances. To chose the one instance from predicted instance we evaluate both the
methods discussed previously on the validation data.

The average number of points and CAD model volume per object is calculated and dis-
played in the table 5.6.

Table 5.6: Average number of points per object

Object avgPoints CAD volume
Conrod Metal 2935 0.00034
Conrod Plastic 3061 0.00075
Gear Shaft 3221 0.00424
Ring 2106 0.00108

5.2.1 Results for method 1: Fixed thresholds

In this method, a threshold was set for both the number of points and the volume of the CAD
model. The threshold for the number of points and CAD model volume per object can be
referred at table 5.6. Considering an example of a conrod metal point cloud that contains 5
actual instances, the result of 3D instance segmentation is with segmentation id, number of
points, and MBB volume of each predicted instance is shown in table 5.7.

Table 5.7: A sample 3D instance segmentation of conrod metal with 5 actual instances

Segmentation ID nPoints Instance volume
1 2849 0.00041
2 2702 0.00245
3 48 0.00039
4 1414 0.00070
5 3467 0.00105
6 561 0.00038
7 3086 0.00039
8 2361 0.00064

In the table 5.7 which demonstrates a sample segmentation of conrod metal, we observe
that there are 8 predicted instances. Out of the 8 predicted instances, there are two segmenta-
tions (id: 5 and 7) which have more number of points than the average number of points but,
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5.2. Results for choosing Best Segmentation

there are no segmentation which have equal or less volume than the CAD volume. Thus, we
get no segmentation in this case to perform point cloud registration.

In general, out of 300 test point clouds for each object, 48, 56, 82, and 48 point clouds of
conrod metal, conrod plastic, gear shaft, and ring respectively had the same issue. This was
either due to none of the segmentation having more points than the average number of points
or less than the volume of the CAD model.

5.2.2 Results for method 2: Scoring instances

The instance score calculation will help in choosing one segmentation to perform the point
cloud registration with the CAD model as it will score every predicted instance. First, the
score calculation was performed on the validation data. Based on the calculated scores for
every point cloud of validation data, the minimum score and maximum score is taken to the
normalize the score calculation.

The minimum and maximum instance score for every object is shown in table 5.8.

Table 5.8: Minimum and Maximum score from validation data

Object min score max score
Conrod Metal -14.47 2.72
Conrod Plastic -22.41 2.38
Gear Shaft -15.25 2.63
Ring -25.73 2.81

The sample score calculation for a point cloud with 16 objects is shown in table 5.9. The
table is sorted on the score in descending order.

We observe that the number of predicted instances is 26 in this case and segmentation id
25 gets the highest score. This is because the number of points is higher than the average
number of points and the difference between the volume of the predicted instance and the
actual object is very low.

Figure 5.11: Choosing the best segmentation

The extraction of the best segmentation for the same point cloud with 16 actual instances is
demonstrated in Fig. 5.11. The figure shows the 3D Instance segmentation of the input point
cloud followed by selecting one predicted instance based on the score. The white-colored
instance in the best segmentation part of Fig. 5.11 is the best segmentation with id 25.
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5.2. Results for choosing Best Segmentation

Table 5.9: Normalized scores for all the predicted instances of a conrod plastic point cloud

Segmentation ID nPoints volume dVolume score
25 2614 0.000797 0.000038 0.940164
4 2163 0.000980 0.000221 0.908573
11 1829 0.000641 0.000118 0.903540
13 1884 0.000420 0.000339 0.888728
24 1908 0.001127 0.000369 0.887360
7 2242 0.001355 0.000597 0.882815
9 3238 0.002061 0.001302 0.867336
21 642 0.000719 0.000040 0.863430
17 723 0.000852 0.000093 0.862483
22 1566 0.001281 0.000522 0.862309
26 1471 0.001248 0.000490 0.861112
15 2476 0.001906 0.001148 0.849590
14 1615 0.001531 0.000772 0.845004
19 523 0.000502 0.000257 0.842159
20 618 0.000267 0.000492 0.827811
23 1080 0.001526 0.000767 0.824622
16 1523 0.001825 0.001067 0.818802
3 1591 0.002421 0.001663 0.775684
1 2163 0.002872 0.002113 0.763304
8 2769 0.003299 0.002540 0.754076
6 2299 0.003271 0.002512 0.737963
2 1199 0.002858 0.002100 0.726910
10 3805 0.004297 0.003539 0.717616
12 797 0.004511 0.003753 0.584379
18 1859 0.006362 0.005603 0.483551
27 1052 0.006937 0.006178 0.408052
5 1558 0.012328 0.011570 0.013742

5.2.3 Comparison of methods

The two implemented methods for choosing one segmentation is demonstrated qualitatively
in the Fig. 5.12.

