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Abstract: Packing products into a pallet or other medium is an unavoidable activity for producing
companies. In many cases, packing is based on operator experience and training using packing
patterns that have worked before. Automated packing, on the other hand, requires a systematic
procedure for devising packing solutions. In the scientific literature, this problem is known as 3D bin
packing (3DBP) and many authors have proposed exact and heuristic solutions for many variations of
the problem. There is, however, a lack of datasets that can be used to test and validate such solutions.
Many of the available datasets use randomly generated products with extremely limited connection
to real practice. Furthermore, they contain a reduced number of product configurations and ignore
that packing relates to customers’ orders, which have specific relative mixes of products. This paper
proposes a software toolbox for generating arbitrarily large datasets for 3DBPP based on real industry
data. The toolbox was developed in connection with the analysis of a real dataset from the food
and beverages sector, which enabled the creation of several synthetic datasets. The toolbox and
the synthetic datasets are publicly available and can be used to generate additional data for testing
and validating 3DBP solutions. The industry is increasingly becoming data dependent and driven.
The ability to generate good quality synthetic data to support the development of solutions to real
industry problems is of extreme importance. This work is a step in that direction in a domain where
open data are scarce.

Keywords: 3DBPP; toolbox; dataset; problem instance; online 3DBPP; offline 3DBPP

1. Introduction

Packing is an activity that is inherent to any production company. Depending on the
activity sector, the products to be packed will vary along many different dimensions, for ex-
ample, geometry, weight, load capacity, composition, etc. Depending on the heterogeneity
of an order with respect to the types and quantities of products to be packed, the solutions
for the packing problem can be straightforward or complex but feasible or directly infeasi-
ble. This has motivated many companies to use specialized human operators when packing
highly heterogeneous orders. Other companies have normalized packaging sizes so that
their dimensions correlate in a way that facilitates packing. General and deterministic
solutions for the 3D bin packing problem (3DBPP) are not known. The problem is known
to be NP hard in its simplest form, which disregards practical industrial constraints, such
as load limits, container stability, incompatibility of items, etc.

The availability of realistic datasets is of paramount importance for the scientific
community to be able to provide industry and practitioners with high-quality solutions
for 3DBPP. However, there is a scarcity of such datasets online, and many of the available
datasets are not necessarily grounded in real industry data. In this context, it is also
important to note that today’s industrial systems are increasingly reliant on data for their
operations. However, in many cases, real data can only be created at an extremely low
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pace. Alternatively, certain systems create vast amounts of data, but access to said data is
normally restricted. This renders providing data-based solutions for complex industrial
problems a real challenge. With this in mind, this paper attempts to support the research
community by providing a methodology, a set of digital tools and two exemplary datasets
to be used for developing solutions for the 3DBPP.

Considering the obvious economic and industrial impact of 3DBPP, over the years,
numerous exact and approximation algorithms have been developed to provide an exact or
approximation solution [1]. During the development process, researchers opt to benchmark
the performance of their current 3DBPP solutions with those of the existing state-of-the-art
algorithms [2]. However, to the best of the authors’ knowledge, there are no standard
datasets or problem sets that are universally accepted for benchmarking and testing 3DBPP
algorithms’ performance.

Instead, in the literature, there are a myriad of different datasets (see Tables 1 and 2),
some of which are specifically designed for special kinds of 3DBPP (e.g., open dimension
problem, and uniform bin packing) [3–5]. Whether or not a current 3DBPP algorithm is
state of the art cannot always be evaluated solely based on its performance on virtually
generated data, which does not reflect the trends and practical requirements of an industry.
As the state-of-the-art literature uses non-standard problem sets to test their solutions, the
underlying numerical experiments might not be comparable to others [2].

This paper reviews and characterizes 19 datasets that are referenced in the literature
both for the offline (8 datasets) and online (11 datasets) variations of the 3DBPP. A summary
of these findings can be found in Tables 1 and 2. Online datasets are fundamentally different
from offline datasets due to how knowledge is transferred to the 3DBPP algorithm. In
offline 3DBPP, the knowledge of the entire dataset is available to the algorithm at the
beginning of the optimization process [6]. The online 3DBPP algorithms cannot access the
knowledge of the entire dataset immediately, but instead, each data point is fed, one at a
time, to the algorithm in an arbitrary sequence [7]. It is therefore, important for an ideal
dataset to support both modes of operation.

