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Abstract

The need to reduce the amount of fossil fuel consumed by industry is vital. How-
ever, it is crucial to understand that industry is less inclined to shift its consump-
tion from fossil fuels to renewable energy sources solely based on environmental
concerns; to realistically make industry switch from fossil fuels to renewable en-
ergy sources, renewable energy sources must provide efficient results for industry.
An aspect of verifying the efficiency of solar power in an industrial setting is by
studying how various control techniques can accommodate solar power along-
side fossil fuels.

This thesis aims to analyze whether a predictive control model is suitable for
supplying an industrial plant with solar power alongside its coal power. This
thesis will study two main forms of predictive control: a PID controller featuring
a feedforward component and MPC control.

The work within the thesis resulted in modelling an industrial plant, both
physical and mathematical, and an optimization framework to test the MPC. The
framework can be extended to include additional components as well as to intro-
duce disturbances into the model.

The results of this thesis project prove that there are great improvements in
performance when applying predictive features to control systems. The predic-
tive control systems presented in this thesis decrease the usage of a buffer in the
form of a battery - signifying economic advantages to the predictive methods,
and decreasing the total generated power fluctuations by accommodating the in-
coming solar power before it enters the system.
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1
Introduction

The urgency of transitioning from fossil fuels and embracing renewable energy
sources cannot be overstated. The critical need to reduce our dependence on fos-
sil fuels arises from the myriad environmental, economic, and social challenges
that its usage presents. The environmental implications of continued reliance
on fossil fuels are vast. By embracing renewable energy sources it is possible to
harness nature’s abundant and clean resources to minimize carbon emissions and
mitigate the detrimental effects of climate change.

Increasing the use of renewable energy within a fossil fuel-dominated indus-
try would be a great asset in the combatting of climate change. By studying the
interaction between renewable energy sources and fossil fuels via industrial con-
trol systems, it will be assessed whether it is a viable energy transition strategy
for the industry to make: it is an easier choice for the industry to transition to
renewable energy if it improves the performance and efficiency of its workings;
not solely if the transition is based on environmental concerns.

1.1 Background and purpose

Large industry complexes are often equipped with their own boilers and onsite
turbines for generating electricity. This also allows the complex to disconnect
from the national power grid and run the internal system as a localized power sys-
tem. Following the desire to increase sustainability on-site solar panel solutions
have been introduced. However, solar power generation puts new requirements
on existing power production as a result of variations in solar power radiation.

The essence of the development is to optimize the use of solar power in con-
trast to the use of coal for fueling boilers to generate power. The optimization
will be achieved by replacing the coal-based power with as much solar power
as possible. The issue that arises is that the added solar photovoltaic system is a
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2 1 Introduction

fast-responding system while the coal-based power generation is slow; with a reg-
ular feedback control system, the industrial complex may experience downtime
as clouds or other anomalies in the solar PV system reduces the produced solar
power - leading to increased coal power generation which takes time to counter-
act the missing solar power.

Solvina AB is interested in developing a predictive control system to combat
downtime. By predicting solar power variation, the objective is to feed informa-
tion to the industrial complex before the actual loss in solar power occurs; thus
yielding the boiler system adequate time to generate the anticipated power loss.

1.2 Related research

Kim et al. [19] compares a nonlinear model predictive control (NMPC) to a PID
controller in controlling a heavy-duty gas turbine power plant for frequency and
temperature control. The research showed that the NMPC provided better output
responses with smaller settling times and less oscillatory behavior; additionally,
the NMPC reacted more forcefully to changes and reacted better to large rapid
changes than the PID controller.

By using solar-aided power generation, Han et al. [13] show that by using
non-concentrating solar energy, the cost of electricity generation decreases. The
process works by applying solar energy in the air preheating process which yields
a decrease of 36.6% in the exergy loss.

Palma-Behnke et al. [26] introduce the concept of a rolling horizon strategy
for energy management. The strategy involves optimizing a microgrid’s energy
management over a series of short time intervals. This approach allows for more
accurate and timely decision-making, as it takes into account the real-time en-
ergy consumption and generation within the microgrid. The proposed microgrid
energy management system (MEMS) consists of three main components: a fore-
casting model, an optimization model, and a control strategy. The forecasting
model predicts the energy consumption and generation of the microgrid over
the short-term horizon. The optimization model uses this forecast to determine
the optimal energy dispatch strategy for the microgrid, considering various con-
straints such as the energy storage capacity and the maximum power output of
renewable energy sources. Finally, the control strategy executes the optimal dis-
patch strategy in real time. The authors evaluate the performance of the proposed
MEMS using a simulation model based on a real microgrid. The simulation re-
sults demonstrate that the proposed MEMS can effectively balance the energy
supply and demand within the microgrid while minimizing the overall energy
costs and ensuring system stability.

Bigarelli et al. [6] uses an MPC algorithm that takes into account a range of
parameters, such as weather conditions, energy demand, and the characteristics
of renewable energy sources. It then generates an optimal control strategy that
minimizes the cost of energy production and consumption while meeting the en-
ergy demand requirements. The authors also use a hybrid MPC algorithm that
combines both deterministic and stochastic models. The deterministic models
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are used to predict energy production and consumption for the short term, while
the stochastic models account for the uncertainties associated with weather con-
ditions and energy demand.

Zhang et al. [29] uses a multi-rate MPC algorithm to account for differences
in time scales between fast and slow systems. The MPC algorithm adapts the
control input accordingly by using various prediction horizons depending on the
systems’ time scales. This approach yields an efficient structure to impose dif-
ferent dynamics on the controlled variables. Chen et al. [10] also uses an MPC
controller accounting for both a fast- and slow-responding system. However, the
authors, instead of studying various prediction horizons, approach the problem
by applying a multi-rate sampling system. I.e., the authors use a faster sampling
rate for the fast sub-system and a slower sampling rate for the slow sub-system.

McCloy et al. [24] propose an approach that utilizes a contraction analysis
framework to capture the essential dynamics of a fast and slow sub-system. The
authors compute contraction metrics to obtain valuable insights regarding the sta-
bility and performance of the sub-systems, which are then fed into the constraints
of the MPC controller. The MPC controller applies these metrics to adapt the con-
trol input. They demonstrate the proposal by analyzing a chemical process with a
fast and slow sub-system. The authors conclude that the contraction-constrained
MPC method outperforms traditional MPC methods in terms of stability and per-
formance.

A lot of the previous research on combining fossil fuels and solar energy is
generally concerned with applying the solar energy to inherent processes within
the boiler, i.e., pre-/re-heating the steam [25] [2] [3] [27] [8] [9]; and as such not a
lot of previous research has been done on merging solar energy with the energy
output of the boiler.

1.3 Problem formulation

The objective in this project is to develop a predictive controller for a plant con-
sisting of a physical plant and incoming solar power. The controller should in-
corporate predictive elements in order to preemptively steer the system when
solar power is approaching. Two predictive controllers are explored in this thesis
project: a PID controller with a predictive feature and a Model Predictive Con-
troller. Each controller is incorporated into the industrial complex model where
it will be evaluated by how well it responds to incoming solar power.

1.4 Delimitation

There will be no hardware implementation in the thesis. The thesis is a simu-
lated, software study where the performance of the predictive controller will be
evaluated. Being a simulated study, many unknown real-world factors will not
be considered.

Throughout the project, the reference input will be constant. The sole chang-
ing variable will be the solar input. The project will not consider other system
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disturbances: i.e., measurement errors, system noise, and external interferences.
This thesis utilizes only necessary system parts and as such excludes non-vital

components to create a streamlined and optimized model. By using only the
vital system parts, the model’s computational load is reduced, resulting in greater
efficiency and fewer errors. This approach allows for the creation of a customized
solution that fulfills specific requirements and achieves desired results.

