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Sammanfattning

Spelmotorer är välkända för sin användning inom spelindustrin men har också fått genom-
slag inom andra områden. Arkitektur, fordonsindustrin och försvarsindustrin använder idag
dessa verktyg för att visualisera och till viss mån, även testa sina produkter. I detta exam-
ensarbete har vi undersökt hur spelmotorn Unity kan användas för att simulera en radar
i syfte att detektera och mäta sjöklotter. Efter en förstudie där olika implementeringsme-
toder undersöktes, beslutades det att använda strålspårning (eng. ray tracing). Själva radarn
simuleras genom att använda kameraobjektet i Unity för att sända ut strålar. Bakom kameran
finns ett planobjekt som fungerar som mottagare. Strålar spåras sedan individuellt för varje
pixel och sprider sig genom en given scen. Samtidigt sparas information såsom träffkoor-
dinater, den totala färdsträckan samt riktning. Genom att använda det totala färdavståndet
för varje stråle som återvänt till mottagaren kan fasen för varje stråle beräknas. Detta kan
sedan användas för att beräkna den totala returnerade amplituden, vilket motsvarar den
returnerade signalstyrkan. Med hjälp av en "compute shader" kan databeräkningarna göras
parallellt av GPU:n vilket underlättar när så många strålar ska spåras.

Eftersom syftet med uppsatsen var mätning av simulerat sjöklotter, genomfördes tester
för att mäta på ett simulerat hav. Havsytorna hade två olika sjöstadier, vilka genererades
med Phillips-spektrumet för att få realistiska vågor. Ett fartygsobjekt testades sedan i frirymd
och sedan även i de två olika havsytorna. Amplituden och mängden strålar som returnerades
användes för att bestämma den totala returnerade signalstyrkan och "Radar Cross Section"
(RCS) för objektet. Syftet med detta var att kunna jämföra med andra studier gällande
sjöklotter, både simulerade som verklighetsbaserade och avgöra om vårt tillvägagångssätt
kunde resultera i ett användbart verktyg för branschen.

De olika amplituder och antalet strålar som vi fick tillbaka varierade beroende på vilka
vinklar och havsytor som användes. Vissa resultat var inte realistiska jämfört med verkliga
mätningar av sjöklotter. Det beror främst på våra nuvarande begränsningar i att inte kunna
spåra en tillräckligt stor och tillräckligt detaljerad havsyta, vilket behövs för att mätningarna
ska vara mer realistiska.

Däremot matchade vi några resultat med de från en liknande studie, där verktyget OK-
TAL, som är ett professionellt radarsimuleringsverktyg, användes. Detta i kombination med
möjligheterna för en förbättrad implementation tyder på att användningen av en spelmotor
som Unity är ett intressant verktyg värd att vidareutforska radarsimuleringar med.



Abstract

Game engines are well known for their use in the gaming industry but are starting to have an
impact in other areas as well. Architecture, automotive, and the defence industry are today
using these engines to visualise and, to some extent, test their products. In this thesis, we
have examined how the game engine Unity could be used for simulating a radar with the
purpose of detecting and measuring sea clutter. Following a pre-study examining different
implementation approaches, it was decided to use ray tracing. The radar itself is simulated
by using the camera to emit rays and having a plane object directly behind it act as a re-
ceiver. Rays are then individually traced for each pixel, propagating throughout the scene
and saving information such as hit coordinates, distance travelled, and direction. By using
the total travel distance of each ray that returned to the receiver, the phase of each ray is
calculated. This is then used to compute the total amplitude, which represents the returned
signal strength. Using a compute shader, most of the computations are done in parallel on
the GPU, enabling millions of rays to be traced.

As measuring sea clutter was an objective of the study, tests measuring the ocean were
carried out. These used ocean surfaces with two different sea states, using the Phillips spec-
trum to generate realistic waves. A ship object was then tested in free space and on two
different ocean surfaces. The calculated amplitude and the number of rays returned were
used to determine the signal strength returned and the RCS of the object. The purpose of this
was to compare with other results of sea clutter studied, observed both in the real world and
in simulated scenarios, and determine if our approach could be a valid choice for the industry.

Some results matched the findings of a similar study that used a professional radar sim-
ulation tool called OKTAL. Other results of sea clutter were found to not be realistic due to
certain limitations. The current main limitation of our implementation is not being able to
trace a large enough ocean surface with the finer details needed for realistic results. However,
this could be solved by creating a better implementation.

These findings suggest that simulating radar and sea clutter in Unity is a feasible approach
worth continuing to explore.
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1 Introduction

Today, as game engines provide realistic graphics and powerful tools, industries outside of
gaming are beginning to use them1. Industries such as architecture, automotive, aeronautics,
and defence industries use them for visualisation, building 3D environments, and simulating
real-world products and scenarios. This study examines how radar and sea clutter can be
simulated using the Unity game engine.

Radar is a well-studied field with years of research, continuously developing in the con-
text of defence industries but also in the area of autonomous vehicles such as unmanned
aerial vehicles (UAVs) and cars using a similar technique, Light detection and ranging (Li-
DAR). A problem that occurs with radar is clutter, which is false signals caused by the
varying surface of the ground or sea [1]. Simulating radar and radar clutter is part of devel-
oping radar systems and clarifying their outputs. It is not a trivial task, as it requires both
modelling a realistic radar simulation and a realistic surface. The surface of the ground is
difficult to model as it can be heavily varied. Our aim is therefore to simulate radar noises
caused by the sea surface when detecting objects in the ocean.

Using a game engine for this purpose is a relevant proposition, potentially increasing its
usability for the defence industry. Since both light and radar are electromagnetic (EM) waves
with similar propagation behaviours, it should be possible to simulate radar in the same
way light is simulated. There are different methods of simulating light and its propaga-
tion. The approach usually differs depending on which method is used to generate the
graphics, with rasterization or ray tracing. Both rasterization and ray tracing are usually
implemented using shaders, programs that run on the graphics card. In short, light cal-
culated using a rasterization-based method is more of a numerical approach, whereas ray
tracing physically traverses the scene in order to simulate the propagation. In this thesis,
when a shader-based implementation is mentioned, we refer to it as an implementation that
is not using ray tracing. Another potential method that was reviewed was using the built-in
audio system. It is a relevant approach, as radar works on the same principle as echoes
from sound. These three approaches, a shader-based implementation, ray tracing, and audio,
were studied, and we ultimately chose one of them to create a radar implementation in Unity.

1Unity. Real-Time Solutions, Endless Opportunities. Accessed: 08.03.2023. URL: https : / / unity . com /
solutions.
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1.1. Requirement specification

So far, there has been some research using ray tracing in game engines to simulate radar
or LiDAR by creating a plugin for a game engine [2], [3]. Other studies implement ray
tracing without the use of a game engine to simulate radar [4], [5], or sonar [6]. Some studies
have implemented a radar simulation with other methods than ray tracing, such as using
the Phong lighting model [7], [8], [9]. The effect ocean surfaces have on radar return when
measuring the radar signature of different objects has been simulated using ray tracing in a
paper by Andersson [10].

1.1 Requirement specification

We were given a task by Saab Dynamics in Linköping to study if and how sea clutter could
be simulated by using another tool than the existing ones being used at the company, for
example, a game engine. They wanted us to examine three different approaches: a shader-
based implementation, ray tracing, and audio, choosing one of them for the implementation.
By measuring the results, a conclusion could be drawn about whether using a game engine
for this purpose is feasible and how well it compares to real-world results. For this thesis, we
focused on using Unity as the testing environment in our research.

1.1.1 Saab Dynamics AB

Saab Dynamics AB is part of the Saab corporate group and is a Swedish company with a main
focus on developing high-technology creative solutions and construction for the defence in-
dustry. Saab Dynamics AB focuses on missile systems, fire support systems, and military and
civilian underwater crafts, which can be both manned and unmanned.

1.2 Aim

This study aimed to examine how Unity could be used to simulate sea clutter caused by using
radar when detecting objects. By examining three different approaches: ray tracing, shaders,
and audio, the aim was to reach a conclusion regarding which method was most suitable.
A more conclusive evaluation was then made by implementing the chosen approach and
comparing it to other studies of sea clutter.

1.3 Research question

• How can Unity be used to simulate sea clutter and how accurate are the results?

1.4 Approach

After learning more about the core concepts of the paper and evaluating related works, a
pre-study was conducted where each approach was evaluated. We had three methods to
choose from: one was a shader-based implementation using a lighting model, another was
ray tracing, and the third was using audio. Related works regarding the implementation of
radar simulations using these three methods mentioned, were analysed and evaluated. A
method was then chosen to be implemented in Unity. The method chosen was based on how
well-suited the approach was for our purpose, it should be estimated to have a reasonable
time of implementation and preferably primarily use the graphics processing unit (GPU) for
making all the heavy calculations.

In our testing environment, we created a scene in Unity with a radar that emitted a number
of rays (as the radar pulse waves) and measured their propagation behaviour. The scene

2



1.5. Delimitations

either contained some objects or a sea surface that reflected the rays. By summarising the
returned rays, characteristics such as the signal strength and radar cross section (RCS) were
calculated.