Both online and offline datasets were analyzed in light of several parameters: ap-
plication, number of instances in the dataset, the presence of specific or re-configurable
features in the instances’ items, the distribution of the different item/package sizes (when
applicable), and the heterogeneity of the items/packages as a function of their dimensions.
Table 1 summarizes the analysis for offline datasets.

One of the still most widely used datasets for offline 3DBPP problem was developed
by Bischoff and Ratcliff [8,9] and is commonly denoted in the literature as BR0–BR15 as a
means to specifically refer to each of the 16 instances of the dataset. All instances are defined
for single container applications and contain 100 items each. Single container means, in
this context, that the different instances are meant to be packed in only one container with
fixed dimensions. The dataset also contains information regarding the allowed orientations
for each box within an instance. It is not possible to configure the distribution of box types
(i.e., dimensions) on the problem instances. The heterogeneity of the instances with respect
to the relative dimensions of the items ranges from weakly to strongly heterogeneous.

Other datasets specifically target multiple container applications [10–13]. In these scenarios,
the container size may be fixed or variable, but the items to be packed are bounded by the
volumes of the containers. Examples of multi-container datasets include [13–15]. In [13], the
authors discuss a dataset with 47 instances, each of which has between 47 and 180 items. The
distribution of item types is fixed and restricted to between two and five possible types. There are
no specific constraints with respect to the possible orientations of the packages in the instances.
The instances are weakly heterogeneous. The multi-container dataset discussed in [14] contains
385 instances, and each has between 1 and 10 items. Users can control the heterogeneity of
package types by varying the distribution among nine different types, but the orientation of
certain packages is predefined [16,17]. The data result in strongly heterogeneous instances. The
dataset discussed in [15], with an example application in [10,12,15] also targets multi-container
applications. The 16 available instances of this dataset consist of between 70 and 175 packages
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that are combinations of 2 to 6 package types without any specific orientation constraints. The
dataset is weakly heterogeneous.

Table 1. Comparison of different test problem data sets for different types of offline bin packing problems.

Dataset Source Current
Application

Number of
Instances

Additional
Constraints

Distribution of
Box Type

Instance
Heterogeneity

Bischoff and
Ratcliff
(BR1–BR7) [8]

Single container 7 instances each
with 100 items

Specific
orientations are

allowed
Pre-defined, fixed Weakly

heterogeneous

Davies and
Bischoff (BR0,
BR8-BR15) [9]

Single container 9 instances each
with 100 items

Specific
orientations are

allowed
Pre-defined, fixed Strongly

heterogeneous

Ivancic et al. [13] Multiple identical
containers

47 instances each
has between 47
and 180 boxes,
2–5 box types

None Fixed Weakly
heterogeneous

Martello et al. [14] Multiple identical
containers

385 instances each
has between 1 and

10 boxes, 9 box
types

Specific
orientations are

allowed
User-defined Strongly

heterogeneous

Mohanty et al. [15]

Multiple
weakly/strongly

heterogeneous
containers

16 instances each
has between 70
and 175 boxes, 2
and 6 box types

None Fixed Weakly
heterogeneous

Bortfeldt and
Gehring [18]

Single container
ODP

10 instances each
has between 127
and 140 boxes, 3
and 50 box types

Specific
orientations are

allowed
Uniform Strongly/weakly

heterogeneous

Bortfeldt and
Mack [4]

Single/multiple
ODP

10 instances each
with 1000 boxes,
3–50 box types

Specific
orientations are

allowed
Uniform Weakly

heterogeneous

Bosch Group
(mentioned in [19])