Figure 5.12: Comparison of methods for selecting one instance

In the Fig. 5.12, we observe that the segmentation chosen by both methods are different.
The white points in the image signify the selected instance by the methods. Method 1 chooses
an instance which has high number of points but, the instance is highly occluded and contains
points from multiple actual instances. Method 2 selects an instance which is isolated and has
good shape.
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5.3. Result of Point Cloud Registration

5.3 Result of Point Cloud Registration

5.3.1 Experimental Setup

PoinetNetLK trains all the objects at once. First, it trains for a classification network to distin-
guish between different objects, and then a registration network is trained to find the optimal
transformation between the source and template point cloud. The classification network is
trained for 70 epochs, while the registration network is trained for 50 epochs. In the train-
ing dataset, 2.5 D point cloud, 3D point cloud, and best segmentation from the 3D instance
segmentation are taken for all 4 objects. Nvidia GTX 1080 GPU with 12GB RAM is used dur-
ing the entire training and testing of the model. During the training phase of PoinetNetLK,
the batch size is kept at 32 with Adam optimizer and a fixed delta (step size for Jacobian) of
0.001. Every batch takes 1024 unique points. Each training consumes around 2 hours with
the above-mentioned parameter values.

5.3.2 Network Loss

The losses of the network seem to decrease normally and gets steady after some epochs. The
best model is saved with the least loss. The line chart for the training and validation loss of
different objects for both classification and registration is shown in the Fig. 5.13 and Fig. 5.14
respectively.

Figure 5.13: Training and validation loss during classification training

5.3.3 Difference in transformation

The logarithm of estimated transformation and ground truth is calculated to compare the
difference between both matrices. This calculation results in a vector of length 6. For the es-
timated transformation the vector has hw1, hw2, hw3, hv1, hv2, hv3 and gw1, gw2, gw3, gv1, gv2, gv3
for ground truth. hw1, hw2, hw3 represents the rotation, hv1, hv2, hv3 represents the translation
of estimated transformation. gw1, gw2, gw3 represents the rotation, gv1, gv2, gv3 represents the
translation of ground truth transformation. The difference between the respective compo-
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5.3. Result of Point Cloud Registration

Figure 5.14: Training and validation loss during registration training

nents is taken to observe the deviation of our predicted transformation from the actual trans-
formation.

The difference between the actual transformation and predicted transformation is calcu-
lated and presented in the Fig. 5.15.

Figure 5.15: Difference in transformation

The x-axis in all the subplots is transformation parameters (w1, w2, w3, v1, v2, v3). They
represent the difference in the transformation for both rotation and translation. For all the
objects, we observe that the difference in the positional parameters is very low, which signifies
that the difference in translation between the source and template is very low. We also observe
that the difference in the rotational part for all objects except the gear shaft is also very small.
For all objects except the gear shaft, we see that the maximum difference is around 0.08.
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5.3. Result of Point Cloud Registration

5.3.4 Rotation-Translation Error Analysis

Several errors are computed to evaluate the trained model. ep represents the position error
which is calculated as euclidean distance between the estimated position and ground truth
position. It computes the accuracy of the estimated translation. ew represents the rotation
error. It measures the accuracy of the estimated rotation. ex represents the twist error, which
is a combination of both rotation and translation components. ev represents the translation
error, which can be calculated as the euclidean norm of the translation from the twist error. It
measures the accuracy of the estimated translation. For a perfect registration, all the above-
mentioned errors should be zero.

The rotation-translation errors for all the objects are calculated and presented in the table
below.