1.5 Description of approach

The main modelling environment will be constructed in Dymola. This environ-
ment will contain the various parts of the industrial complex that are of signifi-
cance in this thesis project. The environment will be based on Solvina’s previous
model of the industrial complex and the key features of significance will be ex-
tracted from said model.

Once the environment has been constructed it will be transferred to MATLAB
where the predictive features and the control strategies will be implemented. The
Dymola environment will split into blocks and be transferred to MATLAB. The
control models will be created in MATLAB and the experimental setup will be in
Simulink.

The solar prediction - fully customizable as the solar PV output is known
- will be completely accurate: this is meant to prove a proof-of-concept that a
predictive controller can improve power efficiency by reducing the amount of
coal used.

1.6 Outline

In Chapter 2, the industrial complex is presented: how the complex works as a
microgrid as well as the complex’s parts and components. Chapter 3 notes the
modelling necessary within the project. The modelling involves the turbines and
generators, the battery, the coal boiler, and the solar PV. The modelling is neces-
sary to make the simulation accurate towards the real plant and to yield realistic
results. The control theory is presented in Chapter 4 and explores PID controllers,
feedforward control, MPC, and constrained MPC. The PID and MPC controllers
will be compared to the baseline industrial complex model. Chapter 5 presents
the thesis’ method: the evaluation of the control theory, an overview of the simula-
tion setup, and how solar prediction and the controllers are implemented within
the system. Chapter 6 discusses the results of applying the controllers compared
to the baseline model. Chapter 7 concludes with a discussion of the project and
future work related to the project.



2
Modelling of components

Various aspects of the system need to be modelled to complement the controllers.
This involves modelling the turbine and generator, the battery, the coal boiler,
and the solar photovoltaic. These models are presented in this chapter. The com-
ponents will be modelled in Dymola and exported as an FMU block to make
the components compatible with MATLAB. The Dymola plant involves graph-
ical interfaces for the plant’s dynamic physical relations. To model the MPC
controller it is thus necessary to translate these dynamic physical relations to
discrete mathematical formulas. The mathematical formulas will be modified to
a sampling rate of 10 seconds to decrease the computational complexity in the
optimization, while the Dymola model is sampled every 1 second. In the CMPC-
solution, the PID controllers regulating the battery’s charging and the coal input
ratio have been removed. Instead, the PID controllers are replaced by control
inputs that the optimizer can control to solve the optimization problem. Furthe-
more, a schematic model of the industrial complex will be presented.

2.1 Industrial complex

The industrial complex that is used as the case study in this master’s thesis can be
viewed as a microgrid. A microgrid is an autonomous grid where there does not
need to be an interconnection to the main grid; as such a microgrid experiences
a great decentralization and must be self-reliant in its energy domain. A micro-
grid generally features various energy sources - in recent times the discussion on
microgrids is based on renewable energy sources - that cooperate to satisfy the
microgrid’s energy demands [16] [21] [14]. A microgrid generally involves both
consumers of energy: electric vehicles, homes and facilities etc, and producers of
energy: i.e., renewable energy sources and power generators, alongside various
storage techniques and a connection/non-connection to the main utility grid.

5
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The complete industrial complex is not of interest in this thesis; solely the
components related to the solar power and the coal boiler in terms of the control
system are of interest: as such no condensation process etc will be considered. A
schematic outline of the industrial complex can be seen in Figure 2.1. The amount
of coal needed to keep the baseline industrial model running, i.e., a model with-
out solar power is denoted as rcoal . Once solar power enters the complex, the
sum of wsteam and wsol enters the load and an increase in the frequency fload is
expected. It is within this framework that the predictive controller will be used.
By predicting when there will be an increase in solar power production, the coal
input should respond accordingly and decrease the resulting wsteam before wsol
enters the system to not increase fload and to therefore minimize the usage of the
battery. If wrongly predicted, solar power could enter a system with a full bat-
tery and a load already met. In this case, the controller Cr must open the valve
to decrease the pressure and consequently wsteam to not overload the frequency
network. However, this will waste energy as power produced by the steam will
leave the system.

There are four controllers in the complex: Cr which controls the release valve
which releases steam if the pressure within the pipes exceeds a threshold; Cv
controls the valve which throttles the steam which goes to the turbine - there
is a maximum amount of steam that the turbine can handle at a given time; Cb
regulates the frequency within the system. If the frequency is too high, it will
use the excess power to charge the battery, if there is a deficit of energy in the
system, it will discharge the battery; finally, Cr controls the ratio of coal that
will enter the coal boiler. This is achieved by inspecting the battery’s charge
level and adjusting the ratio accordingly. Noteworthy for the process is that the
battery’s level of charge is the sole variable controlling the coal input; this is
motivated by the following: if the battery is highly charged, this means that the
loads’ power requirements are met and that the system is approaching a high
excess of energy, therefore the system requires less power input. Similarly, if the
battery is low on charge, this means that the battery has been used to compensate
for a deficit of energy within the system and that the boiler needs more power
input for adjusting the deficit.

2.2 Turbine and generator

The inherent inertia of the turbine and the generator will be simulated by a ro-
tating mass. The rotating mass symbolizes the inertia at the outset of running
the turbine and the generator as well as the stored mechanical energy within the
industrial complex; the rotating mass that controls the frequency has an inertia
of 64092 kg m2. It is within this component that the frequency is generated.

The frequency is generated by applying the net power entering the system to
the rotating mass: the net power is the difference between the total watt gener-
ated and the system loads. Figure 2.2 shows how the net power enters the inertia
model and how the generated frequency continues.
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Figure 2.1: Overview of the industrial complex.

Figure 2.2: Dymola model of the frequency generator.

The system equation for the inertia is

Jω̇(t) = τ(t) (2.1)

where J is the moment of inertia, ω the angular velocity, and τ the torque. The
torque can be re-written to

τ(t) =
Pnet(t)
ω(t)

(2.2)

where Pnet is the net power. Modifying the equations to

ω̇(t) =
Pnet(t)
Jω(t)

(2.3)

yields a function of the angular acceleration. The frequency at time t + 1 can
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Figure 2.3: Discharge power (left) and charge power (right) based on IEEE
battery standard [17].

therefore be calculated by

f (t + 1) = f (t) +
1

(2π)2
Pnet(t)
Jf (t)

. (2.4)

For controller usage, the frequency generation model will be linearized. The lin-
earization will be constructed around the operating point of 50 Hz as this is the
frequency at which the system will operate while operating under the constraints.
The linearization is made within the Dymola environment which yields a lin-
earized model

f (n + 1) = f (n) + Klin
1

(2π)2 ts

(
Ptot(n) − Pload − B(n)

)
(2.5)

where the linearization factor, Klin = 4.966 · 10−8. The constant internal load of
the industrial plant, Pload , is 2.44 · 108 Watt. B(n) is the battery state of energy
charging as modelled in Section 2.3.

2.3 Battery

The battery will be modelled congruent with IEEE standard [17]. IEEE standard
divides a battery’s operational SOC into discharge power and charge power and
the operating regions for each mode can be viewed in Figure 2.3.