Single/Multiple
container ODP

14 instances each
has between 90

and 1145 boxes, 5
and 29 box types

Weight limit for
vertical stability None Strongly/weakly

heterogeneous

Open dimension problem (ODP) is a class of 3DBPP, where items need to be packed
into single/multiple containers with one or more variable dimensions such that the con-
tainer volume is minimized. Bortfeldt and Gehring et al. created a dataset with 10 instances
capable of benchmarking algorithms for single container ODP [3,18]. Each instance of this
dataset consists of between 127 and 140 boxes, distributed uniformly among 3–50 item
types. As such, this dataset contains both strongly and weakly heterogeneous product
types. Consequently, Bortfeldt and Mack et al. modified the previous dataset (Bortfeldt and
Gehring et al.) with 1000 boxes per instance. This dataset is designed to test solutions for
multi-container ODP. However, the modified dataset still uses 10 instances with a uniform
distribution of boxes among 3–50 package types. This essentially populates the dataset
with weakly heterogeneous products [3,4]. Both of these ODP datasets provide information
on the allowed orientations for each box.

Although these virtually generated datasets can demonstrate an algorithm’s effective-
ness for improving objective functions over time, they have some drawbacks. The limited
number of built-in constraints (e.g., orientation and weight limit constraint) that an algo-
rithm has to satisfy while in operation does not reflect the realistic packing constraints (e.g.,
customer positioning constraints, loading priority and stacking constraint) [2]. Additionally,
the products and pallet sizes do not conform to any industry standard. The majority of the
datasets are static and do not allow user modification or scaling. To overcome some of these
limitations, in 2023, Chen et al. benchmarked their 3DBPP algorithm on a real-world-based
dataset provided by the Bosch Group [19]. All 14 instances of this dataset are generated
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based on 5–29 real-world scenarios and product information. The number of items per
instance can range between 90 and 1145, allowing a good balance between strongly and
weakly heterogeneous instances.

So, in general, offline datasets tend to contain a fixed set of problem instances of differ-
ent degrees of heterogeneity. With the exception of the work reported in [19], which used
industry data, the distribution of package types and dimensions appears to have been tuned
by the authors based on their own experiences and benchmarking needs. Another character-
istic of the analyzed datasets is that their usage has been reported in other works, but they
do not appear to be freely available as an online resource, with the exception of BR1-BR7
and the work of Ivancic et al., which are available at http://people.brunel.ac.uk/ mas-
tjjb/jeb/orlib/thpackinfo.html, accessed on 24 May 2023.

Unlike offline datasets, online datasets tend to rely on generating functions or processes
that create packages to be fed progressively to the 3DBPP algorithms under testing. Online
problems are usually solved under unbounded conditions, where an unlimited number of
containers are available for packing items (see Table 2). However, in the real world, due to
logistical reasons, a limited number of containers are available. Commonly used online
datasets are based on variable-sized datasets, random sequences or random sampling,
which neglects the limited availability of containers [6]. Recently, Zhao et al. generated a
dataset with 64 instances addressing this issue [20,21]. A large body of research uses the
guillotine cut method to generate the problem instances [22–24]. Since, in this method, the
optimal solution for each problem instance is known, these datasets are widely used to test
the packing efficiency of online algorithms. However, they are also prone to randomness
and do not resemble the geometric dimensions of real-world products [6]. As such, machine
learning models, a quite popular way of addressing online problems, trained on virtual
datasets can become quite impractical in real industrial applications.

In [25,26] an event-driven method for creating packages is proposed that attempts to
emulate real-world online packing scenarios. The idea is to guarantee that the generated
items change, progressively or abruptly, over time according to a certain probability of
change. The goal is to enable algorithms to be tested dynamically against changing inputs.
Another attempt to mimic real-world conditions is reported in [27], where a generator
function samples from a real package distribution from a specific company. Another
approach to realistic scenario creation is reported in [28], where packages are sampled from
seven real package sizes used by DHL.

In order to test solutions for online bin packing problems with uniform distribution,
specific problem sets are proposed by Asta et al. and Ender et al. [29,30]. The generator
functions for these datasets were used by several other studies for benchmarking state-of-
the-art 3DBPP online algorithms [5,29,31].