Results from our tests were then compared to both empirical studies and other papers that
have similar traits to our work but whose methods and testing environments are different
from ours.

1.5 Delimitations

We have chosen the Unity 3D game engine as our experimental environment to set up our
scenes. There is a possibility that other game engines like Unreal Engine might have a dif-
ferent performance given the same scenario and parameters, but it is outside of the scope of
this thesis. We also used some existing implementations that were free to import into a Unity
project, for instance, the simulated ocean and the boat object. This was helpful in giving us
more time to conduct tests and write the paper.

We have conducted a pre-study to determine which method is the best candidate for us
to implement within the given time we had writing this thesis. We chose to implement ray
tracing in Unity, and our evaluation is based on the findings from this method. In this thesis,
when a shader-based implementation is mentioned, it implies an implementation that is not
using ray tracing.

1.6 Outline

The thesis is structured in the following way: An introduction Chapter 1 to the subject and
our aim with the study, along with our research question. In Chapter 2 we discuss relevant
topics and present theories worth knowing about for the readers of this paper. In Chapter 3,
related works are presented, and how our study fits among these earlier works is discussed.
Then in Chapter 4, it is explained how we conducted our experiments and what we wanted
to achieve with them. In the implementation Chapter 5, we present more details about the
chosen method and how we implemented it in the game engine. In Chapter 6, our results are
displayed, and following that chapter is the discussion 7, where the data is analysed. In the
last Chapter 8, some conclusions are made based on the theory presented earlier with regards
to our results, and we also answer our research question.

3



2 Background

This chapter explains relevant topics for our study, starting with an introduction to game en-
gines and Unity. Technical topics related to the implementation, such as the basics of shaders
and ray tracing, will be explained, followed by explanations and some definitions of how
radar, sea clutter, and audio waves work.

2.1 Game engines

Freiknecht et al. [11] explain the origin of the game engine, which was created as a tool to
simplify the process of making a game. Instead of having to rebuild entire games from the
ground up, game engines provide the basis upon which the game can be built. They provide
the game developer with a graphical interface in which all the features needed to create a
game are found. Tools for animation, level building, simulating physics, graphics rendering,
as well as sound and input mechanisms, along with other features.

The game engine chosen for this study is Unity2, and they market their platform as a tool not
only for game development but also for other uses. A common use case, like visualising and
simulating real-life data, can be used in many industries. Some examples are the automotive,
aerospace, and defence industries, where such simulations can be used to develop and test
new products. By creating what Unity calls “Digital Twins”3, a digital copy of a real-world
product is made. By injecting real-world data sets, the results of the simulated model could
give insightful and helpful guidance to the user for the actual product manufactured.

2.1.1 Unity

Unity is a platform used for the 2D and 3D development of games and applications. The
basic concepts of Unity are a "Scene" and a "GameObject". A scene is the virtual 2D or 3D
environment where content is contained. Any given object in the scene is called a "GameOb-
ject". These can consist of several components defining visual and physical characteristics
and behaviours. Furthermore, custom scripts can be created to further define the behaviour

2Unity. Real-Time Solutions, Endless Opportunities. Accessed: 08.03.2023. URL: https : / / unity . com /
solutions.

3Unity. Digital Twins. Accessed 08.03.2023. URL: https://unity.com/solutions/digital-twins.
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of the scene and the content within it.

The game engine itself is written in C++, and the current version 2021.3 (LTS) natively
supports scripting in C#4. Unity supports many different platforms and is used in a large
variety of games and applications, both for desktop and mobile devices. Because of the wide
availability of tutorials and free content from its asset store, it is a popular engine also for
educational purposes [12].

2.1.2 Raycast

In Unity, a Raycast is a ray used to detect collisions in a scene. By specifying an origin and
a direction, information such as the distance from the starting point to the point of collision
can be obtained5.

2.2 Shaders

Computer graphics are generated by the graphical processing unit (GPU). The rendering
pipeline consists of all the processes the GPU does in order to produce a frame. Shaders are
programs used in the rendering pipeline where mesh, i.e., vertex data, turns into shapes and
images. Several shaders can be used in the rendering pipeline, however, the vertex shader
and the fragment shader are mandatory. A vertex shader uses the specified mesh to place
vertices in the correct place on the screen. Lines are then drawn between each vertex, and the
rasterization stage calculates the data that each pixel, called a fragment, should contain. The
fragment shader then has the responsibility to fill the colour of these fragments, which will
determine how the surface of the shape will look [13].

A compute shader is a type of shader used to perform calculations on the GPU, also known
as "general-purpose computing on graphics processing units" (GPGPU). They are therefore
not necessarily used in the render pipeline but can be used to, for example, perform more
advanced light calculations.6.

2.3 Ray tracing

Ray tracing is a technique that has been implemented in many modern applications to render
realistic images and videos. Ray tracing is effective when reproducing optical effects such
as light scattering, reflections, and refraction. There are different types of algorithms and
implementations depending on the intended use and effect [14].

A common algorithm that is used is the shooting and bouncing rays (SBR) or “brute-force”
[15]. Rays are emitted, or "shot", from the camera into the scene. When the ray interacts with
another object, it bounces and gets another trajectory depending on the object’s surface area.
The computational cost increases with the number of rays emitted, how many bounces a ray
is allowed, and the complexity of the scene. There are techniques used to reduce the compu-
tational cost, enabling faster and more complex computations. A common method is using
an acceleration structure called "Bounding Volume Hierarchy" (BVH)7. Using this technique,

4Unity. Creating and Using Scripts. Accessed 08.03.2023. URL: https://docs.unity3d.com/2021.3/
Documentation/Manual/CreatingAndUsingScripts.html.

5Unity. Physics.Raycast. Accessed 04.04.2023. URL: https://docs.unity3d.com/ScriptReference/
Physics.Raycast.html.

6Unity. Compute shaders. Accessed 21.04.2023. URL: https://docs.unity3d.com/Manual/class-
ComputeShader.html.

7Nvidia. Ray Tracing. Accessed 05.06.2023. URL: https://developer.nvidia.com/discover/ray-
tracing.
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the scene is divided into several boxes or volumes, ordered as a tree structure. Rays are then
traced through the structure using a tree traversal technique, such as depth-first, instead of
being traced against each triangle. Using the GPU for these types of calculations is optimal
since ray tracing is a problem well suited for parallel computations.

The advantage of using ray tracing is that it can provide path-loss information, in other
words, if anything is making the signal decline or if an object is in the way. It is also possible
to provide data like the object’s angular spread, time delay, and distances to another target,
which are all important factors when considering the use of radar equipment [14].

2.4 Radar

Radar is the shorter term for "Radio Detection and Ranging". It works on the same principle
as an echo. More specifically, it sends signals in the form of EM waves, and then it measures
the returned signals. Since these waves travel at a constant speed, the distance to an object
can be calculated using the time it takes for the wave to return. The direction and elevation
of the object are derived from measuring the horizontal angle, i.e., azimuth, and altitude, i.e.,
elevation angle, of the received signal. For this purpose, a type of radar called "pulse radar"
is used. It sends a signal and waits a short time before sending another signal. This type of
application is usually used for military purposes [16].

Radar operates on different bands, depending on the situation. In Barton [1, p. 6], there
is an extensive table listing radar band usage, but we will focus on the X-band, which is the
frequencies between 8 and 12 GHz, which has been widely used for open sea, tracking ships,
and such in military surveillance.

2.4.1 Radar cross section

The radar cross section (RCS), also known as the radar signature, is important for radar de-
tection since a high RCS means that the object is easier to detect. RCS is affected by the size,
material, radar-absorbing paint, and smoothness of the object. A large container ship is there-
fore easier to detect due to its metal material and rectangular shape than a stealth ship, which
has pointy surfaces and non-reflective material. This is because the stealth ship design aims
at scattering or absorbing the radar signals, making it have a lower RCS and thus be harder
to detect.

2.4.2 Radar signal strength formula

The classic radar equation in 2.1 returns the power, Pe, measured in Watts (W), of a signal
from a radar pulse. Ps is the transmitted power, G is the antenna gain, i.e., a factor in which
signal strength is increased, lambda λ is the radar wavelength in metres (m), and sigma σ is
the RCS. These are mostly constant values, whereas the range, R, is for the object range.

Pe =
PsG2σλ2

(4π)3R4 (2.1)

The final implementation of our radar simulation did not use the formula 2.1. Some variables,
such as the distance, did not need to be calculated since they were given by the nature of our
approach. After discussing with our supervisor at Saab, the amplitude, meaning the signal
strength of a wave, was calculated. A high amplitude equals a high signal strength. By first
calculating the phase for each ray returned, the following equation was used: 2.2.

Total received signal sr = A ˚ sin(ω0t + ϕr) ñ A =
b

I2
tot + O2

tot (2.2)
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2.5. Sea clutter

The sine and cosine waves could cancel each other out if the phase of one wave is shifted
180 degrees from another wave. This is called interference8, and is why the phase is needed
to calculate the total amplitude of multiple waves. What this means for the radar return is
that some objects can be hard to track if the rays’ total in- and out-phases interfere with each
other. We will go further in explaining the equation 2.2 in Section 5.3.