Table 5.10: Translation-Rotation Errors for Conrod Metal

Object type ep ex ew ev
Partial 0.38031 1.34632 1.37934 0.39500

Full 0.37912 1.30548 1.35808 0.37407
Best Seg 0.39700 1.36725 2.07961 0.39110

Table 5.11: Translation-Rotation Errors for Conrod Plastic

Object type ep ex ew ev
Partial 0.27434 1.797175 1.81321 0.29993

Full 0.27708 1.79090 1.79023 0.28256
Best Seg 0.28043 1.87993 1.85586 0.31800

Table 5.12: Translation-Rotation Errors for Gear Shaft

Object type ep ex ew ev
Partial 0.54907 3.01634 3.11720 0.786520

Full 0.52877 1.95358 2.04684 0.61082
Best Seg 0.54907 3.01635 3.11720 0.78652

Table 5.13: Translation-Rotation Errors for Ring

Object type ep ex ew ev
Partial 0.33294 2.87993 2.90534 0.38340

Full 0.33874 1.70664 1.74756 0.38849
Best Seg 0.33319 2.69094 2.71884 0.37597

In the table 5.10, 5.11, 5.12, and 5.13, all the errors related to translation and rotation for all
objects are presented. All the objects with different source type (partial, full or best segmenta-
tion) are evaluated. We observe from all the tables that the error for position and translation
is low, which signifies that source is well translated to template point cloud. We also observe
that the errors related to rotation is slightly higher than the positional, this motivates that
object is well-registered but not so accurate in every case.

5.3.5 Qualitative Analysis

After the deep evaluation on the difference in transformation and the error of every object
type, it is interesting to observe the registration of these objects visually.

The source and template before point cloud registration is shown in Fig. 5.16.
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5.3. Result of Point Cloud Registration

Figure 5.16: Point clouds before point cloud registration

In all the images, the yellow color point cloud is the CAD model (template) and the other
color one is the source point cloud. Both the source and template point clouds before regis-
tration is seen to be clearly distant and with significant rotation difference.

Point clouds after performing the point cloud registration is demonstrated below.

Figure 5.17: Point cloud registration on Conrod Plastic

Figure 5.18: Point cloud registration on Ring

Fig. 5.17 and 5.18 shows the result of point cloud registration on conrod plastic and ring
object respectively. Both images have 3 sub-images representing the 4 source type. The align-
ment of the two point clouds (source and template), motivates the quality of registration.
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6 Discussion

This chapter focuses on discussing the results obtained, methods used, limitations, and eth-
ical considerations. It also presents a comprehensive analysis of the results obtained from
applying these methods, and their effectiveness in approaching our problem, i.e. robotic bin
picking. After evaluating the results in the previous chapter, we are interested in gather-
ing insights about the strength and weaknesses of the applied methods and discussing the
scopes for further enhancements. The prime objective of this thesis was to research robust al-
gorithms for 3D Instance segmentation and point cloud registration. Further, combine these
two techniques by selecting one instance from the predicted instances efficiently to have a
smooth point cloud registration.

6.1 Results

The result section presents the interpretation of the output generated by applying 3D instance
segmentation using FPCC (Fast Point Cloud Clustering) and point cloud registration with
PointNetLK on our data. The discussion on the results is done individually for 3D instance
segmentation, selection of one instance, and point cloud registration.

6.1.1 3D Instance Segmentation

The results obtained from the implemented FPCC-net give some valuable insights into the
performance and robustness of this method to tackle the challenging task of 3D Instance
Segmentation. The implementation was evaluated using IoU, precision-recall, mean under-
segmentation and mean over-segmentation. This was performed for 4 objects including the
gear shaft, ring, conrod metal, and conrod plastic. The hyper-tuning of dmax on the validation
data is well justified as the ring is the smallest object amongst all, while the gear shaft is the
largest, thus a smaller value of dmax = 0.07 and a larger value of dmax = 0.25 for ring, gear
shaft respectively. Based on the chosen parameters, the test dataset was evaluated 5.1, 5.2,
5.3, and 5.4. It was observed that the performance of the model doesn’t vary a lot, which
signified that the model is not over-fitting.

To further test the robustness and bring it as close as to real data, the trained model is also
applied to the separate noisy datasets, which contain several levels of noise for all the objects.
The performance on the noisy datasets is presented in the Fig. 5.2, 5.3, 5.4, and 5.5. It is
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6.1. Results

observed that the average precision of the model decreases in most cases with the increasing
amount of noise, which is an expected behavior.

Table 5.5, presents the evaluation of conrod metal object with different noise percentages
for 3 levels of standard deviation. It can be observed that the performance of the model
degrades with the added noise, which is an expected behaviour. From table 5.3, 5.4 and 5.5,
it is inferred that the performance on the noisy dataset is not significantly different from the
non-noisy dataset. This motivates the trained model is performing well with noisy data.