Real 3DBP problems are inherently multi-objective optimization problems. How-
ever, according to Ali et al., a limited number of studies have used a multi-objective
optimization approach for solving 3DBPPs [6]. Therefore, most datasets are designed with
single-objective problems in mind, and they are either tuned to evaluate the maximization
of volume utilization or weight. Even in instances where more package information is
provided, most of the data are still drawn from one or several fictitious distributions. An
obvious problem is that, in some cases, the weights of the items are not proportional to
their volumes [2]. The other important pitfall of the existing datasets is that products are
not randomly ordered. There is a certain coherence in real product orders, which is then
implicitly reflected in the relative dimensions of products that are usually packed together
and affect the heterogeneity of the packing problem.

In order to overcome the drawbacks of the existing datasets, this study developed a
software toolbox to generate synthetic datasets based on real-world product information for
testing online and offline 3DBPP algorithms. The toolbox was designed based on an analysis
of order information from the food and beverages industry. Together with the toolbox,
two datasets of different sizes are also distributed. These datasets serve a dual function:
they can be used directly and they can be used with the toolbox to create additional data.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/thpackinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/thpackinfo.html
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The generated data can be served to an algorithm all at once (offline mode) or product by
product using a generator function (online mode). The preliminary analysis of the results
suggests that the toolbox generates datasets that capture with good fidelity: the distribution
and composition of the orders (as a function of product types and their relative quantities),
the dimension and weights of the packages (which are real-world data) and that hold these
properties irrespective of the size of the generated dataset.

Table 2. Comparison of different test problem data sets for different types of online bin packing problems.

Dataset Source Type of Bin
Packing Problem

Distinct Product
Types

Additional
Constraints

Distribution of
Box Type

Instance
Heterogeneity

Zhao et al. [21] Single Container 64 Order dependence,
vertical stability Pre-defined Strongly/weakly

heterogeneous

Variable-sized item
(VSI) [32] Single Container Variable

Specific
orientations are

allowed
Random Strongly/weakly

heterogeneous

Discreet
dataset [33]

Multiple identical
containers

3 different settings
for unlimited

instances

Specific
orientations are
allowed, robot
manipulation

constraint

Pre-defined Strongly
heterogeneous

Guillotine
cut [22–24]

Single/multiple
containers Variable

Order dependence,
specific

orientations are
allowed

Random Strongly/weakly
heterogeneous

Event simulation
based [25,26]

Single/multiple
containers 20–1000

Specific
orientations are

allowed
Pre-defined, fixed Weakly

heterogeneous

Random sequence
based [34–36]

Multiple
containers Variable None Random/uniform Strongly/weakly

heterogeneous
Random sampling
based [37]

Multiple
containers 100 Full support

constraint Random Strongly/weakly
heterogeneous

Large-scale real
world transaction
order dataset
(LRTOD) [27]

Single/multiple
containers -

Specific
orientations are

allowed
None Strongly/weakly

heterogeneous

DHL dataset [28] Single container 7
Specific

orientations are
allowed

Random Weakly
heterogeneous

Asta et al. [29] Uniform bin
packing 100 None Pre-defined,

uniform
Weakly

heterogeneous

Ender et al. [30] Uniform bin
packing Variable None User-defined,

uniform
Weakly

heterogeneous

The structure of the paper is as follows: Section 2 describes the methodological
approach for developing and using the software toolbox. Section 3 presents the results
related to the functionality and accuracy of the toolbox. Sections 4 and 5 discuss the
capabilities of the toolbox in light of the results and summarize the findings, respectively.

2. Materials and Methods

As mentioned before, the purpose of this paper is to document a software toolbox that
can be used to generate arbitrarily large datasets that mimic real-world orders in product
diversity, quantity and properties. Such synthetically generated orders correlate moderately
with the orders placed to a relatively large facility in the food and beverages domain. The
toolbox requires a base representative dataset, which is used along a specific workflow
towards generating new datasets. The workflow is, therefore, applicable to other datasets
containing the same data fields. This allows researchers to create and provide their own
datasets based on other industry examples and domains.
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A base dataset, that would be compatible with the toolbox, is organized as follows.
The dataset must be provided as CSV file. The header of the CSV file should have the
following categories:

• Order—The identifier of the order. The value should be an integer number. All the
rows with the same order identifier are part of the same order.