2.5 Sea clutter

When target detection with radar occurs, there are a lot of things other than the intended
objects that will reflect some type of noise that will be picked up by the radar for each pulse
emitted. This noise can be from vegetation, buildings, structures, or even the sea. This type
of noise, or backscatter, is known as clutter, and our main focus will be on sea clutter in
this thesis. Barton describes in his book that depending on certain sea state (SS) numbers,
the sea surface conditions can be determined, which include the height of the waves and
the wind speed, among others [1, pp. 109–110]. Barton presents in Table [1, Tab. 3.2], where
we can read the sea surface parameters for SS levels between 0 and 8, which have been
converted to metrics that he has derived from the work of Nathanson [17], [1, pp. 109–110].
Furthermore, the sea surface is composed of water with an average salinity of 35 ppt.9 and
this will have an effect on the reflectivity of a water surface and therefore have an impact on
the amount of noise that the radar is detecting. In a report by Andersson [10], it was noted
that capillary waves also have a large impact with regard to sea clutter. Capillary waves are
centimetre-large waves that are on top of other waves. It is further mentioned that these are
highly complex to model and are an area in need of further research.

Some known empirical sea clutter modelling for computing reflectiveness are the GIT
model (Horst 1978, as cited in Greger-Hansen) [18] [19], the Hybrid model [20], the TSC
model developed by Technology Service Corporation [21], and the NRL model [18].

Yang et al. [22] discuss these models and how they are able to measure high sea states.
They are pointing out that different empirical models seem to be good at matching empirical
data depending on different types of radar incidence angles. But for sea states of levels 5-7,
TSC, NRL, and Morchin could be extended in their use of predicting sea clutter reflectivity.

The sea clutter, like all clutter, can be a problem when target detecting because there can
be circumstances that make the target almost impossible to distinguish from ambient noises.
Barton [1] describes ways of adjusting for the problems that might impact the radar signal,
but this is not an issue that we will address in this paper.

2.6 Ocean wave simulation

To simulate waves and wave formations, different techniques exist, and to mention a few
of these models, Phillips Pierson-Moskowitz (PM) and the JONSWAP spectrum. It should
be noted that from the PM equation have been derived two other spectra, the Bretschneider
spectrum and the Ochi spectrum, which have replaced PM since these formulations consider
additional parameters and therefore allow a more precise calculation of how the ocean waves
behave. But in the interest of time, we have used in our simulations an implementation of
the Phillips spectrum, which is based on the paper by Tessendorf [23]. In short, the surface
is modelled by multiple sine waves with different speeds and amplitudes, using a spectrum

8George N. Gibson, Ph.D. 5.2 Constructive and Destructive Interference. Accessed 05.06.2023. URL: https:
//www.phys.uconn.edu/~gibson/Notes/Section5_2/Sec5_2.htm.

9MatLab. Maritime Radar Sea Clutter Modeling. Accessed 12.04.2023. URL: https://jp.mathworks.com/
help/radar/ug/sea-clutter-simulation-for-maritime-radar-system.html.

7

https://www.phys.uconn.edu/~gibson/Notes/Section5_2/Sec5_2.htm
https://www.phys.uconn.edu/~gibson/Notes/Section5_2/Sec5_2.htm
https://jp.mathworks.com/help/radar/ug/sea-clutter-simulation-for-maritime-radar-system.html
https://jp.mathworks.com/help/radar/ug/sea-clutter-simulation-for-maritime-radar-system.html


2.7. Audio

based on statistical data measured from real-world oceans. These are then summarised using
the Fast Fourier Transform (FFT), resulting in a surface that closely approximates empirical
studies of a real-world ocean.

With the help of empirical data on sea clutter done by Nathanson in 1991 [17], we might
be able to compare our simulations with the ones registered from this work. The data might
be from a while ago, but the implications remain, and it is used and referenced in many other
studies, books, and papers, some of which we have mentioned in chapters 1 and 2. If we can
get a similar result, then there exists a potential use for Unity as an application for modelling
radar signals and the types of clutter that might occur when hitting different types of objects,
like ocean waves when trying to detect a ship.

2.7 Audio

Audio moves through the air with a wave movement, just like an EM wave does, and can
bounce on surfaces as well, which makes it an interesting candidate to include in our thesis.
While the propagation of sound is similar to that of EM waves, the frequency of a sound
wave is lower with a wavelength of about 17 mm to 17 m compared to the frequency and
wavelength of an EM wave, commonly used by radar, of 8–12 GHz and 3 cm. EM waves,
depending on the kind of source material, will be able to move through certain materials,
whereas audio will always be absorbed by the material it hits when moving through space.
Audio also needs molecules to travel through space. That is why audio waves cannot move,
and therefore cannot be heard, in outer space [24]. Even if they are on a different spectrum
from each other, the focus will be on how audio is implemented in Unity and if it is working
differently from shaders and ray tracing.
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3 Related Work

In order to start working on our contributions, we will discuss previous works that have
been done in the fields of radar simulations and sea modelling. Firstly, reviewing studies
focused on sea clutter and sea modelling, both real-world observations and simulated, to
get an understanding of how measuring sea clutter works. Then, works using the different
methods of simulating radar are reviewed in order to get a grasp on what differentiates the
approaches from each other. It was found that ray tracing was more commonly used as an
approach to simulate radar waves compared to a shader-based or audio approach. Therefore,
the related works on ray tracing became more relevant later in the study, while the related
works from the shader and audio sections were only used for the pre-study.

3.1 Sea modelling

Andersson [10] did a study for The Swedish defence research agency (swe. "Totalförsvarets
forskningsinstitut") FOI regarding the modelling and calculations of radar signatures emitted
from a ship in a sea setting. Andersson simulated, with the help of OKTAL [25], radar waves
that hit two different targets in two separate tests. One test was emitting signals against a
16x16-metre cube, and another was against a 16x4-metre object that was modelled to look
similar to an actual ship’s figure. Each test was made up of smaller tests where the objects
were surrounded by water in different sea states and also a test with the object floating in
free space. Different grazing angles (the angle from the radar pulse relative to the surface)
were tested, i.e., the radar wave’s trajectory to the object. The results were then observed by
looking at the polarisation of each angle and measuring the signal strength in dBm2/m2. This
report by Andersson [10] is close to what we want to try to achieve as well, but the difference
will be in its implementation.

Greger-Hansen [18] and Watts [26] made models of the sea clutter effect on radar with
different angles and matched their results with Nathanson [17]. Watts used a K-distributed
Gaussian model to simulate coherent sea clutter. Greger-Hansen looked at the NRL model
and proposed a new model with a modest number of free parameters that would still match
the empirical data set. However, this article mentions that any high-fidelity performance
evaluations of target detection, like detecting a moving ship, are not taken into consideration,
and Greger-Hansen mentions that more statistical data on sea clutter’s temporal and spatial
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3.2. Ray tracing

characteristics will be needed [18] in order to achieve this.

Our aim is to figure out if a Unity 3D setting could measure and generate sea clutter us-
ing a radar wave simulation. Greger-Hansen [18] and Watts [26] could help verify our test
results in order to determine if simulating sea clutter in Unity could be a viable option for
the defence industry to use.

3.2 Ray tracing

Zhengqing et al. [27] did a review on modelling radio propagation using ray tracing. They
presented and reviewed previous works in the area, such as important aspects regarding
rays and propagation mechanics, different ray tracing algorithms, and methods of accelerat-
ing the computations. The conclusion of the review is that ray tracing is an ideal method of
simulating radio propagation. Reasons include its similar characteristics to the actual physics
of radio propagation and the continuous development and support of hardware acceleration
[27].

An important algorithm that is mentioned in the review of Zhengqing et al. [27] is the
SBR method of ray tracing. It was invented by Ling et al. [15], who calculated the RCS of a
cavity. This method involves three parts: determining ray paths and the rays returning from
the cavity using geometrical optics (GO), and then calculating the backscatter and RCS using
physical optics (PO).

Egea-Lopez et al. [2] created an EM wave propagation simulator called Opal. They used the
ray tracing method SBR to simulate the trajectory of the EM waves. Opal is an open-source
project that can act as a standalone program or as a plugin for Unity. Opal is written in C++
using the ray tracing API Nvidia OptiX.

Yilmaz [3] created a radar sensor plugin for game engines capable of imaging radar and
RCS simulation. They used a Matlab-based tool called POFACETS to calculate the RCS and
model the propagation using the SBR approach to ray tracing with Nvidia’s OptiX ray tracing
engine.

OKTAL-SE [25] provides a tool called SE-Workbench-RF for simulating radar using physical
models. They list several publications on implementing a radar simulation using the SBR
approach to ray tracing with GO and PO interactions [4] [5]. Douchin et al. [5] also mention
the ray tracing characteristics in combination with their simulated ocean using either the
JONSWAP sea spectrum or the SWAN model.

Ulmstedt and Stålberg [6] used Nvidia’s Optix ray-tracing engine in their thesis. This work
was based on, at the time, a new Nvidia card that had been released that they wanted to use
for simulating ray tracing in an underwater setting. In their work, they had been working
directly with the graphic software known as CUDA10 to make an application that they would
then test the performance of. Their experiments were done in a 2D setting, and the result
that they found was that to get a good simulation of a real-world result, they needed about
500–1000 rays emitted at a target. Their conclusion was that the work could be expanded to
a 3D setting, but it would require more rays and therefore take a lot more performance from
the GPU, which could be done with modern graphics cards and optimisation.