In essence, what is noteworthy is that the battery discharges slower at a lower
state of charge and charges slower at a higher state of charge. The discharge
power of the battery will be modelled as the following. ζmin, i.e., the state of
charge where the battery can start discharging the load, will be 0% of ζmax; ζdis
will be 10% of ζmax which represents where the battery can discharge at maxi-
mum capacity. bdis, the rate at which the discharge power commences, is set at
20% of pmax−dis. The rate at which the discharge power increases alongside the
state of charge, mdis, is linearly modelled as

mdis =
pmax−dis − bdis
ζdis − ζmin

=
0.8pmax−dis

0.1ζmax
. (2.6)
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Similarly, for the charging power, the rate at which the charge power increases
alongside the state of charge, is linearly modelled as

mcha =
−pmax−cha + bcha

ζmax − ζcha
= −

0.9pmax−cha
0.2ζmax

(2.7)

where ζcha is evaluated at 0.8ζmax and bcha is set at 10% of pmax−cha. This creates
the linear models for the rate of discharge and charge power

ycha = pmax − ζ
′
·

0.9pmax

0.2ζmax
(2.8)

where
ζ
′

= ζ − ζcha (2.9)

with ζ being the actual SOC, and

ydis = bdis + ζ
′
·

0.9pmax

0.1ζmax
(2.10)

where
ζ
′

= ζ − ζmin. (2.11)

The battery model will assume

mtemp−dis = mdis (2.12)

and
mtemp−cha = mcha (2.13)

with the temporary operating region at 110% capacity of the normal operating
region such that

ptemp−dis = 1.1pmax−dis (2.14)

and
ptemp−cha = 1.1pmax−cha. (2.15)

The mathematical model of the battery’s SOC is simply modelled through

SOC(n + 1) = SOC(n) + tsB(n) (2.16)

where ts is the sampling time and B the battery charging. From the IEEE standard
of battery charging, the constraints on the battery charging is a function of the
battery’s SOC - ζ(SOC). The battery is modelled so that the maximum charge is
at 1011 Ws which is the same as 28 MWh.

2.4 Coal boiler

The coal boiler is modelled using a first-order transfer function. A first-order
transfer function model is built by a three-parameter model
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G(s) =
Kp

1 + sT
e−sL (2.17)

where Kp is the steady-state gain, T the time constant, and L the time delay. The
model is a non-physical, non-constrained, system where the system from coal in-
put to watt generation is modelled. Experimental results yield the linear transfer
function

3.35e8
262s + 1

e−130s (2.18)

which represents the sub-system "coal input to watt generation". Figure 2.4 shows
the results of the modelling where the red line is the watt generation of the actual
system and the blue line is the watt generation of the modelled system. The initial
condition of the experiment is non-zero which is why there is no inherent delay
in the first step response. However, the second and third step responses show the
130 seconds time delay, as the step-responses activate at 2000 seconds and 3000
seconds respectively.

[W
at

t]

Figure 2.4: Step response of the coal boiler and its model.

The response from the steam generating system is known from (2.18). This
response must also be discretized. This will be performed by the Tustin method
which takes a continuous system and discretizes it based on a desired sampling
time. The Tustin method converts a linear, time-invariant transfer function Ha(s)
to a discrete transfer function Hd(z) by approximating the bilinear transforma-
tion from the s-plane to the z-plane to

s← 2
ts

z − 1
z + 1

(2.19)
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which yields

Hd(z) = Ha(s)
∣∣∣∣∣
s= 2

ts
z−1
z+1

= Ha(
2
ts

z − 1
z + 1

) (2.20)

and transforms

Ha(s) =
3.35 · 108

262s + 1
e−130s (2.21)

to

Hd(z) =
1.255 · 107

z − 0.9626
z−13 (2.22)

which can in turn be transformed to a first-order discrete-time system

Ps(n + 1) = 0.9626Ps(n) + 1.255 · 107uc(n − 13) (2.23)

where uc is the control input for the coal. There is thus a 13 time-step delay for
the control input to affect the steam generation. The steam generation model has
made simplifications in the real steam generation system; for instance, there is
no PID controller for controlling the steam release valve, nor a PID controller for
regulating the steam pressure entering the turbine. However, the simplification
works as the inherent lower and upper bounds for steam production are set in
order to constrain the system state within these viable bounds: the steam pro-
duction will never reach values that would trigger the PID controllers to start
regulating the steam pressure.

The control input for the coal generation, due to the system’s inherent delay,
have its first 13 coal input ratios bounded by the previous iteration’s coal input
ratio values - the delayed control inputs; as such they are simply modelled as

uc(n) = ucd (n) for n ∈ [1, 13]. (2.24)

The other coal input ratio control inputs

uc(n) for n ∈ [14, p + 1] (2.25)

where p is the prediction horizon, are free to choose by the optimizer; note that
it will take 13 time steps before these chosen control inputs will affect the steam
generator.

2.5 Solar PV

As there are no current data on the solar PV:s that will be used within the indus-
trial complex, Arzani et al. [4] analysis of commercial PV systems will be used
to model the step-response of the solar PV complex. Arzani notes that the step
response time of solar PV is on a scale between 0.2 and 4 seconds depending on
the irradiance step change. This leads to a system in which the coal boiler is sig-
nificantly slower responding than the solar PV. It is therefore clearly noticeable
that the rapid-dynamic output of the solar PV:s cannot be compatible with the
slow-dynamic coal boiler. The inherent characteristics of the coal boiler are too
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slow to effectively react to the dynamically changing solar input and it is clear
that the coal boiler controller needs to be modified.

The power generation’s mathematical model for the MPC controller is steam
power plus solar power, which is modelled as

Ptot(n) = Ps(n) + Psol(n). (2.26)



3
Control algorithms

Two control methods are presented in this chapter: a predictive PID-based con-
troller with feedforward based on predicted solar radiance, and Model Predictive
Control (MPC). Furthermore, an extension of MPC, constrained MPC (CMPC), is
explored.

3.1 PID

The PID controller and its sub-variants are feedback control methods which are
the de facto main control methods within the industry. Their versatility and ease
of implementation make them a common choice for industrial applications. A
PID controller is based on three sub-components: a proportional component, an
integrating component, and a differential component with the three functions
working in parallel. The equation for the PID controller is given by (3.1)

u(t) = KP e(t) + KI

t∫
0

e(τ) dτ + KD
d
dt

e(t) (3.1)

where Kp, KI , and KD are tuning parameters reflecting the influence of each sub-
component.

A PID controller works by continuously monitoring the error between a de-
sired set point and the actual process variable and adjusting the control output in
proportion to the magnitude of this error. The proportional, integral, and deriva-
tive terms in the controller’s algorithm each contribute to uniquely correcting the
error, leading to a highly responsive and stable control system.

The proportional term provides a control output proportional to the current
error, helping to correct for large and sudden changes in the process variable.

13
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Figure 3.1: Schematic model of a feedforward controller for disturbance re-
jection.

The integral term accounts for the accumulated error over time, compensating
for any persistent error that is not corrected by the proportional term. Finally,
the derivative term uses the rate of change of the error to predict future errors
and provide anticipatory control, smoothing out any overshoots or oscillations in
the control output.

The ease of implementation of PID controllers is largely due to their simple
and intuitive control algorithms, which can be implemented using basic math-
ematical operations and do not require complex or specialized hardware. Ad-
ditionally, PID controllers can be easily tuned to perform optimally for a wide
range of control applications.

3.2 Predictive control

In applying predictive control to counteract the issues presented in this project,
there are two predictive methods that will be considered: applying feedforward
control to the PID controller, and creating an MPC controller.

3.2.1 Feedforward control

Feedforward control is a control strategy that is often used in conjunction with
PID control. It is a predictive control technique that uses a model of the system
to predict the effect of changes in the system input on the system output. Feed-
forward control is often used for disturbance rejection. The goal of disturbance
rejection is to eliminate disturbances as soon as they enter the system and not
have to wait until the disturbance has traversed through the system, producing
an error signal driving the feedback controller to react [22]. A schematic model
of a feedforward controller can be viewed in Figure 3.1.

From the schematic model in Figure 3.1 it is easy to create a Laplace transform
of the components and to create a closed-loop transfer function from disturbance
to process output. First, however, consider the model as a Laplace transform
where the output and disturbance are denoted Y (s) and D(s) respectively; the
feedforward and feedback controllers as Ff (s) and Fb(s) respectively; and the
system model as G(s). The final closed-loop transfer function from disturbance
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Figure 3.2: Schematic model of feedforward control for reference tracking.

to output is then written as

Y (s)
D(s)

=
1 − Ff (s)G(s)

1 + Fb(s)G(s)
(3.2)

where with perfect control we would get a feedforward controller as

Ff (s) =
1

G(s)
. (3.3)

where (3.3) is an ideal feedforward controller removing the impact of the dis-
turbance. Combining a PID controller with a feedforward controller is thus an
effective approach to applying an easily implemented controller to tasks where
disturbances may affect the system.