• Product—An order includes several products. Product is the product identifier. A
product identifier should not repeat within an order (i.e., data rows with the same
order may not have repeating values for the same Product). The value of the product
should be an integer number.

• Quantity—Represents the amount of each product in an order. It should be an
integer number.

• Length—Is an integer representing the length of one individual product in millimeters.
• Width—Is an integer representing the width of one individual product in millimeters.
• Height—Is an integer representing the height of one individual product in millimeters.
• Weight—Is a floating point number representing the weight of one individual product

in kilograms.

Floating point numbers should use “.” as the decimal separator. An example of a valid
input set of values for a CSV file is detailed in Table 3.

Table 3. Example of valid values in the input CSV file.

Order Product Quantity (Units
of Product) Length (mm) Width (mm) Height (mm) Weight (kg)

92839 30367 2 300 160 216 8.953
92839 66212 1 385 160 215 10.727
92839 67805 36 225 225 180 5.186
92839 53347 1 244 164 274 5.811
92839 17310 10 160 160 111 1.781
33920 42882 4 244 164 274 5.811
33920 30920 3 225 225 180 5.19

The values in Table 3 are interpreted as follows. There are two orders in the sample
(orders 92839 and 33920). Order 33920 has two product types on it (42882 and 30920). There
are four items of product 42882 and three items of 30920. The corresponding characteristics
for one individual item are then detailed. For example, items of product type 42882 have
length 244 mm, width 164 mm, height 274 mm and weight 5.811 kg.

With a valid base dataset, the toolbox will apply the following workflow:

1. Load the dataset.
2. Cluster the data.
3. Calculate the cluster distribution (i.e., what is the frequency of orders belonging to

each cluster in the dataset).
4. Sample the clusters and generate representative data points from each sampled cluster.

The procedure above, also documented in Figure 1, was used to generate two syn-
thetic datasets based on a real industry dataset. The original dataset included around
3000 orders from a product assortment of about 200 different product types. The two
generated datasets can be used directly to test and validate existing algorithms, but
they can also be used to generate new data. Dataset1000.CSV contains 1000 orders and
Dataset10000.CSV contains 10,000 orders. Both the toolbox and the datasets are available in
https://github.com/luferi/3DBPP, accessed on 22 June 2023.

In order to properly evaluate the results, it is important to clarify steps 2 to 4 of the
procedure detailed before. There are many different possible strategies for data clustering.
The analysis of the original dataset was a determinant in deciding on the best approach.
Figure 2 shows a plot of the orders on the original dataset as a function of the number of
items in each order as well as the number of different products in them. It also shows an

https://github.com/luferi/3DBPP
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entropy measurement of the order. The entropy of an order was calculated in the following
way: the dataset was grouped by order and product, and the quantity values were summed
for each group. The Shannon index was then calculated and normalized for each order.
The function entropy from the python scipy.stats._entropy package was used for calculating
the index. The normalization of values between 0 and 1 was carried out by subtracting
the minimum entropy value from the calculated index and then dividing by the difference
between the maximum and minimum entropy values. The higher the entropy, the higher
the uncertainty in the distribution of the number of items per product type. Figure 2
therefore shows that the composition of the order is not straightforwardly predictable. This
fact has been confirmed by the company providing the dataset.

Load Base
Dataset

Process Dataset

Sample Data 
Points

Configure
Cluster Size
and Path to 

Base Dataset

Base
Dataset

Clusters

Order 
Frequency

Table

Clustering

Calculate Cluster
Distribution

Cluster 
Distribution

Done
Sampling

No

End

Yes

Start

Figure 1. Flowchart diagram for the dataset generation procedure.

This means that orders with many items and orders with fewer items may range from
being very homogeneous or very heterogeneous with respect to the variety of product
types. With that mentioned, it is also important to note that, generally, orders with a higher
number of items will also tend to have a more homogeneous distribution of item quantity
for a product type. From a data generation perspective, this means that the number of
items alone is not a good predictor of product variety and vice versa.

Another pertinent observation is that there is oftentimes a certain coherence in the
product types in an order (i.e., certain types of products are often ordered together). The
relative mix of these products varies though. The challenge then becomes capturing such
coherence in a reasonable way.
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Figure 2. Order composition and entropy on the original dataset.