The work by Ulmstedt and Stålberg [6] shows the potential of using the GPU for radar
wave simulation in a 3D setting, which we will explore in our thesis.

10Nvidia. CUDA Toolkit. Accessed 12.04.2023. URL: https://developer.nvidia.com/cuda-toolkit.
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3.3. Shaders

3.3 Shaders

There have been several implementations of Radar and LiDAR using a shader-based imple-
mentation, [7], [8], [9]. Since shaders and the GPU are already used for rendering images and
lighting calculations, a reasonable approach is to mimic existing lighting models but apply
them to radar simulations. Peinecke et al. [7] used the Phong lighting model to simulate
a millimetre-wave (MMW) radar to produce radar images. They used the graphics library
OpenGL, in which they modified the vertex and fragment shaders of the render pipeline.

Wang et al. [8] implemented a shader-based radar and LiDAR for autonomous car test-
ing. They mention that ray tracing for this purpose is infeasible, however, this study was
from 2012, and today, in 2023, ray tracing is more commonly available via modern hardware.
Their implementation is based on the works of Peinecke et al. [7].

Ciarambino et al. [9] uses Microsoft AirSim for Unreal Engine and implement an imag-
ing radar simulation using custom vertex and fragment shaders. They simulate MMW radar
behaviour, calculating the radar return and the RCS and modelling the reflection with a
Phong lighting model. Their implementation is also based on the work of Peinecke et al. [7]

3.4 Audio

Beig et al. [28] introduce the different methods of implementing spatial sound in virtual
environments. The authors mention several techniques to achieve spatial sound using sound
propagation and the basic necessities of localisation, i.e., determining where a sound is
coming from in a 3D space. A commonly used method for simulating sound propagation in
virtual environments is geometrical acoustics (GA), which uses the same concept of simulat-
ing the propagation of light as GO does. This is implemented in tools such as Steam Audio
and FMOD by different ways of shooting rays, such as ray tracing or with multiple/singular
raycasts.

Savioja et al. [29] review different methods of modelling room acoustics. The authors
name two main methods: a numerical wave-based and a GA wave-based. GA is similar to
GO found in computer graphics, and it is implemented using ray tracing. Since sound waves
are an order of magnitude longer (lower frequency) than EM waves, this method is only accu-
rate for sound waves with high frequencies. The reason is that some objects in a scene might
be smaller than the length of a sound wave and therefore go unnoticed. If an implemen-
tation of audio were to be used, it is likely that the implementation would involve ray tracing.

Wolf et al. [30] used the Native Audio SDK from Unity to create a plugin with the aim
of improving localisation accuracy. The plugin was created using C/C++ and showed better
results than the default audio implementation from the horizontal plane but not from the
elevation angle. Their method of implementation could be relevant if the audio approach
was used for the implementation in our study.
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4 Method

This chapter will present the different methods used in the study. Starting with how the
pre-study was conducted in order to examine the different approaches to simulating radar.
The specific details regarding the setup of the different tests and the scene are explained,
following a brief section about the equipment used for the study.

4.1 Pre-study

To evaluate what approach should be used, a pre-study was conducted. By studying related
works, documentation and details regarding the implementation, along with the expected
results of each approach, are presented. Following this, a discussion provides context be-
hind each method and the reason why one method was chosen. The parameters that were
considered are the following:

• How well-suited the method is for the purpose of simulating radar wave propagation.

• How accurate the results are expected to be based on previous studies.

• Expected time of the implementation, taking both the author’s experience and the com-
plexity of the implementation into account.

• The method should use the GPU for its calculations.

How well a method is suited for the purpose of this study is based on the similarities of this
work to related works and their methods of implementation. There may be some features of
a certain approach that are not relevant to our purpose at all, and this should be taken into
account.

It would be preferred that the chosen approach has been used in previous studies with
good results, meaning results that correlate to real-world measurements. The outcomes of
different approaches may differ in realism or in other ways that should be considered.

Estimating the time for the implementation took into account the limited experience the
authors had in graphics programming. A preferable method was considered one where most
of the code was already in place and minor adjustments had to be made.
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4.2. Testing equipment

Performing calculations on the GPU can be very beneficial in terms of performance com-
pared to the central processing unit (CPU). While no requirements on performance were
specified, it is good for practical reasons to have a reasonable load and test time for testing
an implementation.

4.2 Testing equipment

The equipment used in the study was a laptop using Windows 10 with an i9 processor, 64GB
of RAM, and a Quadro RTX A5500 graphics card with 16GB of VRAM.

4.3 Scene

Depending on the test, the scenes contained a reflective object, e.g., a ship or an ocean surface.
It was needed to measure the effect water can have on a radar signal at a certain point in
time, and thus we decided to use static meshes. We did not have time to build an ocean
surface generator, so an existing implementation on Github11 was used. To get a realistic
representation of the sea surface, the author of this implementation took inspiration from
the paper by Tessendorf [23] using the Phillips spectrum. By using this implementation, we
could pause the scene, save a mesh of the ocean, and copy it to our project. This allowed us to
create ten meshes, which we used in our tests described in Section 4.4. We used two different
sea states; see Figure 5.3. Matching the table by Barton [1], the sea states are roughly 5 and 6,
with waves of about 2.5 and 6 metres, respectively.

Figure 4.1: Scene with the corner reflector, the camera, and the receiver plane with an orange
outline.

11Scrawk. Phillips-Ocean. Accessed 23.05.2023. URL: https://github.com/Scrawk/Phillips-Ocean.
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4.4. Tests

4.4 Tests

Like the FOI rapport by Andersson [10], the implementation created was tested with different
objects in different environments. It was decided to use a similar approach to Andersson so
that the results of a similar simulation could be compared. It should be noted that the study
of Andersson was more focused on the effect the ocean had on an object in the sea and not
only on sea clutter itself. Therefore, there are some differences. We have, instead of using a
cube object, chosen a corner reflector and a more detailed ship than Andersson used.

Tests were made using the same distance of 50 metres from the camera to the object and
with a grazing angle of 10 degrees. As a result of the pre-study, it was decided to use ray
tracing. Having the resolution set to 1920x1080 meant that 2.073.600 rays were traced, with a
maximum of 4 reflections. The field of view, determining how wide the camera angle is, was
set to 60 degrees.

4.4.1 Test 1 - Corner reflector

The first test was to verify the functionality of the implementation. After discussing this
with our supervisor at Saab, a corner reflector object was deemed an appropriate first test.
We therefore, created a corner reflector that will be the reflecting object. A corner reflector
will create a strong signal with a large RCS, which makes it a good first test for our radar
implementation. This object was then rotated 1 degree at a time, up to 45 degrees. Figure 4.1
shows how our object looks in the game engine.

4.4.2 Test 2 - Two different sea states

With test 1 being successful in the sense of receiving reflected rays with different amplitudes
measured, we moved on to testing emitting rays onto the simulated ocean surfaces. In test 2,
which was divided into two parts, rays were emitted against the sea surface with SS 5 and SS
6. 10 different meshes for each ocean were used. The purpose of this test was to measure sea
clutter.

4.4.3 Test 3 - Ship in free space

In this test, we had a ship model, which can be seen in Figure 5.4. We used Blender12 to
modulate and reduce its total triangles for the ship’s mesh. This needed to be done to be
able to smoothly run our implementation in Unity. By measuring the ship in free space at
every 15 degrees for a full 360-degree measurement, it was a similar method as Andersson
[10] used. The reason was to compare the results to those of Andersson to further verify our
implementation and also to later use the measured data to compare with the ship on the sea
surface. This would then show the effect of sea clutter.

4.4.4 Test 4 - Ship in two different sea states

We created a scene in Unity consisting of both the ocean surfaces with the two different sea
states and the ship. Like test 2, this test was divided into two parts since we have two different
sea states. The difference was that one of the time stamps for each ocean was used and not all
ten. For the surface with the larger waves, i.e., SS 6, it was decided to use the first time stamp
since it returned some sea clutter. The ship was rotated every 15 degrees as in free space. The
aim of this test was to show the effect of sea clutter and also to verify that our implementation
is capable of drawing similar conclusions and results as those concluded by Andersson.

12Blender Foundation. Blender 3.5. Accessed 02.06.2023. URL: https://www.blender.org/.
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5 Implementation

This chapter will first present the results of the pre-study, which will serve as the basis for
our implementation. Our implementation using ray tracing is then presented, along with
implementation details for the scene. This aims to answer the first part of our research ques-
tion, which is about how a radar implementation simulating sea clutter could be designed in
Unity. Lastly, the method used for evaluating each ray’s signal is described.

5.1 Pre-study

The following pre-study investigates each proposed method to further understand details
regarding its implementation and expected results. This is based on earlier studies and of-
ficial Unity documentation. A method is then chosen to be implemented after a discussion
explaining the reasoning behind the choice. Because of limited time, using as many built-in
features of the game engine as possible has been preferred.