There is also the possibility to use feedforward control for improving refer-
ence tracking. In a system with a slow reaction time, the time delay between the
input and the output can be significant, which can make it difficult to achieve
accurate reference tracking using only feedback control. In a system with a slow
reaction time, by the time the error is detected and the control inputs adjusted,
the output may have already deviated significantly from the desired trajectory.
Feedforward control provides the necessary inputs to achieve the desired output
trajectory without waiting for feedback from the system. Feedforward control
for improved reference tracking uses a model of the reference tracking Gm (how
the user wants the reference to be tracked) and a schematic model of feedforward
control for reference tracking is shown in Figure 3.2. In terms of a slow-reacting
system, the goal of feedforward control for reference tracking is to compensate
the feedforward component in regard to the error caused by the slow-responding
process.

3.2.2 Model Predictive Control

Model Predictive Control (MPC) is a type of advanced control algorithm that uses
a model of a system to make predictions about its future behaviour and then uses
those predictions to optimize control inputs to achieve a desired objective. The al-
gorithm repeatedly solves an optimization problem in real-time to compute the
control inputs that will drive the system to the desired state, while also taking
into account constraints on the system’s behaviour [1]. The essence of the predic-
tion of MPC is the receding horizon shown in Figure 3.3.

The receding horizon implies that at time k the algorithm calculates an opti-
mization problem over a predefined prediction horizon p and uses the result to
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...

Figure 3.3: The receding horizon [5].

Figure 3.4: Schematic model of MPC.

apply an input. At time k + 1 the same procedure is repeated to calculate the next
input [7].

A schematic model of MPC can be viewed in Figure 3.4 where an optimizer
calculates the cost function which yields a control input to the plant, or system,
in question.

The MPC can therefore be split into three main components: an optimiza-
tion problem, a model of a system, and constraints on the system’s behaviour.
The optimization problem is concerned with designing a controller that drives
the system state to a reference point while not using an exorbitant control force.
The optimization is therefore concerned with optimizing the function of the con-
troller while minimizing the cost of using the function. The process model can
be formulated as a state-space model
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x(k + 1) = Ax(k) + Bu(k) (3.4)

y(k) = Cx(k) (3.5)

where x(k) is the state vector, representing the internal state of the process at
time k; u(k) is the control input vector; y(k) is the output vector, representing
the measurement of the process output at time k. A, B, and C are matrices that
describe the relationships between the state, input, and output vectors [11].

The optimization problem is defined as a cost function where the goal is to
find the optimal control sequence over a finite time horizon, such that the process
satisfies certain constraints and objectives. The optimization problem is formu-
lated as

J∗(xk)=̇ min
uk ,uk+1...uk+N

N∑
k=0

(
||xk ||2Q1

+ ||uk ||2Q2

)
(3.6)

where J∗(xk) is the optimal solution to the cost function constrained to the feasible
control inputs {uk , uk+1 . . . uk+N }. xk are the system variables over a prediction
horizon of N and uk are the input variables: xk = x(k + j) and uk = u(k + j)
where j = 0, 1, ... , N −1 designating the value of the state and input subject to the
prediction horizon N at each time-step j. ||wk ||2S designates the quadratic form
wT Sw for w ∈ R

nv and S = ST ∈ R
nv×nv where S is a weighting matrix - more

specifically, in (3.6), Q1 and Q2 are weighing matrices specifying the respective
cost of states and inputs [20]. The optimization problem is solved at each time
step, using the latest measurement information and the predicted state. The first
control input in the optimized control sequence is applied to the process, and the
process state is updated. The optimization problem is then solved again at the
next time step, and so on [15]. One of the primary reasons to apply MPC to a
control problem is that the controller, by design, considers system constraints.

The optimization problem can trivially be extended to include reference track-
ing. By noting the reference signal r one can construct a modified optimization
problem

J∗(xk)=̇ min
υk

N−1∑
j=0

(
||x(k + j) − r(k + j)||2Q1

+ ||u(k + j) − u(k + j − 1)||2Q2

)
(3.7)

where υk is the set of all constraints on u. This optimization problem does not
weigh the actual input signal u, instead, it considers the input signal’s rate of
change as a subject to the cost. This is noteworthy as a reference tracking implies
u , 0 to reach the state x = r and as such the value of the input cannot be inherent
in the cost [12].

Constrained MPC

Constrained MPC (CMPC) is a type of model predictive control that includes
both hard and soft constraints on the system states and inputs. Hard constraints
must be satisfied at all times, while soft constraints can be violated for a limited
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time or to a limited extent. CMPC is used to design controllers for systems where
certain variables or parameters need to be maintained within specific limits or
ranges, or where certain physical or operational constraints must be respected
[18] [28]. This allows the controller to trade off between tracking the reference
trajectory and satisfying the constraints. The optimization problem in CMPC,
similar to MPC as shown in Section 3.2.2, involves minimizing a cost function
subject to system dynamics, state and input constraints. The solution of the op-
timization problem provides the optimal control input for the current time step,
which is applied to the system. This process is repeated at each time step, al-
lowing the controller to adapt to changing conditions and disturbances while
satisfying the constraints. Hard constraints will be modelled as strict inequali-
ties in the optimization problem; as such the hard constraints must be satisfied
at each time step. This modelling causes the optimization problem to become in-
feasible if the constraints are ever violated. The soft constraints will be modelled
within the cost function. In this way, a cost will be inscribed for violating the soft
constraints, but the model will still function while violating the soft constraints.
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Method

This chapter presents an evaluation of the control theories, i.e., which control
applications are suitable to test empirically. The chapter also features the model
equations necessary to construct the MPC controller alongside the implementa-
tion of the PID controller and the MPC controller.

4.1 Evaluation of predictive control methods

The core necessary characteristic of the control system is that it must be able to
foresee future events: if it is only reacting to current events it will not be able
to control the coal boiler without losing power output. Consequently, applying
solely a PID controller for the linkage between solar power and coal input will
not work. It is for this reason that the PID controller will have to be comple-
mented with a feedforward controller. The reason for using a PID controller
and a feedforward controller is simple and needs no academic explanation: the
PID controller is the most widely used industrial controller. A PID controller is
practically easily implemented, well-known within process control, and is used
within a wide range of applications. In this particular case, it is not feasible to
use a combination of a PID controller and a feedforward controller. The feed-
forward controller is incapable of counteracting the slow coal boiler as there are
no downstream actuators that can be controlled by it. Even with optimal tuning,
the controller will still struggle with time delay. Therefore, attempting to con-
duct experiments using a PID and conventional feedforward controller would be
futile. To achieve practical results, a controller must incorporate predictive fea-
tures related to solar PV. The PID controller, even with a feedforward term, can-
not proactively respond to the incoming solar power. The controller will always
react at time t + 1, with t being the initial incoming solar power, and its control
signal to the boiler will always be responded to at time t + 1 + τ with τ being
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the time constant of the coal boiler. As a result, it cannot react beforehand, even
if there is no dynamic present before the coal boiler. This effect is illustrated in
Figure 4.1 where at time t1 the solar power is introduced in the system. The extra
effect provided by the solar causes an overshoot of the system until t2 where the
coal boiler is starting to react to the increased effect. This yields an overreaction
which peaks at time t3 before finally being restored at time t4 where the effect
is back to normal. In this scenario, it takes the conventional feedback controller
t4 − t1 seconds to counteract the incoming solar power; the excess power and lack
of power will be supplemented by using the battery. Therefore, one goal of the
controller is to minimize the time t4 − t1 and to find an optimum for

min

t4∫
t1

∣∣∣γ(t)
∣∣∣ dt (4.1)

where γ is a model of the usage of the battery.
However, instead of feedforwarding the solar power signal (solar power signal

refers to the solar power entering the system) to the controller, it is possible to
delay the solar power in relation to the system. This implies using a delay for
the solar power signal so that its effects on the system are delayed. By using this
approach, one can use a model of how the solar input affects the ratio of the coal
input and adjust the coal input ratio in advance of the solar power signal entering
the plant.