The procedure used for clustering consists of the following:

1. Generate a frequency table with the product counts per order.
2. Evaluate the cosine similarity between the different orders of the frequency table.
3. Interpret the cosine similarity matrix as an adjacency matrix in an undirected graph.
4. Cluster the data by using a network community detection algorithm.

The cosine similarity measurement evaluates the angle between two data vectors. One
row in the frequency table can be interpreted as a data vector with a dimension equal to
the total number of products in the assortment. Measuring cosine similarity has, in this
case, the advantage that it does not depend on the magnitude of the vectors. It is, therefore,
a good way to capture the coherence of the orders as a function of the product types on
them but not necessarily their quantities. The cosine similarity measurement generates an
n-by-n matrix, where n is the number of orders in the sample. The matrix then details how
similar one order is to all the other orders.

One takes advantage of that matrix by interpreting it as the adjacency matrix of a graph,
or a network, and then analyzing it using the Louvain community detection algorithm.
Large communities are re-evaluated. The threshold for what defines a large community
is configurable. In the original dataset analysis, that number was experimentally and
empirically restricted to 100 orders per community/cluster.

To generate a set of representative data points, the cluster distribution is calculated.
This is achieved by counting how many orders belong to each cluster. Sampling from
a cluster is then performed probabilistically considering the frequency of orders in each
cluster. One of the reasons why the size of the clusters must be controlled is that if their size
is disproportionate, the resolution on the nature of the order when sampling will be lost.

When a cluster is selected, the next step is to evaluate the distribution of product
types in that cluster and sample from that distribution. However, when sampling from the
clusters, only one cluster is selected. When sampling from the product types, a slightly
different approach is considered. Product types are n-times randomly selected, and their
likelihood of selection is proportional to their occurrence in the cluster (i.e., products whose
type occurs more frequently in the cluster are more likely to be selected). Note that this
sampling procedure does not take into account the number of items of the same type in
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the cluster. The reasons for that are that the quantity is not an indicator of the frequency of
the order (as Figure 2 shows) and quite a few products ordered in a low quantity actually
take a lot of volume, or otherwise are already a large aggregated product. To clarify with a
practical example, it is possible to order 20 bottles of juice (quantity = 20), or a half-pallet of
juice (quantity = 1). The latter obviously contains a lot more volume and units of bottles of
juice but exists in the dataset as a single unit.

After the types of products are sampled, then the quantity of each product type
is sampled from the quantity distribution for that type. This final step guarantees that
examples such as the one mentioned before for the bottles of juice are preserved in the
generated data. That is important because it directly affects the composition of the orders
and their packing characteristics.

There are two final pertinent observations about the generated dataset and the process
for generating them.

The first is that the provided datasets do not make any assumption about the bin size.
For reference, the base dataset used to create the published datasets considered standard
euro pallets with length 1200 mm, width 800 mm and a maximum palletizing height of
1400 mm. However, companies may change their bin format while keeping package sizes
constant and vice versa

The second is that the provided datasets do not include any information about what
constitutes an optimal palletization sequence and positioning for the products in the orders.
The reason for this is manifold. Different companies will use specific parameters for evalu-
ating the quality of a pallet. Classic scientific metrics, such as the minimization of envelope
volume, minimization of the number of bins, minimization of bin volume, etc., actually
have relatively low importance for many practical applications. Other constraints, such as
products of the same type being packed together, expensive products being packed in the
center, the creation of interlocking layers that improve the stability of the bin/pallet when
being displaced, the need to include additional load carriers between certain products, etc.,
are much more important in real-world applications. The goal with the provided datasets
is that whoever uses them must clearly contextualize the application area and indicate
which palletization quality metrics were considered. Any order can be palletized/packed,
but quality indicators will vary greatly. Dataset users will subsequently establish the
benchmark for their specific application scenario.

With this procedure in mind, the paper will now concentrate on describing the toolbox
and analyzing the results obtained.

3. Results

The analysis of the created and provided datasets (Dataset1000 and Dataset10000) is
a good starting point to evaluate if the toolbox can be successfully used to create realistic
datasets. Figure 3 shows the generated orders as a function of the number of items and
diversity of product types. The entropy index is also calculated.