5.1.1 Ray tracing

Based on previous related works [2], [3], [4], [5], [10], [27], ray tracing is deemed to be a
well-suited method for simulating radar waves. Each ray is traced through the geometry of
a scene, resembling the propagation of actual radar waves. Several works use ray tracing for
this purpose, as previously mentioned in Section 3.2. [2], [3], [10]. The results of using this
method are considered to be relatively good since a company such as OKTAL, whose tools
are used by many defence companies around the world, also uses ray tracing for their radar
simulations [4], [5]. Furthermore, the review of modelling radio propagation by Zhengqing
et al. [27] concluded that ray tracing is an ideal method for this purpose, not only because of
the similar properties of rays to radar waves but also because of its continuous development
and hardware support.

Ray tracing can be implemented in several ways. A potential implementation is to use
the Unity "High Definition Rendering Pipeline" (HDRP) in some way. HDRP differs from
the normal rendering pipeline in that it contains more advanced, physics-based lighting
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techniques13. After further research, it was deemed too difficult and time-consuming to
customise the built-in features to our needs. Another way of utilising the HDRP is to use the
ray tracing API provided by Unity. Using this API, it is possible to create a custom ray tracer
using a ray tracing shader. However, since this API was "out of experimental" in 202314,
there is not a lot of documentation and examples available. Other approaches investigated
include creating your own implementation of ray tracing using a compute shader or using
the built-in raycasts available in Unity. Using raycasts for this purpose is not ideal, however,
as this will run on the CPU and not take advantage of the much better parallel computational
power of the GPU. Creating a ray tracing implementation in a compute shader was a well-
documented approach, as there were several examples of this online.

There are several works where the authors have created a plugin for Unity, implement-
ing ray tracing using the ray tracing engine Nvidia Optix [2], [3], [6]. Because of limited time,
this option is too time-consuming since it not only involves creating a ray tracer but also
building a plugin that has to work within Unity.

5.1.2 Shaders

Simulating light with other methods than ray tracing involves implementing different light-
ing models in the rendering pipeline, such as in the vertex and fragment shader, like Peinecke
et al. [7], Wang et al. [8], and Ciarambino et al. [9] did. The work by Peinecke et al. [7] con-
tains a detailed description of the implementation, which would provide a good base for us
to create an implementation in a timely manner. These methods use a numerical approach to
simulate the propagation of rays in a scene, such as using the Phong lighting model. Similarly
to ray tracing, the implementation will utilise the GPU for better parallelization of the calcu-
lations. Since ray tracing provides better realistic lighting and is also more computationally
intensive, not using ray tracing might provide less accurate results but better performance in
terms of computation time.

5.1.3 Audio

The Unity audio system is built around an audio source and a listener. The built-in Unity
audio system is not capable of calculating echoes based on the geometry of a scene or an
object, which would be beneficial for radar simulations. Instead, different filters, such as an
echo filter or a reverb filter, are used to simulate different audio behaviours. The distance
between the audio source and the listener is still used, however, meaning that if the objects
are moving, the Doppler effect, which is used in some radar implementations, can be simu-
lated15.

The existing sound system in Unity is not very advanced, but they provide developers
with a software development kit (SDK) to create their own audio implementations and
extend its functionality. There are also other plugins that can be used inside Unity, such as
Steam Audio and FMOD, as mentioned by Beig et al. [28]. However, these use ray tracing
and sometimes simple raycasts to determine the wave propagation, as mentioned in the
review by Savioja et al. [29].

13Unity. Render pipelines. Accessed 21.04.2023. URL: https://docs.unity3d.com/Manual/render-
pipelines.html.

14Unity. Raytracing API Out of Experimental in 2023.1. Accessed 21.04.2023. URL: https://forum.unity.com/
threads/raytracing-api-out-of-experimental-in-2023-1.1350566/.

15Unity. Audio overview. Accessed 17.04.2023. URL: https : / / docs . unity3d . com / Manual /
AudioOverview.html.
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5.1.4 Discussion

After investigating each option, the first decision was to not use the audio approach. The
existing audio system in Unity was not very advanced in terms of simulating wave propaga-
tion with objects in a scene, and existing implementations of such a simulation used either
simple raycasts or ray tracing. Since using raycasts will use the CPU instead of the GPU, only
the ray tracing option is left, and if so, we might as well use another approach that does not
involve the Audio SDK. A final reason was that audio waves operate on a different spectrum
than EM waves, which further motivated the conclusion that the other options would be
better.

The non-ray tracing methods of light simulation are estimated to be less accurate. While
this method can be sufficient, it is not as good as emitting rays and tracing their actual path
in a scene. However, an implementation could be estimated to be completed in a reasonable
time considering the detailed description available in papers by Peinecke et al. [7], for exam-
ple. Furthermore, this method is not as computationally expensive and may provide better
performance in terms of computation time, etc., compared to ray tracing. However, as there
was no requirement for our simulation to run in either real-time or, if it did, at a high frame
rate, there is more reason to use ray tracing than not.

The chosen approach was ultimately to use ray tracing. After considering the alternative
ways of implementation, it was decided to do this using a compute shader. Data calculated in
the compute shader can be transferred to the CPU side using existing Unity methods such as
"ComputeBuffer", and interactions with objects in the scene should be more straightforward
as the compute shader will run within Unity. This will save time compared to using Nvidia
Optix, which would need a plugin to be created along with the ray tracer, complicating
the communication between tracing rays and objects defined in the Unity scene. The other
implementation alternative, which was using the recently "out of experimental" ray tracing
API, could be considered the more optimal approach. However, as the documentation for
this was somewhat lacking, combined with the fact that the authors had limited experience
in programming shaders, it was decided to use the more documented alternative of building
a ray tracer from scratch using a compute shader.

5.2 Implementation

The following section will first present how the chosen approach of using ray tracing was
implemented using a computer shader in Unity. Following this is how the different scenes
were implemented, such as how the ocean surfaces with different sea states were generated
and scene-specific details.

5.2.1 Ray tracing

The resulting implementation is based upon an article by David Kuri16, providing a guide to
how a simple ray tracer can be created from scratch in Unity. It provided a base to build upon
and modify to meet our needs. It works by sending out rays from the scene’s camera, tracing
each ray through the scene, and recording any hits. For simplicity, rays that hit objects are
specularly reflected, i.e., the rays will be perfectly reflected. Rays that do not hit anything for
a certain distance 17 are ignored. Rays are also only allowed to reflect a finite amount before
being ignored. We have set a limit of four reflections in our testing environment. Information
about each ray is stored in a struct called "RayData". This struct was modified to contain

16D. Kuri. GPU Ray Tracing in Unity – Part 1. Accessed 21.04.2023. URL: http://three-eyed-games.com/
2018/05/03/gpu-ray-tracing-in-unity-part-1/.

17The distance is defined as #INF in the shader.
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more variables needed to calculate the signal strength, such as distance and phase, as further
explained in Chapter 6 and shown in Figure 5.1. By adding some functionality, such as being
able to calculate the total distance travelled and the signal strength, our implementation
resulted in a ray tracer that is able to calculate and send information about each ray. This is
then used to calculate the total signal strength, the number of rays returned, and visualise
the path of each ray.

Figure 5.1: How the struct containing the data collected for each ray is declared in the HLSL
file, i.e., the compute shader. The "RWStructuredBuffer" that will transfer this data to the
CPU is also shown here.

The ray tracing implementation involves a C# script representing the CPU side and an HLSL
file, i.e., the compute shader file, representing the GPU side. The C# script will create and
initialise "ComputeBuffers" and call upon the compute shader. In Unity, "ComputeBuffers"
are memory buffers, i.e., arrays used to transfer data between the CPU and the GPU. Structs
that will contain information about each ray and object in the scene are defined on both sides.
When running the program, the CPU first gathers information about objects that the rays will
intersect with. Information that only needs to be sent to the GPU uses a "StructuredBuffer",
in our case, this includes all objects from the scene that contain some mesh that the rays will
interact with. After the scene data has been sent to the GPU, rays will be dispatched and
calculated against the scene data. When this is done, the results are sent back to the CPU
using an "RWStructuredBuffer", i.e., a "ComputeBuffer" that can also send data back to the
CPU. This is needed in order to be able to analyse and visualise the data. The information we
gathered is then summarised. Each ray’s coordinates at different points of reflection are also
collected and used to draw lines, visualising each individual ray’s path. Figure 5.2 illustrates
how the implementation works after the C# script has gathered information about the scene,
initialised the "ComputeBuffers", and called the compute shader.

5.2.2 Scene

Our scene contains a camera from which all rays will be dispatched, a plane object placed
directly behind the camera that collects returning rays, and lastly, some objects that the rays
will intersect with. The plane object is a "Plane", 3 by 3 units18, and scaled to the local world
matrix in our scene.

The water mesh was generated using the previously mentioned implementation of the
Phillips spectrum. Since our ray tracer only allows static meshes, the mesh generated was
saved at 10 different times. A single tile of these meshes is 64 by 64 metres. Our ray tracer is
limited in the amount of triangles, or polygons, it is able to trace. Above a certain threshold

181 unity units « 1 metre
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Figure 5.2: A diagram illustrating how the implementation works.

of about 100k triangles, a simulation will either take up to 30 seconds to finish, freeze, or
crash. Therefore, only two meshes are used for each water scene, creating a surface that
is 64m wide and 128m long. The scene with the two water meshes and the ship totals 79k
triangles, where the two water meshes combine for a total of 35k triangles. It was found that
any ocean with a sea state lower than 5 did not return any sea clutter, but as sea state 6 did,
these two were thus chosen for the tests that we conducted.