This approach works as the internal delay of the system is known, see (2.18),
and the solar prediction is known. Thus, by applying a delay on the solar power
input - a delay in sync with the internal system delay - the system can react in
advance to the incoming solar power input and therefore having adjusted the coal
input once the delay time has passed; this should result in less volatility in the
total power produced by the system. (2.18) also reveals the ratio between coal
input ratio to power generation, and therefore how much 1 W of PV produced
power should decrease the coal input ratio.

Constrained MPC is a viable choice as it makes a distinction between hard
and soft constraints; additionally, it features a predictive element inherent to the
controller. Hard constraints are used for parameters such as the steam pressure
and the frequency within the complex. The steam pressure and the frequency
are variables that have to stay within an acceptable range as too much variability
in the variables will cause system damage. Alongside the hard constraints, there
are the soft constraints. The soft constraints will be modelled as the efficiency of
the system. The efficiency of the system is determined by how well the system
uses the power input. There may be cases where there is simply too much en-
ergy within the system: i.e., there is an increase in the boiler, the battery is fully
charged, and the industrial loads are met, in this case, the system must get rid of
the excess energy: in this case, the excess energy can be ousted by opening a valve
to release steam. However, as this will waste energy, it is not an optimal solution;
yet it is a viable solution and as such it will be modelled as a soft constraint. An-
other soft constraint is the usage of the battery. In an ideal system, there would
be no need for a battery as the solar prediction and its subsequent feedforward
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Figure 4.1: How the power production overshoots.

control would not require an intermediate storage system: the incoming solar
power would signal the boiler to decrease its input and have the system remain
in balance. The usage of the battery can therefore be viewed as an evaluation
of the performance of the feedforward system - the less the battery is used, the
better the feedforward system. But as the battery is a tool, it will be used as such,
and as such its usage will be modelled as a soft constraint.

The hard constraints are modelled by

xl ≤ x(n) ≤ xu & ul ≤ u(n) ≤ uu , for n = 0, ... , N − 1 (4.2)

where x(n) ∈ R
nh are the system states and u(n) ∈ R

nh the system inputs for the
number of hard constraints, nh, at each time step n subject to the lower and upper
constraints xl and xu for the system states and ul and uu for the system inputs.

Similarly, the soft constraints are modelled by

xl ≤ x(n) ≤ xu & ul ≤ u(n) ≤ uu , for n = 0, ... , N − 1 (4.3)

where x(n) ∈ R
ns are the system states and u(n) ∈ R

ns the system inputs for the
number of soft constraints, ns, at each time-step n subject to the lower and upper
constraints xl and xu for the system states and ul and uu for the system inputs.
The values on hard and soft constraints are presented in Section 4.3.
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Figure 4.2: Schematic figure of the introduced delay.

4.2 Simulation setup

To evaluate the PID and feedforward approach, a delay block will be entered into
the Dymola model to make the solar power enter the system at a delayed time
while the solar power that influences the coal input ratio enters immediately;
this approach is shown in Figure 4.2 where the amount of coal being inserted
into the boiler will be modified in advance of the actual solar power entering
the system. The scaling factor has been verified empirically by studying how
the coal input ratio affects steam production and therefore how much increased
power production should decrease the coal input ratio to 2.98 · 10−9.

The implementation of the MPC controller uses both Dymola and MATLAB.
The simulation setup works as the following: The Dymola model has the plant
model for the industrial complex (subject to simplifications) and will be exported
to Simulink by using an FMU block. The MPC controller will use the equality
constraints from the Dymola model as the plant in the MPC controller. Therefore,
the MPC controller will be generated as the plant over the prediction horizon.
This is constructed in the format

Ax = b (4.4)

where x serves as the system states, where A ∈ R(4p+4+13)×(6p+6), x ∈ R(6p+6)×1, and
b ∈ R(4p+4+13)×1. The dimensions are based on the number of physical constraints
and the prediction horizon. The 4 system states are the generated frequency, the
battery’s state of charge, the steam power production, and the total power pro-
duction throughout the prediction horizon. The 2 control signals are the battery
state energy charging and the coal input ratio; the 2 control signals are modelled
as system states but serve as control signals by their implementation. The 4 sys-
tem states are fully modelled within the Ax = b model; the Ax = b model will
serve to generate the physical constraints, through equality constraints, of the sys-
tem. The optimizer is therefore not free to choose these values: they are set by the
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equality constraints. The coal input ratio will have its first 13 inputs modelled
within the Ax = b model as these values are bounded by the previous iterations
coal input ratios. This is due to the inherent delay in the steam generator making
the first 13 coal input ratios determined by the previous iteration’s control inputs.
The rest of the control signals are free to choose by the optimizer unbounded by
equality constraints.

The Ax = b model will have each state in each time step up to the prediction
horizon. This is so that the MPC can review all states up until the prediction
horizon to find the optimum control sequence. The state vector x is therefore
written

x =



xf ,1
...

xf ,p+1
xSOC,1

...
xSOC,p+1
xPs ,1
...

xPs ,p+1
xPtot ,1

...
xPtot ,p+1
xc,1
...

xc,p+1
xB,1
...

xB,p+1


The matrices A and b are (2.5) (2.16) (2.23) (2.26), with the additional 13 first
coal ratio control inputs. Let Af represent the part of the A matrix building up
the generated frequency equation, ASOC for the SOC, etc. Below are the matrices
that build up Ax = b. The equality constraints for the frequency are given by

Af x = bf (4.5)

and can be viewed in the equation below where Af ∈ R
(p+1)×(6p+6), x ∈ R

(6p+6)×1,

and bf ∈ R
(p+1)×1. K1 = Klin · ts

(2π)2 , S = 2.44 · 108 which scales the states, and K2 =
Klin · ts
(2π)2 which likewise scales the battery charging to correct dimension. The initial

frequency xf ,init is set to 0 Hz (50 Hz non-linearized).
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−1 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0
1 −1 · · · 0 0 K1S 0 · · · 0 0 K1S 0 · · · 0 0
...
0 0 · · · −1 0 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 1 −1 0 0 · · · 100K2 0 0 0 · · · 100K2 0


·



xf ,1
xf ,2
...

xf ,p
xf ,p+1
xPtot ,1
xPtot ,2

...
xPtot ,p
xPtot ,p+1
xB,1
xB,2
...

xB,p
xB,p+1



=



xf ,init
K2Pload

...
K2Pload
K2Pload



The equality constraints for the SOC are given by

ASOCx = bSOC (4.6)

with scaling factors where Asoc ∈ R
(p+1)×(6p+6), x ∈ R

(6p+6)×1, and bsoc ∈ R
(p+1)×1

which can be viewed in the equation below. The initial SOC xSOC,init is set to 0.5
to set the initial SOC to 50% of maximum capacity.