Inspection and analysis of Figures 2 and 3a,b show that the generated datasets largely
succeed in keeping the profile of the original dataset, both for small samples (Figure 3a)
and larger samples (Figure 3b). This means that the toolbox is generating samples that are
both high and low volume and high and low variety. The analysis of the entropy index also
suggests that the relative quantities of the products are being correctly generated.

There are also a few additional effects to be discussed. The number of items will
tend to increase, as well as the number of different products. This is a consequence of
the sampling procedure used, where the product types featured in an order are randomly
selected from the set of all product types that occur in the cluster and on their frequency
of occurrence. This means that there is a probability, even if very low, that all products
existing in a cluster would be present in a created order. There is also a probability that
products that existed in just a few orders in the cluster, even if they were not the defining
products of the cluster, start to show up in more orders. The probability of such an effect



Processes 2023, 11, 1909 10 of 14

increases with the size of the cluster. These effects are visible in the shapes of Figure 3a,b,
which have a smoother envelopethan the original dataset Figure 2.
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Figure 3. Order composition and entropy on the generated datasets. (a) Dataset1000. (b) Dataset10000.

The authors evaluated two more effects that result from the usage of the toolboxes and
base dataset. The first is the impact of creating datasets with a relatively low number of
orders. The second is the effect of creating additional datasets from copies of other datasets.
The effects of both are reflected in Figure 4.
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Figure 4 shows the effects of generating datasets from successive copies. In this case,
the Dataset1000 is first used to create a new dataset with 100 orders on it. This new dataset
is represented as Gen1. That dataset is then used to generate dataset Gen2. The procedure is
repeated until Gen30. The objective here is to analyze how smaller datasets and successive
copies lose resolution with respect to the original dataset.

The observations suggest that the generating procedure does not lose products or their
relative distribution for samples of size 100. Comparing Figure 4 with Figure 3a shows
that the ranges in number of items and number of different products are kept. However,
generating datasets from successive copies of smaller datasets has, after a few iterations
of copies, effects on the profile of the orders. Figure 4 shows that the latest copies tend to
have fewer items and less variety of products.

These results will, in the next section, be used as a basis to discuss the toolbox and
its usage.

4. Discussion

The paper now concentrates on the discussion of the software toolbox and the defini-
tion of adequate use cases considering the configurable parameters of the toolbox. Before
discussing the toolbox, it is worth mentioning that the generated datasets (Dataset1000
and Dataset10000) are immediately available for usage and do not require the toolbox. The
toolbox provides additional facility functions to generate additional data points or datasets
with specific characteristics that are not found in the existing datasets. The toolbox also
supports the analysis of entirely new datasets from other domains as long as the datasets
conform to the format described in Section 2.

The toolbox exists as a set of functions codified in the Python programming language.
The main function signatures and their role are defined in Table 4

Table 4. Brief description of the toolbox API.

Function Signature Description

main_workflow(input_file_path, num_samples, out-
put_file_path)

This function executes the main workflow described in Section 2
and in Figure 1. It takes as input the file path to the base dataset as
input, the number of order samples to be generated and the path
to the output file where the newly created dataset will be stored.

cosine_similarity_community_clustering(freq_table, thresh-
old=100)

This function takes as input a frequency table of the orders in
the original dataset and clusters the dataset by applying the
Louvain community detection algorithm (this corresponds to
the clustering process in Figure 1). The threshold input regulates
the maximum size of a community. Communities above that
size are recursively re-evaluated into smaller communities. The
function returns a dictionary of all the communities identified.

cluster_distribution(communities_flat, total_data_points)

This function computes the distribution of orders per cluster,
based on the frequency table and total amount of data points in
the sample (this corresponds to the calculate cluster distribution
process in Figure 1).

generate_representative_data_point(b_dict)

This function generates a representative data point from a prese-
lected cluster. The cluster information needs to be provided in
the form of a dictionary that can be retrieved by calling the func-
tion get_b_dict (see code repository) that will convert a cluster
to the appropriate format.

sample_generator(freq_table, communities_flat, cluster_dist) This function provides a generator for continuously sampling
point from a dataset on demand.