The corner reflector was made by scaling 3 cube objects in the shape of a corner reflec-
tor, and the ship is a free model found on cgtrader.com19.

Figure 5.3: Ocean surfaces with SS 5 (left) and SS 6 (right).

5.3 Evaluation method

In a "ComputeBuffer", we collect the data structures we created on both the C# script side
and on the compute shader side. On the GPU side, we use the structure to calculate distance,
direction, and the coordinates of the last hit, in- and out-phase, for each ray that returns and
hits our receiver (the plane object). With the data collected from the "ComputeBuffer", we
then summarised the total signal received in the C# script. This signal received is measured
by its amplitude on a logarithmic unit scale, i.e., decibels (dB). The formulas 2.2 and 5.1 to
5.5 show the evaluation of the total signal received. The RCS is represented by the number of
returned rays.

19cgtrader. Destroyer ship Low-poly 3D. Accessed 30.05.2023. URL: https://www.cgtrader.com/3d-models/
aircraft/military-aircraft/saab-jas-39-gripen-4db25d41-50c0-451d-9a66-7773b123e002.
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Figure 5.4: The ship model used.

In our implementation, we calculate the amplitude (A) as the total received signal. The
amplitude is derived from the following formula, which is also mentioned in section 2.4.2:

Total received signal sr = A ˚ sin(ω0t + ϕr) ñ A =
b

I2
tot + O2

tot (2.2 revisited)

Firstly, we calculate the phase (ϕi) of each ray, indicating the ray’s position on its sine curve
(from 0 to 2π). This will be used to determine the in- and out-phases needed to calculate
the amplitude. We have to remove all of the full-length wave lengths since we are only
interested in the phase of the wave hitting our radar receiver. Ri is the total distance the
ray has travelled, and λ is the radar wavelength obtained in 5.5.

ϕi =
2π mod (Ri, λ)

λ
(5.1)

The in-phase and out-phase are calculated as follows:

Iin = cos (ϕi) (5.2)

Oin = sin (ϕi) (5.3)

The amplitude A is then finally calculated using the following formula, where Itot is the sum
of all the rays in phase and Otot is the sum of all the rays out phase:

A =
b

I2
tot + O2

tot (5.4)

The radar wavelength is calculated by taking the speed of light constant and dividing it by
the frequency of the radar antenna used. In our tests, we have decided to use a frequency of
10 GHz, which belongs in the commonly referred-to X-band frequency and is often used in
military radar equipment when detecting radar signatures of objects in the ocean.

λ =
c
f
=

299792458 m/s
109 Hz

« 3 cm (5.5)

20



5.3. Evaluation method

The lobe width, or the width of the radar emitting a pulse, is normally a few degrees hori-
zontally, and the height is another few degrees more. In our implementation, it was decided
to use the resolution of our game engine and a camera field of view of 60 degrees to act as the
radar lobe. A resolution of 1920x1080 will produce 2.073.600 rays emitted from the camera’s
perspective.
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6 Results

This chapter will present the measured results from the tests described in our method. Firstly,
showing the results from the corner reflector, then the ocean surfaces. Lastly, the results of
the ship in free space and the ship together with the two chosen ocean surfaces are presented.

6.1 Test 1 - Corner reflector

In Figure 4.1, we have our scene in Unity consisting of a camera object for emitting the rays, a
corner reflector object which we want to detect or bounce our rays against, and a plane object
for collecting the returning rays. The returning rays are the ones that we want to calculate
the amplitude of with the help of equation 5.4. The results show the highest amplitude at
degree 0 when the object is facing directly towards the camera, decreasing heavily until
degree 29, and then decreasing again until degree 42, which returns nothing. Because the
corner reflector is symmetrical and the side and back of it do not return any rays, no further
measurements were needed.

A first intuition would be that many rays returned would equal a high amplitude. Looking
closely at the specific data, this is shown to be false. For example, at degree 0, there is an
amplitude of about 46.6 dB with 676 rays returned, compared to degree 23, where the ampli-
tude is only 1.4 dB but has 1464 rays returned. To explain this, we examined the distribution
of each ray’s phase in two histograms, shown in Figures 6.1 and 6.2. What can be read from
the histograms is that degree 23 has an equal distribution of the phases, causing the waves to
cancel out each other and the resulting amplitude to be lowered. Meanwhile, degree 0 has a
more uneven distribution, resulting in a higher amplitude.

While these results show that the phases can cancel out each other, they do not accurately
portray radar waves reflecting off a corner reflector. In reality, the returned waves should
have the same phase, i.e., the histograms should only consist of a single bin. By increasing
the distance to a more realistic distance of 10km and lowering the field of view to 0.3 degrees,
it was observed that all of the returned rays had the same distance travelled. This implies
that all the returned rays also had the same phase, which is a realistic behaviour.
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6.1. Test 1 - Corner reflector

Object angle (deg) Amplitude (dB) Rays received
0 46.66582 676
23 1.418771 1464

Table 6.1: Measured data of the corner reflector at the angle degrees of 0 and 23, in relation to
the camera. The complete data is in Table A.2 of Appendix A.
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Figure 6.1: The number of rays and their phase hitting our receiver when the angle of the
object is turned 0 degrees in relation to the camera.
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Figure 6.2: The number of rays and their phase hitting our receiver when the angle of the
object is turned 23 degrees in relation to the camera.
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Figure 6.3: The resulting amplitude when rotating the corner reflector, 1 degree at a time, and
emitting 2.073.600 rays each time from the camera.

6.2 Test 2 - Two different sea states

The second test conducted used water meshes from the implementation mentioned earlier in
4.3. The test with SS 5 did not produce any results, meaning that no rays were bouncing back
to our receiver in the scene. So no matter the different time stamps we tried, there were no
readings that were made with SS 5.

In Figure 6.4, we have an ocean with SS 6, and it shows that we received rays back to
our receiver at time stamps 1, 4, 6, and 9. For time stamps 1 and 6, the rays were returned
from a close range on the closest wave to the camera, thus having relatively large amplitudes.
The time stamps 4 and 9 returned a small number of rays and had a lower amplitude after
reflecting on the backmost wave. The distance travelled is greater for each ray, which in this
case explains the lower amplitude gained in these time stamps.
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6.3. Test 3 - Ship in free space
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Figure 6.4: The resulting amplitude of rays hitting the ocean with SS 6 in 10 different time
stamps. The wave formations are thus in different positions for each time stamp.

6.3 Test 3 - Ship in free space

The ship model was measured every 15 degrees from 0 to 360 degrees. The amplitude peaks
at 0 and 180 degrees. This is when the ship is facing directly towards the camera, creating
two large flat areas for the rays to reflect. The more sideways the ship is rotated, the more
rays are hit. At angle 0 there are about 123k rays hit compared to at angle 90 which has about
330k rays hit. As the ship rotates to the side, the area hit by the rays increases, but it is mostly
the hull, which is not a flat surface or at an angle that would return many rays by itself.
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6.4. Test 4 - Ship in two different sea states

Figure 6.5: The resulting propagation of rays that returned to our receiver. The order of the
rays propagation is first red, then green, blue, and yellow.
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Figure 6.6: The resulting amplitude of the rays hitting a ship rotating 15 degrees at a time, in
free space.

6.4 Test 4 - Ship in two different sea states

When measuring the ship in the ocean, an increase in amplitude and rays returned was found
compared to the previous test. The surface of the ocean enables more rays to be returned.
For example, some rays that previously would not return after interacting with the hull may
now return thanks to the ocean surface, see Figure 6.7.
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6.4. Test 4 - Ship in two different sea states

Figure 6.7: Rays reflecting off the hull back to the receiver. Rays are originally red, then after
the first reflection they turn green, then blue, and lastly yellow.

For both sea states, the angle that returned the most rays was still degree 0, with almost
the same amount of rays received compared to without the ocean surface. SS 5 showed a
relatively large increase in rays received in certain rotations, such as at 300 degrees, but no
increase at some rotations, such as at 0 degrees. The total amplitude increased somewhat
for all degrees. For SS 6, using time stamp 1, there was a substantial increase in the amount
of rays returned. As previously measured 6.4, this surface already returns some rays, so an
increase of the previously measured rays returned was expected.
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Figure 6.8: The resulting amplitude of a ship in free space (red), in SS 5 (green), and in SS 6
(blue).
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Figure 6.9: Amount of rays returning to our receiver from the ship in free space (red), the ship
in ocean with SS 5 (green), and in SS 6 (blue).
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7 Discussion

This chapter will discuss the results based on our research question, divided into two sections.
Firstly, how accurate the measured results are, and secondly, a discussion of the limitations
of our implementation.

7.1 Results

This section will discuss each of the test results measured from the implementation and com-
pare the results from other studies to estimate how accurate the results are.