The number of predictions to the number of actual instances analyses is also performed
to test the trained mode. Since there were multiple point clouds with the same number of
objects in the test set. Thus, the mean value of the number of predictions for each number of
objects (ranging from 1 to 30) is calculated and presented in Fig. 5.6. It is observed that for all
the objects except the gear shaft, the number of predictions is closer to the number of actual
objects. It was also observed that the ratio of the number of actual objects to the ratio of the
number of predictions decreased with the increasing number of objects.

In the qualitative analysis part, the instances can be clearly distinguished for all objects.
The performance of the model on the real conrod plastic object looks similar, where the in-
stances well-segmented. However, we also observe that a few instances are not very well
segmented. This can impact the point cloud registration if chosen. Thus, a strategy is needed
to choose the most suitable predicted instance.

6.1.2 Selecting one instance from prediction

Selecting one instance from the predicted instances is a crucial part of this research. A pre-
dicted instance with just a high number of points may not have a good shape like the actual
object. It may include points from other actual instances and may affect our point cloud reg-
istration. Method 1 with fixed thresholds had several scenarios where no segmentation was
selected because of hard thresholds.

Thus, scoring all the predicted instances based on the number of points and minimum
bounding box volume is a better idea. A sample calculation of the score for choosing the
one best instance out of all the predicted instances for the conrod plastic object is shown in
5.9. It was observed that the instances with a good number of points and low difference
in the volume of minimum bounding boxes of predicted instance and CAD model gets the
high score. It can also be observed that the predicted instance with id 21 has a very low
difference in the volumes, but due to a very low number of points, it gets a low score. This
motivates that the score calculation formula proposed in this research is a good approach to
chose one segmentation. Fig. 5.11 demonstrates the selection of best segmentation for conrod
plastic with 15 objects. We see that the white instance in the best segmentation image has
the maximum score. This selection of instance is considered good as the implementation can
detect the object with the least occlusion. This will not only provide ease at registration but
also will be simple for the robot to pick.

6.1.3 Point Cloud Registration

For point cloud registration using PointNetLK, 3 different types of sources were taken to be
registered with the CAD model. A partial point cloud is a 2.5D point cloud generated by
the camera view during synthetic generation, a full point cloud is the complete point cloud
of the same instance generated during the synthetic data generation and the best-segmented
point cloud is the best segmentation chosen based on the score calculation after FPCC im-
plementation. In Fig. 5.15, it can be observed that the translation of source point cloud is
well estimated. In the table 5.10, 5.11, 5.12, and 5.13, where the rotation translation analysis
is performed it is also interesting to observe that the performance is better with the full point
cloud, which is expected as the full point cloud has better shape and more concrete features
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to get aligned to the template point cloud. It is also important to notice that the performance
of the model doesn’t vary much between the different types of sources.

6.2 Limitations

While the results from FPCC and PointNetLK have shown some good results for 3D instance
segmentation and point cloud registration, it is also important to describe the limitations of
the methods. In this section, we describe key aspects where these methods may face difficul-
ties.

During the clustering phase of 3D instance segmentation, the pairwise distance calcula-
tion is performed, which is very demanding. FPCC provides a very tailored solution based
on objects, which means the same model will not perform well on different objects. Thus,
separate training is needed for every object. This also signifies that the method is sensitive to
parameter values. FPCC first finds the potential centers for the instances and then clusters.
So, in cases when the geometrical centers of the object are missing it chooses a point on the
object somewhere which is not a geometrical center as the center of the instance.

The selection of one instance from the predicted instances has shown some good results.
However, this method is very sensitive to outliers. In case a few extra points outside the
predicted instance, will result in a high volume of the minimum bounding box, which in turn
will give a bad score. Thus, this solution is not robust to the outliers.

For point cloud registration using PointNetLK, the architecture is computationally expen-
sive. For larger point clouds, computational time and resource requirements increase a lot.
The model is not very robust to the outliers as well. Also, every point is treated equally, thus
information like local density is neglected.

Also, the real image provided by SICK had approximately 400,000 points in every point
cloud and the data wasn’t labeled. In general, labeling the point cloud data is very impractical
as the point clouds have a huge number of points and several point clouds make a dataset.