Table 4 is not meant to be an exhaustive description of the API, which can be found in
https://github.com/luferi/3DBPP, accessed on 22 June 2023. The idea is to discuss how the

https://github.com/luferi/3DBPP
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API looks and can be used to generate data. Furthermore, Table 4 complements the diagram
in Figure 1 with the purpose of helping prospective users navigate the toolbox code.

In the previous context, calling the main_work_flow function results in a complete
dataset being created. That function iteratively calls the functions that sample the clus-
ters according to the computed distribution and subsequently generate a representative
data point. With this in mind, it is possible to create an entire dataset. However, other
calling patterns are also possible. An example of using the toolbox function as a Python
generator is provided in the distributed code. Such code samples make use of the function
sample_generator described in Table 4.

So, from a toolbox perspective, two modes of operation are possible: the generation of
complete datasets or the progressive generation of data points.

The generated data allow a high degree of flexibility in the usage of the data. For
example, in the online mode, users can opt to use a generator function, such as the one
provided by the code in the code repository, and receive randomly sampled data points,
or they may enforce a specific delivery order, by re-grouping or re-ordering the provided
dataset according to specific criteria and retrieving orders sequentially. A combined strategy
is also possible, whereby the users train and benchmark their algorithms using a specific
order sequence from the provided datasets and then validate the order from the generator.
The toolbox does not prescribe any specific usage.

In any case, the base dataset analysis needs to be completed before any of the proce-
dures above can be executed.

In the context above, the main parameter that must be considered is the maximum size of
the communities to be considered when calling the cosine_similarity_community_clustering.
There are a few important considerations for setting this parameter that may affect the nature
of the generated datasets or points. These considerations follow from the analysis in Section 3.
Allowing clusters that are too large may reduce the capacity of the toolbox to create samples
with proper diversity. Allowing considerably small clusters may lead to the creation of orders
that are not truly representative of real industry data. The algorithm used for creating the
clusters does not allow limiting their minimum size or number. The algorithm only allows
limiting the maximum size.

When using the toolbox with a new dataset, the parameter needs to be adjusted to
the characteristics of the dataset. The recommended approach is to start without any
limitations and evaluate the sizes of the largest clusters. If the largest clusters are in fact
representative of the dataset, for example, due to the existence of an overly representative
set of very similar configurations, then no further adjustment is required. However, if the
larger clusters do not provide a good mapping for the dataset, then progressively reducing
the cluster size is the preferred approach. Following such a procedure led the authors to
the results documented.

5. Conclusions

In this paper, the authors conducted a detailed literature review on the most well-
established datasets used for benchmarking the performance of 3DBPP algorithms. The
literature review encompassed both online and offline datasets and evaluated their effec-
tiveness along with limitations. A software toolbox was proposed to overcome some of
the identified drawbacks of the existing datasets. The results show that the toolbox can
generate good quality synthetic datasets based on real-world product information and
practical constraints. Experience with using the toolbox also suggests that the proposed
methodology may scale well to other industry domains with similar data; however, the
functions within the toolbox may have to be parameterized according to the domain. If
correctly parameterized, these functions showed a good capacity to identify small but
relevant regularities in the data. This capacity is key to the creation of realistic synthetic
datasets. The toolbox is, as described in this paper, restricted to the analysis of a few data
dimensions: product geometric dimensions and weight. In real application scenarios, other
product features may be relevant (e.g., load capacity, surface friction, and custom packing
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restriction). Both the methodology and toolbox can be very easily adapted to include these
additional features. However, the previous will require re-programming of the toolbox,
which today operates on the dimensions specified before. The previous was also the main
motivation for making the toolbox and the dataset publicly available. This work was
developed under the umbrella of a large research project studying the practical applications
and constraints of 3DBPP in industry. The results of the toolbox will be incorporated into
the development of advanced 3DBPP solutions in the food and beverages industry. In the
process of generating data for different 3DBPP solutions, the authors anticipate that the
toolbox will continue to be further developed. An obvious direction in this development is
to add not only the order information but also the benchmark solution when packing the
order in the provided datasets.
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