7.1.1 Test 1 - Corner reflector

The test of the corner reflector was the first test for validation of our ray tracing implemen-
tation. By both looking at the propagation of the rays and the resulting data, it showed the
expected results. An early assumption was made that more rays returned would equate
to a higher amplitude, but this was proven to be false. An example of this was at degree
0, which returned a higher amplitude but a lower number of rays compared to degree 23.
To explain this, a histogram showing the distribution of all the ray’s different phases was
created. An even distribution would mean that there are many rays that will cancel each
other out, causing the total amplitude to be lowered. An uneven distribution instead means
that there are several rays that do not cancel out each other, causing the total amplitude to
be higher. This behaviour is important to highlight since it is also applicable to the other tests.

After the tests were analysed further, the phase measured in the histograms did not cor-
relate to a realistic scenario of a radar reflection from a corner reflector. The geometrical
properties of a corner reflector will cause all the incoming waves to travel the same distance
and thus return with the same phase. However, as noted, this was not the case in our imple-
mentation. The reason is that radar waves are, in reality, parallel when entering the corner
reflector. Because of the short distance and the large area of the reflector, the rays that entered
were not parallel, causing some rays to travel farther than others. To verify this, a minor test
was done, setting a realistic distance to the corner reflector of 10km and a field of view of 0.3
degrees instead of 60. Results showed that all rays returned had the same distance and, thus,
as seen in equation 5.1, the same phase. Figure 7.1 shows the difference in how rays enter the
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corner reflector depending on distance and field of view. The reason we did not include this
in all of our tests was because it was a late discovery and we did not have time to remake all
the tests.

Figure 7.1: The top image shows the rays entering the corner reflector from a short distance
of 50m with a field of view of 60. The bottom image shows the rays from a distance of 10km
with a field of view of 0.3 degrees. The longer distance and smaller field of view causes the
rays to be parallel.

7.1.2 Test 2 - Ocean with sea states 5 and 6

Using the ocean mesh for SS 5, we did not get any returned signals with our implementation.
Because the measured mesh did not have very large waves, it did not return any rays for
any of the 10 time stamps tried. However, this is not realistic, as there would always be
some amount of signal returned in the real world. As seen, for example, in the work by
Greger-Hansen [18, Fig. 18, 19], where for the same frequency of 10 GHz as used by our
implementation, there are some returns measured for every sea state. Because the implemen-
tation assumes all materials to be perfect reflectors, only specular reflections occur. In the real
world, a sea state that is not completely wind-still will produce diffuse and random reflec-
tions, usually causing some signal to be returned. Furthermore, as mentioned by Andersson
[10], the small capillary waves play a large role in the radar returns, and our surface does
not include these. These are also mentioned as one of the parameters for the ocean surface
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in the work by Nathanson [17]. The last factor is the limited size of the ocean’s surface. In
reality, the ocean surface measured is a lot larger, up to 1000 square metres [18], increasing
the chance of some returned signals. Such a large surface, as mentioned by Andersson, who
only used a 100x100m surface for the simulation, is not feasible to use for reasons including
the time it will take to simulate.

The surface of SS 6 returned signals from several time stamps. The time stamps with a
low amplitude showed a low amount of rays received after returning from a wave far in
the back of the ocean surface. The longer travel distance, along with the low number of
rays returned, resulted in a lower amplitude. The other time stamps that returned a high
amplitude along with a high number of rays were time stamps 1 and 6. In both of these
cases, rays were returned from a wave close to the camera. As previously mentioned, our
limitations meant that only some time stamps returned rays, while in a realistic setting, some
amount of rays should be returned for each time stamp.

Andersson [10] mentions an empirical study that uses the NRL model from the work of
Greger-Hansen [18] to calculate the reflectivity of different sea states. The NRL model states
that higher waves will have a higher reflectivity and thus produce more sea clutter compared
to smaller waves. This relationship corresponds to our findings, where the higher waves
produced a higher amplitude and the number of rays returned.

7.1.3 Test 3 - Ship in free space

The results from the ship in free space showed that the ship from the side did not return many
rays or have a high amplitude since its hull is at an angle, as seen in Figure 6.6. However,
when the ship faced the camera directly, or at an angle of 180 degrees, a high amplitude along
with a high number of rays returned were measured. The front of the ship was especially
good at returning rays because of its two relatively large and flat areas. As seen in Figure
6.5, some rays are reflected multiple times in the corners of some of the windows, creating a
shape and propagation effect similar to a corner reflector.

In a similar test by Andersson [10, Fig. 11], a strong reflectivity was seen from the side
of the ship in free space. This can be explained by their ship model having large flat areas in
its hull compared to our ship’s hull, which has a large number of angled areas, causing fewer
rays to return. Otherwise, our test results are similar in that angles where the ship is directly
facing the camera at degree 0 or facing away from the camera at degree 180 cause spikes of
increased amplitude and rays to return.

7.1.4 Test 4 - Ship in ocean with sea states 5 and 6

The results of the ship in SS 5 were similar to those of the ship in free space, both in terms of
amplitude and rays returned. Since the surface of SS 5 did not return any signals by itself, it
is logical that the surface will not contribute as much when the ship is facing 0 or 180 degrees
from the camera. However, a minor increase both in amplitude, as seen in Figure 6.8, and
more visibly in rays returned can be seen at 90 degrees in Figure 6.9. At 300 degrees, a large
increase in the number of rays returned is observed, with 485 rays returned compared to
the ship in free space, which returned 143 rays. These results show that the RCS of the ship
increases with a surface, something Andersson [10] also found.

The same test in SS 6 showed an increase in both amplitude and rays returned. Since
this surface did return rays by itself, 387 of them, it was expected that as long as the ship did
not block the surface from which these rays were reflected, an additional signal would be
added on top of the returns measured from the ship. By looking at the simulation, this is not
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the case for most of the angles, especially the ones where the ship is facing sideways to the
camera. This test shows the effect of sea clutter, increasing the signal strength and RCS even
though the object is the same as before and, thanks to the large waves, is somewhat hidden
behind the surface. This means that a large part of the returned rays from certain angles,
such as 90 degrees, are not from the ship but actually from the sea surface. Comparing the
results from Andersson [10, Fig. 11], their results also show an increased return of signals,
whereas, in free space, not a lot of returned signals were measured.

7.2 Method discussion

We have worked with perfect reflecting material in our tests, meaning that no energy is lost
for any of the rays hitting an object. Thus, the implementation will only simulate perfect
specular reflections. In reality, there are a lot of other physical behaviours that apply to each
signal that will affect a radar’s ability to detect targets. Each simulated ray would therefore
need to apply additional effects for each bounce. To name some parameters, they would be:

Refraction - When a ray crosses between two materials with different indexes of refraction

Diffraction - How light bends around an object

Absorbing material - Different materials can absorb a portion of a signal and therefore re-
duce the receiving signal

Diffusion - Light and signals do not always reflect off an object in a perfect way, and there is
some randomization to the way they can scatter off the object.

Atmosphere - If the atmospheric pressure changes, it can also bend the signal and mask
certain areas, making it look like no signal is being picked up by the radar.

Our implementation has the limitation that only a small ocean surface can be simulated.
Andersson [10] mentions that a limitation in her work is the size of the ocean surface mea-
sured as well. A large ocean surface with detailed waves is computationally very heavy, but
it is needed in order to get a realistic representation of the radar wave propagation on a sea
surface. Andersson further mentions the importance of including the centimetre-large waves
known as capillary waves, which play a large role in the radar returns of a sea surface. An-
dersson does not, however, mention if the sea surface modelled in their report uses these but
acknowledges that it is a highly complex area. Our ocean surface does not include capillary
waves for these reasons.

It is possible to improve the performance of our ray tracer using different methods of
accelerating the computations. A common method is called "Bounding Volume Hierarchy"
(BVH)20, mentioned in background 2.2. Our current implementation uses none of these
techniques. Furthermore, something that was found out during the pre-study was that Unity
recently released its ray tracing support out of its "experimental" phase. Because of limited
time and documentation, this approach was not chosen. However, this may be the optimal
way of implementing a ray tracer in Unity. The reason is that this API provides the user with
a ray tracing pipeline built for implementing ray tracing. This includes acceleration struc-
tures that would increase the performance and thus the capability of tracing more detailed
scenes. This is currently available in a beta version of Unity.

20Nvidia. Ray Tracing. Accessed 05.06.2023. URL: https://developer.nvidia.com/discover/ray-
tracing.
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7.3. The work in a wider context

7.3 The work in a wider context

Radar is a widely used technology and is implemented in many systems, not only for civilian
applications but also in the military. The ethical aspects have to be taken into account for this
reason. Is our implementation ethical is something we have reflected on. We do not think
our contributions are unethical since they do not directly impact the way radar is used in the
real world and we are not trying to improve existing radar-detecting technology. Our goal
has been to study the Unity game engine’s capabilities for simulating radar. The simulations
might as well be those of a civilian radar used to detect objects in an ocean.
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8 Conclusion

Our aim with this thesis has been to evaluate the possibility of simulating a radar in Unity
and, furthermore, to simulate sea clutter that might occur when scanning for objects at sea.
After the pre-study, it was decided to implement ray tracing with a compute shader. Because
of the similar properties of ray tracing and radar wave propagation, along with the many
related studies using ray tracing for radar wave propagation, it is considered the optimal
approach. By implementing it using a compute shader, the GPU is used, enabling a vast
amount of calculations to be done in a timely manner.