· · · − 1 0 · · · 0 0 · · · 0 0 · · · 0 0
· · · 1 −1 · · · 0 0 · · · 100ts

1011 0 · · · 0 0
...
· · · 0 0 · · · −1 0 · · · 0 0 · · · 0 0
· · · 0 0 · · · 1 −1 · · · 0 0 · · · 100ts

1011 0


·



...
xSOC,1
xSOC,2

...
xSOC,p

xSOC,p+1
...

xB,1
xB,2
...

xB,p
xB,p+1



=


−xSOC,init

0
...
0
0



The equality constraints for steam power generation are given by

Asteamx = bsteam (4.7)

with scaling factors. K1 = 1.255 · 107 and K2 = 0.9626 which comes from (2.23).
S = 2.44 · 108 which scales the states where Asteam ∈ R

(p+1)×(6p+6), x ∈ R
(6p+6)×1,
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and bsteam ∈ R
(p+1)×1, which can be viewed below. The initial steam power gen-

eration xp,init is set to 1 which is the energy production needed to counteract the
plant’s internal load.


· · · − 1 0 · · · 0 0 · · · 0 0 · · · 0 0 · · ·
· · ·K1S −S · · · 0 0 · · · K2 0 · · · 0 0 · · ·

...
· · · 0 0 · · · −S 0 · · · 0 0 · · · 0 0 · · ·
· · · 0 0 · · · K1S −S · · · 0 0 · · · K2 0 · · ·


·



...
xPs ,1
xPs ,2
...

xPs ,p
xPs ,p+1

...
xc,1
xc,2
...

xc,p
xc,p+1



=


−xPs ,init

0
...
0
0



The equality constraints for the total power generation are given by

Atotx = btot (4.8)

with scaling factors. K1 = 1.255 · 107 and K2 = 0.9626 which comes from (2.23).
S = 2.44 · 108 which scales the states where Atot ∈ R

(p+1)×(6p+6), x ∈ R
(6p+6)×1,

and btot ∈ R
(p+1)×1. One can note that it is inside the b-matrix that solar power

enters the system. The equality constraints are shown below. The initial total
power generation xPtot ,init is set to 1 which is the energy production needed to
counteract the plant’s internal load.
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· · · 0 0 · · · 0 0 · · ·−1 0 · · · 0 0 · · · 0 0 · · · 0 0
· · ·K1S 0 · · · 0 0 · · · 0 −S · · · 0 0 · · ·K2 0 · · · 0 0
...
· · · 0 0 · · · 0 0 · · · 0 0 · · ·−S 0 · · · 0 0 · · · 0 0
· · · 0 0 · · ·K1S 0 · · · 0 0 · · · 0 −S · · · 0 0 · · ·K2 0


·



...
xPs ,1
xPs ,2
...

xPs ,p
xPs ,p+1

...
xPtot ,1
xPtot ,2

...
xPtot ,p
xPtot ,p+1

...
xc,1
xc,2
...

xc,p
xc,p+1



=



−xPtot ,init
−Psol,1

...
−Psol,p−1
−Psol,p



The equality constraints for the coal input ratio are given by

Acoalx = bcoal (4.9)

where Acoal ∈ R
13×(6p+6), x ∈ R

(6p+6)×1, and bcoal ∈ R
13×1. It is here that the

control delay enters the system. The 13 first control inputs are bounded by the
13 control inputs from the previous optimization iteration which are noted in
the b-matrix (the delay control inputs). The remaining control inputs feature
no equality constraints and are therefore chosen by the optimizer. The equality
constraints are shown below.


· · · 1 0 0 · · · 0 · · ·
· · · 0 1 0 · · · 0 · · ·
· · · 0 0 1 · · · 0 · · ·
...
· · · 0 0 0 · · · 1 · · ·


·



...
xc,1
xc,2
xc,3
...

xc,13
...


=



xcd ,1
xcd ,2
xcd ,3
...

xcd ,13



4.3 CMPC implementation

The hard constraints on the system states of the MPC (the normed constraints)
can be viewed in Table 4.1 and the hard constraints for the PID are shown in
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Table 4.1: Hard constraints on system states for the MPC.

State Lower limit Upper limit Unit
System frequency -0.5 0.5 Hz
SOC 0 1 -
Steam power production 0.595 1.635 -
Total power production 0.595 N/A -
Coal ratio 0.5 1.3 -
Battery charging ζ(xsoc) ζ(xsoc) -

Table 4.2: Hard constraints on system states for the PID.

State Lower limit Upper limit Unit
System frequency 49.5 50.5 Hz
SOC 0 28 MWh
Steam power production 1.452 · 108 3.989 · 108 Watt
Total power production 1.452 · 108 N/A Watt
Coal ratio 0.5 1.3 -
Battery charging ζ(xsoc) ζ(xsoc) Watt

Table 4.2. The tables show each state’s lower and upper limits. The system fre-
quency is bound between -0.5 and 0.5 which, non-linearized, is between 49.5
and 50.5 Hz which is the acceptable industry standard. The steam power genera-
tion’s lower limit is the cap at which the steam inside the system turns into water,
and its upper limit is the limit at which the built-up steam inside the system is
capped: higher power production produces a steam pressure that needs to be re-
leased and as such decreases the energy efficiency of the system. All system states
are modelled to be around the value of 1, this is due to the optimizer performing
better when the system states are not in various orders of magnitude. As such,
the battery SOC is modelled to be between 0 and 1 which implies a scaling factor
of 1011. The coal ratio is bound between 0.5 and 1.3 as this is the limit for the
system to handle rapid changes in generated steam power. The total power gen-
eration has no inherent maximum value as the other constraints are dependent
on the total power generation. The steam and total power production are scaled
by 2.44 · 108 to make the steam power production of 1 equal to the internal plant
load: all values above 1 imply that the steam power production is larger than the
internal plant load and that the excess power will enter the battery; all values be-
low 1 imply that the battery has to de-charge to cover for the insufficient power
generation.

The full CMPC model is constructed by stacking the five Ai and bi matrices
to construct a complete Ax = b model and by inserting the constraints into the
optimizer. The CMPC model is built in MATLAB using the f mincon function to
generate the optimizer. f mincon is a gradient-based optimization method which
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works by finding the minimum of a problem as specified by

min
x

f (x) subject to



c(x) ≤ 0
ceq(x) = 0
A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(4.10)

where the problem specification serves as the physical properties and the oper-
ating constraints within the system [23]. The optimizer’s objective function is
to minimize the difference between the SOC and the reference value of 0.5 - the
state at which the battery is 50% charged; minimize the range of the frequency;
minimize the rate of change for the coal input ratio; and finally to minimize the
difference between the total power generation and the load; i.e., the optimizer
should look over the entire prediction horizon and choose the control inputs that
best minimize

f (x) =
p+1∑
i=1

(
Q1 · (xSOC,i − 0.5)2 + Q2 · x2

f ,i + Q3 · (∆xc)
2 + Q4 · (xPtot,i − 1)2

)
. (4.11)

The scalars Q1, Q2, Q3, and Q4 are weighing scalars reflecting on the importance
of minimizing each variable. The objective function can be viewed as the soft
constraints on the system: the optimizer will steer to achieve the objective func-
tion but will prioritize the hard constraints in its operation. The optimization
problem is implemented in MATLAB. The optimization problem updates over
the scenario time by inserting the optimal values at time t into the initial values
of the optimizer at time t + 1. The upper and lower bounds, ub and lb are set to
the constraints noted in Table 4.1. The initial guess x0 of the optimizer is set to
0 for all states. The control input is updated by taking the 14th time step of the
control sequence, and placing it last in the control sequence as the following:

t = 1: xcd = (xc,1, xc,2, . . . , xc,13)

t = 2: xcd = (xc,2, xc,3, . . . , xc,14)

...

t = 13: xcd = (xc,13, xc,14, . . . , xc,25)

which updates the Acoalx = bcoal system, where xcd is the state of the control
delay.

The Ax = b model is generated into a "MATLAB Function" block in Simulink
where its inputs are the outputs of the Dymola FMU Plant block and its outputs
are the inputs to the Dymola FMU plant block. This way, the MPC will from its
inherent Ax = b model, which is the plant-modelled simplified, yield the plant’s
optimal inputs and then change the outputs accordingly to the plant’s outputs.
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Results

In this section, the results from applying the PID controller with the delay modi-
fication and the MPC controller are presented.