6.3 Ethical Considerations

When working with point cloud segmentation and registration-related projects, there can
be various ethical considerations that need to be taken care of to ensure that the project is
developed responsibly and ethically. First, ethical considerations can be privacy. As these
projects may capture images inside industries or factories with a camera, it is important to
consider the privacy of the people involved. This leads to creating anonymous data, which
may demand taking consent from every individual if captured or blurring faces.

The safety of the system is another important aspect here. Bin-picking applications may
have a high risk of injuring the human workforce. Thus, the system should be designed with
proper safety measures, including emergency stop buttons or safety barriers.

Ethical considerations such as transparency and accountability are also important. The
algorithms, source of data, and decision-making process should be kept transparent. The
developers should hold accountability for any unethical behavior in the workflow which is
generated as an outcome of this research.

Overall, these ethical considerations promote fairness, safety, accountability, and privacy
which will result in carrying out this project in an ethical environment.
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7 Conclusion

This thesis focused on adapting state-of-art methods in 3D instance segmentation and point
cloud registration and combining them to build an efficient technique for robotic bin picking.
At first, to detect individual objects from the bin, FPCC (fast point cloud clustering) network
is trained with the company’s data. The model was trained to fit the data available. The
trained model was robust in detecting the individual instances from the bin. The model was
also applied to the real dataset provided by SICK. Based on the qualitative analysis, the model
seemed to have a similar performance. Further, to select one instance from the predicted in-
stances, a score calculation is proposed, where every predicted instance gets a score based on
shape and density. With the selected instance, another state-of-the-art method, PointNetLK
is adapted to perform the point cloud registration. This task also showed promising results
with close to accurate registrations. This thesis also aims to answer below research questions:

• How to choose one instance from the predicted instances after 3D instance segmentation? We
observed that the number of prediction of instances is approximately 1.5 times the ac-
tual number of instances. It is crucial to decide on one instance, as it will have an impact
on the registration in the next step. A scoring mechanism is proposed in this thesis to
decide upon the best segmentation. Two things were considered: the shape and den-
sity(number of points) of the instance. To validate the shape, the minimum bounding
box of the instance with highest score is calculated. To validate the density, the number
of points in the selected instance was considered. Unlike keeping a threshold for both
density and volume, which removes many predicted instances, this method keeps all
the predicted instances and scores them. Hard thresholds may result in no best seg-
mentation, while this approach guarantees one. It was also observed that the high score
is given to the instances which are out of high occlusion areas, which is good for the
robotic bin picking.

• What is the impact on the performance of 3D instance segmentation with the added noise on
synthetic data?

Noisy datasets were synthetically generated, to test the robustness of the trained model
with respect to the noisy data. It was observed that the performance degrade for all the
objects as the noise level increased, except for the ring object. The FPCC-net performs
best when the object is not hollow at the geometrical center. In the case of the ring object,
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where there are no points at the geometrical center, with the added noise it observes
some points close to the geometrical center. Thus, when the noise levels increase, the
center prediction shifts towards the geometrical center and the performance for the ring
object continuously increase with added noise. It is also important to note that there is
not a significant decrease in the performance, which makes the model robust towards
the noise and motivates for a good performance on the real dataset.

• What is the change in performance when a partial point cloud and a full point cloud are registered
with the CAD model of the objects?

Point cloud registration with PointNetLK has shown robust performance. It was ob-
served that the alignment in the case of conrod metal and conrod plastic is very close
to accurate. This registration task was performed for 3 different types of source point
clouds (partial, full, and best segmentation). The model has shown the best perfor-
mance with the full point cloud, while with the partial and best segmentation, it has
shown similar performance. Overall, there is not a significant difference in the perfor-
mance among the three. It was also observed that in some cases the translation of the
source point cloud was very well estimated, while the rotation wasn’t up to the mark.
This mostly was observed when the number of points wasn’t enough in the source point
cloud or the CAD model had lacking points from the edges.

7.1 Future Work

This section proposes potential directions for further exploration and improvements. This
is based on the results obtained and the limitations of the current work. In this section, we
discuss the possible advancements that could enhance the performance of the current imple-
mentation.

1. Hyper-tune all the parameters for both methods (FPCC and PointNetLK) to improve
the overall performance.

2. As the score is in the decreasing order for all the predicted instances, a threshold is
needed for the instance score after which all the points of the selected instances will be
removed and a re-segmentation will be performed.

3. Feature extraction is performed twice, one in each 3D instance segmentation and point
cloud registration. A common feature extraction will reduce the computation time at
large.
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