Some of the results were found to match empirical data and the results presented in the
report by Andersson [10]. Findings such as the effect the different sea states had on the RCS,
higher waves resulting in more sea clutter returned, and the ocean surface may increase the
RCS of an object.

The main limitation of our implementation is that only a certain number of triangles are
able to be traced. Measuring sea clutter is usually done over very large surfaces. Only using
specular reflections and not including other wave propagation factors is also a limitation that
decreases the realism of the implementation. Furthermore, for a realistic radar, the distance
to the target should be further away, and the rays emitted should be more concentrated in a
specific area and not evenly spread.

Even though there are several limitations in the current implementation, many of them
can be solved by either improving the existing solution or using a different implementation
approach. The limitation of how many triangles are able to be traced could be fixed by using
some type of acceleration structure or implementing a ray tracer using the ray tracing API
with Unity. The different ways rays are propagated on different materials have already been
solved for light simulations and should thus be able to be implemented in a similar way in
a radar implementation. The one limitation of our implementation that needs to be further
researched is generating a detailed and realistic enough ocean surface.

Combining the results with the current limitations and their proposed solutions, it can
be concluded that using ray tracing with a game engine such as Unity is a feasible approach
for simulating sea clutter.
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8.1. Future works

8.1 Future works

This thesis has focused on simulating radar waves in a 3D environment using the Unity
game engine. There is a lot more that can be done with this type of approach and also with
other game engines, for example, Unreal Engine.

We have seen that ray tracing, using compute shaders, is a quick and efficient way of
computing a substantial amount of information since it uses the graphics card for its cal-
culations. By improving the existing implementation in the ways mentioned, there is the
potential to include additional variables and trace more complex scenes. Something that
could be worth exploring is having the range of an object be further away from the camera
and having each ray include additional or different parameters depending on the type of
mesh of the object it hits. For example, adding a diffused parameter for randomising the
ray’s trajectory after it bounces off an object, and having the objects in the scene composed of
different absorbing materials, thus lowering the energy of the signal.
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A Appendix

This chapter contains the data collected from our tests.

I Tables

Time t Amplitude (dB) Rays in Object Ray hits Ratio
1 48.20876 387 1318956 0.000293414
2 0 0 1379363 0.000000000
3 0 0 1510754 0.000000000
4 2.466245 7 1364198 0.000005131
5 0 0 1384639 0.000000000
6 38.31813 1240 1399344 0.000886130
7 0 0 1493893 0.000000000
8 0 0 1377939 0.000000000
9 0.9999999 1 1257377 0.000000795
10 0 0 1302686 0.000000000

Table A.1: Rays hitting an ocean with SS 6 in 10 different time stamps.
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I. Tables

Object angle (deg) Amplitude (dB) Rays in Object Ray hits Ratio
0 46.66582 676 217470 0,003108475
1 36.36328 676 217425 0,003109118
2 23.15611 676 217332 0,003110449
3 22.0108 676 217159 0,003112926
4 12.89441 676 216982 0,003115466
5 10.84723 702 216702 0,003239472
6 7.817428 676 216366 0,003124336
7 3.721986 676 215972 0,003130035
8 6.177623 676 215522 0,003136571
9 1.972834 676 215001 0,003144171
10 5.316562 702 214421 0,003273933
11 2.171506 676 213787 0,003162026
12 3.877004 730 213082 0,003425911
13 4.695029 1011 212316 0,00476177
14 2.434667 1338 211515 0,006325792
15 2.036887 1452 210663 0,006892525
16 1.610066 1445 209738 0,006889548
17 3.895624 1489 208761 0,007132558
18 6.681597 1480 207719 0,00712501
19 3.337313 1450 206604 0,007018257
20 6.404984 1445 205444 0,007033547
21 1.972385 1442 204214 0,00706122
22 3.353456 1463 202917 0,007209844
23 1.418771 1464 201553 0,007263598
24 2.208403 1431 200136 0,007150138
25 2.007055 1428 198621 0,007189572
26 5.756506 1452 197097 0,007366931
27 5.896248 1452 195497 0,007427224
28 42.24391 1424 193819 0,007347061
29 10.32077 1450 192081 0,007548899
30 6.726961 1450 190278 0,007620429
31 11.11066 1453 188418 0,007711577
32 7.253452 1454 186482 0,007796999
33 1.442497 1456 184493 0,007891898
34 11.76207 1486 182428 0,008145679
35 5.942334 1489 180317 0,00825768
36 11.26303 1440 178131 0,008083938
37 14.69102 1425 175883 0,008101977
38 2.894636 1327 173573 0,007645198
39 6.684335 1041 171213 0,006080146
40 2.434766 455 168771 0,002695961
41 0.1501886 2 167752 0,000011922
42 0 0 167587 0
43 0 0 167344 0
44 0 0 167103 0
45 0 0 166834 0

Table A.2: The resulting amplitude when rotating the corner reflector, 1 degree at a time, and
emitting 2.073.600 rays each time.
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I. Tables

Ship angle (deg) Amplitude (dB) Rays in Object Rays hit Ratio
0 412.7191 2018 125508 0.016078656
15 2.492766 42 191450 0.000219378
30 1.192167 18 272511 0.000066052
45 8.336901 60 324771 0.000184746
60 14.39047 105 346423 0.000303098
75 18.18481 136 346168 0.000392873
90 30.20041 714 331864 0.002151484
105 32.38122 734 324897 0.002259178
120 2.547861 7 310341 0.000022556
135 10.10438 36 285294 0.000126186
150 4.777356 50 245273 0.000203854
165 1.869673 63 190870 0.000330068
180 313.5358 769 161522 0.004760961
195 5.076405 37 191333 0.000193380
210 2.846501 46 246187 0.000186850
225 4.829083 8 286512 0.000027922
240 3.183795 14 311137 0.000044996
255 26.09214 755 324442 0.002327072
270 6.346202 138 329567 0.000418731
285 23.55026 92 343454 0.000267867
300 10.36733 143 343436 0.000416380
315 20.5091 76 322372 0.000235752
330 13.64809 102 272182 0.000374749
345 2.88715 7 192509 0.000036362
360 412.7191 2018 125508 0.016078656

Table A.3: Rays hitting a rotating ship in free space.
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I. Tables

Ship angle (deg) Amplitude (dB) Rays in Object Rays hit Ratio
0 412.7191 2018 1371026 0.001471890
15 2.492766 42 1376931 0.000030503
30 1.192167 18 1385497 0.000012992
45 8.336901 60 1393467 0.000043058
60 14.39047 105 1400260 0.000074986
75 18.17033 300 1396103 0.000214884
90 44.43472 804 1383894 0.000580969
105 33.37251 735 1382635 0.000531594
120 1.8572 13 1383396 0.000009397
135 10.10399 36 1384111 0.000026009
150 4.777356 50 1382106 0.000036177
165 1.869673 63 1374517 0.000045834
180 313.5358 769 1368847 0.000561787
195 4.115617 40 1375398 0.000029082
210 4.451248 60 1383902 0.000043356
225 4.829083 8 1387602 0.000005765
240 3.183795 14 1387483 0.000010090
255 26.31306 756 1384184 0.000546170
270 7.663702 148 1383579 0.000106969
285 23.55232 92 1393921 0.000066001
300 16.54374 485 1397726 0.000346992
315 20.50153 76 1391797 0.000054606
330 14.49085 117 1384688 0.000084496
345 2.888661 7 1377017 0.000005083
360 413.0969 2018 1371026 0.001471890

Table A.4: Rays hitting a rotating ship in an ocean with SS 5.
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I. Tables

Ship angle (deg) Amplitude (dB) Rays in Object Rays hit Ratio
0 436.3851 2218 1350656 0.001642165
15 50.26257 429 1353080 0.000317054
30 47.03388 405 1359469 0.00029791
45 55.81226 538 1362204 0.000394948
60 63.7632 505 1365858 0.000369731
75 55.41702 531 1368670 0.000387968
90 24.11356 1203 1364147 0.00088187
105 81.26122 1089 1360186 0.000800626
120 51.18072 393 1355810 0.000289864
135 51.89151 396 1357600 0.000291691
150 46.2159 391 1357121 0.00028811
165 46.03915 442 1351537 0.000327035
180 287.1039 1100 1348121 0.00081595
195 44.90582 422 1351897 0.000312154
210 49.72807 431 1358218 0.000317328
225 52.5461 395 1360172 0.000290404
240 46.39145 401 1358851 0.000295102
255 52.32863 1131 1358563 0.000832497
270 39.96687 637 1355773 0.000469843
285 31.80833 559 1355346 0.000412441
300 57.76644 529 1355853 0.00039016
315 48.92788 583 1357712 0.000429399
330 61.68186 482 1357629 0.000355031
345 38.34174 425 1352473 0.000314239
360 436.6895 2218 1350656 0.001642165

Table A.5: Rays hitting a rotating ship in an ocean with SS 6.
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