5.1 Feedforward-based predictive controller

For the following figures, the red line is the results from the delay-modified
model, and the blue line is the baseline model. Two tests will be performed for
the PID controllers: one where the solar power enters as a ramp signal, and one
where the solar power enters as a step signal. This is to test the robustness of the
control system in terms of solar power intensity. The solar power entering the
system is set to 40% of the total power requirement of the plant and enters the
system at 15000 seconds. The solar signal enters as a ramp signal with a duration
of 2000 seconds and leaves the system at 20000 seconds as a ramp signal of 2000
seconds. The step solar power enters the system at 15000 seconds and leaves at
20000 seconds. The scaling factor of the delayed signal is set to 2.98 · 10−9, see
Section 4.2, and the delay time is set to 200 seconds to account for the inherent
system dynamics. Note that the variables are not normed for the PID controller
as for the MPC controller, therefore the constraints are based on Table 4.2.

Applying the delay-modified PID controller onto the system obtains the fol-
lowing results. The usage of the battery decreases, as shown in Figures 5.1 and
5.2. For the ramp solar experiment, the battery SOC volatility decreases from
a range of SOCvol ∈ [−31.1%,+32.3%] to SOCvol ∈ [−5.61%,+4.81%] implying
that a smaller battery is required when applying the delay-modification to the
plant. For the step signal solar experiment, the battery SOC volatility decreases
from a range of SOCvol ∈ [−69.4%,+67.2%] to SOCvol ∈ [−19.8%,+20.0%].
The need for the battery decreases as the volatility of the total power production
decreases as further shown in Figures 5.3 and 5.4. The total power volatility de-
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Figure 5.1: PID controller - SOC for ramp solar signal.
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Figure 5.2: PID controller - SOC for step solar signal.
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Figure 5.3: PID controller - total power production volatility for ramp solar
signal.

creased from Ptot,vol ∈ [−7.62%,+7.17%] to Ptot,vol ∈ [−2.01%,+1.93%] for the
ramp solar experiment and the total power volatility decreased from Ptot,vol ∈
[−41.8%,+41.4%] to Ptot,vol ∈ [−35.7%,+25.0%] for the step signal experiment
which yields the plant a steadier power flow. The introduction of the delay
modification has therefore caused the power output to become more constant in
comparison to the baseline model. The coal input has likewise become more re-
sponsive to the incoming solar power. The coal input reacts accordingly to the
introduced delay to decrease the amount of coal entering the system before the so-
lar power enters the system as shown in Figures 5.5 and 5.6. The delay-modified
model decreases the coal input before the non-modified model and therefore does
not have to decrease the amount of coal input as much as the non-modified model.
Per stability, Figure 5.8 reveals the frequency of both systems which shows that
for the step solar experiment, neither controller is within acceptable bounds. Fig-
ure 5.7 shows that both models are stable for the solar ramp signal. The steam
pressure is stable for all tested systems as the steam release controller releases no
steam and as such the system is running under maximum energy efficiency.

5.2 MPC

The solar prediction is considered ideal - the prediction model has a complete
overview of the incoming solar power. Two tests will be performed: one where
the solar enters as a step signal, and one where the solar power enters and leaves
as a ramp signal, where the ramp is of length 250 seconds (25 samples in terms
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Figure 5.4: PID controller - total power production volatility for step solar
signal.
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Figure 5.5: PID controller - coal input ratio for ramp solar signal.
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Figure 5.6: PID controller - coal input ratio for step solar signal.
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Figure 5.7: PID controller - frequency generation for ramp solar signal.
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Figure 5.8: PID controller - frequency generation for step solar signal.

of the sampling rate). The incoming solar power enters the system at the time

0.25 · Ts = 1250 (5.1)

and leaves the system at
0.5 · Ts = 2500 (5.2)

for the step test, and at
0.2 · Ts = 1000 (5.3)

and leaves the system at
0.55 · Ts = 2750 (5.4)

for the ramp test, where Ts is the scenario’s simulation time - Ts will be set to 5000
seconds for MPC controller experiments. The two tests are designed to evaluate
the controllers’ performance to various difficulties in incoming solar power. Both
the prediction horizon and control horizon are set to 60. This gives the optimizer
a horizon of 600 seconds, considering the sampling rate, to evaluate the incoming
solar power. The weighing scalars in the optimization problem (4.11) are set to

Q1 = 1

Q2 = 5 · 10−4

Q3 = 0.25

Q4 = 1

which were found empirically.
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Figure 5.9: Frequency generation of both models. 0 Hz is the normed lin-
earization representative of 50 Hz.

Solar power step signal

Figure 5.9 shows the frequency generation when the solar enters as a step signal
for the MPC modelled running on itself and the MPC model runs on the Dymola
model. When running on its own model, the controller successfully controls the
frequency within its acceptable bounds; however, for the Dymola model, this is
not the case as the frequency becomes unstable once the solar power enters the
system. Figure 5.10 shows the state of charge for the MPC running on its internal
model and the MPC model running on the Dymola model. Both models have
their battery SOC stable throughout the simulation time and there is hardly a
difference in the SOC of the models throughout the simulation time. The MPC
controller running on its internal model yields a state of charge volatility in the
range SOCvol ∈ [−6.66%,+8.56%] and the MPC model running on the Dymola
model yields the range SOCvol ∈ [−6.04%,+9.74%]. Figure 5.11 shows the steam
power generation for the MPC model running on its internal model and the MPC-
Dymola model over the scenario time. The steam power generation is similar for
both models with slight volatility observed in the Dymola model. Figure 5.12
shows the total power generation over the scenario time for the MPC internal
model and the MPC-Dymola model. As a consequence of the steam power gener-
ation, the total power generation will be slightly volatile for the Dymola model.
This is natural as it is a direct function of the generated steam power. Running
the MPC controller on its internal model produces a total power volatility of
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Figure 5.10: SOC of both models.
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Figure 5.11: Steam power generation of both models.
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Figure 5.12: Total power generation of both models.

Ptot,vol ∈ [−18.75%,+14.61%] and running on the Dymola model yields a range
Ptot,vol ∈ [−19.02%,+15.09%]. Figure 5.13shows the coal input ratio for both
models throughout the simulation. The coal input ratio reacts accordingly to the
incoming solar power, with a greater, yet slower, reaction by the Dymola model.
They both adjust the coal input ratio before the solar power enters the system
and before the solar power leaves the system. The coal input ratio for the Dy-
mola model reveals the volatility in both the generated steam power and in the
total generated power: volatility in the coal input ratio ripples into the generated
steam power.

Solar power ramp signal

Figure 5.14 shows the frequency generation when the solar enters as a ramp sig-
nal for the MPC modelled running on itself as well as the MPC model running
on the Dymola model. Noteworthy is that the frequency is within the constraints
when the MPC is running on its own internal model; however, the frequency be-
comes unstable once the MPC runs on the Dymola model. Figure 5.15 shows the
state of charge for the battery over the scenario time. For both the MPC’s inter-
nal model and the Dymola model, the battery’s SOC is within acceptable bounds
throughout the simulation period and there is very little difference in its value for
both scenarios. The MPC controller, running on its own internal model, yields a
battery load volatility of SOCvol ∈ [−2.80%,+7.14%] and while running on the
Dymola model, yields a battery load volatility of SOCvol ∈ [−2.23%,+8.12%]. Fig-
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Figure 5.13: Coal input ratio of both models.
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Figure 5.14: Frequency generation of both models. 0 Hz is the normed lin-
earization representative of 50 Hz.
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Figure 5.15: SOC of both models.

ure 5.16 shows the steam power production for both models. The steam power
production is similar for both models; the sole difference being slight volatility in
the Dymola model’s steam power production. Figure 5.17 shows the total power
production for both models. As a consequence of the steam power production
volatility, the total power production will naturally be slightly volatile for the
Dymola model. The total power production fluctuates slightly from the set-point
of 1. The MPC running on its internal model yields a total power volatility of
Ptot,vol ∈ [−5.89%,+8.54%] and for the Dymola model a total power volatility of
Ptot,vol ∈ [−5.93%,+8.79%]. Figure 5.18 shows the coal input ratio for both mod-
els. Both models’ coal input ratios react accordingly to the incoming solar power.
They adjust the coal input ratio before the solar power enters the system and be-
fore the solar power leaves the system. The figure reveals the reasoning for the
volatility of the Dymola model’s steam power production: the coal input ratio
features a few rapid increases and as such causes the produced steam power to
spike in production at certain time spots.
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Figure 5.16: Steam power generation of both models.
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Figure 5.17: Total power generation of both models.
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Figure 5.18: Coal input ratio of both models.
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Discussion

By applying the simple modification of adding a delay factor to the PID controller
it is possible to achieve significant improvements in the system’s performance
while stable and running under maximum efficiency. It is thus clear from both
experiments that the PID controller with the delay modification performs better
under different scenarios of solar power input - showing clear gains in its imple-
mentation for a real industrial plant.

A summary of the range of the total power volatility and the range of battery
load volatility for the solar step experiment is presented in Table 6.1 and for the
solar ramp experiment in Table 6.2. Table 6.1 reveals how both MPC structures
perform better during the solar step experiment, both in terms of decreasing bat-
tery usage and total power volatility, than the PID controllers. However, for the
solar ramp experiment, shown in Table 6.2, there is a marginal difference in the
performance of the MPC controllers over the PID with the delay modification,
in terms of total power volatility, the PID controller with the delay modification
performs even better than the MPC controllers. The MPC controllers do not per-
form better than the base-line PID model in terms of power generation volatility,
in which the base-line PID controller has a lower maximum than the MPC con-
trollers. Noteworthy is that the MPC controllers perform very similarly. There

Table 6.1: Volatility for solar step experiment.

Control structure min(SOCvol) max(SOCvol) min(Ptot,vol) max(Ptot,vol)
PID -69.4% 67.2% -41.8% 41.4%
PID & delay -19.8% 20.0% -35.7% 25.0%
MPC internal -6.66% 8.56% -18.75% 14.61%
MPC Dymola -6.04% 9.74% -19.02% 15.09%
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Table 6.2: Volatility for solar ramp experiment.

Control structure min(SOCvol) max(SOCvol) min(Ptot,vol) max(Ptot,vol)
PID -31.1% 32.3% -7.62% 7.17%
PID & delay -5.61% 4.81% -2.01% 1.93%
MPC internal -2.80% 7.14% -5.89% 8.54%
MPC Dymola -2.23% 8.12% 5.93% 8.79%

is a marginal difference between the two implying that the modelling performs
well in this aspect.

It is more difficult for the controllers to adapt to a rapid change in solar power:
both PID controllers presented frequency ranges outside the constraints, and the
volatility of all metrics, for all controllers, increased. However, it is noteworthy
that real incoming solar power is more alike to a ramp signal than to a step signal:
this yields a positive outlook for the performance of the controllers in a real-
world application.

The volatility in the coal input ratio for the Dymola model is most likely due
to modelling issues. While testing the optimizer under various cost functions,
the volatility was still always present. This could be due to modelling issues
within the coal boiler or as a consequence of the control delay implementation
algorithm. It is difficult to test and pinpoint the cause of the volatility as the
testing would require a new model of the coal boiler or test another control delay
implementation algorithm, which due to time resources, cannot be implemented.

The instability of the frequency for the MPC controlling the Dymola plant is
most likely due to modelling errors. Simulations were run multiple times with
different values for the weighing of the frequency in the optimizer; yet the fre-
quency always became unstable once the solar energy entered the model - im-
plying that the optimizer settings are not the problem. Now, there is a factor of
modelling components that could be modelled faulty; however, the most likely
culprit is the turbine/generator component. As noted in Section 2.2, the tur-
bine/generator has been linearized at 50 Hz. The linearization causes issues as
the frequency steers away from 50 Hz, most likely causing instability. However,
it is unclear what causes the initial shift from the linearization point. It is pos-
sible that the frequency deviation that occurs even when the MPC runs on its
own model, see Figures 5.9 and 5.14, is enough to make the linearization unsta-
ble when in contact with the Dymola model which in turn makes the optimizer
unable to find an optimum satisfying all constraints.
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Conclusions

This thesis project aimed to investigate whether it is possible to predict incom-
ing solar power and to adjust steam power production accordingly to decrease
the volatility in total power generation. Furthermore, the thesis project aimed
to evaluate the performance of various predictive control strategies against the
baseline industrial PID control model.

This thesis project’s findings prove that simple and complex control modifi-
cations are possible within the industrial complex, yielding the complex more
adaptable to the introduction of solar power. The PID delay modification pro-
vides the industrial complex with a simple solution to greatly decrease the volatil-
ity of the total generated power and require a smaller battery - thus creating
a more economically viable model as a larger battery yields significantly larger
costs for a real-world implementation. The MPC controller also yields the indus-
trial plant an improvement in the minimum volatility of its total power genera-
tion and a decreased use of the battery.

The PID with the delay modification performed better than the baseline indus-
trial model in the two evaluating aspects: in decreasing the usage of the battery
and in generating a constant power output. Additionally, the PID with the delay
modification did not cause further instability as compared to the baseline model.
The MPC controllers were not superior to the baseline model in all aspects. The
MPC model performs better than the the baseline PID controller in dealing with
a solar step, but performs slightly worse in the constant flow of energy power
when the solar enters as a ramp; however, this is off-set by the significantly lower
usage of the battery compared to the baseline model: a 91.0% and a 92.8% de-
crease for the MPC internal model and the MPC Dymola model respectively; in
contrast, the power output volatility features a 19.1% and a 22.6% increase for
the MPC internal model and the MPC Dymola model respectively. There is thus
a trade-off in the usage of the battery and the consistency of the power output
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when considering the baseline PID controller and the MPC controllers. Most cru-
cially, however, is the instability generated by the MPC controller running on the
Dymola model making it non-realistic in its current state.

Tt is unclear whether the step solar signal should be taken into account when
evaluating the models. The step solar signal does reveal insight into the extreme
cases in which the control structures may operate, however, solar power will not
realistically enter the system with such intensity; analysing the work of this thesis
for real-world application should therefore prioritize the findings of the solar
ramp experiments over the solar step experiments.

In sum, the negative factor, and the strength, of the MPC is that it is model-
based. The accuracy of the model is as such directly correlated to the controller’s
output and a miss-modelled plant can make the MPC structure unstable.

7.1 Future work

The development of the simulation environment proved to be more time-consuming
than initially anticipated; as such with a finished simulation environment, more
time can be allocated to fine-tuning the optimization parameters and the control
structures presented in this thesis project.

With more time allocated to it, the issues presented in Chapter 6 would likely
be solved and yield any future work improved performance and an increasingly
accurate analytical framework for comparing the various control methods.

Improvements in the performance of the control models involve testing of dif-
ferent delay horizons for the PID controller and testing of various scaling factors
for the coal input ratio. Further work within the MPC structure is approach-
ing the modelling of the generator/turbine from another angle than through lin-
earization. There is also a possibility that another type of MPC structure could
yield significantly better performance than the MPC structure selected in this
thesis project, as only one MPC structure was tested in this project.

Future work should also test various circumstances of the incoming solar
power: how the controllers react to stochastic solar power and how the con-
trollers react to disturbances and errors in the incoming solar power model.
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